[IPV4]: Correct rp_filter help text.
[linux-2.6/verdex.git] / arch / ia64 / kernel / perfmon.c
blobb7133cabdbea98db50b6e348ca6173fc1a790239
1 /*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
30 #include <linux/mm.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
44 #include <asm/errno.h>
45 #include <asm/intrinsics.h>
46 #include <asm/page.h>
47 #include <asm/perfmon.h>
48 #include <asm/processor.h>
49 #include <asm/signal.h>
50 #include <asm/system.h>
51 #include <asm/uaccess.h>
52 #include <asm/delay.h>
54 #ifdef CONFIG_PERFMON
56 * perfmon context state
58 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
59 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
60 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
61 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
63 #define PFM_INVALID_ACTIVATION (~0UL)
65 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
66 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
69 * depth of message queue
71 #define PFM_MAX_MSGS 32
72 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
75 * type of a PMU register (bitmask).
76 * bitmask structure:
77 * bit0 : register implemented
78 * bit1 : end marker
79 * bit2-3 : reserved
80 * bit4 : pmc has pmc.pm
81 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
82 * bit6-7 : register type
83 * bit8-31: reserved
85 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
86 #define PFM_REG_IMPL 0x1 /* register implemented */
87 #define PFM_REG_END 0x2 /* end marker */
88 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
89 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
90 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
91 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
92 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
94 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
95 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
97 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
99 /* i assumed unsigned */
100 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
101 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
103 /* XXX: these assume that register i is implemented */
104 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
105 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
107 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
109 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
110 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
111 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
112 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
114 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
115 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
117 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
118 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
119 #define PFM_CTX_TASK(h) (h)->ctx_task
121 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
123 /* XXX: does not support more than 64 PMDs */
124 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
125 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
127 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
129 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
130 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
131 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
132 #define PFM_CODE_RR 0 /* requesting code range restriction */
133 #define PFM_DATA_RR 1 /* requestion data range restriction */
135 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
136 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
137 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
139 #define RDEP(x) (1UL<<(x))
142 * context protection macros
143 * in SMP:
144 * - we need to protect against CPU concurrency (spin_lock)
145 * - we need to protect against PMU overflow interrupts (local_irq_disable)
146 * in UP:
147 * - we need to protect against PMU overflow interrupts (local_irq_disable)
149 * spin_lock_irqsave()/spin_unlock_irqrestore():
150 * in SMP: local_irq_disable + spin_lock
151 * in UP : local_irq_disable
153 * spin_lock()/spin_lock():
154 * in UP : removed automatically
155 * in SMP: protect against context accesses from other CPU. interrupts
156 * are not masked. This is useful for the PMU interrupt handler
157 * because we know we will not get PMU concurrency in that code.
159 #define PROTECT_CTX(c, f) \
160 do { \
161 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
162 spin_lock_irqsave(&(c)->ctx_lock, f); \
163 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
164 } while(0)
166 #define UNPROTECT_CTX(c, f) \
167 do { \
168 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
169 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
170 } while(0)
172 #define PROTECT_CTX_NOPRINT(c, f) \
173 do { \
174 spin_lock_irqsave(&(c)->ctx_lock, f); \
175 } while(0)
178 #define UNPROTECT_CTX_NOPRINT(c, f) \
179 do { \
180 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
181 } while(0)
184 #define PROTECT_CTX_NOIRQ(c) \
185 do { \
186 spin_lock(&(c)->ctx_lock); \
187 } while(0)
189 #define UNPROTECT_CTX_NOIRQ(c) \
190 do { \
191 spin_unlock(&(c)->ctx_lock); \
192 } while(0)
195 #ifdef CONFIG_SMP
197 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
198 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
199 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
201 #else /* !CONFIG_SMP */
202 #define SET_ACTIVATION(t) do {} while(0)
203 #define GET_ACTIVATION(t) do {} while(0)
204 #define INC_ACTIVATION(t) do {} while(0)
205 #endif /* CONFIG_SMP */
207 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
208 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
209 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
211 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
212 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
214 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
217 * cmp0 must be the value of pmc0
219 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
221 #define PFMFS_MAGIC 0xa0b4d889
224 * debugging
226 #define PFM_DEBUGGING 1
227 #ifdef PFM_DEBUGGING
228 #define DPRINT(a) \
229 do { \
230 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
231 } while (0)
233 #define DPRINT_ovfl(a) \
234 do { \
235 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
236 } while (0)
237 #endif
240 * 64-bit software counter structure
242 * the next_reset_type is applied to the next call to pfm_reset_regs()
244 typedef struct {
245 unsigned long val; /* virtual 64bit counter value */
246 unsigned long lval; /* last reset value */
247 unsigned long long_reset; /* reset value on sampling overflow */
248 unsigned long short_reset; /* reset value on overflow */
249 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
250 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
251 unsigned long seed; /* seed for random-number generator */
252 unsigned long mask; /* mask for random-number generator */
253 unsigned int flags; /* notify/do not notify */
254 unsigned long eventid; /* overflow event identifier */
255 } pfm_counter_t;
258 * context flags
260 typedef struct {
261 unsigned int block:1; /* when 1, task will blocked on user notifications */
262 unsigned int system:1; /* do system wide monitoring */
263 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
264 unsigned int is_sampling:1; /* true if using a custom format */
265 unsigned int excl_idle:1; /* exclude idle task in system wide session */
266 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
267 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
268 unsigned int no_msg:1; /* no message sent on overflow */
269 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
270 unsigned int reserved:22;
271 } pfm_context_flags_t;
273 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
274 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
275 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
279 * perfmon context: encapsulates all the state of a monitoring session
282 typedef struct pfm_context {
283 spinlock_t ctx_lock; /* context protection */
285 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
286 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
288 struct task_struct *ctx_task; /* task to which context is attached */
290 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
292 struct completion ctx_restart_done; /* use for blocking notification mode */
294 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
295 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
296 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
298 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
299 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
300 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
302 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
304 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
305 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
306 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
307 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
309 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
311 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
312 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
314 u64 ctx_saved_psr_up; /* only contains psr.up value */
316 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
317 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
318 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
320 int ctx_fd; /* file descriptor used my this context */
321 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
323 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
324 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
325 unsigned long ctx_smpl_size; /* size of sampling buffer */
326 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
328 wait_queue_head_t ctx_msgq_wait;
329 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
330 int ctx_msgq_head;
331 int ctx_msgq_tail;
332 struct fasync_struct *ctx_async_queue;
334 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
335 } pfm_context_t;
338 * magic number used to verify that structure is really
339 * a perfmon context
341 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
343 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
345 #ifdef CONFIG_SMP
346 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
347 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
348 #else
349 #define SET_LAST_CPU(ctx, v) do {} while(0)
350 #define GET_LAST_CPU(ctx) do {} while(0)
351 #endif
354 #define ctx_fl_block ctx_flags.block
355 #define ctx_fl_system ctx_flags.system
356 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
357 #define ctx_fl_is_sampling ctx_flags.is_sampling
358 #define ctx_fl_excl_idle ctx_flags.excl_idle
359 #define ctx_fl_going_zombie ctx_flags.going_zombie
360 #define ctx_fl_trap_reason ctx_flags.trap_reason
361 #define ctx_fl_no_msg ctx_flags.no_msg
362 #define ctx_fl_can_restart ctx_flags.can_restart
364 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
365 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
368 * global information about all sessions
369 * mostly used to synchronize between system wide and per-process
371 typedef struct {
372 spinlock_t pfs_lock; /* lock the structure */
374 unsigned int pfs_task_sessions; /* number of per task sessions */
375 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
376 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
377 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
378 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
379 } pfm_session_t;
382 * information about a PMC or PMD.
383 * dep_pmd[]: a bitmask of dependent PMD registers
384 * dep_pmc[]: a bitmask of dependent PMC registers
386 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
387 typedef struct {
388 unsigned int type;
389 int pm_pos;
390 unsigned long default_value; /* power-on default value */
391 unsigned long reserved_mask; /* bitmask of reserved bits */
392 pfm_reg_check_t read_check;
393 pfm_reg_check_t write_check;
394 unsigned long dep_pmd[4];
395 unsigned long dep_pmc[4];
396 } pfm_reg_desc_t;
398 /* assume cnum is a valid monitor */
399 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
402 * This structure is initialized at boot time and contains
403 * a description of the PMU main characteristics.
405 * If the probe function is defined, detection is based
406 * on its return value:
407 * - 0 means recognized PMU
408 * - anything else means not supported
409 * When the probe function is not defined, then the pmu_family field
410 * is used and it must match the host CPU family such that:
411 * - cpu->family & config->pmu_family != 0
413 typedef struct {
414 unsigned long ovfl_val; /* overflow value for counters */
416 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
417 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
419 unsigned int num_pmcs; /* number of PMCS: computed at init time */
420 unsigned int num_pmds; /* number of PMDS: computed at init time */
421 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
422 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
424 char *pmu_name; /* PMU family name */
425 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
426 unsigned int flags; /* pmu specific flags */
427 unsigned int num_ibrs; /* number of IBRS: computed at init time */
428 unsigned int num_dbrs; /* number of DBRS: computed at init time */
429 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
430 int (*probe)(void); /* customized probe routine */
431 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
432 } pmu_config_t;
434 * PMU specific flags
436 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
439 * debug register related type definitions
441 typedef struct {
442 unsigned long ibr_mask:56;
443 unsigned long ibr_plm:4;
444 unsigned long ibr_ig:3;
445 unsigned long ibr_x:1;
446 } ibr_mask_reg_t;
448 typedef struct {
449 unsigned long dbr_mask:56;
450 unsigned long dbr_plm:4;
451 unsigned long dbr_ig:2;
452 unsigned long dbr_w:1;
453 unsigned long dbr_r:1;
454 } dbr_mask_reg_t;
456 typedef union {
457 unsigned long val;
458 ibr_mask_reg_t ibr;
459 dbr_mask_reg_t dbr;
460 } dbreg_t;
464 * perfmon command descriptions
466 typedef struct {
467 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
468 char *cmd_name;
469 int cmd_flags;
470 unsigned int cmd_narg;
471 size_t cmd_argsize;
472 int (*cmd_getsize)(void *arg, size_t *sz);
473 } pfm_cmd_desc_t;
475 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
476 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
477 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
478 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
481 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
482 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
483 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
484 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
485 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
487 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
489 typedef struct {
490 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
491 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
492 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
493 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
496 unsigned long pfm_smpl_handler_calls;
497 unsigned long pfm_smpl_handler_cycles;
498 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
499 } pfm_stats_t;
502 * perfmon internal variables
504 static pfm_stats_t pfm_stats[NR_CPUS];
505 static pfm_session_t pfm_sessions; /* global sessions information */
507 static DEFINE_SPINLOCK(pfm_alt_install_check);
508 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
510 static struct proc_dir_entry *perfmon_dir;
511 static pfm_uuid_t pfm_null_uuid = {0,};
513 static spinlock_t pfm_buffer_fmt_lock;
514 static LIST_HEAD(pfm_buffer_fmt_list);
516 static pmu_config_t *pmu_conf;
518 /* sysctl() controls */
519 pfm_sysctl_t pfm_sysctl;
520 EXPORT_SYMBOL(pfm_sysctl);
522 static ctl_table pfm_ctl_table[]={
524 .ctl_name = CTL_UNNUMBERED,
525 .procname = "debug",
526 .data = &pfm_sysctl.debug,
527 .maxlen = sizeof(int),
528 .mode = 0666,
529 .proc_handler = &proc_dointvec,
532 .ctl_name = CTL_UNNUMBERED,
533 .procname = "debug_ovfl",
534 .data = &pfm_sysctl.debug_ovfl,
535 .maxlen = sizeof(int),
536 .mode = 0666,
537 .proc_handler = &proc_dointvec,
540 .ctl_name = CTL_UNNUMBERED,
541 .procname = "fastctxsw",
542 .data = &pfm_sysctl.fastctxsw,
543 .maxlen = sizeof(int),
544 .mode = 0600,
545 .proc_handler = &proc_dointvec,
548 .ctl_name = CTL_UNNUMBERED,
549 .procname = "expert_mode",
550 .data = &pfm_sysctl.expert_mode,
551 .maxlen = sizeof(int),
552 .mode = 0600,
553 .proc_handler = &proc_dointvec,
557 static ctl_table pfm_sysctl_dir[] = {
559 .ctl_name = CTL_UNNUMBERED,
560 .procname = "perfmon",
561 .mode = 0755,
562 .child = pfm_ctl_table,
566 static ctl_table pfm_sysctl_root[] = {
568 .ctl_name = CTL_KERN,
569 .procname = "kernel",
570 .mode = 0755,
571 .child = pfm_sysctl_dir,
575 static struct ctl_table_header *pfm_sysctl_header;
577 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
579 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
580 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
582 static inline void
583 pfm_put_task(struct task_struct *task)
585 if (task != current) put_task_struct(task);
588 static inline void
589 pfm_set_task_notify(struct task_struct *task)
591 struct thread_info *info;
593 info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
594 set_bit(TIF_NOTIFY_RESUME, &info->flags);
597 static inline void
598 pfm_clear_task_notify(void)
600 clear_thread_flag(TIF_NOTIFY_RESUME);
603 static inline void
604 pfm_reserve_page(unsigned long a)
606 SetPageReserved(vmalloc_to_page((void *)a));
608 static inline void
609 pfm_unreserve_page(unsigned long a)
611 ClearPageReserved(vmalloc_to_page((void*)a));
614 static inline unsigned long
615 pfm_protect_ctx_ctxsw(pfm_context_t *x)
617 spin_lock(&(x)->ctx_lock);
618 return 0UL;
621 static inline void
622 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
624 spin_unlock(&(x)->ctx_lock);
627 static inline unsigned int
628 pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
630 return do_munmap(mm, addr, len);
633 static inline unsigned long
634 pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
636 return get_unmapped_area(file, addr, len, pgoff, flags);
640 static int
641 pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data,
642 struct vfsmount *mnt)
644 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt);
647 static struct file_system_type pfm_fs_type = {
648 .name = "pfmfs",
649 .get_sb = pfmfs_get_sb,
650 .kill_sb = kill_anon_super,
653 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
654 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
655 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
656 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
657 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
660 /* forward declaration */
661 static const struct file_operations pfm_file_ops;
664 * forward declarations
666 #ifndef CONFIG_SMP
667 static void pfm_lazy_save_regs (struct task_struct *ta);
668 #endif
670 void dump_pmu_state(const char *);
671 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
673 #include "perfmon_itanium.h"
674 #include "perfmon_mckinley.h"
675 #include "perfmon_montecito.h"
676 #include "perfmon_generic.h"
678 static pmu_config_t *pmu_confs[]={
679 &pmu_conf_mont,
680 &pmu_conf_mck,
681 &pmu_conf_ita,
682 &pmu_conf_gen, /* must be last */
683 NULL
687 static int pfm_end_notify_user(pfm_context_t *ctx);
689 static inline void
690 pfm_clear_psr_pp(void)
692 ia64_rsm(IA64_PSR_PP);
693 ia64_srlz_i();
696 static inline void
697 pfm_set_psr_pp(void)
699 ia64_ssm(IA64_PSR_PP);
700 ia64_srlz_i();
703 static inline void
704 pfm_clear_psr_up(void)
706 ia64_rsm(IA64_PSR_UP);
707 ia64_srlz_i();
710 static inline void
711 pfm_set_psr_up(void)
713 ia64_ssm(IA64_PSR_UP);
714 ia64_srlz_i();
717 static inline unsigned long
718 pfm_get_psr(void)
720 unsigned long tmp;
721 tmp = ia64_getreg(_IA64_REG_PSR);
722 ia64_srlz_i();
723 return tmp;
726 static inline void
727 pfm_set_psr_l(unsigned long val)
729 ia64_setreg(_IA64_REG_PSR_L, val);
730 ia64_srlz_i();
733 static inline void
734 pfm_freeze_pmu(void)
736 ia64_set_pmc(0,1UL);
737 ia64_srlz_d();
740 static inline void
741 pfm_unfreeze_pmu(void)
743 ia64_set_pmc(0,0UL);
744 ia64_srlz_d();
747 static inline void
748 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
750 int i;
752 for (i=0; i < nibrs; i++) {
753 ia64_set_ibr(i, ibrs[i]);
754 ia64_dv_serialize_instruction();
756 ia64_srlz_i();
759 static inline void
760 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
762 int i;
764 for (i=0; i < ndbrs; i++) {
765 ia64_set_dbr(i, dbrs[i]);
766 ia64_dv_serialize_data();
768 ia64_srlz_d();
772 * PMD[i] must be a counter. no check is made
774 static inline unsigned long
775 pfm_read_soft_counter(pfm_context_t *ctx, int i)
777 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
781 * PMD[i] must be a counter. no check is made
783 static inline void
784 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
786 unsigned long ovfl_val = pmu_conf->ovfl_val;
788 ctx->ctx_pmds[i].val = val & ~ovfl_val;
790 * writing to unimplemented part is ignore, so we do not need to
791 * mask off top part
793 ia64_set_pmd(i, val & ovfl_val);
796 static pfm_msg_t *
797 pfm_get_new_msg(pfm_context_t *ctx)
799 int idx, next;
801 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
803 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
804 if (next == ctx->ctx_msgq_head) return NULL;
806 idx = ctx->ctx_msgq_tail;
807 ctx->ctx_msgq_tail = next;
809 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
811 return ctx->ctx_msgq+idx;
814 static pfm_msg_t *
815 pfm_get_next_msg(pfm_context_t *ctx)
817 pfm_msg_t *msg;
819 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
821 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
824 * get oldest message
826 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
829 * and move forward
831 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
833 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
835 return msg;
838 static void
839 pfm_reset_msgq(pfm_context_t *ctx)
841 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
842 DPRINT(("ctx=%p msgq reset\n", ctx));
845 static void *
846 pfm_rvmalloc(unsigned long size)
848 void *mem;
849 unsigned long addr;
851 size = PAGE_ALIGN(size);
852 mem = vmalloc(size);
853 if (mem) {
854 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
855 memset(mem, 0, size);
856 addr = (unsigned long)mem;
857 while (size > 0) {
858 pfm_reserve_page(addr);
859 addr+=PAGE_SIZE;
860 size-=PAGE_SIZE;
863 return mem;
866 static void
867 pfm_rvfree(void *mem, unsigned long size)
869 unsigned long addr;
871 if (mem) {
872 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
873 addr = (unsigned long) mem;
874 while ((long) size > 0) {
875 pfm_unreserve_page(addr);
876 addr+=PAGE_SIZE;
877 size-=PAGE_SIZE;
879 vfree(mem);
881 return;
884 static pfm_context_t *
885 pfm_context_alloc(void)
887 pfm_context_t *ctx;
890 * allocate context descriptor
891 * must be able to free with interrupts disabled
893 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
894 if (ctx) {
895 DPRINT(("alloc ctx @%p\n", ctx));
897 return ctx;
900 static void
901 pfm_context_free(pfm_context_t *ctx)
903 if (ctx) {
904 DPRINT(("free ctx @%p\n", ctx));
905 kfree(ctx);
909 static void
910 pfm_mask_monitoring(struct task_struct *task)
912 pfm_context_t *ctx = PFM_GET_CTX(task);
913 unsigned long mask, val, ovfl_mask;
914 int i;
916 DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
918 ovfl_mask = pmu_conf->ovfl_val;
920 * monitoring can only be masked as a result of a valid
921 * counter overflow. In UP, it means that the PMU still
922 * has an owner. Note that the owner can be different
923 * from the current task. However the PMU state belongs
924 * to the owner.
925 * In SMP, a valid overflow only happens when task is
926 * current. Therefore if we come here, we know that
927 * the PMU state belongs to the current task, therefore
928 * we can access the live registers.
930 * So in both cases, the live register contains the owner's
931 * state. We can ONLY touch the PMU registers and NOT the PSR.
933 * As a consequence to this call, the ctx->th_pmds[] array
934 * contains stale information which must be ignored
935 * when context is reloaded AND monitoring is active (see
936 * pfm_restart).
938 mask = ctx->ctx_used_pmds[0];
939 for (i = 0; mask; i++, mask>>=1) {
940 /* skip non used pmds */
941 if ((mask & 0x1) == 0) continue;
942 val = ia64_get_pmd(i);
944 if (PMD_IS_COUNTING(i)) {
946 * we rebuild the full 64 bit value of the counter
948 ctx->ctx_pmds[i].val += (val & ovfl_mask);
949 } else {
950 ctx->ctx_pmds[i].val = val;
952 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
954 ctx->ctx_pmds[i].val,
955 val & ovfl_mask));
958 * mask monitoring by setting the privilege level to 0
959 * we cannot use psr.pp/psr.up for this, it is controlled by
960 * the user
962 * if task is current, modify actual registers, otherwise modify
963 * thread save state, i.e., what will be restored in pfm_load_regs()
965 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
966 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
967 if ((mask & 0x1) == 0UL) continue;
968 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
969 ctx->th_pmcs[i] &= ~0xfUL;
970 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
973 * make all of this visible
975 ia64_srlz_d();
979 * must always be done with task == current
981 * context must be in MASKED state when calling
983 static void
984 pfm_restore_monitoring(struct task_struct *task)
986 pfm_context_t *ctx = PFM_GET_CTX(task);
987 unsigned long mask, ovfl_mask;
988 unsigned long psr, val;
989 int i, is_system;
991 is_system = ctx->ctx_fl_system;
992 ovfl_mask = pmu_conf->ovfl_val;
994 if (task != current) {
995 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
996 return;
998 if (ctx->ctx_state != PFM_CTX_MASKED) {
999 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1000 task->pid, current->pid, ctx->ctx_state);
1001 return;
1003 psr = pfm_get_psr();
1005 * monitoring is masked via the PMC.
1006 * As we restore their value, we do not want each counter to
1007 * restart right away. We stop monitoring using the PSR,
1008 * restore the PMC (and PMD) and then re-establish the psr
1009 * as it was. Note that there can be no pending overflow at
1010 * this point, because monitoring was MASKED.
1012 * system-wide session are pinned and self-monitoring
1014 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1015 /* disable dcr pp */
1016 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1017 pfm_clear_psr_pp();
1018 } else {
1019 pfm_clear_psr_up();
1022 * first, we restore the PMD
1024 mask = ctx->ctx_used_pmds[0];
1025 for (i = 0; mask; i++, mask>>=1) {
1026 /* skip non used pmds */
1027 if ((mask & 0x1) == 0) continue;
1029 if (PMD_IS_COUNTING(i)) {
1031 * we split the 64bit value according to
1032 * counter width
1034 val = ctx->ctx_pmds[i].val & ovfl_mask;
1035 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1036 } else {
1037 val = ctx->ctx_pmds[i].val;
1039 ia64_set_pmd(i, val);
1041 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1043 ctx->ctx_pmds[i].val,
1044 val));
1047 * restore the PMCs
1049 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1050 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1051 if ((mask & 0x1) == 0UL) continue;
1052 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1053 ia64_set_pmc(i, ctx->th_pmcs[i]);
1054 DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, ctx->th_pmcs[i]));
1056 ia64_srlz_d();
1059 * must restore DBR/IBR because could be modified while masked
1060 * XXX: need to optimize
1062 if (ctx->ctx_fl_using_dbreg) {
1063 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1064 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1068 * now restore PSR
1070 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1071 /* enable dcr pp */
1072 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1073 ia64_srlz_i();
1075 pfm_set_psr_l(psr);
1078 static inline void
1079 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1081 int i;
1083 ia64_srlz_d();
1085 for (i=0; mask; i++, mask>>=1) {
1086 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1091 * reload from thread state (used for ctxw only)
1093 static inline void
1094 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1096 int i;
1097 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1099 for (i=0; mask; i++, mask>>=1) {
1100 if ((mask & 0x1) == 0) continue;
1101 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1102 ia64_set_pmd(i, val);
1104 ia64_srlz_d();
1108 * propagate PMD from context to thread-state
1110 static inline void
1111 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1113 unsigned long ovfl_val = pmu_conf->ovfl_val;
1114 unsigned long mask = ctx->ctx_all_pmds[0];
1115 unsigned long val;
1116 int i;
1118 DPRINT(("mask=0x%lx\n", mask));
1120 for (i=0; mask; i++, mask>>=1) {
1122 val = ctx->ctx_pmds[i].val;
1125 * We break up the 64 bit value into 2 pieces
1126 * the lower bits go to the machine state in the
1127 * thread (will be reloaded on ctxsw in).
1128 * The upper part stays in the soft-counter.
1130 if (PMD_IS_COUNTING(i)) {
1131 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1132 val &= ovfl_val;
1134 ctx->th_pmds[i] = val;
1136 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1138 ctx->th_pmds[i],
1139 ctx->ctx_pmds[i].val));
1144 * propagate PMC from context to thread-state
1146 static inline void
1147 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1149 unsigned long mask = ctx->ctx_all_pmcs[0];
1150 int i;
1152 DPRINT(("mask=0x%lx\n", mask));
1154 for (i=0; mask; i++, mask>>=1) {
1155 /* masking 0 with ovfl_val yields 0 */
1156 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1157 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1163 static inline void
1164 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1166 int i;
1168 for (i=0; mask; i++, mask>>=1) {
1169 if ((mask & 0x1) == 0) continue;
1170 ia64_set_pmc(i, pmcs[i]);
1172 ia64_srlz_d();
1175 static inline int
1176 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1178 return memcmp(a, b, sizeof(pfm_uuid_t));
1181 static inline int
1182 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1184 int ret = 0;
1185 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1186 return ret;
1189 static inline int
1190 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1192 int ret = 0;
1193 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1194 return ret;
1198 static inline int
1199 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1200 int cpu, void *arg)
1202 int ret = 0;
1203 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1204 return ret;
1207 static inline int
1208 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1209 int cpu, void *arg)
1211 int ret = 0;
1212 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1213 return ret;
1216 static inline int
1217 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1219 int ret = 0;
1220 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1221 return ret;
1224 static inline int
1225 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1227 int ret = 0;
1228 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1229 return ret;
1232 static pfm_buffer_fmt_t *
1233 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1235 struct list_head * pos;
1236 pfm_buffer_fmt_t * entry;
1238 list_for_each(pos, &pfm_buffer_fmt_list) {
1239 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1240 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1241 return entry;
1243 return NULL;
1247 * find a buffer format based on its uuid
1249 static pfm_buffer_fmt_t *
1250 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1252 pfm_buffer_fmt_t * fmt;
1253 spin_lock(&pfm_buffer_fmt_lock);
1254 fmt = __pfm_find_buffer_fmt(uuid);
1255 spin_unlock(&pfm_buffer_fmt_lock);
1256 return fmt;
1260 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1262 int ret = 0;
1264 /* some sanity checks */
1265 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1267 /* we need at least a handler */
1268 if (fmt->fmt_handler == NULL) return -EINVAL;
1271 * XXX: need check validity of fmt_arg_size
1274 spin_lock(&pfm_buffer_fmt_lock);
1276 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1277 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1278 ret = -EBUSY;
1279 goto out;
1281 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1282 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1284 out:
1285 spin_unlock(&pfm_buffer_fmt_lock);
1286 return ret;
1288 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1291 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1293 pfm_buffer_fmt_t *fmt;
1294 int ret = 0;
1296 spin_lock(&pfm_buffer_fmt_lock);
1298 fmt = __pfm_find_buffer_fmt(uuid);
1299 if (!fmt) {
1300 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1301 ret = -EINVAL;
1302 goto out;
1304 list_del_init(&fmt->fmt_list);
1305 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1307 out:
1308 spin_unlock(&pfm_buffer_fmt_lock);
1309 return ret;
1312 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1314 extern void update_pal_halt_status(int);
1316 static int
1317 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1319 unsigned long flags;
1321 * validity checks on cpu_mask have been done upstream
1323 LOCK_PFS(flags);
1325 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1326 pfm_sessions.pfs_sys_sessions,
1327 pfm_sessions.pfs_task_sessions,
1328 pfm_sessions.pfs_sys_use_dbregs,
1329 is_syswide,
1330 cpu));
1332 if (is_syswide) {
1334 * cannot mix system wide and per-task sessions
1336 if (pfm_sessions.pfs_task_sessions > 0UL) {
1337 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1338 pfm_sessions.pfs_task_sessions));
1339 goto abort;
1342 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1344 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1346 pfm_sessions.pfs_sys_session[cpu] = task;
1348 pfm_sessions.pfs_sys_sessions++ ;
1350 } else {
1351 if (pfm_sessions.pfs_sys_sessions) goto abort;
1352 pfm_sessions.pfs_task_sessions++;
1355 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1356 pfm_sessions.pfs_sys_sessions,
1357 pfm_sessions.pfs_task_sessions,
1358 pfm_sessions.pfs_sys_use_dbregs,
1359 is_syswide,
1360 cpu));
1363 * disable default_idle() to go to PAL_HALT
1365 update_pal_halt_status(0);
1367 UNLOCK_PFS(flags);
1369 return 0;
1371 error_conflict:
1372 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1373 pfm_sessions.pfs_sys_session[cpu]->pid,
1374 cpu));
1375 abort:
1376 UNLOCK_PFS(flags);
1378 return -EBUSY;
1382 static int
1383 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1385 unsigned long flags;
1387 * validity checks on cpu_mask have been done upstream
1389 LOCK_PFS(flags);
1391 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1392 pfm_sessions.pfs_sys_sessions,
1393 pfm_sessions.pfs_task_sessions,
1394 pfm_sessions.pfs_sys_use_dbregs,
1395 is_syswide,
1396 cpu));
1399 if (is_syswide) {
1400 pfm_sessions.pfs_sys_session[cpu] = NULL;
1402 * would not work with perfmon+more than one bit in cpu_mask
1404 if (ctx && ctx->ctx_fl_using_dbreg) {
1405 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1406 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1407 } else {
1408 pfm_sessions.pfs_sys_use_dbregs--;
1411 pfm_sessions.pfs_sys_sessions--;
1412 } else {
1413 pfm_sessions.pfs_task_sessions--;
1415 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1416 pfm_sessions.pfs_sys_sessions,
1417 pfm_sessions.pfs_task_sessions,
1418 pfm_sessions.pfs_sys_use_dbregs,
1419 is_syswide,
1420 cpu));
1423 * if possible, enable default_idle() to go into PAL_HALT
1425 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1426 update_pal_halt_status(1);
1428 UNLOCK_PFS(flags);
1430 return 0;
1434 * removes virtual mapping of the sampling buffer.
1435 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1436 * a PROTECT_CTX() section.
1438 static int
1439 pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1441 int r;
1443 /* sanity checks */
1444 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1445 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
1446 return -EINVAL;
1449 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1452 * does the actual unmapping
1454 down_write(&task->mm->mmap_sem);
1456 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1458 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1460 up_write(&task->mm->mmap_sem);
1461 if (r !=0) {
1462 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
1465 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1467 return 0;
1471 * free actual physical storage used by sampling buffer
1473 #if 0
1474 static int
1475 pfm_free_smpl_buffer(pfm_context_t *ctx)
1477 pfm_buffer_fmt_t *fmt;
1479 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1482 * we won't use the buffer format anymore
1484 fmt = ctx->ctx_buf_fmt;
1486 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1487 ctx->ctx_smpl_hdr,
1488 ctx->ctx_smpl_size,
1489 ctx->ctx_smpl_vaddr));
1491 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1494 * free the buffer
1496 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1498 ctx->ctx_smpl_hdr = NULL;
1499 ctx->ctx_smpl_size = 0UL;
1501 return 0;
1503 invalid_free:
1504 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
1505 return -EINVAL;
1507 #endif
1509 static inline void
1510 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1512 if (fmt == NULL) return;
1514 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1519 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1520 * no real gain from having the whole whorehouse mounted. So we don't need
1521 * any operations on the root directory. However, we need a non-trivial
1522 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1524 static struct vfsmount *pfmfs_mnt;
1526 static int __init
1527 init_pfm_fs(void)
1529 int err = register_filesystem(&pfm_fs_type);
1530 if (!err) {
1531 pfmfs_mnt = kern_mount(&pfm_fs_type);
1532 err = PTR_ERR(pfmfs_mnt);
1533 if (IS_ERR(pfmfs_mnt))
1534 unregister_filesystem(&pfm_fs_type);
1535 else
1536 err = 0;
1538 return err;
1541 static void __exit
1542 exit_pfm_fs(void)
1544 unregister_filesystem(&pfm_fs_type);
1545 mntput(pfmfs_mnt);
1548 static ssize_t
1549 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1551 pfm_context_t *ctx;
1552 pfm_msg_t *msg;
1553 ssize_t ret;
1554 unsigned long flags;
1555 DECLARE_WAITQUEUE(wait, current);
1556 if (PFM_IS_FILE(filp) == 0) {
1557 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1558 return -EINVAL;
1561 ctx = (pfm_context_t *)filp->private_data;
1562 if (ctx == NULL) {
1563 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
1564 return -EINVAL;
1568 * check even when there is no message
1570 if (size < sizeof(pfm_msg_t)) {
1571 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1572 return -EINVAL;
1575 PROTECT_CTX(ctx, flags);
1578 * put ourselves on the wait queue
1580 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1583 for(;;) {
1585 * check wait queue
1588 set_current_state(TASK_INTERRUPTIBLE);
1590 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1592 ret = 0;
1593 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1595 UNPROTECT_CTX(ctx, flags);
1598 * check non-blocking read
1600 ret = -EAGAIN;
1601 if(filp->f_flags & O_NONBLOCK) break;
1604 * check pending signals
1606 if(signal_pending(current)) {
1607 ret = -EINTR;
1608 break;
1611 * no message, so wait
1613 schedule();
1615 PROTECT_CTX(ctx, flags);
1617 DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
1618 set_current_state(TASK_RUNNING);
1619 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1621 if (ret < 0) goto abort;
1623 ret = -EINVAL;
1624 msg = pfm_get_next_msg(ctx);
1625 if (msg == NULL) {
1626 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
1627 goto abort_locked;
1630 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1632 ret = -EFAULT;
1633 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1635 abort_locked:
1636 UNPROTECT_CTX(ctx, flags);
1637 abort:
1638 return ret;
1641 static ssize_t
1642 pfm_write(struct file *file, const char __user *ubuf,
1643 size_t size, loff_t *ppos)
1645 DPRINT(("pfm_write called\n"));
1646 return -EINVAL;
1649 static unsigned int
1650 pfm_poll(struct file *filp, poll_table * wait)
1652 pfm_context_t *ctx;
1653 unsigned long flags;
1654 unsigned int mask = 0;
1656 if (PFM_IS_FILE(filp) == 0) {
1657 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1658 return 0;
1661 ctx = (pfm_context_t *)filp->private_data;
1662 if (ctx == NULL) {
1663 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
1664 return 0;
1668 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1670 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1672 PROTECT_CTX(ctx, flags);
1674 if (PFM_CTXQ_EMPTY(ctx) == 0)
1675 mask = POLLIN | POLLRDNORM;
1677 UNPROTECT_CTX(ctx, flags);
1679 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1681 return mask;
1684 static int
1685 pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1687 DPRINT(("pfm_ioctl called\n"));
1688 return -EINVAL;
1692 * interrupt cannot be masked when coming here
1694 static inline int
1695 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1697 int ret;
1699 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1701 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1702 current->pid,
1705 ctx->ctx_async_queue, ret));
1707 return ret;
1710 static int
1711 pfm_fasync(int fd, struct file *filp, int on)
1713 pfm_context_t *ctx;
1714 int ret;
1716 if (PFM_IS_FILE(filp) == 0) {
1717 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
1718 return -EBADF;
1721 ctx = (pfm_context_t *)filp->private_data;
1722 if (ctx == NULL) {
1723 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
1724 return -EBADF;
1727 * we cannot mask interrupts during this call because this may
1728 * may go to sleep if memory is not readily avalaible.
1730 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1731 * done in caller. Serialization of this function is ensured by caller.
1733 ret = pfm_do_fasync(fd, filp, ctx, on);
1736 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1739 ctx->ctx_async_queue, ret));
1741 return ret;
1744 #ifdef CONFIG_SMP
1746 * this function is exclusively called from pfm_close().
1747 * The context is not protected at that time, nor are interrupts
1748 * on the remote CPU. That's necessary to avoid deadlocks.
1750 static void
1751 pfm_syswide_force_stop(void *info)
1753 pfm_context_t *ctx = (pfm_context_t *)info;
1754 struct pt_regs *regs = task_pt_regs(current);
1755 struct task_struct *owner;
1756 unsigned long flags;
1757 int ret;
1759 if (ctx->ctx_cpu != smp_processor_id()) {
1760 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1761 ctx->ctx_cpu,
1762 smp_processor_id());
1763 return;
1765 owner = GET_PMU_OWNER();
1766 if (owner != ctx->ctx_task) {
1767 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1768 smp_processor_id(),
1769 owner->pid, ctx->ctx_task->pid);
1770 return;
1772 if (GET_PMU_CTX() != ctx) {
1773 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1774 smp_processor_id(),
1775 GET_PMU_CTX(), ctx);
1776 return;
1779 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
1781 * the context is already protected in pfm_close(), we simply
1782 * need to mask interrupts to avoid a PMU interrupt race on
1783 * this CPU
1785 local_irq_save(flags);
1787 ret = pfm_context_unload(ctx, NULL, 0, regs);
1788 if (ret) {
1789 DPRINT(("context_unload returned %d\n", ret));
1793 * unmask interrupts, PMU interrupts are now spurious here
1795 local_irq_restore(flags);
1798 static void
1799 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1801 int ret;
1803 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1804 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1805 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1807 #endif /* CONFIG_SMP */
1810 * called for each close(). Partially free resources.
1811 * When caller is self-monitoring, the context is unloaded.
1813 static int
1814 pfm_flush(struct file *filp, fl_owner_t id)
1816 pfm_context_t *ctx;
1817 struct task_struct *task;
1818 struct pt_regs *regs;
1819 unsigned long flags;
1820 unsigned long smpl_buf_size = 0UL;
1821 void *smpl_buf_vaddr = NULL;
1822 int state, is_system;
1824 if (PFM_IS_FILE(filp) == 0) {
1825 DPRINT(("bad magic for\n"));
1826 return -EBADF;
1829 ctx = (pfm_context_t *)filp->private_data;
1830 if (ctx == NULL) {
1831 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
1832 return -EBADF;
1836 * remove our file from the async queue, if we use this mode.
1837 * This can be done without the context being protected. We come
1838 * here when the context has become unreachable by other tasks.
1840 * We may still have active monitoring at this point and we may
1841 * end up in pfm_overflow_handler(). However, fasync_helper()
1842 * operates with interrupts disabled and it cleans up the
1843 * queue. If the PMU handler is called prior to entering
1844 * fasync_helper() then it will send a signal. If it is
1845 * invoked after, it will find an empty queue and no
1846 * signal will be sent. In both case, we are safe
1848 if (filp->f_flags & FASYNC) {
1849 DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1850 pfm_do_fasync (-1, filp, ctx, 0);
1853 PROTECT_CTX(ctx, flags);
1855 state = ctx->ctx_state;
1856 is_system = ctx->ctx_fl_system;
1858 task = PFM_CTX_TASK(ctx);
1859 regs = task_pt_regs(task);
1861 DPRINT(("ctx_state=%d is_current=%d\n",
1862 state,
1863 task == current ? 1 : 0));
1866 * if state == UNLOADED, then task is NULL
1870 * we must stop and unload because we are losing access to the context.
1872 if (task == current) {
1873 #ifdef CONFIG_SMP
1875 * the task IS the owner but it migrated to another CPU: that's bad
1876 * but we must handle this cleanly. Unfortunately, the kernel does
1877 * not provide a mechanism to block migration (while the context is loaded).
1879 * We need to release the resource on the ORIGINAL cpu.
1881 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1883 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1885 * keep context protected but unmask interrupt for IPI
1887 local_irq_restore(flags);
1889 pfm_syswide_cleanup_other_cpu(ctx);
1892 * restore interrupt masking
1894 local_irq_save(flags);
1897 * context is unloaded at this point
1899 } else
1900 #endif /* CONFIG_SMP */
1903 DPRINT(("forcing unload\n"));
1905 * stop and unload, returning with state UNLOADED
1906 * and session unreserved.
1908 pfm_context_unload(ctx, NULL, 0, regs);
1910 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1915 * remove virtual mapping, if any, for the calling task.
1916 * cannot reset ctx field until last user is calling close().
1918 * ctx_smpl_vaddr must never be cleared because it is needed
1919 * by every task with access to the context
1921 * When called from do_exit(), the mm context is gone already, therefore
1922 * mm is NULL, i.e., the VMA is already gone and we do not have to
1923 * do anything here
1925 if (ctx->ctx_smpl_vaddr && current->mm) {
1926 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1927 smpl_buf_size = ctx->ctx_smpl_size;
1930 UNPROTECT_CTX(ctx, flags);
1933 * if there was a mapping, then we systematically remove it
1934 * at this point. Cannot be done inside critical section
1935 * because some VM function reenables interrupts.
1938 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1940 return 0;
1943 * called either on explicit close() or from exit_files().
1944 * Only the LAST user of the file gets to this point, i.e., it is
1945 * called only ONCE.
1947 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1948 * (fput()),i.e, last task to access the file. Nobody else can access the
1949 * file at this point.
1951 * When called from exit_files(), the VMA has been freed because exit_mm()
1952 * is executed before exit_files().
1954 * When called from exit_files(), the current task is not yet ZOMBIE but we
1955 * flush the PMU state to the context.
1957 static int
1958 pfm_close(struct inode *inode, struct file *filp)
1960 pfm_context_t *ctx;
1961 struct task_struct *task;
1962 struct pt_regs *regs;
1963 DECLARE_WAITQUEUE(wait, current);
1964 unsigned long flags;
1965 unsigned long smpl_buf_size = 0UL;
1966 void *smpl_buf_addr = NULL;
1967 int free_possible = 1;
1968 int state, is_system;
1970 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1972 if (PFM_IS_FILE(filp) == 0) {
1973 DPRINT(("bad magic\n"));
1974 return -EBADF;
1977 ctx = (pfm_context_t *)filp->private_data;
1978 if (ctx == NULL) {
1979 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
1980 return -EBADF;
1983 PROTECT_CTX(ctx, flags);
1985 state = ctx->ctx_state;
1986 is_system = ctx->ctx_fl_system;
1988 task = PFM_CTX_TASK(ctx);
1989 regs = task_pt_regs(task);
1991 DPRINT(("ctx_state=%d is_current=%d\n",
1992 state,
1993 task == current ? 1 : 0));
1996 * if task == current, then pfm_flush() unloaded the context
1998 if (state == PFM_CTX_UNLOADED) goto doit;
2001 * context is loaded/masked and task != current, we need to
2002 * either force an unload or go zombie
2006 * The task is currently blocked or will block after an overflow.
2007 * we must force it to wakeup to get out of the
2008 * MASKED state and transition to the unloaded state by itself.
2010 * This situation is only possible for per-task mode
2012 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2015 * set a "partial" zombie state to be checked
2016 * upon return from down() in pfm_handle_work().
2018 * We cannot use the ZOMBIE state, because it is checked
2019 * by pfm_load_regs() which is called upon wakeup from down().
2020 * In such case, it would free the context and then we would
2021 * return to pfm_handle_work() which would access the
2022 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2023 * but visible to pfm_handle_work().
2025 * For some window of time, we have a zombie context with
2026 * ctx_state = MASKED and not ZOMBIE
2028 ctx->ctx_fl_going_zombie = 1;
2031 * force task to wake up from MASKED state
2033 complete(&ctx->ctx_restart_done);
2035 DPRINT(("waking up ctx_state=%d\n", state));
2038 * put ourself to sleep waiting for the other
2039 * task to report completion
2041 * the context is protected by mutex, therefore there
2042 * is no risk of being notified of completion before
2043 * begin actually on the waitq.
2045 set_current_state(TASK_INTERRUPTIBLE);
2046 add_wait_queue(&ctx->ctx_zombieq, &wait);
2048 UNPROTECT_CTX(ctx, flags);
2051 * XXX: check for signals :
2052 * - ok for explicit close
2053 * - not ok when coming from exit_files()
2055 schedule();
2058 PROTECT_CTX(ctx, flags);
2061 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2062 set_current_state(TASK_RUNNING);
2065 * context is unloaded at this point
2067 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2069 else if (task != current) {
2070 #ifdef CONFIG_SMP
2072 * switch context to zombie state
2074 ctx->ctx_state = PFM_CTX_ZOMBIE;
2076 DPRINT(("zombie ctx for [%d]\n", task->pid));
2078 * cannot free the context on the spot. deferred until
2079 * the task notices the ZOMBIE state
2081 free_possible = 0;
2082 #else
2083 pfm_context_unload(ctx, NULL, 0, regs);
2084 #endif
2087 doit:
2088 /* reload state, may have changed during opening of critical section */
2089 state = ctx->ctx_state;
2092 * the context is still attached to a task (possibly current)
2093 * we cannot destroy it right now
2097 * we must free the sampling buffer right here because
2098 * we cannot rely on it being cleaned up later by the
2099 * monitored task. It is not possible to free vmalloc'ed
2100 * memory in pfm_load_regs(). Instead, we remove the buffer
2101 * now. should there be subsequent PMU overflow originally
2102 * meant for sampling, the will be converted to spurious
2103 * and that's fine because the monitoring tools is gone anyway.
2105 if (ctx->ctx_smpl_hdr) {
2106 smpl_buf_addr = ctx->ctx_smpl_hdr;
2107 smpl_buf_size = ctx->ctx_smpl_size;
2108 /* no more sampling */
2109 ctx->ctx_smpl_hdr = NULL;
2110 ctx->ctx_fl_is_sampling = 0;
2113 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2114 state,
2115 free_possible,
2116 smpl_buf_addr,
2117 smpl_buf_size));
2119 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2122 * UNLOADED that the session has already been unreserved.
2124 if (state == PFM_CTX_ZOMBIE) {
2125 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2129 * disconnect file descriptor from context must be done
2130 * before we unlock.
2132 filp->private_data = NULL;
2135 * if we free on the spot, the context is now completely unreachable
2136 * from the callers side. The monitored task side is also cut, so we
2137 * can freely cut.
2139 * If we have a deferred free, only the caller side is disconnected.
2141 UNPROTECT_CTX(ctx, flags);
2144 * All memory free operations (especially for vmalloc'ed memory)
2145 * MUST be done with interrupts ENABLED.
2147 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2150 * return the memory used by the context
2152 if (free_possible) pfm_context_free(ctx);
2154 return 0;
2157 static int
2158 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2160 DPRINT(("pfm_no_open called\n"));
2161 return -ENXIO;
2166 static const struct file_operations pfm_file_ops = {
2167 .llseek = no_llseek,
2168 .read = pfm_read,
2169 .write = pfm_write,
2170 .poll = pfm_poll,
2171 .ioctl = pfm_ioctl,
2172 .open = pfm_no_open, /* special open code to disallow open via /proc */
2173 .fasync = pfm_fasync,
2174 .release = pfm_close,
2175 .flush = pfm_flush
2178 static int
2179 pfmfs_delete_dentry(struct dentry *dentry)
2181 return 1;
2184 static struct dentry_operations pfmfs_dentry_operations = {
2185 .d_delete = pfmfs_delete_dentry,
2189 static int
2190 pfm_alloc_fd(struct file **cfile)
2192 int fd, ret = 0;
2193 struct file *file = NULL;
2194 struct inode * inode;
2195 char name[32];
2196 struct qstr this;
2198 fd = get_unused_fd();
2199 if (fd < 0) return -ENFILE;
2201 ret = -ENFILE;
2203 file = get_empty_filp();
2204 if (!file) goto out;
2207 * allocate a new inode
2209 inode = new_inode(pfmfs_mnt->mnt_sb);
2210 if (!inode) goto out;
2212 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2214 inode->i_mode = S_IFCHR|S_IRUGO;
2215 inode->i_uid = current->fsuid;
2216 inode->i_gid = current->fsgid;
2218 sprintf(name, "[%lu]", inode->i_ino);
2219 this.name = name;
2220 this.len = strlen(name);
2221 this.hash = inode->i_ino;
2223 ret = -ENOMEM;
2226 * allocate a new dcache entry
2228 file->f_path.dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2229 if (!file->f_path.dentry) goto out;
2231 file->f_path.dentry->d_op = &pfmfs_dentry_operations;
2233 d_add(file->f_path.dentry, inode);
2234 file->f_path.mnt = mntget(pfmfs_mnt);
2235 file->f_mapping = inode->i_mapping;
2237 file->f_op = &pfm_file_ops;
2238 file->f_mode = FMODE_READ;
2239 file->f_flags = O_RDONLY;
2240 file->f_pos = 0;
2243 * may have to delay until context is attached?
2245 fd_install(fd, file);
2248 * the file structure we will use
2250 *cfile = file;
2252 return fd;
2253 out:
2254 if (file) put_filp(file);
2255 put_unused_fd(fd);
2256 return ret;
2259 static void
2260 pfm_free_fd(int fd, struct file *file)
2262 struct files_struct *files = current->files;
2263 struct fdtable *fdt;
2266 * there ie no fd_uninstall(), so we do it here
2268 spin_lock(&files->file_lock);
2269 fdt = files_fdtable(files);
2270 rcu_assign_pointer(fdt->fd[fd], NULL);
2271 spin_unlock(&files->file_lock);
2273 if (file)
2274 put_filp(file);
2275 put_unused_fd(fd);
2278 static int
2279 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2281 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2283 while (size > 0) {
2284 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2287 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2288 return -ENOMEM;
2290 addr += PAGE_SIZE;
2291 buf += PAGE_SIZE;
2292 size -= PAGE_SIZE;
2294 return 0;
2298 * allocate a sampling buffer and remaps it into the user address space of the task
2300 static int
2301 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2303 struct mm_struct *mm = task->mm;
2304 struct vm_area_struct *vma = NULL;
2305 unsigned long size;
2306 void *smpl_buf;
2310 * the fixed header + requested size and align to page boundary
2312 size = PAGE_ALIGN(rsize);
2314 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2317 * check requested size to avoid Denial-of-service attacks
2318 * XXX: may have to refine this test
2319 * Check against address space limit.
2321 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2322 * return -ENOMEM;
2324 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2325 return -ENOMEM;
2328 * We do the easy to undo allocations first.
2330 * pfm_rvmalloc(), clears the buffer, so there is no leak
2332 smpl_buf = pfm_rvmalloc(size);
2333 if (smpl_buf == NULL) {
2334 DPRINT(("Can't allocate sampling buffer\n"));
2335 return -ENOMEM;
2338 DPRINT(("smpl_buf @%p\n", smpl_buf));
2340 /* allocate vma */
2341 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2342 if (!vma) {
2343 DPRINT(("Cannot allocate vma\n"));
2344 goto error_kmem;
2348 * partially initialize the vma for the sampling buffer
2350 vma->vm_mm = mm;
2351 vma->vm_file = filp;
2352 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2353 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2356 * Now we have everything we need and we can initialize
2357 * and connect all the data structures
2360 ctx->ctx_smpl_hdr = smpl_buf;
2361 ctx->ctx_smpl_size = size; /* aligned size */
2364 * Let's do the difficult operations next.
2366 * now we atomically find some area in the address space and
2367 * remap the buffer in it.
2369 down_write(&task->mm->mmap_sem);
2371 /* find some free area in address space, must have mmap sem held */
2372 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2373 if (vma->vm_start == 0UL) {
2374 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2375 up_write(&task->mm->mmap_sem);
2376 goto error;
2378 vma->vm_end = vma->vm_start + size;
2379 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2381 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2383 /* can only be applied to current task, need to have the mm semaphore held when called */
2384 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2385 DPRINT(("Can't remap buffer\n"));
2386 up_write(&task->mm->mmap_sem);
2387 goto error;
2390 get_file(filp);
2393 * now insert the vma in the vm list for the process, must be
2394 * done with mmap lock held
2396 insert_vm_struct(mm, vma);
2398 mm->total_vm += size >> PAGE_SHIFT;
2399 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2400 vma_pages(vma));
2401 up_write(&task->mm->mmap_sem);
2404 * keep track of user level virtual address
2406 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2407 *(unsigned long *)user_vaddr = vma->vm_start;
2409 return 0;
2411 error:
2412 kmem_cache_free(vm_area_cachep, vma);
2413 error_kmem:
2414 pfm_rvfree(smpl_buf, size);
2416 return -ENOMEM;
2420 * XXX: do something better here
2422 static int
2423 pfm_bad_permissions(struct task_struct *task)
2425 /* inspired by ptrace_attach() */
2426 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2427 current->uid,
2428 current->gid,
2429 task->euid,
2430 task->suid,
2431 task->uid,
2432 task->egid,
2433 task->sgid));
2435 return ((current->uid != task->euid)
2436 || (current->uid != task->suid)
2437 || (current->uid != task->uid)
2438 || (current->gid != task->egid)
2439 || (current->gid != task->sgid)
2440 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2443 static int
2444 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2446 int ctx_flags;
2448 /* valid signal */
2450 ctx_flags = pfx->ctx_flags;
2452 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2455 * cannot block in this mode
2457 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2458 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2459 return -EINVAL;
2461 } else {
2463 /* probably more to add here */
2465 return 0;
2468 static int
2469 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2470 unsigned int cpu, pfarg_context_t *arg)
2472 pfm_buffer_fmt_t *fmt = NULL;
2473 unsigned long size = 0UL;
2474 void *uaddr = NULL;
2475 void *fmt_arg = NULL;
2476 int ret = 0;
2477 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2479 /* invoke and lock buffer format, if found */
2480 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2481 if (fmt == NULL) {
2482 DPRINT(("[%d] cannot find buffer format\n", task->pid));
2483 return -EINVAL;
2487 * buffer argument MUST be contiguous to pfarg_context_t
2489 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2491 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2493 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
2495 if (ret) goto error;
2497 /* link buffer format and context */
2498 ctx->ctx_buf_fmt = fmt;
2501 * check if buffer format wants to use perfmon buffer allocation/mapping service
2503 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2504 if (ret) goto error;
2506 if (size) {
2508 * buffer is always remapped into the caller's address space
2510 ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2511 if (ret) goto error;
2513 /* keep track of user address of buffer */
2514 arg->ctx_smpl_vaddr = uaddr;
2516 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2518 error:
2519 return ret;
2522 static void
2523 pfm_reset_pmu_state(pfm_context_t *ctx)
2525 int i;
2528 * install reset values for PMC.
2530 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2531 if (PMC_IS_IMPL(i) == 0) continue;
2532 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2533 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2536 * PMD registers are set to 0UL when the context in memset()
2540 * On context switched restore, we must restore ALL pmc and ALL pmd even
2541 * when they are not actively used by the task. In UP, the incoming process
2542 * may otherwise pick up left over PMC, PMD state from the previous process.
2543 * As opposed to PMD, stale PMC can cause harm to the incoming
2544 * process because they may change what is being measured.
2545 * Therefore, we must systematically reinstall the entire
2546 * PMC state. In SMP, the same thing is possible on the
2547 * same CPU but also on between 2 CPUs.
2549 * The problem with PMD is information leaking especially
2550 * to user level when psr.sp=0
2552 * There is unfortunately no easy way to avoid this problem
2553 * on either UP or SMP. This definitively slows down the
2554 * pfm_load_regs() function.
2558 * bitmask of all PMCs accessible to this context
2560 * PMC0 is treated differently.
2562 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2565 * bitmask of all PMDs that are accessible to this context
2567 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2569 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2572 * useful in case of re-enable after disable
2574 ctx->ctx_used_ibrs[0] = 0UL;
2575 ctx->ctx_used_dbrs[0] = 0UL;
2578 static int
2579 pfm_ctx_getsize(void *arg, size_t *sz)
2581 pfarg_context_t *req = (pfarg_context_t *)arg;
2582 pfm_buffer_fmt_t *fmt;
2584 *sz = 0;
2586 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2588 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2589 if (fmt == NULL) {
2590 DPRINT(("cannot find buffer format\n"));
2591 return -EINVAL;
2593 /* get just enough to copy in user parameters */
2594 *sz = fmt->fmt_arg_size;
2595 DPRINT(("arg_size=%lu\n", *sz));
2597 return 0;
2603 * cannot attach if :
2604 * - kernel task
2605 * - task not owned by caller
2606 * - task incompatible with context mode
2608 static int
2609 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2612 * no kernel task or task not owner by caller
2614 if (task->mm == NULL) {
2615 DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
2616 return -EPERM;
2618 if (pfm_bad_permissions(task)) {
2619 DPRINT(("no permission to attach to [%d]\n", task->pid));
2620 return -EPERM;
2623 * cannot block in self-monitoring mode
2625 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2626 DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
2627 return -EINVAL;
2630 if (task->exit_state == EXIT_ZOMBIE) {
2631 DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
2632 return -EBUSY;
2636 * always ok for self
2638 if (task == current) return 0;
2640 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2641 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
2642 return -EBUSY;
2645 * make sure the task is off any CPU
2647 wait_task_inactive(task);
2649 /* more to come... */
2651 return 0;
2654 static int
2655 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2657 struct task_struct *p = current;
2658 int ret;
2660 /* XXX: need to add more checks here */
2661 if (pid < 2) return -EPERM;
2663 if (pid != current->pid) {
2665 read_lock(&tasklist_lock);
2667 p = find_task_by_pid(pid);
2669 /* make sure task cannot go away while we operate on it */
2670 if (p) get_task_struct(p);
2672 read_unlock(&tasklist_lock);
2674 if (p == NULL) return -ESRCH;
2677 ret = pfm_task_incompatible(ctx, p);
2678 if (ret == 0) {
2679 *task = p;
2680 } else if (p != current) {
2681 pfm_put_task(p);
2683 return ret;
2688 static int
2689 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2691 pfarg_context_t *req = (pfarg_context_t *)arg;
2692 struct file *filp;
2693 int ctx_flags;
2694 int ret;
2696 /* let's check the arguments first */
2697 ret = pfarg_is_sane(current, req);
2698 if (ret < 0) return ret;
2700 ctx_flags = req->ctx_flags;
2702 ret = -ENOMEM;
2704 ctx = pfm_context_alloc();
2705 if (!ctx) goto error;
2707 ret = pfm_alloc_fd(&filp);
2708 if (ret < 0) goto error_file;
2710 req->ctx_fd = ctx->ctx_fd = ret;
2713 * attach context to file
2715 filp->private_data = ctx;
2718 * does the user want to sample?
2720 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2721 ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2722 if (ret) goto buffer_error;
2726 * init context protection lock
2728 spin_lock_init(&ctx->ctx_lock);
2731 * context is unloaded
2733 ctx->ctx_state = PFM_CTX_UNLOADED;
2736 * initialization of context's flags
2738 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2739 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2740 ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2741 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2743 * will move to set properties
2744 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2748 * init restart semaphore to locked
2750 init_completion(&ctx->ctx_restart_done);
2753 * activation is used in SMP only
2755 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2756 SET_LAST_CPU(ctx, -1);
2759 * initialize notification message queue
2761 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2762 init_waitqueue_head(&ctx->ctx_msgq_wait);
2763 init_waitqueue_head(&ctx->ctx_zombieq);
2765 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2766 ctx,
2767 ctx_flags,
2768 ctx->ctx_fl_system,
2769 ctx->ctx_fl_block,
2770 ctx->ctx_fl_excl_idle,
2771 ctx->ctx_fl_no_msg,
2772 ctx->ctx_fd));
2775 * initialize soft PMU state
2777 pfm_reset_pmu_state(ctx);
2779 return 0;
2781 buffer_error:
2782 pfm_free_fd(ctx->ctx_fd, filp);
2784 if (ctx->ctx_buf_fmt) {
2785 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2787 error_file:
2788 pfm_context_free(ctx);
2790 error:
2791 return ret;
2794 static inline unsigned long
2795 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2797 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2798 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2799 extern unsigned long carta_random32 (unsigned long seed);
2801 if (reg->flags & PFM_REGFL_RANDOM) {
2802 new_seed = carta_random32(old_seed);
2803 val -= (old_seed & mask); /* counter values are negative numbers! */
2804 if ((mask >> 32) != 0)
2805 /* construct a full 64-bit random value: */
2806 new_seed |= carta_random32(old_seed >> 32) << 32;
2807 reg->seed = new_seed;
2809 reg->lval = val;
2810 return val;
2813 static void
2814 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2816 unsigned long mask = ovfl_regs[0];
2817 unsigned long reset_others = 0UL;
2818 unsigned long val;
2819 int i;
2822 * now restore reset value on sampling overflowed counters
2824 mask >>= PMU_FIRST_COUNTER;
2825 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2827 if ((mask & 0x1UL) == 0UL) continue;
2829 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2830 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2832 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2836 * Now take care of resetting the other registers
2838 for(i = 0; reset_others; i++, reset_others >>= 1) {
2840 if ((reset_others & 0x1) == 0) continue;
2842 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2844 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2845 is_long_reset ? "long" : "short", i, val));
2849 static void
2850 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2852 unsigned long mask = ovfl_regs[0];
2853 unsigned long reset_others = 0UL;
2854 unsigned long val;
2855 int i;
2857 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2859 if (ctx->ctx_state == PFM_CTX_MASKED) {
2860 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2861 return;
2865 * now restore reset value on sampling overflowed counters
2867 mask >>= PMU_FIRST_COUNTER;
2868 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2870 if ((mask & 0x1UL) == 0UL) continue;
2872 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2873 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2875 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2877 pfm_write_soft_counter(ctx, i, val);
2881 * Now take care of resetting the other registers
2883 for(i = 0; reset_others; i++, reset_others >>= 1) {
2885 if ((reset_others & 0x1) == 0) continue;
2887 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2889 if (PMD_IS_COUNTING(i)) {
2890 pfm_write_soft_counter(ctx, i, val);
2891 } else {
2892 ia64_set_pmd(i, val);
2894 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2895 is_long_reset ? "long" : "short", i, val));
2897 ia64_srlz_d();
2900 static int
2901 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2903 struct task_struct *task;
2904 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2905 unsigned long value, pmc_pm;
2906 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2907 unsigned int cnum, reg_flags, flags, pmc_type;
2908 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2909 int is_monitor, is_counting, state;
2910 int ret = -EINVAL;
2911 pfm_reg_check_t wr_func;
2912 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2914 state = ctx->ctx_state;
2915 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2916 is_system = ctx->ctx_fl_system;
2917 task = ctx->ctx_task;
2918 impl_pmds = pmu_conf->impl_pmds[0];
2920 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2922 if (is_loaded) {
2924 * In system wide and when the context is loaded, access can only happen
2925 * when the caller is running on the CPU being monitored by the session.
2926 * It does not have to be the owner (ctx_task) of the context per se.
2928 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2929 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2930 return -EBUSY;
2932 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2934 expert_mode = pfm_sysctl.expert_mode;
2936 for (i = 0; i < count; i++, req++) {
2938 cnum = req->reg_num;
2939 reg_flags = req->reg_flags;
2940 value = req->reg_value;
2941 smpl_pmds = req->reg_smpl_pmds[0];
2942 reset_pmds = req->reg_reset_pmds[0];
2943 flags = 0;
2946 if (cnum >= PMU_MAX_PMCS) {
2947 DPRINT(("pmc%u is invalid\n", cnum));
2948 goto error;
2951 pmc_type = pmu_conf->pmc_desc[cnum].type;
2952 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2953 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2954 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2957 * we reject all non implemented PMC as well
2958 * as attempts to modify PMC[0-3] which are used
2959 * as status registers by the PMU
2961 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2962 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2963 goto error;
2965 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2967 * If the PMC is a monitor, then if the value is not the default:
2968 * - system-wide session: PMCx.pm=1 (privileged monitor)
2969 * - per-task : PMCx.pm=0 (user monitor)
2971 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2972 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2973 cnum,
2974 pmc_pm,
2975 is_system));
2976 goto error;
2979 if (is_counting) {
2981 * enforce generation of overflow interrupt. Necessary on all
2982 * CPUs.
2984 value |= 1 << PMU_PMC_OI;
2986 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2987 flags |= PFM_REGFL_OVFL_NOTIFY;
2990 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2992 /* verify validity of smpl_pmds */
2993 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2994 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2995 goto error;
2998 /* verify validity of reset_pmds */
2999 if ((reset_pmds & impl_pmds) != reset_pmds) {
3000 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
3001 goto error;
3003 } else {
3004 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
3005 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
3006 goto error;
3008 /* eventid on non-counting monitors are ignored */
3012 * execute write checker, if any
3014 if (likely(expert_mode == 0 && wr_func)) {
3015 ret = (*wr_func)(task, ctx, cnum, &value, regs);
3016 if (ret) goto error;
3017 ret = -EINVAL;
3021 * no error on this register
3023 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3026 * Now we commit the changes to the software state
3030 * update overflow information
3032 if (is_counting) {
3034 * full flag update each time a register is programmed
3036 ctx->ctx_pmds[cnum].flags = flags;
3038 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
3039 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
3040 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
3043 * Mark all PMDS to be accessed as used.
3045 * We do not keep track of PMC because we have to
3046 * systematically restore ALL of them.
3048 * We do not update the used_monitors mask, because
3049 * if we have not programmed them, then will be in
3050 * a quiescent state, therefore we will not need to
3051 * mask/restore then when context is MASKED.
3053 CTX_USED_PMD(ctx, reset_pmds);
3054 CTX_USED_PMD(ctx, smpl_pmds);
3056 * make sure we do not try to reset on
3057 * restart because we have established new values
3059 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3062 * Needed in case the user does not initialize the equivalent
3063 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3064 * possible leak here.
3066 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3069 * keep track of the monitor PMC that we are using.
3070 * we save the value of the pmc in ctx_pmcs[] and if
3071 * the monitoring is not stopped for the context we also
3072 * place it in the saved state area so that it will be
3073 * picked up later by the context switch code.
3075 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3077 * The value in th_pmcs[] may be modified on overflow, i.e., when
3078 * monitoring needs to be stopped.
3080 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3083 * update context state
3085 ctx->ctx_pmcs[cnum] = value;
3087 if (is_loaded) {
3089 * write thread state
3091 if (is_system == 0) ctx->th_pmcs[cnum] = value;
3094 * write hardware register if we can
3096 if (can_access_pmu) {
3097 ia64_set_pmc(cnum, value);
3099 #ifdef CONFIG_SMP
3100 else {
3102 * per-task SMP only here
3104 * we are guaranteed that the task is not running on the other CPU,
3105 * we indicate that this PMD will need to be reloaded if the task
3106 * is rescheduled on the CPU it ran last on.
3108 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3110 #endif
3113 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3114 cnum,
3115 value,
3116 is_loaded,
3117 can_access_pmu,
3118 flags,
3119 ctx->ctx_all_pmcs[0],
3120 ctx->ctx_used_pmds[0],
3121 ctx->ctx_pmds[cnum].eventid,
3122 smpl_pmds,
3123 reset_pmds,
3124 ctx->ctx_reload_pmcs[0],
3125 ctx->ctx_used_monitors[0],
3126 ctx->ctx_ovfl_regs[0]));
3130 * make sure the changes are visible
3132 if (can_access_pmu) ia64_srlz_d();
3134 return 0;
3135 error:
3136 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3137 return ret;
3140 static int
3141 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3143 struct task_struct *task;
3144 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3145 unsigned long value, hw_value, ovfl_mask;
3146 unsigned int cnum;
3147 int i, can_access_pmu = 0, state;
3148 int is_counting, is_loaded, is_system, expert_mode;
3149 int ret = -EINVAL;
3150 pfm_reg_check_t wr_func;
3153 state = ctx->ctx_state;
3154 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3155 is_system = ctx->ctx_fl_system;
3156 ovfl_mask = pmu_conf->ovfl_val;
3157 task = ctx->ctx_task;
3159 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3162 * on both UP and SMP, we can only write to the PMC when the task is
3163 * the owner of the local PMU.
3165 if (likely(is_loaded)) {
3167 * In system wide and when the context is loaded, access can only happen
3168 * when the caller is running on the CPU being monitored by the session.
3169 * It does not have to be the owner (ctx_task) of the context per se.
3171 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3172 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3173 return -EBUSY;
3175 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3177 expert_mode = pfm_sysctl.expert_mode;
3179 for (i = 0; i < count; i++, req++) {
3181 cnum = req->reg_num;
3182 value = req->reg_value;
3184 if (!PMD_IS_IMPL(cnum)) {
3185 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3186 goto abort_mission;
3188 is_counting = PMD_IS_COUNTING(cnum);
3189 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3192 * execute write checker, if any
3194 if (unlikely(expert_mode == 0 && wr_func)) {
3195 unsigned long v = value;
3197 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3198 if (ret) goto abort_mission;
3200 value = v;
3201 ret = -EINVAL;
3205 * no error on this register
3207 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3210 * now commit changes to software state
3212 hw_value = value;
3215 * update virtualized (64bits) counter
3217 if (is_counting) {
3219 * write context state
3221 ctx->ctx_pmds[cnum].lval = value;
3224 * when context is load we use the split value
3226 if (is_loaded) {
3227 hw_value = value & ovfl_mask;
3228 value = value & ~ovfl_mask;
3232 * update reset values (not just for counters)
3234 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3235 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3238 * update randomization parameters (not just for counters)
3240 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3241 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3244 * update context value
3246 ctx->ctx_pmds[cnum].val = value;
3249 * Keep track of what we use
3251 * We do not keep track of PMC because we have to
3252 * systematically restore ALL of them.
3254 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3257 * mark this PMD register used as well
3259 CTX_USED_PMD(ctx, RDEP(cnum));
3262 * make sure we do not try to reset on
3263 * restart because we have established new values
3265 if (is_counting && state == PFM_CTX_MASKED) {
3266 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3269 if (is_loaded) {
3271 * write thread state
3273 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3276 * write hardware register if we can
3278 if (can_access_pmu) {
3279 ia64_set_pmd(cnum, hw_value);
3280 } else {
3281 #ifdef CONFIG_SMP
3283 * we are guaranteed that the task is not running on the other CPU,
3284 * we indicate that this PMD will need to be reloaded if the task
3285 * is rescheduled on the CPU it ran last on.
3287 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3288 #endif
3292 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3293 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3294 cnum,
3295 value,
3296 is_loaded,
3297 can_access_pmu,
3298 hw_value,
3299 ctx->ctx_pmds[cnum].val,
3300 ctx->ctx_pmds[cnum].short_reset,
3301 ctx->ctx_pmds[cnum].long_reset,
3302 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3303 ctx->ctx_pmds[cnum].seed,
3304 ctx->ctx_pmds[cnum].mask,
3305 ctx->ctx_used_pmds[0],
3306 ctx->ctx_pmds[cnum].reset_pmds[0],
3307 ctx->ctx_reload_pmds[0],
3308 ctx->ctx_all_pmds[0],
3309 ctx->ctx_ovfl_regs[0]));
3313 * make changes visible
3315 if (can_access_pmu) ia64_srlz_d();
3317 return 0;
3319 abort_mission:
3321 * for now, we have only one possibility for error
3323 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3324 return ret;
3328 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3329 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3330 * interrupt is delivered during the call, it will be kept pending until we leave, making
3331 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3332 * guaranteed to return consistent data to the user, it may simply be old. It is not
3333 * trivial to treat the overflow while inside the call because you may end up in
3334 * some module sampling buffer code causing deadlocks.
3336 static int
3337 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3339 struct task_struct *task;
3340 unsigned long val = 0UL, lval, ovfl_mask, sval;
3341 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3342 unsigned int cnum, reg_flags = 0;
3343 int i, can_access_pmu = 0, state;
3344 int is_loaded, is_system, is_counting, expert_mode;
3345 int ret = -EINVAL;
3346 pfm_reg_check_t rd_func;
3349 * access is possible when loaded only for
3350 * self-monitoring tasks or in UP mode
3353 state = ctx->ctx_state;
3354 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3355 is_system = ctx->ctx_fl_system;
3356 ovfl_mask = pmu_conf->ovfl_val;
3357 task = ctx->ctx_task;
3359 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3361 if (likely(is_loaded)) {
3363 * In system wide and when the context is loaded, access can only happen
3364 * when the caller is running on the CPU being monitored by the session.
3365 * It does not have to be the owner (ctx_task) of the context per se.
3367 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3368 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3369 return -EBUSY;
3372 * this can be true when not self-monitoring only in UP
3374 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3376 if (can_access_pmu) ia64_srlz_d();
3378 expert_mode = pfm_sysctl.expert_mode;
3380 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3381 is_loaded,
3382 can_access_pmu,
3383 state));
3386 * on both UP and SMP, we can only read the PMD from the hardware register when
3387 * the task is the owner of the local PMU.
3390 for (i = 0; i < count; i++, req++) {
3392 cnum = req->reg_num;
3393 reg_flags = req->reg_flags;
3395 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3397 * we can only read the register that we use. That includes
3398 * the one we explicitly initialize AND the one we want included
3399 * in the sampling buffer (smpl_regs).
3401 * Having this restriction allows optimization in the ctxsw routine
3402 * without compromising security (leaks)
3404 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3406 sval = ctx->ctx_pmds[cnum].val;
3407 lval = ctx->ctx_pmds[cnum].lval;
3408 is_counting = PMD_IS_COUNTING(cnum);
3411 * If the task is not the current one, then we check if the
3412 * PMU state is still in the local live register due to lazy ctxsw.
3413 * If true, then we read directly from the registers.
3415 if (can_access_pmu){
3416 val = ia64_get_pmd(cnum);
3417 } else {
3419 * context has been saved
3420 * if context is zombie, then task does not exist anymore.
3421 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3423 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3425 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3427 if (is_counting) {
3429 * XXX: need to check for overflow when loaded
3431 val &= ovfl_mask;
3432 val += sval;
3436 * execute read checker, if any
3438 if (unlikely(expert_mode == 0 && rd_func)) {
3439 unsigned long v = val;
3440 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3441 if (ret) goto error;
3442 val = v;
3443 ret = -EINVAL;
3446 PFM_REG_RETFLAG_SET(reg_flags, 0);
3448 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3451 * update register return value, abort all if problem during copy.
3452 * we only modify the reg_flags field. no check mode is fine because
3453 * access has been verified upfront in sys_perfmonctl().
3455 req->reg_value = val;
3456 req->reg_flags = reg_flags;
3457 req->reg_last_reset_val = lval;
3460 return 0;
3462 error:
3463 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3464 return ret;
3468 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3470 pfm_context_t *ctx;
3472 if (req == NULL) return -EINVAL;
3474 ctx = GET_PMU_CTX();
3476 if (ctx == NULL) return -EINVAL;
3479 * for now limit to current task, which is enough when calling
3480 * from overflow handler
3482 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3484 return pfm_write_pmcs(ctx, req, nreq, regs);
3486 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3489 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3491 pfm_context_t *ctx;
3493 if (req == NULL) return -EINVAL;
3495 ctx = GET_PMU_CTX();
3497 if (ctx == NULL) return -EINVAL;
3500 * for now limit to current task, which is enough when calling
3501 * from overflow handler
3503 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3505 return pfm_read_pmds(ctx, req, nreq, regs);
3507 EXPORT_SYMBOL(pfm_mod_read_pmds);
3510 * Only call this function when a process it trying to
3511 * write the debug registers (reading is always allowed)
3514 pfm_use_debug_registers(struct task_struct *task)
3516 pfm_context_t *ctx = task->thread.pfm_context;
3517 unsigned long flags;
3518 int ret = 0;
3520 if (pmu_conf->use_rr_dbregs == 0) return 0;
3522 DPRINT(("called for [%d]\n", task->pid));
3525 * do it only once
3527 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3530 * Even on SMP, we do not need to use an atomic here because
3531 * the only way in is via ptrace() and this is possible only when the
3532 * process is stopped. Even in the case where the ctxsw out is not totally
3533 * completed by the time we come here, there is no way the 'stopped' process
3534 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3535 * So this is always safe.
3537 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3539 LOCK_PFS(flags);
3542 * We cannot allow setting breakpoints when system wide monitoring
3543 * sessions are using the debug registers.
3545 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3546 ret = -1;
3547 else
3548 pfm_sessions.pfs_ptrace_use_dbregs++;
3550 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3551 pfm_sessions.pfs_ptrace_use_dbregs,
3552 pfm_sessions.pfs_sys_use_dbregs,
3553 task->pid, ret));
3555 UNLOCK_PFS(flags);
3557 return ret;
3561 * This function is called for every task that exits with the
3562 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3563 * able to use the debug registers for debugging purposes via
3564 * ptrace(). Therefore we know it was not using them for
3565 * perfmormance monitoring, so we only decrement the number
3566 * of "ptraced" debug register users to keep the count up to date
3569 pfm_release_debug_registers(struct task_struct *task)
3571 unsigned long flags;
3572 int ret;
3574 if (pmu_conf->use_rr_dbregs == 0) return 0;
3576 LOCK_PFS(flags);
3577 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3578 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
3579 ret = -1;
3580 } else {
3581 pfm_sessions.pfs_ptrace_use_dbregs--;
3582 ret = 0;
3584 UNLOCK_PFS(flags);
3586 return ret;
3589 static int
3590 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3592 struct task_struct *task;
3593 pfm_buffer_fmt_t *fmt;
3594 pfm_ovfl_ctrl_t rst_ctrl;
3595 int state, is_system;
3596 int ret = 0;
3598 state = ctx->ctx_state;
3599 fmt = ctx->ctx_buf_fmt;
3600 is_system = ctx->ctx_fl_system;
3601 task = PFM_CTX_TASK(ctx);
3603 switch(state) {
3604 case PFM_CTX_MASKED:
3605 break;
3606 case PFM_CTX_LOADED:
3607 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3608 /* fall through */
3609 case PFM_CTX_UNLOADED:
3610 case PFM_CTX_ZOMBIE:
3611 DPRINT(("invalid state=%d\n", state));
3612 return -EBUSY;
3613 default:
3614 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3615 return -EINVAL;
3619 * In system wide and when the context is loaded, access can only happen
3620 * when the caller is running on the CPU being monitored by the session.
3621 * It does not have to be the owner (ctx_task) of the context per se.
3623 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3624 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3625 return -EBUSY;
3628 /* sanity check */
3629 if (unlikely(task == NULL)) {
3630 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
3631 return -EINVAL;
3634 if (task == current || is_system) {
3636 fmt = ctx->ctx_buf_fmt;
3638 DPRINT(("restarting self %d ovfl=0x%lx\n",
3639 task->pid,
3640 ctx->ctx_ovfl_regs[0]));
3642 if (CTX_HAS_SMPL(ctx)) {
3644 prefetch(ctx->ctx_smpl_hdr);
3646 rst_ctrl.bits.mask_monitoring = 0;
3647 rst_ctrl.bits.reset_ovfl_pmds = 0;
3649 if (state == PFM_CTX_LOADED)
3650 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3651 else
3652 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3653 } else {
3654 rst_ctrl.bits.mask_monitoring = 0;
3655 rst_ctrl.bits.reset_ovfl_pmds = 1;
3658 if (ret == 0) {
3659 if (rst_ctrl.bits.reset_ovfl_pmds)
3660 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3662 if (rst_ctrl.bits.mask_monitoring == 0) {
3663 DPRINT(("resuming monitoring for [%d]\n", task->pid));
3665 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3666 } else {
3667 DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
3669 // cannot use pfm_stop_monitoring(task, regs);
3673 * clear overflowed PMD mask to remove any stale information
3675 ctx->ctx_ovfl_regs[0] = 0UL;
3678 * back to LOADED state
3680 ctx->ctx_state = PFM_CTX_LOADED;
3683 * XXX: not really useful for self monitoring
3685 ctx->ctx_fl_can_restart = 0;
3687 return 0;
3691 * restart another task
3695 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3696 * one is seen by the task.
3698 if (state == PFM_CTX_MASKED) {
3699 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3701 * will prevent subsequent restart before this one is
3702 * seen by other task
3704 ctx->ctx_fl_can_restart = 0;
3708 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3709 * the task is blocked or on its way to block. That's the normal
3710 * restart path. If the monitoring is not masked, then the task
3711 * can be actively monitoring and we cannot directly intervene.
3712 * Therefore we use the trap mechanism to catch the task and
3713 * force it to reset the buffer/reset PMDs.
3715 * if non-blocking, then we ensure that the task will go into
3716 * pfm_handle_work() before returning to user mode.
3718 * We cannot explicitly reset another task, it MUST always
3719 * be done by the task itself. This works for system wide because
3720 * the tool that is controlling the session is logically doing
3721 * "self-monitoring".
3723 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3724 DPRINT(("unblocking [%d] \n", task->pid));
3725 complete(&ctx->ctx_restart_done);
3726 } else {
3727 DPRINT(("[%d] armed exit trap\n", task->pid));
3729 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3731 PFM_SET_WORK_PENDING(task, 1);
3733 pfm_set_task_notify(task);
3736 * XXX: send reschedule if task runs on another CPU
3739 return 0;
3742 static int
3743 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3745 unsigned int m = *(unsigned int *)arg;
3747 pfm_sysctl.debug = m == 0 ? 0 : 1;
3749 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3751 if (m == 0) {
3752 memset(pfm_stats, 0, sizeof(pfm_stats));
3753 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3755 return 0;
3759 * arg can be NULL and count can be zero for this function
3761 static int
3762 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3764 struct thread_struct *thread = NULL;
3765 struct task_struct *task;
3766 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3767 unsigned long flags;
3768 dbreg_t dbreg;
3769 unsigned int rnum;
3770 int first_time;
3771 int ret = 0, state;
3772 int i, can_access_pmu = 0;
3773 int is_system, is_loaded;
3775 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3777 state = ctx->ctx_state;
3778 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3779 is_system = ctx->ctx_fl_system;
3780 task = ctx->ctx_task;
3782 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3785 * on both UP and SMP, we can only write to the PMC when the task is
3786 * the owner of the local PMU.
3788 if (is_loaded) {
3789 thread = &task->thread;
3791 * In system wide and when the context is loaded, access can only happen
3792 * when the caller is running on the CPU being monitored by the session.
3793 * It does not have to be the owner (ctx_task) of the context per se.
3795 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3796 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3797 return -EBUSY;
3799 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3803 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3804 * ensuring that no real breakpoint can be installed via this call.
3806 * IMPORTANT: regs can be NULL in this function
3809 first_time = ctx->ctx_fl_using_dbreg == 0;
3812 * don't bother if we are loaded and task is being debugged
3814 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3815 DPRINT(("debug registers already in use for [%d]\n", task->pid));
3816 return -EBUSY;
3820 * check for debug registers in system wide mode
3822 * If though a check is done in pfm_context_load(),
3823 * we must repeat it here, in case the registers are
3824 * written after the context is loaded
3826 if (is_loaded) {
3827 LOCK_PFS(flags);
3829 if (first_time && is_system) {
3830 if (pfm_sessions.pfs_ptrace_use_dbregs)
3831 ret = -EBUSY;
3832 else
3833 pfm_sessions.pfs_sys_use_dbregs++;
3835 UNLOCK_PFS(flags);
3838 if (ret != 0) return ret;
3841 * mark ourself as user of the debug registers for
3842 * perfmon purposes.
3844 ctx->ctx_fl_using_dbreg = 1;
3847 * clear hardware registers to make sure we don't
3848 * pick up stale state.
3850 * for a system wide session, we do not use
3851 * thread.dbr, thread.ibr because this process
3852 * never leaves the current CPU and the state
3853 * is shared by all processes running on it
3855 if (first_time && can_access_pmu) {
3856 DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
3857 for (i=0; i < pmu_conf->num_ibrs; i++) {
3858 ia64_set_ibr(i, 0UL);
3859 ia64_dv_serialize_instruction();
3861 ia64_srlz_i();
3862 for (i=0; i < pmu_conf->num_dbrs; i++) {
3863 ia64_set_dbr(i, 0UL);
3864 ia64_dv_serialize_data();
3866 ia64_srlz_d();
3870 * Now install the values into the registers
3872 for (i = 0; i < count; i++, req++) {
3874 rnum = req->dbreg_num;
3875 dbreg.val = req->dbreg_value;
3877 ret = -EINVAL;
3879 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3880 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3881 rnum, dbreg.val, mode, i, count));
3883 goto abort_mission;
3887 * make sure we do not install enabled breakpoint
3889 if (rnum & 0x1) {
3890 if (mode == PFM_CODE_RR)
3891 dbreg.ibr.ibr_x = 0;
3892 else
3893 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3896 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3899 * Debug registers, just like PMC, can only be modified
3900 * by a kernel call. Moreover, perfmon() access to those
3901 * registers are centralized in this routine. The hardware
3902 * does not modify the value of these registers, therefore,
3903 * if we save them as they are written, we can avoid having
3904 * to save them on context switch out. This is made possible
3905 * by the fact that when perfmon uses debug registers, ptrace()
3906 * won't be able to modify them concurrently.
3908 if (mode == PFM_CODE_RR) {
3909 CTX_USED_IBR(ctx, rnum);
3911 if (can_access_pmu) {
3912 ia64_set_ibr(rnum, dbreg.val);
3913 ia64_dv_serialize_instruction();
3916 ctx->ctx_ibrs[rnum] = dbreg.val;
3918 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3919 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3920 } else {
3921 CTX_USED_DBR(ctx, rnum);
3923 if (can_access_pmu) {
3924 ia64_set_dbr(rnum, dbreg.val);
3925 ia64_dv_serialize_data();
3927 ctx->ctx_dbrs[rnum] = dbreg.val;
3929 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3930 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3934 return 0;
3936 abort_mission:
3938 * in case it was our first attempt, we undo the global modifications
3940 if (first_time) {
3941 LOCK_PFS(flags);
3942 if (ctx->ctx_fl_system) {
3943 pfm_sessions.pfs_sys_use_dbregs--;
3945 UNLOCK_PFS(flags);
3946 ctx->ctx_fl_using_dbreg = 0;
3949 * install error return flag
3951 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3953 return ret;
3956 static int
3957 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3959 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3962 static int
3963 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3965 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3969 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3971 pfm_context_t *ctx;
3973 if (req == NULL) return -EINVAL;
3975 ctx = GET_PMU_CTX();
3977 if (ctx == NULL) return -EINVAL;
3980 * for now limit to current task, which is enough when calling
3981 * from overflow handler
3983 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3985 return pfm_write_ibrs(ctx, req, nreq, regs);
3987 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3990 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3992 pfm_context_t *ctx;
3994 if (req == NULL) return -EINVAL;
3996 ctx = GET_PMU_CTX();
3998 if (ctx == NULL) return -EINVAL;
4001 * for now limit to current task, which is enough when calling
4002 * from overflow handler
4004 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
4006 return pfm_write_dbrs(ctx, req, nreq, regs);
4008 EXPORT_SYMBOL(pfm_mod_write_dbrs);
4011 static int
4012 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4014 pfarg_features_t *req = (pfarg_features_t *)arg;
4016 req->ft_version = PFM_VERSION;
4017 return 0;
4020 static int
4021 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4023 struct pt_regs *tregs;
4024 struct task_struct *task = PFM_CTX_TASK(ctx);
4025 int state, is_system;
4027 state = ctx->ctx_state;
4028 is_system = ctx->ctx_fl_system;
4031 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
4033 if (state == PFM_CTX_UNLOADED) return -EINVAL;
4036 * In system wide and when the context is loaded, access can only happen
4037 * when the caller is running on the CPU being monitored by the session.
4038 * It does not have to be the owner (ctx_task) of the context per se.
4040 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4041 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4042 return -EBUSY;
4044 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4045 PFM_CTX_TASK(ctx)->pid,
4046 state,
4047 is_system));
4049 * in system mode, we need to update the PMU directly
4050 * and the user level state of the caller, which may not
4051 * necessarily be the creator of the context.
4053 if (is_system) {
4055 * Update local PMU first
4057 * disable dcr pp
4059 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4060 ia64_srlz_i();
4063 * update local cpuinfo
4065 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4068 * stop monitoring, does srlz.i
4070 pfm_clear_psr_pp();
4073 * stop monitoring in the caller
4075 ia64_psr(regs)->pp = 0;
4077 return 0;
4080 * per-task mode
4083 if (task == current) {
4084 /* stop monitoring at kernel level */
4085 pfm_clear_psr_up();
4088 * stop monitoring at the user level
4090 ia64_psr(regs)->up = 0;
4091 } else {
4092 tregs = task_pt_regs(task);
4095 * stop monitoring at the user level
4097 ia64_psr(tregs)->up = 0;
4100 * monitoring disabled in kernel at next reschedule
4102 ctx->ctx_saved_psr_up = 0;
4103 DPRINT(("task=[%d]\n", task->pid));
4105 return 0;
4109 static int
4110 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4112 struct pt_regs *tregs;
4113 int state, is_system;
4115 state = ctx->ctx_state;
4116 is_system = ctx->ctx_fl_system;
4118 if (state != PFM_CTX_LOADED) return -EINVAL;
4121 * In system wide and when the context is loaded, access can only happen
4122 * when the caller is running on the CPU being monitored by the session.
4123 * It does not have to be the owner (ctx_task) of the context per se.
4125 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4126 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4127 return -EBUSY;
4131 * in system mode, we need to update the PMU directly
4132 * and the user level state of the caller, which may not
4133 * necessarily be the creator of the context.
4135 if (is_system) {
4138 * set user level psr.pp for the caller
4140 ia64_psr(regs)->pp = 1;
4143 * now update the local PMU and cpuinfo
4145 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4148 * start monitoring at kernel level
4150 pfm_set_psr_pp();
4152 /* enable dcr pp */
4153 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4154 ia64_srlz_i();
4156 return 0;
4160 * per-process mode
4163 if (ctx->ctx_task == current) {
4165 /* start monitoring at kernel level */
4166 pfm_set_psr_up();
4169 * activate monitoring at user level
4171 ia64_psr(regs)->up = 1;
4173 } else {
4174 tregs = task_pt_regs(ctx->ctx_task);
4177 * start monitoring at the kernel level the next
4178 * time the task is scheduled
4180 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4183 * activate monitoring at user level
4185 ia64_psr(tregs)->up = 1;
4187 return 0;
4190 static int
4191 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4193 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4194 unsigned int cnum;
4195 int i;
4196 int ret = -EINVAL;
4198 for (i = 0; i < count; i++, req++) {
4200 cnum = req->reg_num;
4202 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4204 req->reg_value = PMC_DFL_VAL(cnum);
4206 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4208 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4210 return 0;
4212 abort_mission:
4213 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4214 return ret;
4217 static int
4218 pfm_check_task_exist(pfm_context_t *ctx)
4220 struct task_struct *g, *t;
4221 int ret = -ESRCH;
4223 read_lock(&tasklist_lock);
4225 do_each_thread (g, t) {
4226 if (t->thread.pfm_context == ctx) {
4227 ret = 0;
4228 break;
4230 } while_each_thread (g, t);
4232 read_unlock(&tasklist_lock);
4234 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4236 return ret;
4239 static int
4240 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4242 struct task_struct *task;
4243 struct thread_struct *thread;
4244 struct pfm_context_t *old;
4245 unsigned long flags;
4246 #ifndef CONFIG_SMP
4247 struct task_struct *owner_task = NULL;
4248 #endif
4249 pfarg_load_t *req = (pfarg_load_t *)arg;
4250 unsigned long *pmcs_source, *pmds_source;
4251 int the_cpu;
4252 int ret = 0;
4253 int state, is_system, set_dbregs = 0;
4255 state = ctx->ctx_state;
4256 is_system = ctx->ctx_fl_system;
4258 * can only load from unloaded or terminated state
4260 if (state != PFM_CTX_UNLOADED) {
4261 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4262 req->load_pid,
4263 ctx->ctx_state));
4264 return -EBUSY;
4267 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4269 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4270 DPRINT(("cannot use blocking mode on self\n"));
4271 return -EINVAL;
4274 ret = pfm_get_task(ctx, req->load_pid, &task);
4275 if (ret) {
4276 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4277 return ret;
4280 ret = -EINVAL;
4283 * system wide is self monitoring only
4285 if (is_system && task != current) {
4286 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4287 req->load_pid));
4288 goto error;
4291 thread = &task->thread;
4293 ret = 0;
4295 * cannot load a context which is using range restrictions,
4296 * into a task that is being debugged.
4298 if (ctx->ctx_fl_using_dbreg) {
4299 if (thread->flags & IA64_THREAD_DBG_VALID) {
4300 ret = -EBUSY;
4301 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4302 goto error;
4304 LOCK_PFS(flags);
4306 if (is_system) {
4307 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4308 DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
4309 ret = -EBUSY;
4310 } else {
4311 pfm_sessions.pfs_sys_use_dbregs++;
4312 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
4313 set_dbregs = 1;
4317 UNLOCK_PFS(flags);
4319 if (ret) goto error;
4323 * SMP system-wide monitoring implies self-monitoring.
4325 * The programming model expects the task to
4326 * be pinned on a CPU throughout the session.
4327 * Here we take note of the current CPU at the
4328 * time the context is loaded. No call from
4329 * another CPU will be allowed.
4331 * The pinning via shed_setaffinity()
4332 * must be done by the calling task prior
4333 * to this call.
4335 * systemwide: keep track of CPU this session is supposed to run on
4337 the_cpu = ctx->ctx_cpu = smp_processor_id();
4339 ret = -EBUSY;
4341 * now reserve the session
4343 ret = pfm_reserve_session(current, is_system, the_cpu);
4344 if (ret) goto error;
4347 * task is necessarily stopped at this point.
4349 * If the previous context was zombie, then it got removed in
4350 * pfm_save_regs(). Therefore we should not see it here.
4351 * If we see a context, then this is an active context
4353 * XXX: needs to be atomic
4355 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4356 thread->pfm_context, ctx));
4358 ret = -EBUSY;
4359 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4360 if (old != NULL) {
4361 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4362 goto error_unres;
4365 pfm_reset_msgq(ctx);
4367 ctx->ctx_state = PFM_CTX_LOADED;
4370 * link context to task
4372 ctx->ctx_task = task;
4374 if (is_system) {
4376 * we load as stopped
4378 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4379 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4381 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4382 } else {
4383 thread->flags |= IA64_THREAD_PM_VALID;
4387 * propagate into thread-state
4389 pfm_copy_pmds(task, ctx);
4390 pfm_copy_pmcs(task, ctx);
4392 pmcs_source = ctx->th_pmcs;
4393 pmds_source = ctx->th_pmds;
4396 * always the case for system-wide
4398 if (task == current) {
4400 if (is_system == 0) {
4402 /* allow user level control */
4403 ia64_psr(regs)->sp = 0;
4404 DPRINT(("clearing psr.sp for [%d]\n", task->pid));
4406 SET_LAST_CPU(ctx, smp_processor_id());
4407 INC_ACTIVATION();
4408 SET_ACTIVATION(ctx);
4409 #ifndef CONFIG_SMP
4411 * push the other task out, if any
4413 owner_task = GET_PMU_OWNER();
4414 if (owner_task) pfm_lazy_save_regs(owner_task);
4415 #endif
4418 * load all PMD from ctx to PMU (as opposed to thread state)
4419 * restore all PMC from ctx to PMU
4421 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4422 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4424 ctx->ctx_reload_pmcs[0] = 0UL;
4425 ctx->ctx_reload_pmds[0] = 0UL;
4428 * guaranteed safe by earlier check against DBG_VALID
4430 if (ctx->ctx_fl_using_dbreg) {
4431 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4432 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4435 * set new ownership
4437 SET_PMU_OWNER(task, ctx);
4439 DPRINT(("context loaded on PMU for [%d]\n", task->pid));
4440 } else {
4442 * when not current, task MUST be stopped, so this is safe
4444 regs = task_pt_regs(task);
4446 /* force a full reload */
4447 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4448 SET_LAST_CPU(ctx, -1);
4450 /* initial saved psr (stopped) */
4451 ctx->ctx_saved_psr_up = 0UL;
4452 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4455 ret = 0;
4457 error_unres:
4458 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4459 error:
4461 * we must undo the dbregs setting (for system-wide)
4463 if (ret && set_dbregs) {
4464 LOCK_PFS(flags);
4465 pfm_sessions.pfs_sys_use_dbregs--;
4466 UNLOCK_PFS(flags);
4469 * release task, there is now a link with the context
4471 if (is_system == 0 && task != current) {
4472 pfm_put_task(task);
4474 if (ret == 0) {
4475 ret = pfm_check_task_exist(ctx);
4476 if (ret) {
4477 ctx->ctx_state = PFM_CTX_UNLOADED;
4478 ctx->ctx_task = NULL;
4482 return ret;
4486 * in this function, we do not need to increase the use count
4487 * for the task via get_task_struct(), because we hold the
4488 * context lock. If the task were to disappear while having
4489 * a context attached, it would go through pfm_exit_thread()
4490 * which also grabs the context lock and would therefore be blocked
4491 * until we are here.
4493 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4495 static int
4496 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4498 struct task_struct *task = PFM_CTX_TASK(ctx);
4499 struct pt_regs *tregs;
4500 int prev_state, is_system;
4501 int ret;
4503 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
4505 prev_state = ctx->ctx_state;
4506 is_system = ctx->ctx_fl_system;
4509 * unload only when necessary
4511 if (prev_state == PFM_CTX_UNLOADED) {
4512 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4513 return 0;
4517 * clear psr and dcr bits
4519 ret = pfm_stop(ctx, NULL, 0, regs);
4520 if (ret) return ret;
4522 ctx->ctx_state = PFM_CTX_UNLOADED;
4525 * in system mode, we need to update the PMU directly
4526 * and the user level state of the caller, which may not
4527 * necessarily be the creator of the context.
4529 if (is_system) {
4532 * Update cpuinfo
4534 * local PMU is taken care of in pfm_stop()
4536 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4537 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4540 * save PMDs in context
4541 * release ownership
4543 pfm_flush_pmds(current, ctx);
4546 * at this point we are done with the PMU
4547 * so we can unreserve the resource.
4549 if (prev_state != PFM_CTX_ZOMBIE)
4550 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4553 * disconnect context from task
4555 task->thread.pfm_context = NULL;
4557 * disconnect task from context
4559 ctx->ctx_task = NULL;
4562 * There is nothing more to cleanup here.
4564 return 0;
4568 * per-task mode
4570 tregs = task == current ? regs : task_pt_regs(task);
4572 if (task == current) {
4574 * cancel user level control
4576 ia64_psr(regs)->sp = 1;
4578 DPRINT(("setting psr.sp for [%d]\n", task->pid));
4581 * save PMDs to context
4582 * release ownership
4584 pfm_flush_pmds(task, ctx);
4587 * at this point we are done with the PMU
4588 * so we can unreserve the resource.
4590 * when state was ZOMBIE, we have already unreserved.
4592 if (prev_state != PFM_CTX_ZOMBIE)
4593 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4596 * reset activation counter and psr
4598 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4599 SET_LAST_CPU(ctx, -1);
4602 * PMU state will not be restored
4604 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4607 * break links between context and task
4609 task->thread.pfm_context = NULL;
4610 ctx->ctx_task = NULL;
4612 PFM_SET_WORK_PENDING(task, 0);
4614 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4615 ctx->ctx_fl_can_restart = 0;
4616 ctx->ctx_fl_going_zombie = 0;
4618 DPRINT(("disconnected [%d] from context\n", task->pid));
4620 return 0;
4625 * called only from exit_thread(): task == current
4626 * we come here only if current has a context attached (loaded or masked)
4628 void
4629 pfm_exit_thread(struct task_struct *task)
4631 pfm_context_t *ctx;
4632 unsigned long flags;
4633 struct pt_regs *regs = task_pt_regs(task);
4634 int ret, state;
4635 int free_ok = 0;
4637 ctx = PFM_GET_CTX(task);
4639 PROTECT_CTX(ctx, flags);
4641 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
4643 state = ctx->ctx_state;
4644 switch(state) {
4645 case PFM_CTX_UNLOADED:
4647 * only comes to this function if pfm_context is not NULL, i.e., cannot
4648 * be in unloaded state
4650 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
4651 break;
4652 case PFM_CTX_LOADED:
4653 case PFM_CTX_MASKED:
4654 ret = pfm_context_unload(ctx, NULL, 0, regs);
4655 if (ret) {
4656 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4658 DPRINT(("ctx unloaded for current state was %d\n", state));
4660 pfm_end_notify_user(ctx);
4661 break;
4662 case PFM_CTX_ZOMBIE:
4663 ret = pfm_context_unload(ctx, NULL, 0, regs);
4664 if (ret) {
4665 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4667 free_ok = 1;
4668 break;
4669 default:
4670 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
4671 break;
4673 UNPROTECT_CTX(ctx, flags);
4675 { u64 psr = pfm_get_psr();
4676 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4677 BUG_ON(GET_PMU_OWNER());
4678 BUG_ON(ia64_psr(regs)->up);
4679 BUG_ON(ia64_psr(regs)->pp);
4683 * All memory free operations (especially for vmalloc'ed memory)
4684 * MUST be done with interrupts ENABLED.
4686 if (free_ok) pfm_context_free(ctx);
4690 * functions MUST be listed in the increasing order of their index (see permfon.h)
4692 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4693 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4694 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4695 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4696 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4698 static pfm_cmd_desc_t pfm_cmd_tab[]={
4699 /* 0 */PFM_CMD_NONE,
4700 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4701 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4702 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4703 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4704 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4705 /* 6 */PFM_CMD_NONE,
4706 /* 7 */PFM_CMD_NONE,
4707 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4708 /* 9 */PFM_CMD_NONE,
4709 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4710 /* 11 */PFM_CMD_NONE,
4711 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4712 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4713 /* 14 */PFM_CMD_NONE,
4714 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4715 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4716 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4717 /* 18 */PFM_CMD_NONE,
4718 /* 19 */PFM_CMD_NONE,
4719 /* 20 */PFM_CMD_NONE,
4720 /* 21 */PFM_CMD_NONE,
4721 /* 22 */PFM_CMD_NONE,
4722 /* 23 */PFM_CMD_NONE,
4723 /* 24 */PFM_CMD_NONE,
4724 /* 25 */PFM_CMD_NONE,
4725 /* 26 */PFM_CMD_NONE,
4726 /* 27 */PFM_CMD_NONE,
4727 /* 28 */PFM_CMD_NONE,
4728 /* 29 */PFM_CMD_NONE,
4729 /* 30 */PFM_CMD_NONE,
4730 /* 31 */PFM_CMD_NONE,
4731 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4732 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4734 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4736 static int
4737 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4739 struct task_struct *task;
4740 int state, old_state;
4742 recheck:
4743 state = ctx->ctx_state;
4744 task = ctx->ctx_task;
4746 if (task == NULL) {
4747 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4748 return 0;
4751 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4752 ctx->ctx_fd,
4753 state,
4754 task->pid,
4755 task->state, PFM_CMD_STOPPED(cmd)));
4758 * self-monitoring always ok.
4760 * for system-wide the caller can either be the creator of the
4761 * context (to one to which the context is attached to) OR
4762 * a task running on the same CPU as the session.
4764 if (task == current || ctx->ctx_fl_system) return 0;
4767 * we are monitoring another thread
4769 switch(state) {
4770 case PFM_CTX_UNLOADED:
4772 * if context is UNLOADED we are safe to go
4774 return 0;
4775 case PFM_CTX_ZOMBIE:
4777 * no command can operate on a zombie context
4779 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4780 return -EINVAL;
4781 case PFM_CTX_MASKED:
4783 * PMU state has been saved to software even though
4784 * the thread may still be running.
4786 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4790 * context is LOADED or MASKED. Some commands may need to have
4791 * the task stopped.
4793 * We could lift this restriction for UP but it would mean that
4794 * the user has no guarantee the task would not run between
4795 * two successive calls to perfmonctl(). That's probably OK.
4796 * If this user wants to ensure the task does not run, then
4797 * the task must be stopped.
4799 if (PFM_CMD_STOPPED(cmd)) {
4800 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4801 DPRINT(("[%d] task not in stopped state\n", task->pid));
4802 return -EBUSY;
4805 * task is now stopped, wait for ctxsw out
4807 * This is an interesting point in the code.
4808 * We need to unprotect the context because
4809 * the pfm_save_regs() routines needs to grab
4810 * the same lock. There are danger in doing
4811 * this because it leaves a window open for
4812 * another task to get access to the context
4813 * and possibly change its state. The one thing
4814 * that is not possible is for the context to disappear
4815 * because we are protected by the VFS layer, i.e.,
4816 * get_fd()/put_fd().
4818 old_state = state;
4820 UNPROTECT_CTX(ctx, flags);
4822 wait_task_inactive(task);
4824 PROTECT_CTX(ctx, flags);
4827 * we must recheck to verify if state has changed
4829 if (ctx->ctx_state != old_state) {
4830 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4831 goto recheck;
4834 return 0;
4838 * system-call entry point (must return long)
4840 asmlinkage long
4841 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4843 struct file *file = NULL;
4844 pfm_context_t *ctx = NULL;
4845 unsigned long flags = 0UL;
4846 void *args_k = NULL;
4847 long ret; /* will expand int return types */
4848 size_t base_sz, sz, xtra_sz = 0;
4849 int narg, completed_args = 0, call_made = 0, cmd_flags;
4850 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4851 int (*getsize)(void *arg, size_t *sz);
4852 #define PFM_MAX_ARGSIZE 4096
4855 * reject any call if perfmon was disabled at initialization
4857 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4859 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4860 DPRINT(("invalid cmd=%d\n", cmd));
4861 return -EINVAL;
4864 func = pfm_cmd_tab[cmd].cmd_func;
4865 narg = pfm_cmd_tab[cmd].cmd_narg;
4866 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4867 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4868 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4870 if (unlikely(func == NULL)) {
4871 DPRINT(("invalid cmd=%d\n", cmd));
4872 return -EINVAL;
4875 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4876 PFM_CMD_NAME(cmd),
4877 cmd,
4878 narg,
4879 base_sz,
4880 count));
4883 * check if number of arguments matches what the command expects
4885 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4886 return -EINVAL;
4888 restart_args:
4889 sz = xtra_sz + base_sz*count;
4891 * limit abuse to min page size
4893 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4894 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
4895 return -E2BIG;
4899 * allocate default-sized argument buffer
4901 if (likely(count && args_k == NULL)) {
4902 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4903 if (args_k == NULL) return -ENOMEM;
4906 ret = -EFAULT;
4909 * copy arguments
4911 * assume sz = 0 for command without parameters
4913 if (sz && copy_from_user(args_k, arg, sz)) {
4914 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4915 goto error_args;
4919 * check if command supports extra parameters
4921 if (completed_args == 0 && getsize) {
4923 * get extra parameters size (based on main argument)
4925 ret = (*getsize)(args_k, &xtra_sz);
4926 if (ret) goto error_args;
4928 completed_args = 1;
4930 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4932 /* retry if necessary */
4933 if (likely(xtra_sz)) goto restart_args;
4936 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4938 ret = -EBADF;
4940 file = fget(fd);
4941 if (unlikely(file == NULL)) {
4942 DPRINT(("invalid fd %d\n", fd));
4943 goto error_args;
4945 if (unlikely(PFM_IS_FILE(file) == 0)) {
4946 DPRINT(("fd %d not related to perfmon\n", fd));
4947 goto error_args;
4950 ctx = (pfm_context_t *)file->private_data;
4951 if (unlikely(ctx == NULL)) {
4952 DPRINT(("no context for fd %d\n", fd));
4953 goto error_args;
4955 prefetch(&ctx->ctx_state);
4957 PROTECT_CTX(ctx, flags);
4960 * check task is stopped
4962 ret = pfm_check_task_state(ctx, cmd, flags);
4963 if (unlikely(ret)) goto abort_locked;
4965 skip_fd:
4966 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4968 call_made = 1;
4970 abort_locked:
4971 if (likely(ctx)) {
4972 DPRINT(("context unlocked\n"));
4973 UNPROTECT_CTX(ctx, flags);
4976 /* copy argument back to user, if needed */
4977 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4979 error_args:
4980 if (file)
4981 fput(file);
4983 kfree(args_k);
4985 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4987 return ret;
4990 static void
4991 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4993 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4994 pfm_ovfl_ctrl_t rst_ctrl;
4995 int state;
4996 int ret = 0;
4998 state = ctx->ctx_state;
5000 * Unlock sampling buffer and reset index atomically
5001 * XXX: not really needed when blocking
5003 if (CTX_HAS_SMPL(ctx)) {
5005 rst_ctrl.bits.mask_monitoring = 0;
5006 rst_ctrl.bits.reset_ovfl_pmds = 0;
5008 if (state == PFM_CTX_LOADED)
5009 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
5010 else
5011 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
5012 } else {
5013 rst_ctrl.bits.mask_monitoring = 0;
5014 rst_ctrl.bits.reset_ovfl_pmds = 1;
5017 if (ret == 0) {
5018 if (rst_ctrl.bits.reset_ovfl_pmds) {
5019 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
5021 if (rst_ctrl.bits.mask_monitoring == 0) {
5022 DPRINT(("resuming monitoring\n"));
5023 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
5024 } else {
5025 DPRINT(("stopping monitoring\n"));
5026 //pfm_stop_monitoring(current, regs);
5028 ctx->ctx_state = PFM_CTX_LOADED;
5033 * context MUST BE LOCKED when calling
5034 * can only be called for current
5036 static void
5037 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
5039 int ret;
5041 DPRINT(("entering for [%d]\n", current->pid));
5043 ret = pfm_context_unload(ctx, NULL, 0, regs);
5044 if (ret) {
5045 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
5049 * and wakeup controlling task, indicating we are now disconnected
5051 wake_up_interruptible(&ctx->ctx_zombieq);
5054 * given that context is still locked, the controlling
5055 * task will only get access when we return from
5056 * pfm_handle_work().
5060 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5062 * pfm_handle_work() can be called with interrupts enabled
5063 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5064 * call may sleep, therefore we must re-enable interrupts
5065 * to avoid deadlocks. It is safe to do so because this function
5066 * is called ONLY when returning to user level (PUStk=1), in which case
5067 * there is no risk of kernel stack overflow due to deep
5068 * interrupt nesting.
5070 void
5071 pfm_handle_work(void)
5073 pfm_context_t *ctx;
5074 struct pt_regs *regs;
5075 unsigned long flags, dummy_flags;
5076 unsigned long ovfl_regs;
5077 unsigned int reason;
5078 int ret;
5080 ctx = PFM_GET_CTX(current);
5081 if (ctx == NULL) {
5082 printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
5083 return;
5086 PROTECT_CTX(ctx, flags);
5088 PFM_SET_WORK_PENDING(current, 0);
5090 pfm_clear_task_notify();
5092 regs = task_pt_regs(current);
5095 * extract reason for being here and clear
5097 reason = ctx->ctx_fl_trap_reason;
5098 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5099 ovfl_regs = ctx->ctx_ovfl_regs[0];
5101 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5104 * must be done before we check for simple-reset mode
5106 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5109 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5110 if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5113 * restore interrupt mask to what it was on entry.
5114 * Could be enabled/diasbled.
5116 UNPROTECT_CTX(ctx, flags);
5119 * force interrupt enable because of down_interruptible()
5121 local_irq_enable();
5123 DPRINT(("before block sleeping\n"));
5126 * may go through without blocking on SMP systems
5127 * if restart has been received already by the time we call down()
5129 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5131 DPRINT(("after block sleeping ret=%d\n", ret));
5134 * lock context and mask interrupts again
5135 * We save flags into a dummy because we may have
5136 * altered interrupts mask compared to entry in this
5137 * function.
5139 PROTECT_CTX(ctx, dummy_flags);
5142 * we need to read the ovfl_regs only after wake-up
5143 * because we may have had pfm_write_pmds() in between
5144 * and that can changed PMD values and therefore
5145 * ovfl_regs is reset for these new PMD values.
5147 ovfl_regs = ctx->ctx_ovfl_regs[0];
5149 if (ctx->ctx_fl_going_zombie) {
5150 do_zombie:
5151 DPRINT(("context is zombie, bailing out\n"));
5152 pfm_context_force_terminate(ctx, regs);
5153 goto nothing_to_do;
5156 * in case of interruption of down() we don't restart anything
5158 if (ret < 0) goto nothing_to_do;
5160 skip_blocking:
5161 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5162 ctx->ctx_ovfl_regs[0] = 0UL;
5164 nothing_to_do:
5166 * restore flags as they were upon entry
5168 UNPROTECT_CTX(ctx, flags);
5171 static int
5172 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5174 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5175 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5176 return 0;
5179 DPRINT(("waking up somebody\n"));
5181 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5184 * safe, we are not in intr handler, nor in ctxsw when
5185 * we come here
5187 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5189 return 0;
5192 static int
5193 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5195 pfm_msg_t *msg = NULL;
5197 if (ctx->ctx_fl_no_msg == 0) {
5198 msg = pfm_get_new_msg(ctx);
5199 if (msg == NULL) {
5200 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5201 return -1;
5204 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5205 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5206 msg->pfm_ovfl_msg.msg_active_set = 0;
5207 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5208 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5209 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5210 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5211 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5214 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5215 msg,
5216 ctx->ctx_fl_no_msg,
5217 ctx->ctx_fd,
5218 ovfl_pmds));
5220 return pfm_notify_user(ctx, msg);
5223 static int
5224 pfm_end_notify_user(pfm_context_t *ctx)
5226 pfm_msg_t *msg;
5228 msg = pfm_get_new_msg(ctx);
5229 if (msg == NULL) {
5230 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5231 return -1;
5233 /* no leak */
5234 memset(msg, 0, sizeof(*msg));
5236 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5237 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5238 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5240 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5241 msg,
5242 ctx->ctx_fl_no_msg,
5243 ctx->ctx_fd));
5245 return pfm_notify_user(ctx, msg);
5249 * main overflow processing routine.
5250 * it can be called from the interrupt path or explicitly during the context switch code
5252 static void
5253 pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5255 pfm_ovfl_arg_t *ovfl_arg;
5256 unsigned long mask;
5257 unsigned long old_val, ovfl_val, new_val;
5258 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5259 unsigned long tstamp;
5260 pfm_ovfl_ctrl_t ovfl_ctrl;
5261 unsigned int i, has_smpl;
5262 int must_notify = 0;
5264 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5267 * sanity test. Should never happen
5269 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5271 tstamp = ia64_get_itc();
5272 mask = pmc0 >> PMU_FIRST_COUNTER;
5273 ovfl_val = pmu_conf->ovfl_val;
5274 has_smpl = CTX_HAS_SMPL(ctx);
5276 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5277 "used_pmds=0x%lx\n",
5278 pmc0,
5279 task ? task->pid: -1,
5280 (regs ? regs->cr_iip : 0),
5281 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5282 ctx->ctx_used_pmds[0]));
5286 * first we update the virtual counters
5287 * assume there was a prior ia64_srlz_d() issued
5289 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5291 /* skip pmd which did not overflow */
5292 if ((mask & 0x1) == 0) continue;
5295 * Note that the pmd is not necessarily 0 at this point as qualified events
5296 * may have happened before the PMU was frozen. The residual count is not
5297 * taken into consideration here but will be with any read of the pmd via
5298 * pfm_read_pmds().
5300 old_val = new_val = ctx->ctx_pmds[i].val;
5301 new_val += 1 + ovfl_val;
5302 ctx->ctx_pmds[i].val = new_val;
5305 * check for overflow condition
5307 if (likely(old_val > new_val)) {
5308 ovfl_pmds |= 1UL << i;
5309 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5312 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5314 new_val,
5315 old_val,
5316 ia64_get_pmd(i) & ovfl_val,
5317 ovfl_pmds,
5318 ovfl_notify));
5322 * there was no 64-bit overflow, nothing else to do
5324 if (ovfl_pmds == 0UL) return;
5327 * reset all control bits
5329 ovfl_ctrl.val = 0;
5330 reset_pmds = 0UL;
5333 * if a sampling format module exists, then we "cache" the overflow by
5334 * calling the module's handler() routine.
5336 if (has_smpl) {
5337 unsigned long start_cycles, end_cycles;
5338 unsigned long pmd_mask;
5339 int j, k, ret = 0;
5340 int this_cpu = smp_processor_id();
5342 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5343 ovfl_arg = &ctx->ctx_ovfl_arg;
5345 prefetch(ctx->ctx_smpl_hdr);
5347 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5349 mask = 1UL << i;
5351 if ((pmd_mask & 0x1) == 0) continue;
5353 ovfl_arg->ovfl_pmd = (unsigned char )i;
5354 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5355 ovfl_arg->active_set = 0;
5356 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5357 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5359 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5360 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5361 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5364 * copy values of pmds of interest. Sampling format may copy them
5365 * into sampling buffer.
5367 if (smpl_pmds) {
5368 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5369 if ((smpl_pmds & 0x1) == 0) continue;
5370 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5371 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5375 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5377 start_cycles = ia64_get_itc();
5380 * call custom buffer format record (handler) routine
5382 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5384 end_cycles = ia64_get_itc();
5387 * For those controls, we take the union because they have
5388 * an all or nothing behavior.
5390 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5391 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5392 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5394 * build the bitmask of pmds to reset now
5396 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5398 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5401 * when the module cannot handle the rest of the overflows, we abort right here
5403 if (ret && pmd_mask) {
5404 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5405 pmd_mask<<PMU_FIRST_COUNTER));
5408 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5410 ovfl_pmds &= ~reset_pmds;
5411 } else {
5413 * when no sampling module is used, then the default
5414 * is to notify on overflow if requested by user
5416 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5417 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5418 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5419 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5421 * if needed, we reset all overflowed pmds
5423 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5426 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5429 * reset the requested PMD registers using the short reset values
5431 if (reset_pmds) {
5432 unsigned long bm = reset_pmds;
5433 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5436 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5438 * keep track of what to reset when unblocking
5440 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5443 * check for blocking context
5445 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5447 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5450 * set the perfmon specific checking pending work for the task
5452 PFM_SET_WORK_PENDING(task, 1);
5455 * when coming from ctxsw, current still points to the
5456 * previous task, therefore we must work with task and not current.
5458 pfm_set_task_notify(task);
5461 * defer until state is changed (shorten spin window). the context is locked
5462 * anyway, so the signal receiver would come spin for nothing.
5464 must_notify = 1;
5467 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5468 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
5469 PFM_GET_WORK_PENDING(task),
5470 ctx->ctx_fl_trap_reason,
5471 ovfl_pmds,
5472 ovfl_notify,
5473 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5475 * in case monitoring must be stopped, we toggle the psr bits
5477 if (ovfl_ctrl.bits.mask_monitoring) {
5478 pfm_mask_monitoring(task);
5479 ctx->ctx_state = PFM_CTX_MASKED;
5480 ctx->ctx_fl_can_restart = 1;
5484 * send notification now
5486 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5488 return;
5490 sanity_check:
5491 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5492 smp_processor_id(),
5493 task ? task->pid : -1,
5494 pmc0);
5495 return;
5497 stop_monitoring:
5499 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5500 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5501 * come here as zombie only if the task is the current task. In which case, we
5502 * can access the PMU hardware directly.
5504 * Note that zombies do have PM_VALID set. So here we do the minimal.
5506 * In case the context was zombified it could not be reclaimed at the time
5507 * the monitoring program exited. At this point, the PMU reservation has been
5508 * returned, the sampiing buffer has been freed. We must convert this call
5509 * into a spurious interrupt. However, we must also avoid infinite overflows
5510 * by stopping monitoring for this task. We can only come here for a per-task
5511 * context. All we need to do is to stop monitoring using the psr bits which
5512 * are always task private. By re-enabling secure montioring, we ensure that
5513 * the monitored task will not be able to re-activate monitoring.
5514 * The task will eventually be context switched out, at which point the context
5515 * will be reclaimed (that includes releasing ownership of the PMU).
5517 * So there might be a window of time where the number of per-task session is zero
5518 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5519 * context. This is safe because if a per-task session comes in, it will push this one
5520 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5521 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5522 * also push our zombie context out.
5524 * Overall pretty hairy stuff....
5526 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
5527 pfm_clear_psr_up();
5528 ia64_psr(regs)->up = 0;
5529 ia64_psr(regs)->sp = 1;
5530 return;
5533 static int
5534 pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5536 struct task_struct *task;
5537 pfm_context_t *ctx;
5538 unsigned long flags;
5539 u64 pmc0;
5540 int this_cpu = smp_processor_id();
5541 int retval = 0;
5543 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5546 * srlz.d done before arriving here
5548 pmc0 = ia64_get_pmc(0);
5550 task = GET_PMU_OWNER();
5551 ctx = GET_PMU_CTX();
5554 * if we have some pending bits set
5555 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5557 if (PMC0_HAS_OVFL(pmc0) && task) {
5559 * we assume that pmc0.fr is always set here
5562 /* sanity check */
5563 if (!ctx) goto report_spurious1;
5565 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5566 goto report_spurious2;
5568 PROTECT_CTX_NOPRINT(ctx, flags);
5570 pfm_overflow_handler(task, ctx, pmc0, regs);
5572 UNPROTECT_CTX_NOPRINT(ctx, flags);
5574 } else {
5575 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5576 retval = -1;
5579 * keep it unfrozen at all times
5581 pfm_unfreeze_pmu();
5583 return retval;
5585 report_spurious1:
5586 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5587 this_cpu, task->pid);
5588 pfm_unfreeze_pmu();
5589 return -1;
5590 report_spurious2:
5591 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5592 this_cpu,
5593 task->pid);
5594 pfm_unfreeze_pmu();
5595 return -1;
5598 static irqreturn_t
5599 pfm_interrupt_handler(int irq, void *arg)
5601 unsigned long start_cycles, total_cycles;
5602 unsigned long min, max;
5603 int this_cpu;
5604 int ret;
5605 struct pt_regs *regs = get_irq_regs();
5607 this_cpu = get_cpu();
5608 if (likely(!pfm_alt_intr_handler)) {
5609 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5610 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5612 start_cycles = ia64_get_itc();
5614 ret = pfm_do_interrupt_handler(irq, arg, regs);
5616 total_cycles = ia64_get_itc();
5619 * don't measure spurious interrupts
5621 if (likely(ret == 0)) {
5622 total_cycles -= start_cycles;
5624 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5625 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5627 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5630 else {
5631 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5634 put_cpu_no_resched();
5635 return IRQ_HANDLED;
5639 * /proc/perfmon interface, for debug only
5642 #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5644 static void *
5645 pfm_proc_start(struct seq_file *m, loff_t *pos)
5647 if (*pos == 0) {
5648 return PFM_PROC_SHOW_HEADER;
5651 while (*pos <= NR_CPUS) {
5652 if (cpu_online(*pos - 1)) {
5653 return (void *)*pos;
5655 ++*pos;
5657 return NULL;
5660 static void *
5661 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5663 ++*pos;
5664 return pfm_proc_start(m, pos);
5667 static void
5668 pfm_proc_stop(struct seq_file *m, void *v)
5672 static void
5673 pfm_proc_show_header(struct seq_file *m)
5675 struct list_head * pos;
5676 pfm_buffer_fmt_t * entry;
5677 unsigned long flags;
5679 seq_printf(m,
5680 "perfmon version : %u.%u\n"
5681 "model : %s\n"
5682 "fastctxsw : %s\n"
5683 "expert mode : %s\n"
5684 "ovfl_mask : 0x%lx\n"
5685 "PMU flags : 0x%x\n",
5686 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5687 pmu_conf->pmu_name,
5688 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5689 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5690 pmu_conf->ovfl_val,
5691 pmu_conf->flags);
5693 LOCK_PFS(flags);
5695 seq_printf(m,
5696 "proc_sessions : %u\n"
5697 "sys_sessions : %u\n"
5698 "sys_use_dbregs : %u\n"
5699 "ptrace_use_dbregs : %u\n",
5700 pfm_sessions.pfs_task_sessions,
5701 pfm_sessions.pfs_sys_sessions,
5702 pfm_sessions.pfs_sys_use_dbregs,
5703 pfm_sessions.pfs_ptrace_use_dbregs);
5705 UNLOCK_PFS(flags);
5707 spin_lock(&pfm_buffer_fmt_lock);
5709 list_for_each(pos, &pfm_buffer_fmt_list) {
5710 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5711 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5712 entry->fmt_uuid[0],
5713 entry->fmt_uuid[1],
5714 entry->fmt_uuid[2],
5715 entry->fmt_uuid[3],
5716 entry->fmt_uuid[4],
5717 entry->fmt_uuid[5],
5718 entry->fmt_uuid[6],
5719 entry->fmt_uuid[7],
5720 entry->fmt_uuid[8],
5721 entry->fmt_uuid[9],
5722 entry->fmt_uuid[10],
5723 entry->fmt_uuid[11],
5724 entry->fmt_uuid[12],
5725 entry->fmt_uuid[13],
5726 entry->fmt_uuid[14],
5727 entry->fmt_uuid[15],
5728 entry->fmt_name);
5730 spin_unlock(&pfm_buffer_fmt_lock);
5734 static int
5735 pfm_proc_show(struct seq_file *m, void *v)
5737 unsigned long psr;
5738 unsigned int i;
5739 int cpu;
5741 if (v == PFM_PROC_SHOW_HEADER) {
5742 pfm_proc_show_header(m);
5743 return 0;
5746 /* show info for CPU (v - 1) */
5748 cpu = (long)v - 1;
5749 seq_printf(m,
5750 "CPU%-2d overflow intrs : %lu\n"
5751 "CPU%-2d overflow cycles : %lu\n"
5752 "CPU%-2d overflow min : %lu\n"
5753 "CPU%-2d overflow max : %lu\n"
5754 "CPU%-2d smpl handler calls : %lu\n"
5755 "CPU%-2d smpl handler cycles : %lu\n"
5756 "CPU%-2d spurious intrs : %lu\n"
5757 "CPU%-2d replay intrs : %lu\n"
5758 "CPU%-2d syst_wide : %d\n"
5759 "CPU%-2d dcr_pp : %d\n"
5760 "CPU%-2d exclude idle : %d\n"
5761 "CPU%-2d owner : %d\n"
5762 "CPU%-2d context : %p\n"
5763 "CPU%-2d activations : %lu\n",
5764 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5765 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5766 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5767 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5768 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5769 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5770 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5771 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5772 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5773 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5774 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5775 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5776 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5777 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5779 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5781 psr = pfm_get_psr();
5783 ia64_srlz_d();
5785 seq_printf(m,
5786 "CPU%-2d psr : 0x%lx\n"
5787 "CPU%-2d pmc0 : 0x%lx\n",
5788 cpu, psr,
5789 cpu, ia64_get_pmc(0));
5791 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5792 if (PMC_IS_COUNTING(i) == 0) continue;
5793 seq_printf(m,
5794 "CPU%-2d pmc%u : 0x%lx\n"
5795 "CPU%-2d pmd%u : 0x%lx\n",
5796 cpu, i, ia64_get_pmc(i),
5797 cpu, i, ia64_get_pmd(i));
5800 return 0;
5803 struct seq_operations pfm_seq_ops = {
5804 .start = pfm_proc_start,
5805 .next = pfm_proc_next,
5806 .stop = pfm_proc_stop,
5807 .show = pfm_proc_show
5810 static int
5811 pfm_proc_open(struct inode *inode, struct file *file)
5813 return seq_open(file, &pfm_seq_ops);
5818 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5819 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5820 * is active or inactive based on mode. We must rely on the value in
5821 * local_cpu_data->pfm_syst_info
5823 void
5824 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5826 struct pt_regs *regs;
5827 unsigned long dcr;
5828 unsigned long dcr_pp;
5830 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5833 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5834 * on every CPU, so we can rely on the pid to identify the idle task.
5836 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5837 regs = task_pt_regs(task);
5838 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5839 return;
5842 * if monitoring has started
5844 if (dcr_pp) {
5845 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5847 * context switching in?
5849 if (is_ctxswin) {
5850 /* mask monitoring for the idle task */
5851 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5852 pfm_clear_psr_pp();
5853 ia64_srlz_i();
5854 return;
5857 * context switching out
5858 * restore monitoring for next task
5860 * Due to inlining this odd if-then-else construction generates
5861 * better code.
5863 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5864 pfm_set_psr_pp();
5865 ia64_srlz_i();
5869 #ifdef CONFIG_SMP
5871 static void
5872 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5874 struct task_struct *task = ctx->ctx_task;
5876 ia64_psr(regs)->up = 0;
5877 ia64_psr(regs)->sp = 1;
5879 if (GET_PMU_OWNER() == task) {
5880 DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
5881 SET_PMU_OWNER(NULL, NULL);
5885 * disconnect the task from the context and vice-versa
5887 PFM_SET_WORK_PENDING(task, 0);
5889 task->thread.pfm_context = NULL;
5890 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5892 DPRINT(("force cleanup for [%d]\n", task->pid));
5897 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5899 void
5900 pfm_save_regs(struct task_struct *task)
5902 pfm_context_t *ctx;
5903 unsigned long flags;
5904 u64 psr;
5907 ctx = PFM_GET_CTX(task);
5908 if (ctx == NULL) return;
5911 * we always come here with interrupts ALREADY disabled by
5912 * the scheduler. So we simply need to protect against concurrent
5913 * access, not CPU concurrency.
5915 flags = pfm_protect_ctx_ctxsw(ctx);
5917 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5918 struct pt_regs *regs = task_pt_regs(task);
5920 pfm_clear_psr_up();
5922 pfm_force_cleanup(ctx, regs);
5924 BUG_ON(ctx->ctx_smpl_hdr);
5926 pfm_unprotect_ctx_ctxsw(ctx, flags);
5928 pfm_context_free(ctx);
5929 return;
5933 * save current PSR: needed because we modify it
5935 ia64_srlz_d();
5936 psr = pfm_get_psr();
5938 BUG_ON(psr & (IA64_PSR_I));
5941 * stop monitoring:
5942 * This is the last instruction which may generate an overflow
5944 * We do not need to set psr.sp because, it is irrelevant in kernel.
5945 * It will be restored from ipsr when going back to user level
5947 pfm_clear_psr_up();
5950 * keep a copy of psr.up (for reload)
5952 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5955 * release ownership of this PMU.
5956 * PM interrupts are masked, so nothing
5957 * can happen.
5959 SET_PMU_OWNER(NULL, NULL);
5962 * we systematically save the PMD as we have no
5963 * guarantee we will be schedule at that same
5964 * CPU again.
5966 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5969 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5970 * we will need it on the restore path to check
5971 * for pending overflow.
5973 ctx->th_pmcs[0] = ia64_get_pmc(0);
5976 * unfreeze PMU if had pending overflows
5978 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5981 * finally, allow context access.
5982 * interrupts will still be masked after this call.
5984 pfm_unprotect_ctx_ctxsw(ctx, flags);
5987 #else /* !CONFIG_SMP */
5988 void
5989 pfm_save_regs(struct task_struct *task)
5991 pfm_context_t *ctx;
5992 u64 psr;
5994 ctx = PFM_GET_CTX(task);
5995 if (ctx == NULL) return;
5998 * save current PSR: needed because we modify it
6000 psr = pfm_get_psr();
6002 BUG_ON(psr & (IA64_PSR_I));
6005 * stop monitoring:
6006 * This is the last instruction which may generate an overflow
6008 * We do not need to set psr.sp because, it is irrelevant in kernel.
6009 * It will be restored from ipsr when going back to user level
6011 pfm_clear_psr_up();
6014 * keep a copy of psr.up (for reload)
6016 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
6019 static void
6020 pfm_lazy_save_regs (struct task_struct *task)
6022 pfm_context_t *ctx;
6023 unsigned long flags;
6025 { u64 psr = pfm_get_psr();
6026 BUG_ON(psr & IA64_PSR_UP);
6029 ctx = PFM_GET_CTX(task);
6032 * we need to mask PMU overflow here to
6033 * make sure that we maintain pmc0 until
6034 * we save it. overflow interrupts are
6035 * treated as spurious if there is no
6036 * owner.
6038 * XXX: I don't think this is necessary
6040 PROTECT_CTX(ctx,flags);
6043 * release ownership of this PMU.
6044 * must be done before we save the registers.
6046 * after this call any PMU interrupt is treated
6047 * as spurious.
6049 SET_PMU_OWNER(NULL, NULL);
6052 * save all the pmds we use
6054 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
6057 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6058 * it is needed to check for pended overflow
6059 * on the restore path
6061 ctx->th_pmcs[0] = ia64_get_pmc(0);
6064 * unfreeze PMU if had pending overflows
6066 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6069 * now get can unmask PMU interrupts, they will
6070 * be treated as purely spurious and we will not
6071 * lose any information
6073 UNPROTECT_CTX(ctx,flags);
6075 #endif /* CONFIG_SMP */
6077 #ifdef CONFIG_SMP
6079 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6081 void
6082 pfm_load_regs (struct task_struct *task)
6084 pfm_context_t *ctx;
6085 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6086 unsigned long flags;
6087 u64 psr, psr_up;
6088 int need_irq_resend;
6090 ctx = PFM_GET_CTX(task);
6091 if (unlikely(ctx == NULL)) return;
6093 BUG_ON(GET_PMU_OWNER());
6096 * possible on unload
6098 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6101 * we always come here with interrupts ALREADY disabled by
6102 * the scheduler. So we simply need to protect against concurrent
6103 * access, not CPU concurrency.
6105 flags = pfm_protect_ctx_ctxsw(ctx);
6106 psr = pfm_get_psr();
6108 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6110 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6111 BUG_ON(psr & IA64_PSR_I);
6113 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6114 struct pt_regs *regs = task_pt_regs(task);
6116 BUG_ON(ctx->ctx_smpl_hdr);
6118 pfm_force_cleanup(ctx, regs);
6120 pfm_unprotect_ctx_ctxsw(ctx, flags);
6123 * this one (kmalloc'ed) is fine with interrupts disabled
6125 pfm_context_free(ctx);
6127 return;
6131 * we restore ALL the debug registers to avoid picking up
6132 * stale state.
6134 if (ctx->ctx_fl_using_dbreg) {
6135 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6136 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6139 * retrieve saved psr.up
6141 psr_up = ctx->ctx_saved_psr_up;
6144 * if we were the last user of the PMU on that CPU,
6145 * then nothing to do except restore psr
6147 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6150 * retrieve partial reload masks (due to user modifications)
6152 pmc_mask = ctx->ctx_reload_pmcs[0];
6153 pmd_mask = ctx->ctx_reload_pmds[0];
6155 } else {
6157 * To avoid leaking information to the user level when psr.sp=0,
6158 * we must reload ALL implemented pmds (even the ones we don't use).
6159 * In the kernel we only allow PFM_READ_PMDS on registers which
6160 * we initialized or requested (sampling) so there is no risk there.
6162 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6165 * ALL accessible PMCs are systematically reloaded, unused registers
6166 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6167 * up stale configuration.
6169 * PMC0 is never in the mask. It is always restored separately.
6171 pmc_mask = ctx->ctx_all_pmcs[0];
6174 * when context is MASKED, we will restore PMC with plm=0
6175 * and PMD with stale information, but that's ok, nothing
6176 * will be captured.
6178 * XXX: optimize here
6180 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6181 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6184 * check for pending overflow at the time the state
6185 * was saved.
6187 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6189 * reload pmc0 with the overflow information
6190 * On McKinley PMU, this will trigger a PMU interrupt
6192 ia64_set_pmc(0, ctx->th_pmcs[0]);
6193 ia64_srlz_d();
6194 ctx->th_pmcs[0] = 0UL;
6197 * will replay the PMU interrupt
6199 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6201 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6205 * we just did a reload, so we reset the partial reload fields
6207 ctx->ctx_reload_pmcs[0] = 0UL;
6208 ctx->ctx_reload_pmds[0] = 0UL;
6210 SET_LAST_CPU(ctx, smp_processor_id());
6213 * dump activation value for this PMU
6215 INC_ACTIVATION();
6217 * record current activation for this context
6219 SET_ACTIVATION(ctx);
6222 * establish new ownership.
6224 SET_PMU_OWNER(task, ctx);
6227 * restore the psr.up bit. measurement
6228 * is active again.
6229 * no PMU interrupt can happen at this point
6230 * because we still have interrupts disabled.
6232 if (likely(psr_up)) pfm_set_psr_up();
6235 * allow concurrent access to context
6237 pfm_unprotect_ctx_ctxsw(ctx, flags);
6239 #else /* !CONFIG_SMP */
6241 * reload PMU state for UP kernels
6242 * in 2.5 we come here with interrupts disabled
6244 void
6245 pfm_load_regs (struct task_struct *task)
6247 pfm_context_t *ctx;
6248 struct task_struct *owner;
6249 unsigned long pmd_mask, pmc_mask;
6250 u64 psr, psr_up;
6251 int need_irq_resend;
6253 owner = GET_PMU_OWNER();
6254 ctx = PFM_GET_CTX(task);
6255 psr = pfm_get_psr();
6257 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6258 BUG_ON(psr & IA64_PSR_I);
6261 * we restore ALL the debug registers to avoid picking up
6262 * stale state.
6264 * This must be done even when the task is still the owner
6265 * as the registers may have been modified via ptrace()
6266 * (not perfmon) by the previous task.
6268 if (ctx->ctx_fl_using_dbreg) {
6269 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6270 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6274 * retrieved saved psr.up
6276 psr_up = ctx->ctx_saved_psr_up;
6277 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6280 * short path, our state is still there, just
6281 * need to restore psr and we go
6283 * we do not touch either PMC nor PMD. the psr is not touched
6284 * by the overflow_handler. So we are safe w.r.t. to interrupt
6285 * concurrency even without interrupt masking.
6287 if (likely(owner == task)) {
6288 if (likely(psr_up)) pfm_set_psr_up();
6289 return;
6293 * someone else is still using the PMU, first push it out and
6294 * then we'll be able to install our stuff !
6296 * Upon return, there will be no owner for the current PMU
6298 if (owner) pfm_lazy_save_regs(owner);
6301 * To avoid leaking information to the user level when psr.sp=0,
6302 * we must reload ALL implemented pmds (even the ones we don't use).
6303 * In the kernel we only allow PFM_READ_PMDS on registers which
6304 * we initialized or requested (sampling) so there is no risk there.
6306 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6309 * ALL accessible PMCs are systematically reloaded, unused registers
6310 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6311 * up stale configuration.
6313 * PMC0 is never in the mask. It is always restored separately
6315 pmc_mask = ctx->ctx_all_pmcs[0];
6317 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6318 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6321 * check for pending overflow at the time the state
6322 * was saved.
6324 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6326 * reload pmc0 with the overflow information
6327 * On McKinley PMU, this will trigger a PMU interrupt
6329 ia64_set_pmc(0, ctx->th_pmcs[0]);
6330 ia64_srlz_d();
6332 ctx->th_pmcs[0] = 0UL;
6335 * will replay the PMU interrupt
6337 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6339 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6343 * establish new ownership.
6345 SET_PMU_OWNER(task, ctx);
6348 * restore the psr.up bit. measurement
6349 * is active again.
6350 * no PMU interrupt can happen at this point
6351 * because we still have interrupts disabled.
6353 if (likely(psr_up)) pfm_set_psr_up();
6355 #endif /* CONFIG_SMP */
6358 * this function assumes monitoring is stopped
6360 static void
6361 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6363 u64 pmc0;
6364 unsigned long mask2, val, pmd_val, ovfl_val;
6365 int i, can_access_pmu = 0;
6366 int is_self;
6369 * is the caller the task being monitored (or which initiated the
6370 * session for system wide measurements)
6372 is_self = ctx->ctx_task == task ? 1 : 0;
6375 * can access PMU is task is the owner of the PMU state on the current CPU
6376 * or if we are running on the CPU bound to the context in system-wide mode
6377 * (that is not necessarily the task the context is attached to in this mode).
6378 * In system-wide we always have can_access_pmu true because a task running on an
6379 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6381 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6382 if (can_access_pmu) {
6384 * Mark the PMU as not owned
6385 * This will cause the interrupt handler to do nothing in case an overflow
6386 * interrupt was in-flight
6387 * This also guarantees that pmc0 will contain the final state
6388 * It virtually gives us full control on overflow processing from that point
6389 * on.
6391 SET_PMU_OWNER(NULL, NULL);
6392 DPRINT(("releasing ownership\n"));
6395 * read current overflow status:
6397 * we are guaranteed to read the final stable state
6399 ia64_srlz_d();
6400 pmc0 = ia64_get_pmc(0); /* slow */
6403 * reset freeze bit, overflow status information destroyed
6405 pfm_unfreeze_pmu();
6406 } else {
6407 pmc0 = ctx->th_pmcs[0];
6409 * clear whatever overflow status bits there were
6411 ctx->th_pmcs[0] = 0;
6413 ovfl_val = pmu_conf->ovfl_val;
6415 * we save all the used pmds
6416 * we take care of overflows for counting PMDs
6418 * XXX: sampling situation is not taken into account here
6420 mask2 = ctx->ctx_used_pmds[0];
6422 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6424 for (i = 0; mask2; i++, mask2>>=1) {
6426 /* skip non used pmds */
6427 if ((mask2 & 0x1) == 0) continue;
6430 * can access PMU always true in system wide mode
6432 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6434 if (PMD_IS_COUNTING(i)) {
6435 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6436 task->pid,
6438 ctx->ctx_pmds[i].val,
6439 val & ovfl_val));
6442 * we rebuild the full 64 bit value of the counter
6444 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6447 * now everything is in ctx_pmds[] and we need
6448 * to clear the saved context from save_regs() such that
6449 * pfm_read_pmds() gets the correct value
6451 pmd_val = 0UL;
6454 * take care of overflow inline
6456 if (pmc0 & (1UL << i)) {
6457 val += 1 + ovfl_val;
6458 DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
6462 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
6464 if (is_self) ctx->th_pmds[i] = pmd_val;
6466 ctx->ctx_pmds[i].val = val;
6470 static struct irqaction perfmon_irqaction = {
6471 .handler = pfm_interrupt_handler,
6472 .flags = IRQF_DISABLED,
6473 .name = "perfmon"
6476 static void
6477 pfm_alt_save_pmu_state(void *data)
6479 struct pt_regs *regs;
6481 regs = task_pt_regs(current);
6483 DPRINT(("called\n"));
6486 * should not be necessary but
6487 * let's take not risk
6489 pfm_clear_psr_up();
6490 pfm_clear_psr_pp();
6491 ia64_psr(regs)->pp = 0;
6494 * This call is required
6495 * May cause a spurious interrupt on some processors
6497 pfm_freeze_pmu();
6499 ia64_srlz_d();
6502 void
6503 pfm_alt_restore_pmu_state(void *data)
6505 struct pt_regs *regs;
6507 regs = task_pt_regs(current);
6509 DPRINT(("called\n"));
6512 * put PMU back in state expected
6513 * by perfmon
6515 pfm_clear_psr_up();
6516 pfm_clear_psr_pp();
6517 ia64_psr(regs)->pp = 0;
6520 * perfmon runs with PMU unfrozen at all times
6522 pfm_unfreeze_pmu();
6524 ia64_srlz_d();
6528 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6530 int ret, i;
6531 int reserve_cpu;
6533 /* some sanity checks */
6534 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6536 /* do the easy test first */
6537 if (pfm_alt_intr_handler) return -EBUSY;
6539 /* one at a time in the install or remove, just fail the others */
6540 if (!spin_trylock(&pfm_alt_install_check)) {
6541 return -EBUSY;
6544 /* reserve our session */
6545 for_each_online_cpu(reserve_cpu) {
6546 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6547 if (ret) goto cleanup_reserve;
6550 /* save the current system wide pmu states */
6551 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
6552 if (ret) {
6553 DPRINT(("on_each_cpu() failed: %d\n", ret));
6554 goto cleanup_reserve;
6557 /* officially change to the alternate interrupt handler */
6558 pfm_alt_intr_handler = hdl;
6560 spin_unlock(&pfm_alt_install_check);
6562 return 0;
6564 cleanup_reserve:
6565 for_each_online_cpu(i) {
6566 /* don't unreserve more than we reserved */
6567 if (i >= reserve_cpu) break;
6569 pfm_unreserve_session(NULL, 1, i);
6572 spin_unlock(&pfm_alt_install_check);
6574 return ret;
6576 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6579 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6581 int i;
6582 int ret;
6584 if (hdl == NULL) return -EINVAL;
6586 /* cannot remove someone else's handler! */
6587 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6589 /* one at a time in the install or remove, just fail the others */
6590 if (!spin_trylock(&pfm_alt_install_check)) {
6591 return -EBUSY;
6594 pfm_alt_intr_handler = NULL;
6596 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
6597 if (ret) {
6598 DPRINT(("on_each_cpu() failed: %d\n", ret));
6601 for_each_online_cpu(i) {
6602 pfm_unreserve_session(NULL, 1, i);
6605 spin_unlock(&pfm_alt_install_check);
6607 return 0;
6609 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6612 * perfmon initialization routine, called from the initcall() table
6614 static int init_pfm_fs(void);
6616 static int __init
6617 pfm_probe_pmu(void)
6619 pmu_config_t **p;
6620 int family;
6622 family = local_cpu_data->family;
6623 p = pmu_confs;
6625 while(*p) {
6626 if ((*p)->probe) {
6627 if ((*p)->probe() == 0) goto found;
6628 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6629 goto found;
6631 p++;
6633 return -1;
6634 found:
6635 pmu_conf = *p;
6636 return 0;
6639 static const struct file_operations pfm_proc_fops = {
6640 .open = pfm_proc_open,
6641 .read = seq_read,
6642 .llseek = seq_lseek,
6643 .release = seq_release,
6646 int __init
6647 pfm_init(void)
6649 unsigned int n, n_counters, i;
6651 printk("perfmon: version %u.%u IRQ %u\n",
6652 PFM_VERSION_MAJ,
6653 PFM_VERSION_MIN,
6654 IA64_PERFMON_VECTOR);
6656 if (pfm_probe_pmu()) {
6657 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6658 local_cpu_data->family);
6659 return -ENODEV;
6663 * compute the number of implemented PMD/PMC from the
6664 * description tables
6666 n = 0;
6667 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6668 if (PMC_IS_IMPL(i) == 0) continue;
6669 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6670 n++;
6672 pmu_conf->num_pmcs = n;
6674 n = 0; n_counters = 0;
6675 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6676 if (PMD_IS_IMPL(i) == 0) continue;
6677 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6678 n++;
6679 if (PMD_IS_COUNTING(i)) n_counters++;
6681 pmu_conf->num_pmds = n;
6682 pmu_conf->num_counters = n_counters;
6685 * sanity checks on the number of debug registers
6687 if (pmu_conf->use_rr_dbregs) {
6688 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6689 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6690 pmu_conf = NULL;
6691 return -1;
6693 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6694 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6695 pmu_conf = NULL;
6696 return -1;
6700 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6701 pmu_conf->pmu_name,
6702 pmu_conf->num_pmcs,
6703 pmu_conf->num_pmds,
6704 pmu_conf->num_counters,
6705 ffz(pmu_conf->ovfl_val));
6707 /* sanity check */
6708 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6709 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6710 pmu_conf = NULL;
6711 return -1;
6715 * create /proc/perfmon (mostly for debugging purposes)
6717 perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6718 if (perfmon_dir == NULL) {
6719 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6720 pmu_conf = NULL;
6721 return -1;
6724 * install customized file operations for /proc/perfmon entry
6726 perfmon_dir->proc_fops = &pfm_proc_fops;
6729 * create /proc/sys/kernel/perfmon (for debugging purposes)
6731 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6734 * initialize all our spinlocks
6736 spin_lock_init(&pfm_sessions.pfs_lock);
6737 spin_lock_init(&pfm_buffer_fmt_lock);
6739 init_pfm_fs();
6741 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6743 return 0;
6746 __initcall(pfm_init);
6749 * this function is called before pfm_init()
6751 void
6752 pfm_init_percpu (void)
6754 static int first_time=1;
6756 * make sure no measurement is active
6757 * (may inherit programmed PMCs from EFI).
6759 pfm_clear_psr_pp();
6760 pfm_clear_psr_up();
6763 * we run with the PMU not frozen at all times
6765 pfm_unfreeze_pmu();
6767 if (first_time) {
6768 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6769 first_time=0;
6772 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6773 ia64_srlz_d();
6777 * used for debug purposes only
6779 void
6780 dump_pmu_state(const char *from)
6782 struct task_struct *task;
6783 struct pt_regs *regs;
6784 pfm_context_t *ctx;
6785 unsigned long psr, dcr, info, flags;
6786 int i, this_cpu;
6788 local_irq_save(flags);
6790 this_cpu = smp_processor_id();
6791 regs = task_pt_regs(current);
6792 info = PFM_CPUINFO_GET();
6793 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6795 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6796 local_irq_restore(flags);
6797 return;
6800 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6801 this_cpu,
6802 from,
6803 current->pid,
6804 regs->cr_iip,
6805 current->comm);
6807 task = GET_PMU_OWNER();
6808 ctx = GET_PMU_CTX();
6810 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
6812 psr = pfm_get_psr();
6814 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6815 this_cpu,
6816 ia64_get_pmc(0),
6817 psr & IA64_PSR_PP ? 1 : 0,
6818 psr & IA64_PSR_UP ? 1 : 0,
6819 dcr & IA64_DCR_PP ? 1 : 0,
6820 info,
6821 ia64_psr(regs)->up,
6822 ia64_psr(regs)->pp);
6824 ia64_psr(regs)->up = 0;
6825 ia64_psr(regs)->pp = 0;
6827 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6828 if (PMC_IS_IMPL(i) == 0) continue;
6829 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6832 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6833 if (PMD_IS_IMPL(i) == 0) continue;
6834 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6837 if (ctx) {
6838 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6839 this_cpu,
6840 ctx->ctx_state,
6841 ctx->ctx_smpl_vaddr,
6842 ctx->ctx_smpl_hdr,
6843 ctx->ctx_msgq_head,
6844 ctx->ctx_msgq_tail,
6845 ctx->ctx_saved_psr_up);
6847 local_irq_restore(flags);
6851 * called from process.c:copy_thread(). task is new child.
6853 void
6854 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6856 struct thread_struct *thread;
6858 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
6860 thread = &task->thread;
6863 * cut links inherited from parent (current)
6865 thread->pfm_context = NULL;
6867 PFM_SET_WORK_PENDING(task, 0);
6870 * the psr bits are already set properly in copy_threads()
6873 #else /* !CONFIG_PERFMON */
6874 asmlinkage long
6875 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6877 return -ENOSYS;
6879 #endif /* CONFIG_PERFMON */