[IPV4]: Correct rp_filter help text.
[linux-2.6/verdex.git] / include / asm-powerpc / mmu-hash64.h
blobb8dca30bd0b57436a4401608f57183e9a32caaac
1 #ifndef _ASM_POWERPC_MMU_HASH64_H_
2 #define _ASM_POWERPC_MMU_HASH64_H_
3 /*
4 * PowerPC64 memory management structures
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
19 * Segment table
22 #define STE_ESID_V 0x80
23 #define STE_ESID_KS 0x20
24 #define STE_ESID_KP 0x10
25 #define STE_ESID_N 0x08
27 #define STE_VSID_SHIFT 12
29 /* Location of cpu0's segment table */
30 #define STAB0_PAGE 0x6
31 #define STAB0_OFFSET (STAB0_PAGE << 12)
32 #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
34 #ifndef __ASSEMBLY__
35 extern char initial_stab[];
36 #endif /* ! __ASSEMBLY */
39 * SLB
42 #define SLB_NUM_BOLTED 3
43 #define SLB_CACHE_ENTRIES 8
45 /* Bits in the SLB ESID word */
46 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
48 /* Bits in the SLB VSID word */
49 #define SLB_VSID_SHIFT 12
50 #define SLB_VSID_B ASM_CONST(0xc000000000000000)
51 #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
52 #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
53 #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
54 #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
55 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
56 #define SLB_VSID_L ASM_CONST(0x0000000000000100)
57 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
58 #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
59 #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
60 #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
61 #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
62 #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
63 #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
65 #define SLB_VSID_KERNEL (SLB_VSID_KP)
66 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
68 #define SLBIE_C (0x08000000)
71 * Hash table
74 #define HPTES_PER_GROUP 8
76 #define HPTE_V_SSIZE_SHIFT 62
77 #define HPTE_V_AVPN_SHIFT 7
78 #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
79 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
80 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & HPTE_V_AVPN))
81 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
82 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
83 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
84 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
85 #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
87 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
88 #define HPTE_R_TS ASM_CONST(0x4000000000000000)
89 #define HPTE_R_RPN_SHIFT 12
90 #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
91 #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
92 #define HPTE_R_PP ASM_CONST(0x0000000000000003)
93 #define HPTE_R_N ASM_CONST(0x0000000000000004)
94 #define HPTE_R_C ASM_CONST(0x0000000000000080)
95 #define HPTE_R_R ASM_CONST(0x0000000000000100)
97 /* Values for PP (assumes Ks=0, Kp=1) */
98 /* pp0 will always be 0 for linux */
99 #define PP_RWXX 0 /* Supervisor read/write, User none */
100 #define PP_RWRX 1 /* Supervisor read/write, User read */
101 #define PP_RWRW 2 /* Supervisor read/write, User read/write */
102 #define PP_RXRX 3 /* Supervisor read, User read */
104 #ifndef __ASSEMBLY__
106 typedef struct {
107 unsigned long v;
108 unsigned long r;
109 } hpte_t;
111 extern hpte_t *htab_address;
112 extern unsigned long htab_size_bytes;
113 extern unsigned long htab_hash_mask;
116 * Page size definition
118 * shift : is the "PAGE_SHIFT" value for that page size
119 * sllp : is a bit mask with the value of SLB L || LP to be or'ed
120 * directly to a slbmte "vsid" value
121 * penc : is the HPTE encoding mask for the "LP" field:
124 struct mmu_psize_def
126 unsigned int shift; /* number of bits */
127 unsigned int penc; /* HPTE encoding */
128 unsigned int tlbiel; /* tlbiel supported for that page size */
129 unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
130 unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
133 #endif /* __ASSEMBLY__ */
136 * The kernel use the constants below to index in the page sizes array.
137 * The use of fixed constants for this purpose is better for performances
138 * of the low level hash refill handlers.
140 * A non supported page size has a "shift" field set to 0
142 * Any new page size being implemented can get a new entry in here. Whether
143 * the kernel will use it or not is a different matter though. The actual page
144 * size used by hugetlbfs is not defined here and may be made variable
147 #define MMU_PAGE_4K 0 /* 4K */
148 #define MMU_PAGE_64K 1 /* 64K */
149 #define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */
150 #define MMU_PAGE_1M 3 /* 1M */
151 #define MMU_PAGE_16M 4 /* 16M */
152 #define MMU_PAGE_16G 5 /* 16G */
153 #define MMU_PAGE_COUNT 6
156 * Segment sizes.
157 * These are the values used by hardware in the B field of
158 * SLB entries and the first dword of MMU hashtable entries.
159 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
161 #define MMU_SEGSIZE_256M 0
162 #define MMU_SEGSIZE_1T 1
164 #ifndef __ASSEMBLY__
167 * The current system page sizes
169 extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
170 extern int mmu_linear_psize;
171 extern int mmu_virtual_psize;
172 extern int mmu_vmalloc_psize;
173 extern int mmu_io_psize;
176 * If the processor supports 64k normal pages but not 64k cache
177 * inhibited pages, we have to be prepared to switch processes
178 * to use 4k pages when they create cache-inhibited mappings.
179 * If this is the case, mmu_ci_restrictions will be set to 1.
181 extern int mmu_ci_restrictions;
183 #ifdef CONFIG_HUGETLB_PAGE
185 * The page size index of the huge pages for use by hugetlbfs
187 extern int mmu_huge_psize;
189 #endif /* CONFIG_HUGETLB_PAGE */
192 * This function sets the AVPN and L fields of the HPTE appropriately
193 * for the page size
195 static inline unsigned long hpte_encode_v(unsigned long va, int psize)
197 unsigned long v =
198 v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
199 v <<= HPTE_V_AVPN_SHIFT;
200 if (psize != MMU_PAGE_4K)
201 v |= HPTE_V_LARGE;
202 return v;
206 * This function sets the ARPN, and LP fields of the HPTE appropriately
207 * for the page size. We assume the pa is already "clean" that is properly
208 * aligned for the requested page size
210 static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
212 unsigned long r;
214 /* A 4K page needs no special encoding */
215 if (psize == MMU_PAGE_4K)
216 return pa & HPTE_R_RPN;
217 else {
218 unsigned int penc = mmu_psize_defs[psize].penc;
219 unsigned int shift = mmu_psize_defs[psize].shift;
220 return (pa & ~((1ul << shift) - 1)) | (penc << 12);
222 return r;
226 * This hashes a virtual address for a 256Mb segment only for now
229 static inline unsigned long hpt_hash(unsigned long va, unsigned int shift)
231 return ((va >> 28) & 0x7fffffffffUL) ^ ((va & 0x0fffffffUL) >> shift);
234 extern int __hash_page_4K(unsigned long ea, unsigned long access,
235 unsigned long vsid, pte_t *ptep, unsigned long trap,
236 unsigned int local);
237 extern int __hash_page_64K(unsigned long ea, unsigned long access,
238 unsigned long vsid, pte_t *ptep, unsigned long trap,
239 unsigned int local);
240 struct mm_struct;
241 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
242 extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
243 unsigned long ea, unsigned long vsid, int local,
244 unsigned long trap);
246 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
247 unsigned long pstart, unsigned long mode,
248 int psize);
250 extern void htab_initialize(void);
251 extern void htab_initialize_secondary(void);
252 extern void hpte_init_native(void);
253 extern void hpte_init_lpar(void);
254 extern void hpte_init_iSeries(void);
255 extern void hpte_init_beat(void);
257 extern void stabs_alloc(void);
258 extern void slb_initialize(void);
259 extern void slb_flush_and_rebolt(void);
260 extern void stab_initialize(unsigned long stab);
262 #endif /* __ASSEMBLY__ */
265 * VSID allocation
267 * We first generate a 36-bit "proto-VSID". For kernel addresses this
268 * is equal to the ESID, for user addresses it is:
269 * (context << 15) | (esid & 0x7fff)
271 * The two forms are distinguishable because the top bit is 0 for user
272 * addresses, whereas the top two bits are 1 for kernel addresses.
273 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
274 * now.
276 * The proto-VSIDs are then scrambled into real VSIDs with the
277 * multiplicative hash:
279 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
280 * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
281 * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
283 * This scramble is only well defined for proto-VSIDs below
284 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
285 * reserved. VSID_MULTIPLIER is prime, so in particular it is
286 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
287 * Because the modulus is 2^n-1 we can compute it efficiently without
288 * a divide or extra multiply (see below).
290 * This scheme has several advantages over older methods:
292 * - We have VSIDs allocated for every kernel address
293 * (i.e. everything above 0xC000000000000000), except the very top
294 * segment, which simplifies several things.
296 * - We allow for 15 significant bits of ESID and 20 bits of
297 * context for user addresses. i.e. 8T (43 bits) of address space for
298 * up to 1M contexts (although the page table structure and context
299 * allocation will need changes to take advantage of this).
301 * - The scramble function gives robust scattering in the hash
302 * table (at least based on some initial results). The previous
303 * method was more susceptible to pathological cases giving excessive
304 * hash collisions.
307 * WARNING - If you change these you must make sure the asm
308 * implementations in slb_allocate (slb_low.S), do_stab_bolted
309 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
311 * You'll also need to change the precomputed VSID values in head.S
312 * which are used by the iSeries firmware.
315 #define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */
316 #define VSID_BITS 36
317 #define VSID_MODULUS ((1UL<<VSID_BITS)-1)
319 #define CONTEXT_BITS 19
320 #define USER_ESID_BITS 16
322 #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
325 * This macro generates asm code to compute the VSID scramble
326 * function. Used in slb_allocate() and do_stab_bolted. The function
327 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
329 * rt = register continaing the proto-VSID and into which the
330 * VSID will be stored
331 * rx = scratch register (clobbered)
333 * - rt and rx must be different registers
334 * - The answer will end up in the low 36 bits of rt. The higher
335 * bits may contain other garbage, so you may need to mask the
336 * result.
338 #define ASM_VSID_SCRAMBLE(rt, rx) \
339 lis rx,VSID_MULTIPLIER@h; \
340 ori rx,rx,VSID_MULTIPLIER@l; \
341 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
343 srdi rx,rt,VSID_BITS; \
344 clrldi rt,rt,(64-VSID_BITS); \
345 add rt,rt,rx; /* add high and low bits */ \
346 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
347 * 2^36-1+2^28-1. That in particular means that if r3 >= \
348 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
349 * the bit clear, r3 already has the answer we want, if it \
350 * doesn't, the answer is the low 36 bits of r3+1. So in all \
351 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
352 addi rx,rt,1; \
353 srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \
354 add rt,rt,rx
357 #ifndef __ASSEMBLY__
359 typedef unsigned long mm_context_id_t;
361 typedef struct {
362 mm_context_id_t id;
363 u16 user_psize; /* page size index */
365 #ifdef CONFIG_PPC_MM_SLICES
366 u64 low_slices_psize; /* SLB page size encodings */
367 u64 high_slices_psize; /* 4 bits per slice for now */
368 #else
369 u16 sllp; /* SLB page size encoding */
370 #endif
371 unsigned long vdso_base;
372 } mm_context_t;
375 static inline unsigned long vsid_scramble(unsigned long protovsid)
377 #if 0
378 /* The code below is equivalent to this function for arguments
379 * < 2^VSID_BITS, which is all this should ever be called
380 * with. However gcc is not clever enough to compute the
381 * modulus (2^n-1) without a second multiply. */
382 return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS);
383 #else /* 1 */
384 unsigned long x;
386 x = protovsid * VSID_MULTIPLIER;
387 x = (x >> VSID_BITS) + (x & VSID_MODULUS);
388 return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS;
389 #endif /* 1 */
392 /* This is only valid for addresses >= KERNELBASE */
393 static inline unsigned long get_kernel_vsid(unsigned long ea)
395 return vsid_scramble(ea >> SID_SHIFT);
398 /* This is only valid for user addresses (which are below 2^41) */
399 static inline unsigned long get_vsid(unsigned long context, unsigned long ea)
401 return vsid_scramble((context << USER_ESID_BITS)
402 | (ea >> SID_SHIFT));
405 #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER) % VSID_MODULUS)
406 #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
408 /* Physical address used by some IO functions */
409 typedef unsigned long phys_addr_t;
411 #endif /* __ASSEMBLY__ */
413 #endif /* _ASM_POWERPC_MMU_HASH64_H_ */