[IPV4]: Correct rp_filter help text.
[linux-2.6/verdex.git] / include / asm-powerpc / pgtable-ppc64.h
blob704c4e669fe0ac9a1b72818b2922d97732d980b0
1 #ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
2 #define _ASM_POWERPC_PGTABLE_PPC64_H_
3 /*
4 * This file contains the functions and defines necessary to modify and use
5 * the ppc64 hashed page table.
6 */
8 #ifndef __ASSEMBLY__
9 #include <linux/stddef.h>
10 #include <asm/processor.h> /* For TASK_SIZE */
11 #include <asm/mmu.h>
12 #include <asm/page.h>
13 #include <asm/tlbflush.h>
14 struct mm_struct;
15 #endif /* __ASSEMBLY__ */
17 #ifdef CONFIG_PPC_64K_PAGES
18 #include <asm/pgtable-64k.h>
19 #else
20 #include <asm/pgtable-4k.h>
21 #endif
23 #define FIRST_USER_ADDRESS 0
26 * Size of EA range mapped by our pagetables.
28 #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
29 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
30 #define PGTABLE_RANGE (1UL << PGTABLE_EADDR_SIZE)
32 #if TASK_SIZE_USER64 > PGTABLE_RANGE
33 #error TASK_SIZE_USER64 exceeds pagetable range
34 #endif
36 #if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
37 #error TASK_SIZE_USER64 exceeds user VSID range
38 #endif
41 * Define the address range of the vmalloc VM area.
43 #define VMALLOC_START ASM_CONST(0xD000000000000000)
44 #define VMALLOC_SIZE ASM_CONST(0x80000000000)
45 #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
48 * Define the address range of the imalloc VM area.
50 #define PHBS_IO_BASE VMALLOC_END
51 #define IMALLOC_BASE (PHBS_IO_BASE + 0x80000000ul) /* Reserve 2 gigs for PHBs */
52 #define IMALLOC_END (VMALLOC_START + PGTABLE_RANGE)
55 * Region IDs
57 #define REGION_SHIFT 60UL
58 #define REGION_MASK (0xfUL << REGION_SHIFT)
59 #define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
61 #define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
62 #define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
63 #define USER_REGION_ID (0UL)
66 * Common bits in a linux-style PTE. These match the bits in the
67 * (hardware-defined) PowerPC PTE as closely as possible. Additional
68 * bits may be defined in pgtable-*.h
70 #define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
71 #define _PAGE_USER 0x0002 /* matches one of the PP bits */
72 #define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
73 #define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
74 #define _PAGE_GUARDED 0x0008
75 #define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */
76 #define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */
77 #define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */
78 #define _PAGE_DIRTY 0x0080 /* C: page changed */
79 #define _PAGE_ACCESSED 0x0100 /* R: page referenced */
80 #define _PAGE_RW 0x0200 /* software: user write access allowed */
81 #define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */
82 #define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */
84 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
86 #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
88 /* __pgprot defined in asm-powerpc/page.h */
89 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
91 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
92 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
93 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
94 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
95 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
96 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
97 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
98 #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
99 _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
100 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
102 #define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
103 #define HAVE_PAGE_AGP
105 /* PTEIDX nibble */
106 #define _PTEIDX_SECONDARY 0x8
107 #define _PTEIDX_GROUP_IX 0x7
111 * POWER4 and newer have per page execute protection, older chips can only
112 * do this on a segment (256MB) basis.
114 * Also, write permissions imply read permissions.
115 * This is the closest we can get..
117 * Note due to the way vm flags are laid out, the bits are XWR
119 #define __P000 PAGE_NONE
120 #define __P001 PAGE_READONLY
121 #define __P010 PAGE_COPY
122 #define __P011 PAGE_COPY
123 #define __P100 PAGE_READONLY_X
124 #define __P101 PAGE_READONLY_X
125 #define __P110 PAGE_COPY_X
126 #define __P111 PAGE_COPY_X
128 #define __S000 PAGE_NONE
129 #define __S001 PAGE_READONLY
130 #define __S010 PAGE_SHARED
131 #define __S011 PAGE_SHARED
132 #define __S100 PAGE_READONLY_X
133 #define __S101 PAGE_READONLY_X
134 #define __S110 PAGE_SHARED_X
135 #define __S111 PAGE_SHARED_X
137 #ifndef __ASSEMBLY__
140 * ZERO_PAGE is a global shared page that is always zero: used
141 * for zero-mapped memory areas etc..
143 extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
144 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
145 #endif /* __ASSEMBLY__ */
147 #ifdef CONFIG_HUGETLB_PAGE
149 #define HAVE_ARCH_UNMAPPED_AREA
150 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
152 #endif
154 #ifndef __ASSEMBLY__
157 * Conversion functions: convert a page and protection to a page entry,
158 * and a page entry and page directory to the page they refer to.
160 * mk_pte takes a (struct page *) as input
162 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
164 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
166 pte_t pte;
169 pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot);
170 return pte;
173 #define pte_modify(_pte, newprot) \
174 (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
176 #define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
177 #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
179 /* pte_clear moved to later in this file */
181 #define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT)))
182 #define pte_page(x) pfn_to_page(pte_pfn(x))
184 #define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
185 #define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
187 #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
188 #define pmd_none(pmd) (!pmd_val(pmd))
189 #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
190 || (pmd_val(pmd) & PMD_BAD_BITS))
191 #define pmd_present(pmd) (pmd_val(pmd) != 0)
192 #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
193 #define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
194 #define pmd_page(pmd) virt_to_page(pmd_page_vaddr(pmd))
196 #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
197 #define pud_none(pud) (!pud_val(pud))
198 #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
199 || (pud_val(pud) & PUD_BAD_BITS))
200 #define pud_present(pud) (pud_val(pud) != 0)
201 #define pud_clear(pudp) (pud_val(*(pudp)) = 0)
202 #define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
203 #define pud_page(pud) virt_to_page(pud_page_vaddr(pud))
205 #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
208 * Find an entry in a page-table-directory. We combine the address region
209 * (the high order N bits) and the pgd portion of the address.
211 /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
212 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
214 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
216 #define pmd_offset(pudp,addr) \
217 (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
219 #define pte_offset_kernel(dir,addr) \
220 (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
222 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
223 #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
224 #define pte_unmap(pte) do { } while(0)
225 #define pte_unmap_nested(pte) do { } while(0)
227 /* to find an entry in a kernel page-table-directory */
228 /* This now only contains the vmalloc pages */
229 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
232 * The following only work if pte_present() is true.
233 * Undefined behaviour if not..
235 static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;}
236 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
237 static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;}
238 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
239 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
240 static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
242 static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
243 static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
245 static inline pte_t pte_rdprotect(pte_t pte) {
246 pte_val(pte) &= ~_PAGE_USER; return pte; }
247 static inline pte_t pte_exprotect(pte_t pte) {
248 pte_val(pte) &= ~_PAGE_EXEC; return pte; }
249 static inline pte_t pte_wrprotect(pte_t pte) {
250 pte_val(pte) &= ~(_PAGE_RW); return pte; }
251 static inline pte_t pte_mkclean(pte_t pte) {
252 pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
253 static inline pte_t pte_mkold(pte_t pte) {
254 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
255 static inline pte_t pte_mkread(pte_t pte) {
256 pte_val(pte) |= _PAGE_USER; return pte; }
257 static inline pte_t pte_mkexec(pte_t pte) {
258 pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
259 static inline pte_t pte_mkwrite(pte_t pte) {
260 pte_val(pte) |= _PAGE_RW; return pte; }
261 static inline pte_t pte_mkdirty(pte_t pte) {
262 pte_val(pte) |= _PAGE_DIRTY; return pte; }
263 static inline pte_t pte_mkyoung(pte_t pte) {
264 pte_val(pte) |= _PAGE_ACCESSED; return pte; }
265 static inline pte_t pte_mkhuge(pte_t pte) {
266 return pte; }
268 /* Atomic PTE updates */
269 static inline unsigned long pte_update(struct mm_struct *mm,
270 unsigned long addr,
271 pte_t *ptep, unsigned long clr,
272 int huge)
274 unsigned long old, tmp;
276 __asm__ __volatile__(
277 "1: ldarx %0,0,%3 # pte_update\n\
278 andi. %1,%0,%6\n\
279 bne- 1b \n\
280 andc %1,%0,%4 \n\
281 stdcx. %1,0,%3 \n\
282 bne- 1b"
283 : "=&r" (old), "=&r" (tmp), "=m" (*ptep)
284 : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY)
285 : "cc" );
287 if (old & _PAGE_HASHPTE)
288 hpte_need_flush(mm, addr, ptep, old, huge);
289 return old;
292 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
293 unsigned long addr, pte_t *ptep)
295 unsigned long old;
297 if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
298 return 0;
299 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0);
300 return (old & _PAGE_ACCESSED) != 0;
302 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
303 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
304 ({ \
305 int __r; \
306 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
307 __r; \
311 * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the
312 * moment we always flush but we need to fix hpte_update and test if the
313 * optimisation is worth it.
315 static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm,
316 unsigned long addr, pte_t *ptep)
318 unsigned long old;
320 if ((pte_val(*ptep) & _PAGE_DIRTY) == 0)
321 return 0;
322 old = pte_update(mm, addr, ptep, _PAGE_DIRTY, 0);
323 return (old & _PAGE_DIRTY) != 0;
325 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
326 #define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \
327 ({ \
328 int __r; \
329 __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \
330 __r; \
333 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
334 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
335 pte_t *ptep)
337 unsigned long old;
339 if ((pte_val(*ptep) & _PAGE_RW) == 0)
340 return;
341 old = pte_update(mm, addr, ptep, _PAGE_RW, 0);
345 * We currently remove entries from the hashtable regardless of whether
346 * the entry was young or dirty. The generic routines only flush if the
347 * entry was young or dirty which is not good enough.
349 * We should be more intelligent about this but for the moment we override
350 * these functions and force a tlb flush unconditionally
352 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
353 #define ptep_clear_flush_young(__vma, __address, __ptep) \
354 ({ \
355 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
356 __ptep); \
357 __young; \
360 #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
361 #define ptep_clear_flush_dirty(__vma, __address, __ptep) \
362 ({ \
363 int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \
364 __ptep); \
365 __dirty; \
368 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
369 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
370 unsigned long addr, pte_t *ptep)
372 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0);
373 return __pte(old);
376 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
377 pte_t * ptep)
379 pte_update(mm, addr, ptep, ~0UL, 0);
383 * set_pte stores a linux PTE into the linux page table.
385 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
386 pte_t *ptep, pte_t pte)
388 if (pte_present(*ptep))
389 pte_clear(mm, addr, ptep);
390 pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
391 *ptep = pte;
394 /* Set the dirty and/or accessed bits atomically in a linux PTE, this
395 * function doesn't need to flush the hash entry
397 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
398 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
400 unsigned long bits = pte_val(entry) &
401 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
402 unsigned long old, tmp;
404 __asm__ __volatile__(
405 "1: ldarx %0,0,%4\n\
406 andi. %1,%0,%6\n\
407 bne- 1b \n\
408 or %0,%3,%0\n\
409 stdcx. %0,0,%4\n\
410 bne- 1b"
411 :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
412 :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
413 :"cc");
415 #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
416 do { \
417 __ptep_set_access_flags(__ptep, __entry, __dirty); \
418 flush_tlb_page_nohash(__vma, __address); \
419 } while(0)
422 * Macro to mark a page protection value as "uncacheable".
424 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
426 struct file;
427 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
428 unsigned long size, pgprot_t vma_prot);
429 #define __HAVE_PHYS_MEM_ACCESS_PROT
431 #define __HAVE_ARCH_PTE_SAME
432 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
434 #define pte_ERROR(e) \
435 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
436 #define pmd_ERROR(e) \
437 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
438 #define pgd_ERROR(e) \
439 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
441 extern pgd_t swapper_pg_dir[];
443 extern void paging_init(void);
445 /* Encode and de-code a swap entry */
446 #define __swp_type(entry) (((entry).val >> 1) & 0x3f)
447 #define __swp_offset(entry) ((entry).val >> 8)
448 #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
449 #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
450 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
451 #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
452 #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
453 #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
456 * kern_addr_valid is intended to indicate whether an address is a valid
457 * kernel address. Most 32-bit archs define it as always true (like this)
458 * but most 64-bit archs actually perform a test. What should we do here?
459 * The only use is in fs/ncpfs/dir.c
461 #define kern_addr_valid(addr) (1)
463 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
464 remap_pfn_range(vma, vaddr, pfn, size, prot)
466 void pgtable_cache_init(void);
469 * find_linux_pte returns the address of a linux pte for a given
470 * effective address and directory. If not found, it returns zero.
471 */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
473 pgd_t *pg;
474 pud_t *pu;
475 pmd_t *pm;
476 pte_t *pt = NULL;
478 pg = pgdir + pgd_index(ea);
479 if (!pgd_none(*pg)) {
480 pu = pud_offset(pg, ea);
481 if (!pud_none(*pu)) {
482 pm = pmd_offset(pu, ea);
483 if (pmd_present(*pm))
484 pt = pte_offset_kernel(pm, ea);
487 return pt;
490 #endif /* __ASSEMBLY__ */
492 #endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */