2 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
3 * Copyright (c) 2001 Intel Corp.
4 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
5 * Copyright (c) 2002 NEC Corp.
6 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
7 * Copyright (c) 2004 Silicon Graphics, Inc
8 * Russ Anderson <rja@sgi.com>
9 * Jesse Barnes <jbarnes@sgi.com>
10 * Jack Steiner <steiner@sgi.com>
14 * Platform initialization for Discontig Memory
17 #include <linux/kernel.h>
19 #include <linux/swap.h>
20 #include <linux/bootmem.h>
21 #include <linux/acpi.h>
22 #include <linux/efi.h>
23 #include <linux/nodemask.h>
24 #include <asm/pgalloc.h>
26 #include <asm/meminit.h>
28 #include <asm/sections.h>
31 * Track per-node information needed to setup the boot memory allocator, the
32 * per-node areas, and the real VM.
34 struct early_node_data
{
35 struct ia64_node_data
*node_data
;
36 unsigned long pernode_addr
;
37 unsigned long pernode_size
;
38 struct bootmem_data bootmem_data
;
39 unsigned long num_physpages
;
40 #ifdef CONFIG_ZONE_DMA
41 unsigned long num_dma_physpages
;
43 unsigned long min_pfn
;
44 unsigned long max_pfn
;
47 static struct early_node_data mem_data
[MAX_NUMNODES
] __initdata
;
48 static nodemask_t memory_less_mask __initdata
;
50 static pg_data_t
*pgdat_list
[MAX_NUMNODES
];
53 * To prevent cache aliasing effects, align per-node structures so that they
54 * start at addresses that are strided by node number.
56 #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
57 #define NODEDATA_ALIGN(addr, node) \
58 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
59 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
62 * build_node_maps - callback to setup bootmem structs for each node
63 * @start: physical start of range
64 * @len: length of range
65 * @node: node where this range resides
67 * We allocate a struct bootmem_data for each piece of memory that we wish to
68 * treat as a virtually contiguous block (i.e. each node). Each such block
69 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
70 * if necessary. Any non-existent pages will simply be part of the virtual
71 * memmap. We also update min_low_pfn and max_low_pfn here as we receive
72 * memory ranges from the caller.
74 static int __init
build_node_maps(unsigned long start
, unsigned long len
,
77 unsigned long cstart
, epfn
, end
= start
+ len
;
78 struct bootmem_data
*bdp
= &mem_data
[node
].bootmem_data
;
80 epfn
= GRANULEROUNDUP(end
) >> PAGE_SHIFT
;
81 cstart
= GRANULEROUNDDOWN(start
);
83 if (!bdp
->node_low_pfn
) {
84 bdp
->node_boot_start
= cstart
;
85 bdp
->node_low_pfn
= epfn
;
87 bdp
->node_boot_start
= min(cstart
, bdp
->node_boot_start
);
88 bdp
->node_low_pfn
= max(epfn
, bdp
->node_low_pfn
);
95 * early_nr_cpus_node - return number of cpus on a given node
96 * @node: node to check
98 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
99 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
100 * called yet. Note that node 0 will also count all non-existent cpus.
102 static int __meminit
early_nr_cpus_node(int node
)
106 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++)
107 if (node
== node_cpuid
[cpu
].nid
)
114 * compute_pernodesize - compute size of pernode data
115 * @node: the node id.
117 static unsigned long __meminit
compute_pernodesize(int node
)
119 unsigned long pernodesize
= 0, cpus
;
121 cpus
= early_nr_cpus_node(node
);
122 pernodesize
+= PERCPU_PAGE_SIZE
* cpus
;
123 pernodesize
+= node
* L1_CACHE_BYTES
;
124 pernodesize
+= L1_CACHE_ALIGN(sizeof(pg_data_t
));
125 pernodesize
+= L1_CACHE_ALIGN(sizeof(struct ia64_node_data
));
126 pernodesize
= PAGE_ALIGN(pernodesize
);
131 * per_cpu_node_setup - setup per-cpu areas on each node
132 * @cpu_data: per-cpu area on this node
133 * @node: node to setup
135 * Copy the static per-cpu data into the region we just set aside and then
136 * setup __per_cpu_offset for each CPU on this node. Return a pointer to
137 * the end of the area.
139 static void *per_cpu_node_setup(void *cpu_data
, int node
)
144 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
145 if (node
== node_cpuid
[cpu
].nid
) {
146 memcpy(__va(cpu_data
), __phys_per_cpu_start
,
147 __per_cpu_end
- __per_cpu_start
);
148 __per_cpu_offset
[cpu
] = (char*)__va(cpu_data
) -
150 cpu_data
+= PERCPU_PAGE_SIZE
;
158 * fill_pernode - initialize pernode data.
159 * @node: the node id.
160 * @pernode: physical address of pernode data
161 * @pernodesize: size of the pernode data
163 static void __init
fill_pernode(int node
, unsigned long pernode
,
164 unsigned long pernodesize
)
167 int cpus
= early_nr_cpus_node(node
);
168 struct bootmem_data
*bdp
= &mem_data
[node
].bootmem_data
;
170 mem_data
[node
].pernode_addr
= pernode
;
171 mem_data
[node
].pernode_size
= pernodesize
;
172 memset(__va(pernode
), 0, pernodesize
);
174 cpu_data
= (void *)pernode
;
175 pernode
+= PERCPU_PAGE_SIZE
* cpus
;
176 pernode
+= node
* L1_CACHE_BYTES
;
178 pgdat_list
[node
] = __va(pernode
);
179 pernode
+= L1_CACHE_ALIGN(sizeof(pg_data_t
));
181 mem_data
[node
].node_data
= __va(pernode
);
182 pernode
+= L1_CACHE_ALIGN(sizeof(struct ia64_node_data
));
184 pgdat_list
[node
]->bdata
= bdp
;
185 pernode
+= L1_CACHE_ALIGN(sizeof(pg_data_t
));
187 cpu_data
= per_cpu_node_setup(cpu_data
, node
);
193 * find_pernode_space - allocate memory for memory map and per-node structures
194 * @start: physical start of range
195 * @len: length of range
196 * @node: node where this range resides
198 * This routine reserves space for the per-cpu data struct, the list of
199 * pg_data_ts and the per-node data struct. Each node will have something like
200 * the following in the first chunk of addr. space large enough to hold it.
202 * ________________________
204 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
205 * | PERCPU_PAGE_SIZE * | start and length big enough
206 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
207 * |------------------------|
208 * | local pg_data_t * |
209 * |------------------------|
210 * | local ia64_node_data |
211 * |------------------------|
213 * |________________________|
215 * Once this space has been set aside, the bootmem maps are initialized. We
216 * could probably move the allocation of the per-cpu and ia64_node_data space
217 * outside of this function and use alloc_bootmem_node(), but doing it here
218 * is straightforward and we get the alignments we want so...
220 static int __init
find_pernode_space(unsigned long start
, unsigned long len
,
224 unsigned long pernodesize
= 0, pernode
, pages
, mapsize
;
225 struct bootmem_data
*bdp
= &mem_data
[node
].bootmem_data
;
227 epfn
= (start
+ len
) >> PAGE_SHIFT
;
229 pages
= bdp
->node_low_pfn
- (bdp
->node_boot_start
>> PAGE_SHIFT
);
230 mapsize
= bootmem_bootmap_pages(pages
) << PAGE_SHIFT
;
233 * Make sure this memory falls within this node's usable memory
234 * since we may have thrown some away in build_maps().
236 if (start
< bdp
->node_boot_start
|| epfn
> bdp
->node_low_pfn
)
239 /* Don't setup this node's local space twice... */
240 if (mem_data
[node
].pernode_addr
)
244 * Calculate total size needed, incl. what's necessary
245 * for good alignment and alias prevention.
247 pernodesize
= compute_pernodesize(node
);
248 pernode
= NODEDATA_ALIGN(start
, node
);
250 /* Is this range big enough for what we want to store here? */
251 if (start
+ len
> (pernode
+ pernodesize
+ mapsize
))
252 fill_pernode(node
, pernode
, pernodesize
);
258 * free_node_bootmem - free bootmem allocator memory for use
259 * @start: physical start of range
260 * @len: length of range
261 * @node: node where this range resides
263 * Simply calls the bootmem allocator to free the specified ranged from
264 * the given pg_data_t's bdata struct. After this function has been called
265 * for all the entries in the EFI memory map, the bootmem allocator will
266 * be ready to service allocation requests.
268 static int __init
free_node_bootmem(unsigned long start
, unsigned long len
,
271 free_bootmem_node(pgdat_list
[node
], start
, len
);
277 * reserve_pernode_space - reserve memory for per-node space
279 * Reserve the space used by the bootmem maps & per-node space in the boot
280 * allocator so that when we actually create the real mem maps we don't
283 static void __init
reserve_pernode_space(void)
285 unsigned long base
, size
, pages
;
286 struct bootmem_data
*bdp
;
289 for_each_online_node(node
) {
290 pg_data_t
*pdp
= pgdat_list
[node
];
292 if (node_isset(node
, memory_less_mask
))
297 /* First the bootmem_map itself */
298 pages
= bdp
->node_low_pfn
- (bdp
->node_boot_start
>>PAGE_SHIFT
);
299 size
= bootmem_bootmap_pages(pages
) << PAGE_SHIFT
;
300 base
= __pa(bdp
->node_bootmem_map
);
301 reserve_bootmem_node(pdp
, base
, size
);
303 /* Now the per-node space */
304 size
= mem_data
[node
].pernode_size
;
305 base
= __pa(mem_data
[node
].pernode_addr
);
306 reserve_bootmem_node(pdp
, base
, size
);
310 static void __meminit
scatter_node_data(void)
316 * for_each_online_node() can't be used at here.
317 * node_online_map is not set for hot-added nodes at this time,
318 * because we are halfway through initialization of the new node's
319 * structures. If for_each_online_node() is used, a new node's
320 * pg_data_ptrs will be not initialized. Instead of using it,
321 * pgdat_list[] is checked.
323 for_each_node(node
) {
324 if (pgdat_list
[node
]) {
325 dst
= LOCAL_DATA_ADDR(pgdat_list
[node
])->pg_data_ptrs
;
326 memcpy(dst
, pgdat_list
, sizeof(pgdat_list
));
332 * initialize_pernode_data - fixup per-cpu & per-node pointers
334 * Each node's per-node area has a copy of the global pg_data_t list, so
335 * we copy that to each node here, as well as setting the per-cpu pointer
336 * to the local node data structure. The active_cpus field of the per-node
337 * structure gets setup by the platform_cpu_init() function later.
339 static void __init
initialize_pernode_data(void)
346 /* Set the node_data pointer for each per-cpu struct */
347 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
348 node
= node_cpuid
[cpu
].nid
;
349 per_cpu(cpu_info
, cpu
).node_data
= mem_data
[node
].node_data
;
353 struct cpuinfo_ia64
*cpu0_cpu_info
;
355 node
= node_cpuid
[cpu
].nid
;
356 cpu0_cpu_info
= (struct cpuinfo_ia64
*)(__phys_per_cpu_start
+
357 ((char *)&per_cpu__cpu_info
- __per_cpu_start
));
358 cpu0_cpu_info
->node_data
= mem_data
[node
].node_data
;
360 #endif /* CONFIG_SMP */
364 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
365 * node but fall back to any other node when __alloc_bootmem_node fails
368 * @pernodesize: size of this node's pernode data
370 static void __init
*memory_less_node_alloc(int nid
, unsigned long pernodesize
)
374 int bestnode
= -1, node
, anynode
= 0;
376 for_each_online_node(node
) {
377 if (node_isset(node
, memory_less_mask
))
379 else if (node_distance(nid
, node
) < best
) {
380 best
= node_distance(nid
, node
);
389 ptr
= __alloc_bootmem_node(pgdat_list
[bestnode
], pernodesize
,
390 PERCPU_PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
));
396 * memory_less_nodes - allocate and initialize CPU only nodes pernode
399 static void __init
memory_less_nodes(void)
401 unsigned long pernodesize
;
405 for_each_node_mask(node
, memory_less_mask
) {
406 pernodesize
= compute_pernodesize(node
);
407 pernode
= memory_less_node_alloc(node
, pernodesize
);
408 fill_pernode(node
, __pa(pernode
), pernodesize
);
415 * find_memory - walk the EFI memory map and setup the bootmem allocator
417 * Called early in boot to setup the bootmem allocator, and to
418 * allocate the per-cpu and per-node structures.
420 void __init
find_memory(void)
426 if (num_online_nodes() == 0) {
427 printk(KERN_ERR
"node info missing!\n");
431 nodes_or(memory_less_mask
, memory_less_mask
, node_online_map
);
435 /* These actually end up getting called by call_pernode_memory() */
436 efi_memmap_walk(filter_rsvd_memory
, build_node_maps
);
437 efi_memmap_walk(filter_rsvd_memory
, find_pernode_space
);
438 efi_memmap_walk(find_max_min_low_pfn
, NULL
);
440 for_each_online_node(node
)
441 if (mem_data
[node
].bootmem_data
.node_low_pfn
) {
442 node_clear(node
, memory_less_mask
);
443 mem_data
[node
].min_pfn
= ~0UL;
446 efi_memmap_walk(register_active_ranges
, NULL
);
449 * Initialize the boot memory maps in reverse order since that's
450 * what the bootmem allocator expects
452 for (node
= MAX_NUMNODES
- 1; node
>= 0; node
--) {
453 unsigned long pernode
, pernodesize
, map
;
454 struct bootmem_data
*bdp
;
456 if (!node_online(node
))
458 else if (node_isset(node
, memory_less_mask
))
461 bdp
= &mem_data
[node
].bootmem_data
;
462 pernode
= mem_data
[node
].pernode_addr
;
463 pernodesize
= mem_data
[node
].pernode_size
;
464 map
= pernode
+ pernodesize
;
466 init_bootmem_node(pgdat_list
[node
],
468 bdp
->node_boot_start
>>PAGE_SHIFT
,
472 efi_memmap_walk(filter_rsvd_memory
, free_node_bootmem
);
474 reserve_pernode_space();
476 initialize_pernode_data();
478 max_pfn
= max_low_pfn
;
485 * per_cpu_init - setup per-cpu variables
487 * find_pernode_space() does most of this already, we just need to set
488 * local_per_cpu_offset
490 void __cpuinit
*per_cpu_init(void)
493 static int first_time
= 1;
496 if (smp_processor_id() != 0)
497 return __per_cpu_start
+ __per_cpu_offset
[smp_processor_id()];
501 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++)
502 per_cpu(local_per_cpu_offset
, cpu
) = __per_cpu_offset
[cpu
];
505 return __per_cpu_start
+ __per_cpu_offset
[smp_processor_id()];
507 #endif /* CONFIG_SMP */
510 * show_mem - give short summary of memory stats
512 * Shows a simple page count of reserved and used pages in the system.
513 * For discontig machines, it does this on a per-pgdat basis.
517 int i
, total_reserved
= 0;
518 int total_shared
= 0, total_cached
= 0;
519 unsigned long total_present
= 0;
522 printk(KERN_INFO
"Mem-info:\n");
524 printk(KERN_INFO
"Free swap: %6ldkB\n",
525 nr_swap_pages
<<(PAGE_SHIFT
-10));
526 printk(KERN_INFO
"Node memory in pages:\n");
527 for_each_online_pgdat(pgdat
) {
528 unsigned long present
;
530 int shared
= 0, cached
= 0, reserved
= 0;
532 pgdat_resize_lock(pgdat
, &flags
);
533 present
= pgdat
->node_present_pages
;
534 for(i
= 0; i
< pgdat
->node_spanned_pages
; i
++) {
536 if (pfn_valid(pgdat
->node_start_pfn
+ i
))
537 page
= pfn_to_page(pgdat
->node_start_pfn
+ i
);
539 i
= vmemmap_find_next_valid_pfn(pgdat
->node_id
,
543 if (PageReserved(page
))
545 else if (PageSwapCache(page
))
547 else if (page_count(page
))
548 shared
+= page_count(page
)-1;
550 pgdat_resize_unlock(pgdat
, &flags
);
551 total_present
+= present
;
552 total_reserved
+= reserved
;
553 total_cached
+= cached
;
554 total_shared
+= shared
;
555 printk(KERN_INFO
"Node %4d: RAM: %11ld, rsvd: %8d, "
556 "shrd: %10d, swpd: %10d\n", pgdat
->node_id
,
557 present
, reserved
, shared
, cached
);
559 printk(KERN_INFO
"%ld pages of RAM\n", total_present
);
560 printk(KERN_INFO
"%d reserved pages\n", total_reserved
);
561 printk(KERN_INFO
"%d pages shared\n", total_shared
);
562 printk(KERN_INFO
"%d pages swap cached\n", total_cached
);
563 printk(KERN_INFO
"Total of %ld pages in page table cache\n",
564 quicklist_total_size());
565 printk(KERN_INFO
"%d free buffer pages\n", nr_free_buffer_pages());
569 * call_pernode_memory - use SRAT to call callback functions with node info
570 * @start: physical start of range
571 * @len: length of range
572 * @arg: function to call for each range
574 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
575 * out to which node a block of memory belongs. Ignore memory that we cannot
576 * identify, and split blocks that run across multiple nodes.
578 * Take this opportunity to round the start address up and the end address
579 * down to page boundaries.
581 void call_pernode_memory(unsigned long start
, unsigned long len
, void *arg
)
583 unsigned long rs
, re
, end
= start
+ len
;
584 void (*func
)(unsigned long, unsigned long, int);
587 start
= PAGE_ALIGN(start
);
594 if (!num_node_memblks
) {
595 /* No SRAT table, so assume one node (node 0) */
597 (*func
)(start
, end
- start
, 0);
601 for (i
= 0; i
< num_node_memblks
; i
++) {
602 rs
= max(start
, node_memblk
[i
].start_paddr
);
603 re
= min(end
, node_memblk
[i
].start_paddr
+
604 node_memblk
[i
].size
);
607 (*func
)(rs
, re
- rs
, node_memblk
[i
].nid
);
615 * count_node_pages - callback to build per-node memory info structures
616 * @start: physical start of range
617 * @len: length of range
618 * @node: node where this range resides
620 * Each node has it's own number of physical pages, DMAable pages, start, and
621 * end page frame number. This routine will be called by call_pernode_memory()
622 * for each piece of usable memory and will setup these values for each node.
623 * Very similar to build_maps().
625 static __init
int count_node_pages(unsigned long start
, unsigned long len
, int node
)
627 unsigned long end
= start
+ len
;
629 mem_data
[node
].num_physpages
+= len
>> PAGE_SHIFT
;
630 #ifdef CONFIG_ZONE_DMA
631 if (start
<= __pa(MAX_DMA_ADDRESS
))
632 mem_data
[node
].num_dma_physpages
+=
633 (min(end
, __pa(MAX_DMA_ADDRESS
)) - start
) >>PAGE_SHIFT
;
635 start
= GRANULEROUNDDOWN(start
);
636 start
= ORDERROUNDDOWN(start
);
637 end
= GRANULEROUNDUP(end
);
638 mem_data
[node
].max_pfn
= max(mem_data
[node
].max_pfn
,
640 mem_data
[node
].min_pfn
= min(mem_data
[node
].min_pfn
,
641 start
>> PAGE_SHIFT
);
647 * paging_init - setup page tables
649 * paging_init() sets up the page tables for each node of the system and frees
650 * the bootmem allocator memory for general use.
652 void __init
paging_init(void)
654 unsigned long max_dma
;
655 unsigned long pfn_offset
= 0;
656 unsigned long max_pfn
= 0;
658 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
660 max_dma
= virt_to_phys((void *) MAX_DMA_ADDRESS
) >> PAGE_SHIFT
;
662 efi_memmap_walk(filter_rsvd_memory
, count_node_pages
);
664 sparse_memory_present_with_active_regions(MAX_NUMNODES
);
667 #ifdef CONFIG_VIRTUAL_MEM_MAP
668 vmalloc_end
-= PAGE_ALIGN(ALIGN(max_low_pfn
, MAX_ORDER_NR_PAGES
) *
669 sizeof(struct page
));
670 vmem_map
= (struct page
*) vmalloc_end
;
671 efi_memmap_walk(create_mem_map_page_table
, NULL
);
672 printk("Virtual mem_map starts at 0x%p\n", vmem_map
);
675 for_each_online_node(node
) {
676 num_physpages
+= mem_data
[node
].num_physpages
;
677 pfn_offset
= mem_data
[node
].min_pfn
;
679 #ifdef CONFIG_VIRTUAL_MEM_MAP
680 NODE_DATA(node
)->node_mem_map
= vmem_map
+ pfn_offset
;
682 if (mem_data
[node
].max_pfn
> max_pfn
)
683 max_pfn
= mem_data
[node
].max_pfn
;
686 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
687 #ifdef CONFIG_ZONE_DMA
688 max_zone_pfns
[ZONE_DMA
] = max_dma
;
690 max_zone_pfns
[ZONE_NORMAL
] = max_pfn
;
691 free_area_init_nodes(max_zone_pfns
);
693 zero_page_memmap_ptr
= virt_to_page(ia64_imva(empty_zero_page
));
696 #ifdef CONFIG_MEMORY_HOTPLUG
697 pg_data_t
*arch_alloc_nodedata(int nid
)
699 unsigned long size
= compute_pernodesize(nid
);
701 return kzalloc(size
, GFP_KERNEL
);
704 void arch_free_nodedata(pg_data_t
*pgdat
)
709 void arch_refresh_nodedata(int update_node
, pg_data_t
*update_pgdat
)
711 pgdat_list
[update_node
] = update_pgdat
;