[IPV4]: Correct rp_filter help text.
[linux-2.6/verdex.git] / arch / ia64 / kernel / topology.c
blob94ae3c87d828c5d251d78eceff617d4dc08494e0
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * This file contains NUMA specific variables and functions which can
7 * be split away from DISCONTIGMEM and are used on NUMA machines with
8 * contiguous memory.
9 * 2002/08/07 Erich Focht <efocht@ess.nec.de>
10 * Populate cpu entries in sysfs for non-numa systems as well
11 * Intel Corporation - Ashok Raj
12 * 02/27/2006 Zhang, Yanmin
13 * Populate cpu cache entries in sysfs for cpu cache info
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/node.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/nodemask.h>
23 #include <linux/notifier.h>
24 #include <asm/mmzone.h>
25 #include <asm/numa.h>
26 #include <asm/cpu.h>
28 static struct ia64_cpu *sysfs_cpus;
30 int arch_register_cpu(int num)
32 #if defined (CONFIG_ACPI) && defined (CONFIG_HOTPLUG_CPU)
34 * If CPEI can be re-targetted or if this is not
35 * CPEI target, then it is hotpluggable
37 if (can_cpei_retarget() || !is_cpu_cpei_target(num))
38 sysfs_cpus[num].cpu.hotpluggable = 1;
39 map_cpu_to_node(num, node_cpuid[num].nid);
40 #endif
42 return register_cpu(&sysfs_cpus[num].cpu, num);
45 #ifdef CONFIG_HOTPLUG_CPU
47 void arch_unregister_cpu(int num)
49 unregister_cpu(&sysfs_cpus[num].cpu);
50 unmap_cpu_from_node(num, cpu_to_node(num));
52 EXPORT_SYMBOL(arch_register_cpu);
53 EXPORT_SYMBOL(arch_unregister_cpu);
54 #endif /*CONFIG_HOTPLUG_CPU*/
57 static int __init topology_init(void)
59 int i, err = 0;
61 #ifdef CONFIG_NUMA
63 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
65 for_each_online_node(i) {
66 if ((err = register_one_node(i)))
67 goto out;
69 #endif
71 sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
72 if (!sysfs_cpus)
73 panic("kzalloc in topology_init failed - NR_CPUS too big?");
75 for_each_present_cpu(i) {
76 if((err = arch_register_cpu(i)))
77 goto out;
79 out:
80 return err;
83 subsys_initcall(topology_init);
87 * Export cpu cache information through sysfs
91 * A bunch of string array to get pretty printing
93 static const char *cache_types[] = {
94 "", /* not used */
95 "Instruction",
96 "Data",
97 "Unified" /* unified */
100 static const char *cache_mattrib[]={
101 "WriteThrough",
102 "WriteBack",
103 "", /* reserved */
104 "" /* reserved */
107 struct cache_info {
108 pal_cache_config_info_t cci;
109 cpumask_t shared_cpu_map;
110 int level;
111 int type;
112 struct kobject kobj;
115 struct cpu_cache_info {
116 struct cache_info *cache_leaves;
117 int num_cache_leaves;
118 struct kobject kobj;
121 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS];
122 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
124 #ifdef CONFIG_SMP
125 static void cache_shared_cpu_map_setup( unsigned int cpu,
126 struct cache_info * this_leaf)
128 pal_cache_shared_info_t csi;
129 int num_shared, i = 0;
130 unsigned int j;
132 if (cpu_data(cpu)->threads_per_core <= 1 &&
133 cpu_data(cpu)->cores_per_socket <= 1) {
134 cpu_set(cpu, this_leaf->shared_cpu_map);
135 return;
138 if (ia64_pal_cache_shared_info(this_leaf->level,
139 this_leaf->type,
141 &csi) != PAL_STATUS_SUCCESS)
142 return;
144 num_shared = (int) csi.num_shared;
145 do {
146 for_each_possible_cpu(j)
147 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
148 && cpu_data(j)->core_id == csi.log1_cid
149 && cpu_data(j)->thread_id == csi.log1_tid)
150 cpu_set(j, this_leaf->shared_cpu_map);
152 i++;
153 } while (i < num_shared &&
154 ia64_pal_cache_shared_info(this_leaf->level,
155 this_leaf->type,
157 &csi) == PAL_STATUS_SUCCESS);
159 #else
160 static void cache_shared_cpu_map_setup(unsigned int cpu,
161 struct cache_info * this_leaf)
163 cpu_set(cpu, this_leaf->shared_cpu_map);
164 return;
166 #endif
168 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
169 char *buf)
171 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
174 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
175 char *buf)
177 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
180 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
182 return sprintf(buf,
183 "%s\n",
184 cache_mattrib[this_leaf->cci.pcci_cache_attr]);
187 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
189 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
192 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
194 unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
195 number_of_sets /= this_leaf->cci.pcci_assoc;
196 number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
198 return sprintf(buf, "%u\n", number_of_sets);
201 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
203 ssize_t len;
204 cpumask_t shared_cpu_map;
206 cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
207 len = cpumask_scnprintf(buf, NR_CPUS+1, shared_cpu_map);
208 len += sprintf(buf+len, "\n");
209 return len;
212 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
214 int type = this_leaf->type + this_leaf->cci.pcci_unified;
215 return sprintf(buf, "%s\n", cache_types[type]);
218 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
220 return sprintf(buf, "%u\n", this_leaf->level);
223 struct cache_attr {
224 struct attribute attr;
225 ssize_t (*show)(struct cache_info *, char *);
226 ssize_t (*store)(struct cache_info *, const char *, size_t count);
229 #ifdef define_one_ro
230 #undef define_one_ro
231 #endif
232 #define define_one_ro(_name) \
233 static struct cache_attr _name = \
234 __ATTR(_name, 0444, show_##_name, NULL)
236 define_one_ro(level);
237 define_one_ro(type);
238 define_one_ro(coherency_line_size);
239 define_one_ro(ways_of_associativity);
240 define_one_ro(size);
241 define_one_ro(number_of_sets);
242 define_one_ro(shared_cpu_map);
243 define_one_ro(attributes);
245 static struct attribute * cache_default_attrs[] = {
246 &type.attr,
247 &level.attr,
248 &coherency_line_size.attr,
249 &ways_of_associativity.attr,
250 &attributes.attr,
251 &size.attr,
252 &number_of_sets.attr,
253 &shared_cpu_map.attr,
254 NULL
257 #define to_object(k) container_of(k, struct cache_info, kobj)
258 #define to_attr(a) container_of(a, struct cache_attr, attr)
260 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
262 struct cache_attr *fattr = to_attr(attr);
263 struct cache_info *this_leaf = to_object(kobj);
264 ssize_t ret;
266 ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
267 return ret;
270 static struct sysfs_ops cache_sysfs_ops = {
271 .show = cache_show
274 static struct kobj_type cache_ktype = {
275 .sysfs_ops = &cache_sysfs_ops,
276 .default_attrs = cache_default_attrs,
279 static struct kobj_type cache_ktype_percpu_entry = {
280 .sysfs_ops = &cache_sysfs_ops,
283 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
285 kfree(all_cpu_cache_info[cpu].cache_leaves);
286 all_cpu_cache_info[cpu].cache_leaves = NULL;
287 all_cpu_cache_info[cpu].num_cache_leaves = 0;
288 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
289 return;
292 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
294 u64 i, levels, unique_caches;
295 pal_cache_config_info_t cci;
296 int j;
297 s64 status;
298 struct cache_info *this_cache;
299 int num_cache_leaves = 0;
301 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
302 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
303 return -1;
306 this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
307 GFP_KERNEL);
308 if (this_cache == NULL)
309 return -ENOMEM;
311 for (i=0; i < levels; i++) {
312 for (j=2; j >0 ; j--) {
313 if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
314 PAL_STATUS_SUCCESS)
315 continue;
317 this_cache[num_cache_leaves].cci = cci;
318 this_cache[num_cache_leaves].level = i + 1;
319 this_cache[num_cache_leaves].type = j;
321 cache_shared_cpu_map_setup(cpu,
322 &this_cache[num_cache_leaves]);
323 num_cache_leaves ++;
327 all_cpu_cache_info[cpu].cache_leaves = this_cache;
328 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
330 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
332 return 0;
335 /* Add cache interface for CPU device */
336 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
338 unsigned int cpu = sys_dev->id;
339 unsigned long i, j;
340 struct cache_info *this_object;
341 int retval = 0;
342 cpumask_t oldmask;
344 if (all_cpu_cache_info[cpu].kobj.parent)
345 return 0;
347 oldmask = current->cpus_allowed;
348 retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
349 if (unlikely(retval))
350 return retval;
352 retval = cpu_cache_sysfs_init(cpu);
353 set_cpus_allowed(current, oldmask);
354 if (unlikely(retval < 0))
355 return retval;
357 all_cpu_cache_info[cpu].kobj.parent = &sys_dev->kobj;
358 kobject_set_name(&all_cpu_cache_info[cpu].kobj, "%s", "cache");
359 all_cpu_cache_info[cpu].kobj.ktype = &cache_ktype_percpu_entry;
360 retval = kobject_register(&all_cpu_cache_info[cpu].kobj);
362 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
363 this_object = LEAF_KOBJECT_PTR(cpu,i);
364 this_object->kobj.parent = &all_cpu_cache_info[cpu].kobj;
365 kobject_set_name(&(this_object->kobj), "index%1lu", i);
366 this_object->kobj.ktype = &cache_ktype;
367 retval = kobject_register(&(this_object->kobj));
368 if (unlikely(retval)) {
369 for (j = 0; j < i; j++) {
370 kobject_unregister(
371 &(LEAF_KOBJECT_PTR(cpu,j)->kobj));
373 kobject_unregister(&all_cpu_cache_info[cpu].kobj);
374 cpu_cache_sysfs_exit(cpu);
375 break;
378 return retval;
381 /* Remove cache interface for CPU device */
382 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
384 unsigned int cpu = sys_dev->id;
385 unsigned long i;
387 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
388 kobject_unregister(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
390 if (all_cpu_cache_info[cpu].kobj.parent) {
391 kobject_unregister(&all_cpu_cache_info[cpu].kobj);
392 memset(&all_cpu_cache_info[cpu].kobj,
394 sizeof(struct kobject));
397 cpu_cache_sysfs_exit(cpu);
399 return 0;
403 * When a cpu is hot-plugged, do a check and initiate
404 * cache kobject if necessary
406 static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
407 unsigned long action, void *hcpu)
409 unsigned int cpu = (unsigned long)hcpu;
410 struct sys_device *sys_dev;
412 sys_dev = get_cpu_sysdev(cpu);
413 switch (action) {
414 case CPU_ONLINE:
415 case CPU_ONLINE_FROZEN:
416 cache_add_dev(sys_dev);
417 break;
418 case CPU_DEAD:
419 case CPU_DEAD_FROZEN:
420 cache_remove_dev(sys_dev);
421 break;
423 return NOTIFY_OK;
426 static struct notifier_block __cpuinitdata cache_cpu_notifier =
428 .notifier_call = cache_cpu_callback
431 static int __cpuinit cache_sysfs_init(void)
433 int i;
435 for_each_online_cpu(i) {
436 cache_cpu_callback(&cache_cpu_notifier, CPU_ONLINE,
437 (void *)(long)i);
440 register_hotcpu_notifier(&cache_cpu_notifier);
442 return 0;
445 device_initcall(cache_sysfs_init);