2 * Initialize MMU support.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
7 #include <linux/kernel.h>
8 #include <linux/init.h>
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
14 #include <linux/mmzone.h>
15 #include <linux/module.h>
16 #include <linux/personality.h>
17 #include <linux/reboot.h>
18 #include <linux/slab.h>
19 #include <linux/swap.h>
20 #include <linux/proc_fs.h>
21 #include <linux/bitops.h>
22 #include <linux/kexec.h>
24 #include <asm/a.out.h>
28 #include <asm/machvec.h>
30 #include <asm/patch.h>
31 #include <asm/pgalloc.h>
33 #include <asm/sections.h>
34 #include <asm/system.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
40 DEFINE_PER_CPU(struct mmu_gather
, mmu_gathers
);
42 extern void ia64_tlb_init (void);
44 unsigned long MAX_DMA_ADDRESS
= PAGE_OFFSET
+ 0x100000000UL
;
46 #ifdef CONFIG_VIRTUAL_MEM_MAP
47 unsigned long vmalloc_end
= VMALLOC_END_INIT
;
48 EXPORT_SYMBOL(vmalloc_end
);
49 struct page
*vmem_map
;
50 EXPORT_SYMBOL(vmem_map
);
53 struct page
*zero_page_memmap_ptr
; /* map entry for zero page */
54 EXPORT_SYMBOL(zero_page_memmap_ptr
);
57 lazy_mmu_prot_update (pte_t pte
)
64 return; /* not an executable page... */
67 addr
= (unsigned long) page_address(page
);
69 if (test_bit(PG_arch_1
, &page
->flags
))
70 return; /* i-cache is already coherent with d-cache */
72 if (PageCompound(page
)) {
73 order
= compound_order(page
);
74 flush_icache_range(addr
, addr
+ (1UL << order
<< PAGE_SHIFT
));
77 flush_icache_range(addr
, addr
+ PAGE_SIZE
);
78 set_bit(PG_arch_1
, &page
->flags
); /* mark page as clean */
82 * Since DMA is i-cache coherent, any (complete) pages that were written via
83 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
84 * flush them when they get mapped into an executable vm-area.
87 dma_mark_clean(void *addr
, size_t size
)
89 unsigned long pg_addr
, end
;
91 pg_addr
= PAGE_ALIGN((unsigned long) addr
);
92 end
= (unsigned long) addr
+ size
;
93 while (pg_addr
+ PAGE_SIZE
<= end
) {
94 struct page
*page
= virt_to_page(pg_addr
);
95 set_bit(PG_arch_1
, &page
->flags
);
101 ia64_set_rbs_bot (void)
103 unsigned long stack_size
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
& -16;
105 if (stack_size
> MAX_USER_STACK_SIZE
)
106 stack_size
= MAX_USER_STACK_SIZE
;
107 current
->thread
.rbs_bot
= PAGE_ALIGN(current
->mm
->start_stack
- stack_size
);
111 * This performs some platform-dependent address space initialization.
112 * On IA-64, we want to setup the VM area for the register backing
113 * store (which grows upwards) and install the gateway page which is
114 * used for signal trampolines, etc.
117 ia64_init_addr_space (void)
119 struct vm_area_struct
*vma
;
124 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
125 * the problem. When the process attempts to write to the register backing store
126 * for the first time, it will get a SEGFAULT in this case.
128 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
130 vma
->vm_mm
= current
->mm
;
131 vma
->vm_start
= current
->thread
.rbs_bot
& PAGE_MASK
;
132 vma
->vm_end
= vma
->vm_start
+ PAGE_SIZE
;
133 vma
->vm_page_prot
= protection_map
[VM_DATA_DEFAULT_FLAGS
& 0x7];
134 vma
->vm_flags
= VM_DATA_DEFAULT_FLAGS
|VM_GROWSUP
|VM_ACCOUNT
;
135 down_write(¤t
->mm
->mmap_sem
);
136 if (insert_vm_struct(current
->mm
, vma
)) {
137 up_write(¤t
->mm
->mmap_sem
);
138 kmem_cache_free(vm_area_cachep
, vma
);
141 up_write(¤t
->mm
->mmap_sem
);
144 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
145 if (!(current
->personality
& MMAP_PAGE_ZERO
)) {
146 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
148 vma
->vm_mm
= current
->mm
;
149 vma
->vm_end
= PAGE_SIZE
;
150 vma
->vm_page_prot
= __pgprot(pgprot_val(PAGE_READONLY
) | _PAGE_MA_NAT
);
151 vma
->vm_flags
= VM_READ
| VM_MAYREAD
| VM_IO
| VM_RESERVED
;
152 down_write(¤t
->mm
->mmap_sem
);
153 if (insert_vm_struct(current
->mm
, vma
)) {
154 up_write(¤t
->mm
->mmap_sem
);
155 kmem_cache_free(vm_area_cachep
, vma
);
158 up_write(¤t
->mm
->mmap_sem
);
166 unsigned long addr
, eaddr
;
168 addr
= (unsigned long) ia64_imva(__init_begin
);
169 eaddr
= (unsigned long) ia64_imva(__init_end
);
170 while (addr
< eaddr
) {
171 ClearPageReserved(virt_to_page(addr
));
172 init_page_count(virt_to_page(addr
));
177 printk(KERN_INFO
"Freeing unused kernel memory: %ldkB freed\n",
178 (__init_end
- __init_begin
) >> 10);
182 free_initrd_mem (unsigned long start
, unsigned long end
)
186 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
187 * Thus EFI and the kernel may have different page sizes. It is
188 * therefore possible to have the initrd share the same page as
189 * the end of the kernel (given current setup).
191 * To avoid freeing/using the wrong page (kernel sized) we:
192 * - align up the beginning of initrd
193 * - align down the end of initrd
196 * |=============| a000
202 * |=============| 8000
205 * |/////////////| 7000
208 * |=============| 6000
211 * K=kernel using 8KB pages
213 * In this example, we must free page 8000 ONLY. So we must align up
214 * initrd_start and keep initrd_end as is.
216 start
= PAGE_ALIGN(start
);
217 end
= end
& PAGE_MASK
;
220 printk(KERN_INFO
"Freeing initrd memory: %ldkB freed\n", (end
- start
) >> 10);
222 for (; start
< end
; start
+= PAGE_SIZE
) {
223 if (!virt_addr_valid(start
))
225 page
= virt_to_page(start
);
226 ClearPageReserved(page
);
227 init_page_count(page
);
234 * This installs a clean page in the kernel's page table.
236 static struct page
* __init
237 put_kernel_page (struct page
*page
, unsigned long address
, pgprot_t pgprot
)
244 if (!PageReserved(page
))
245 printk(KERN_ERR
"put_kernel_page: page at 0x%p not in reserved memory\n",
248 pgd
= pgd_offset_k(address
); /* note: this is NOT pgd_offset()! */
251 pud
= pud_alloc(&init_mm
, pgd
, address
);
254 pmd
= pmd_alloc(&init_mm
, pud
, address
);
257 pte
= pte_alloc_kernel(pmd
, address
);
262 set_pte(pte
, mk_pte(page
, pgprot
));
265 /* no need for flush_tlb */
275 * Map the gate page twice: once read-only to export the ELF
276 * headers etc. and once execute-only page to enable
277 * privilege-promotion via "epc":
279 page
= virt_to_page(ia64_imva(__start_gate_section
));
280 put_kernel_page(page
, GATE_ADDR
, PAGE_READONLY
);
281 #ifdef HAVE_BUGGY_SEGREL
282 page
= virt_to_page(ia64_imva(__start_gate_section
+ PAGE_SIZE
));
283 put_kernel_page(page
, GATE_ADDR
+ PAGE_SIZE
, PAGE_GATE
);
285 put_kernel_page(page
, GATE_ADDR
+ PERCPU_PAGE_SIZE
, PAGE_GATE
);
286 /* Fill in the holes (if any) with read-only zero pages: */
290 for (addr
= GATE_ADDR
+ PAGE_SIZE
;
291 addr
< GATE_ADDR
+ PERCPU_PAGE_SIZE
;
294 put_kernel_page(ZERO_PAGE(0), addr
,
296 put_kernel_page(ZERO_PAGE(0), addr
+ PERCPU_PAGE_SIZE
,
305 ia64_mmu_init (void *my_cpu_data
)
307 unsigned long pta
, impl_va_bits
;
308 extern void __devinit
tlb_init (void);
310 #ifdef CONFIG_DISABLE_VHPT
311 # define VHPT_ENABLE_BIT 0
313 # define VHPT_ENABLE_BIT 1
317 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
318 * address space. The IA-64 architecture guarantees that at least 50 bits of
319 * virtual address space are implemented but if we pick a large enough page size
320 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
321 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
322 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
323 * problem in practice. Alternatively, we could truncate the top of the mapped
324 * address space to not permit mappings that would overlap with the VMLPT.
328 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
330 * The virtual page table has to cover the entire implemented address space within
331 * a region even though not all of this space may be mappable. The reason for
332 * this is that the Access bit and Dirty bit fault handlers perform
333 * non-speculative accesses to the virtual page table, so the address range of the
334 * virtual page table itself needs to be covered by virtual page table.
336 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
337 # define POW2(n) (1ULL << (n))
339 impl_va_bits
= ffz(~(local_cpu_data
->unimpl_va_mask
| (7UL << 61)));
341 if (impl_va_bits
< 51 || impl_va_bits
> 61)
342 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits
- 1);
344 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
345 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
346 * the test makes sure that our mapped space doesn't overlap the
347 * unimplemented hole in the middle of the region.
349 if ((mapped_space_bits
- PAGE_SHIFT
> vmlpt_bits
- pte_bits
) ||
350 (mapped_space_bits
> impl_va_bits
- 1))
351 panic("Cannot build a big enough virtual-linear page table"
352 " to cover mapped address space.\n"
353 " Try using a smaller page size.\n");
356 /* place the VMLPT at the end of each page-table mapped region: */
357 pta
= POW2(61) - POW2(vmlpt_bits
);
360 * Set the (virtually mapped linear) page table address. Bit
361 * 8 selects between the short and long format, bits 2-7 the
362 * size of the table, and bit 0 whether the VHPT walker is
365 ia64_set_pta(pta
| (0 << 8) | (vmlpt_bits
<< 2) | VHPT_ENABLE_BIT
);
369 #ifdef CONFIG_HUGETLB_PAGE
370 ia64_set_rr(HPAGE_REGION_BASE
, HPAGE_SHIFT
<< 2);
375 #ifdef CONFIG_VIRTUAL_MEM_MAP
376 int vmemmap_find_next_valid_pfn(int node
, int i
)
378 unsigned long end_address
, hole_next_pfn
;
379 unsigned long stop_address
;
380 pg_data_t
*pgdat
= NODE_DATA(node
);
382 end_address
= (unsigned long) &vmem_map
[pgdat
->node_start_pfn
+ i
];
383 end_address
= PAGE_ALIGN(end_address
);
385 stop_address
= (unsigned long) &vmem_map
[
386 pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
];
394 pgd
= pgd_offset_k(end_address
);
395 if (pgd_none(*pgd
)) {
396 end_address
+= PGDIR_SIZE
;
400 pud
= pud_offset(pgd
, end_address
);
401 if (pud_none(*pud
)) {
402 end_address
+= PUD_SIZE
;
406 pmd
= pmd_offset(pud
, end_address
);
407 if (pmd_none(*pmd
)) {
408 end_address
+= PMD_SIZE
;
412 pte
= pte_offset_kernel(pmd
, end_address
);
414 if (pte_none(*pte
)) {
415 end_address
+= PAGE_SIZE
;
417 if ((end_address
< stop_address
) &&
418 (end_address
!= ALIGN(end_address
, 1UL << PMD_SHIFT
)))
422 /* Found next valid vmem_map page */
424 } while (end_address
< stop_address
);
426 end_address
= min(end_address
, stop_address
);
427 end_address
= end_address
- (unsigned long) vmem_map
+ sizeof(struct page
) - 1;
428 hole_next_pfn
= end_address
/ sizeof(struct page
);
429 return hole_next_pfn
- pgdat
->node_start_pfn
;
433 create_mem_map_page_table (u64 start
, u64 end
, void *arg
)
435 unsigned long address
, start_page
, end_page
;
436 struct page
*map_start
, *map_end
;
443 map_start
= vmem_map
+ (__pa(start
) >> PAGE_SHIFT
);
444 map_end
= vmem_map
+ (__pa(end
) >> PAGE_SHIFT
);
446 start_page
= (unsigned long) map_start
& PAGE_MASK
;
447 end_page
= PAGE_ALIGN((unsigned long) map_end
);
448 node
= paddr_to_nid(__pa(start
));
450 for (address
= start_page
; address
< end_page
; address
+= PAGE_SIZE
) {
451 pgd
= pgd_offset_k(address
);
453 pgd_populate(&init_mm
, pgd
, alloc_bootmem_pages_node(NODE_DATA(node
), PAGE_SIZE
));
454 pud
= pud_offset(pgd
, address
);
457 pud_populate(&init_mm
, pud
, alloc_bootmem_pages_node(NODE_DATA(node
), PAGE_SIZE
));
458 pmd
= pmd_offset(pud
, address
);
461 pmd_populate_kernel(&init_mm
, pmd
, alloc_bootmem_pages_node(NODE_DATA(node
), PAGE_SIZE
));
462 pte
= pte_offset_kernel(pmd
, address
);
465 set_pte(pte
, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node
), PAGE_SIZE
)) >> PAGE_SHIFT
,
471 struct memmap_init_callback_data
{
479 virtual_memmap_init (u64 start
, u64 end
, void *arg
)
481 struct memmap_init_callback_data
*args
;
482 struct page
*map_start
, *map_end
;
484 args
= (struct memmap_init_callback_data
*) arg
;
485 map_start
= vmem_map
+ (__pa(start
) >> PAGE_SHIFT
);
486 map_end
= vmem_map
+ (__pa(end
) >> PAGE_SHIFT
);
488 if (map_start
< args
->start
)
489 map_start
= args
->start
;
490 if (map_end
> args
->end
)
494 * We have to initialize "out of bounds" struct page elements that fit completely
495 * on the same pages that were allocated for the "in bounds" elements because they
496 * may be referenced later (and found to be "reserved").
498 map_start
-= ((unsigned long) map_start
& (PAGE_SIZE
- 1)) / sizeof(struct page
);
499 map_end
+= ((PAGE_ALIGN((unsigned long) map_end
) - (unsigned long) map_end
)
500 / sizeof(struct page
));
502 if (map_start
< map_end
)
503 memmap_init_zone((unsigned long)(map_end
- map_start
),
504 args
->nid
, args
->zone
, page_to_pfn(map_start
),
510 memmap_init (unsigned long size
, int nid
, unsigned long zone
,
511 unsigned long start_pfn
)
514 memmap_init_zone(size
, nid
, zone
, start_pfn
, MEMMAP_EARLY
);
517 struct memmap_init_callback_data args
;
519 start
= pfn_to_page(start_pfn
);
521 args
.end
= start
+ size
;
525 efi_memmap_walk(virtual_memmap_init
, &args
);
530 ia64_pfn_valid (unsigned long pfn
)
533 struct page
*pg
= pfn_to_page(pfn
);
535 return (__get_user(byte
, (char __user
*) pg
) == 0)
536 && ((((u64
)pg
& PAGE_MASK
) == (((u64
)(pg
+ 1) - 1) & PAGE_MASK
))
537 || (__get_user(byte
, (char __user
*) (pg
+ 1) - 1) == 0));
539 EXPORT_SYMBOL(ia64_pfn_valid
);
542 find_largest_hole (u64 start
, u64 end
, void *arg
)
546 static u64 last_end
= PAGE_OFFSET
;
548 /* NOTE: this algorithm assumes efi memmap table is ordered */
550 if (*max_gap
< (start
- last_end
))
551 *max_gap
= start
- last_end
;
556 #endif /* CONFIG_VIRTUAL_MEM_MAP */
559 register_active_ranges(u64 start
, u64 end
, void *arg
)
561 int nid
= paddr_to_nid(__pa(start
));
566 if (start
> crashk_res
.start
&& start
< crashk_res
.end
)
567 start
= crashk_res
.end
;
568 if (end
> crashk_res
.start
&& end
< crashk_res
.end
)
569 end
= crashk_res
.start
;
573 add_active_range(nid
, __pa(start
) >> PAGE_SHIFT
,
574 __pa(end
) >> PAGE_SHIFT
);
579 count_reserved_pages (u64 start
, u64 end
, void *arg
)
581 unsigned long num_reserved
= 0;
582 unsigned long *count
= arg
;
584 for (; start
< end
; start
+= PAGE_SIZE
)
585 if (PageReserved(virt_to_page(start
)))
587 *count
+= num_reserved
;
592 find_max_min_low_pfn (unsigned long start
, unsigned long end
, void *arg
)
594 unsigned long pfn_start
, pfn_end
;
595 #ifdef CONFIG_FLATMEM
596 pfn_start
= (PAGE_ALIGN(__pa(start
))) >> PAGE_SHIFT
;
597 pfn_end
= (PAGE_ALIGN(__pa(end
- 1))) >> PAGE_SHIFT
;
599 pfn_start
= GRANULEROUNDDOWN(__pa(start
)) >> PAGE_SHIFT
;
600 pfn_end
= GRANULEROUNDUP(__pa(end
- 1)) >> PAGE_SHIFT
;
602 min_low_pfn
= min(min_low_pfn
, pfn_start
);
603 max_low_pfn
= max(max_low_pfn
, pfn_end
);
608 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
609 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
610 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
611 * useful for performance testing, but conceivably could also come in handy for debugging
615 static int nolwsys __initdata
;
618 nolwsys_setup (char *s
)
624 __setup("nolwsys", nolwsys_setup
);
629 long reserved_pages
, codesize
, datasize
, initsize
;
632 static struct kcore_list kcore_mem
, kcore_vmem
, kcore_kernel
;
634 BUG_ON(PTRS_PER_PGD
* sizeof(pgd_t
) != PAGE_SIZE
);
635 BUG_ON(PTRS_PER_PMD
* sizeof(pmd_t
) != PAGE_SIZE
);
636 BUG_ON(PTRS_PER_PTE
* sizeof(pte_t
) != PAGE_SIZE
);
640 * This needs to be called _after_ the command line has been parsed but _before_
641 * any drivers that may need the PCI DMA interface are initialized or bootmem has
647 #ifdef CONFIG_FLATMEM
650 max_mapnr
= max_low_pfn
;
653 high_memory
= __va(max_low_pfn
* PAGE_SIZE
);
655 kclist_add(&kcore_mem
, __va(0), max_low_pfn
* PAGE_SIZE
);
656 kclist_add(&kcore_vmem
, (void *)VMALLOC_START
, VMALLOC_END
-VMALLOC_START
);
657 kclist_add(&kcore_kernel
, _stext
, _end
- _stext
);
659 for_each_online_pgdat(pgdat
)
660 if (pgdat
->bdata
->node_bootmem_map
)
661 totalram_pages
+= free_all_bootmem_node(pgdat
);
664 efi_memmap_walk(count_reserved_pages
, &reserved_pages
);
666 codesize
= (unsigned long) _etext
- (unsigned long) _stext
;
667 datasize
= (unsigned long) _edata
- (unsigned long) _etext
;
668 initsize
= (unsigned long) __init_end
- (unsigned long) __init_begin
;
670 printk(KERN_INFO
"Memory: %luk/%luk available (%luk code, %luk reserved, "
671 "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT
- 10),
672 num_physpages
<< (PAGE_SHIFT
- 10), codesize
>> 10,
673 reserved_pages
<< (PAGE_SHIFT
- 10), datasize
>> 10, initsize
>> 10);
677 * For fsyscall entrpoints with no light-weight handler, use the ordinary
678 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
679 * code can tell them apart.
681 for (i
= 0; i
< NR_syscalls
; ++i
) {
682 extern unsigned long fsyscall_table
[NR_syscalls
];
683 extern unsigned long sys_call_table
[NR_syscalls
];
685 if (!fsyscall_table
[i
] || nolwsys
)
686 fsyscall_table
[i
] = sys_call_table
[i
] | 1;
690 #ifdef CONFIG_IA32_SUPPORT
695 #ifdef CONFIG_MEMORY_HOTPLUG
696 void online_page(struct page
*page
)
698 ClearPageReserved(page
);
699 init_page_count(page
);
705 int arch_add_memory(int nid
, u64 start
, u64 size
)
709 unsigned long start_pfn
= start
>> PAGE_SHIFT
;
710 unsigned long nr_pages
= size
>> PAGE_SHIFT
;
713 pgdat
= NODE_DATA(nid
);
715 zone
= pgdat
->node_zones
+ ZONE_NORMAL
;
716 ret
= __add_pages(zone
, start_pfn
, nr_pages
);
719 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
725 int remove_memory(u64 start
, u64 size
)
729 EXPORT_SYMBOL_GPL(remove_memory
);