2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
10 * Alan Cox : Fixed the worst of the load
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
45 #include <linux/interrupt.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
60 #include <net/protocol.h>
63 #include <net/checksum.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
71 static struct kmem_cache
*skbuff_head_cache __read_mostly
;
72 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
75 * Keep out-of-line to prevent kernel bloat.
76 * __builtin_return_address is not used because it is not always
81 * skb_over_panic - private function
86 * Out of line support code for skb_put(). Not user callable.
88 void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
90 printk(KERN_EMERG
"skb_over_panic: text:%p len:%d put:%d head:%p "
91 "data:%p tail:%#lx end:%#lx dev:%s\n",
92 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
93 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
94 skb
->dev
? skb
->dev
->name
: "<NULL>");
99 * skb_under_panic - private function
104 * Out of line support code for skb_push(). Not user callable.
107 void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
109 printk(KERN_EMERG
"skb_under_panic: text:%p len:%d put:%d head:%p "
110 "data:%p tail:%#lx end:%#lx dev:%s\n",
111 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
112 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
113 skb
->dev
? skb
->dev
->name
: "<NULL>");
117 void skb_truesize_bug(struct sk_buff
*skb
)
119 printk(KERN_ERR
"SKB BUG: Invalid truesize (%u) "
120 "len=%u, sizeof(sk_buff)=%Zd\n",
121 skb
->truesize
, skb
->len
, sizeof(struct sk_buff
));
123 EXPORT_SYMBOL(skb_truesize_bug
);
125 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
126 * 'private' fields and also do memory statistics to find all the
132 * __alloc_skb - allocate a network buffer
133 * @size: size to allocate
134 * @gfp_mask: allocation mask
135 * @fclone: allocate from fclone cache instead of head cache
136 * and allocate a cloned (child) skb
137 * @node: numa node to allocate memory on
139 * Allocate a new &sk_buff. The returned buffer has no headroom and a
140 * tail room of size bytes. The object has a reference count of one.
141 * The return is the buffer. On a failure the return is %NULL.
143 * Buffers may only be allocated from interrupts using a @gfp_mask of
146 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
147 int fclone
, int node
)
149 struct kmem_cache
*cache
;
150 struct skb_shared_info
*shinfo
;
154 cache
= fclone
? skbuff_fclone_cache
: skbuff_head_cache
;
157 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
161 size
= SKB_DATA_ALIGN(size
);
162 data
= kmalloc_node_track_caller(size
+ sizeof(struct skb_shared_info
),
168 * See comment in sk_buff definition, just before the 'tail' member
170 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
171 skb
->truesize
= size
+ sizeof(struct sk_buff
);
172 atomic_set(&skb
->users
, 1);
175 skb_reset_tail_pointer(skb
);
176 skb
->end
= skb
->tail
+ size
;
177 /* make sure we initialize shinfo sequentially */
178 shinfo
= skb_shinfo(skb
);
179 atomic_set(&shinfo
->dataref
, 1);
180 shinfo
->nr_frags
= 0;
181 shinfo
->gso_size
= 0;
182 shinfo
->gso_segs
= 0;
183 shinfo
->gso_type
= 0;
184 shinfo
->ip6_frag_id
= 0;
185 shinfo
->frag_list
= NULL
;
188 struct sk_buff
*child
= skb
+ 1;
189 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
191 skb
->fclone
= SKB_FCLONE_ORIG
;
192 atomic_set(fclone_ref
, 1);
194 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
199 kmem_cache_free(cache
, skb
);
205 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
206 * @dev: network device to receive on
207 * @length: length to allocate
208 * @gfp_mask: get_free_pages mask, passed to alloc_skb
210 * Allocate a new &sk_buff and assign it a usage count of one. The
211 * buffer has unspecified headroom built in. Users should allocate
212 * the headroom they think they need without accounting for the
213 * built in space. The built in space is used for optimisations.
215 * %NULL is returned if there is no free memory.
217 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
218 unsigned int length
, gfp_t gfp_mask
)
220 int node
= dev
->dev
.parent
? dev_to_node(dev
->dev
.parent
) : -1;
223 skb
= __alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
, 0, node
);
225 skb_reserve(skb
, NET_SKB_PAD
);
231 static void skb_drop_list(struct sk_buff
**listp
)
233 struct sk_buff
*list
= *listp
;
238 struct sk_buff
*this = list
;
244 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
246 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
249 static void skb_clone_fraglist(struct sk_buff
*skb
)
251 struct sk_buff
*list
;
253 for (list
= skb_shinfo(skb
)->frag_list
; list
; list
= list
->next
)
257 static void skb_release_data(struct sk_buff
*skb
)
260 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
261 &skb_shinfo(skb
)->dataref
)) {
262 if (skb_shinfo(skb
)->nr_frags
) {
264 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
265 put_page(skb_shinfo(skb
)->frags
[i
].page
);
268 if (skb_shinfo(skb
)->frag_list
)
269 skb_drop_fraglist(skb
);
276 * Free an skbuff by memory without cleaning the state.
278 void kfree_skbmem(struct sk_buff
*skb
)
280 struct sk_buff
*other
;
281 atomic_t
*fclone_ref
;
283 skb_release_data(skb
);
284 switch (skb
->fclone
) {
285 case SKB_FCLONE_UNAVAILABLE
:
286 kmem_cache_free(skbuff_head_cache
, skb
);
289 case SKB_FCLONE_ORIG
:
290 fclone_ref
= (atomic_t
*) (skb
+ 2);
291 if (atomic_dec_and_test(fclone_ref
))
292 kmem_cache_free(skbuff_fclone_cache
, skb
);
295 case SKB_FCLONE_CLONE
:
296 fclone_ref
= (atomic_t
*) (skb
+ 1);
299 /* The clone portion is available for
300 * fast-cloning again.
302 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
304 if (atomic_dec_and_test(fclone_ref
))
305 kmem_cache_free(skbuff_fclone_cache
, other
);
311 * __kfree_skb - private function
314 * Free an sk_buff. Release anything attached to the buffer.
315 * Clean the state. This is an internal helper function. Users should
316 * always call kfree_skb
319 void __kfree_skb(struct sk_buff
*skb
)
321 dst_release(skb
->dst
);
323 secpath_put(skb
->sp
);
325 if (skb
->destructor
) {
327 skb
->destructor(skb
);
329 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
330 nf_conntrack_put(skb
->nfct
);
331 nf_conntrack_put_reasm(skb
->nfct_reasm
);
333 #ifdef CONFIG_BRIDGE_NETFILTER
334 nf_bridge_put(skb
->nf_bridge
);
336 /* XXX: IS this still necessary? - JHS */
337 #ifdef CONFIG_NET_SCHED
339 #ifdef CONFIG_NET_CLS_ACT
348 * kfree_skb - free an sk_buff
349 * @skb: buffer to free
351 * Drop a reference to the buffer and free it if the usage count has
354 void kfree_skb(struct sk_buff
*skb
)
358 if (likely(atomic_read(&skb
->users
) == 1))
360 else if (likely(!atomic_dec_and_test(&skb
->users
)))
366 * skb_clone - duplicate an sk_buff
367 * @skb: buffer to clone
368 * @gfp_mask: allocation priority
370 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
371 * copies share the same packet data but not structure. The new
372 * buffer has a reference count of 1. If the allocation fails the
373 * function returns %NULL otherwise the new buffer is returned.
375 * If this function is called from an interrupt gfp_mask() must be
379 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
384 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
385 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
386 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
387 n
->fclone
= SKB_FCLONE_CLONE
;
388 atomic_inc(fclone_ref
);
390 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
393 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
396 #define C(x) n->x = skb->x
398 n
->next
= n
->prev
= NULL
;
409 secpath_get(skb
->sp
);
411 memcpy(n
->cb
, skb
->cb
, sizeof(skb
->cb
));
422 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
426 n
->destructor
= NULL
;
429 #ifdef CONFIG_NET_SCHED
431 #ifdef CONFIG_NET_CLS_ACT
432 n
->tc_verd
= SET_TC_VERD(skb
->tc_verd
,0);
433 n
->tc_verd
= CLR_TC_OK2MUNGE(n
->tc_verd
);
434 n
->tc_verd
= CLR_TC_MUNGED(n
->tc_verd
);
437 skb_copy_secmark(n
, skb
);
440 atomic_set(&n
->users
, 1);
446 atomic_inc(&(skb_shinfo(skb
)->dataref
));
452 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
454 #ifndef NET_SKBUFF_DATA_USES_OFFSET
456 * Shift between the two data areas in bytes
458 unsigned long offset
= new->data
- old
->data
;
462 new->priority
= old
->priority
;
463 new->protocol
= old
->protocol
;
464 new->dst
= dst_clone(old
->dst
);
466 new->sp
= secpath_get(old
->sp
);
468 new->transport_header
= old
->transport_header
;
469 new->network_header
= old
->network_header
;
470 new->mac_header
= old
->mac_header
;
471 #ifndef NET_SKBUFF_DATA_USES_OFFSET
472 /* {transport,network,mac}_header are relative to skb->head */
473 new->transport_header
+= offset
;
474 new->network_header
+= offset
;
475 new->mac_header
+= offset
;
477 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
478 new->local_df
= old
->local_df
;
479 new->fclone
= SKB_FCLONE_UNAVAILABLE
;
480 new->pkt_type
= old
->pkt_type
;
481 new->tstamp
= old
->tstamp
;
482 new->destructor
= NULL
;
483 new->mark
= old
->mark
;
485 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
486 new->ipvs_property
= old
->ipvs_property
;
488 #ifdef CONFIG_NET_SCHED
489 #ifdef CONFIG_NET_CLS_ACT
490 new->tc_verd
= old
->tc_verd
;
492 new->tc_index
= old
->tc_index
;
494 skb_copy_secmark(new, old
);
495 atomic_set(&new->users
, 1);
496 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
497 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
498 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
502 * skb_copy - create private copy of an sk_buff
503 * @skb: buffer to copy
504 * @gfp_mask: allocation priority
506 * Make a copy of both an &sk_buff and its data. This is used when the
507 * caller wishes to modify the data and needs a private copy of the
508 * data to alter. Returns %NULL on failure or the pointer to the buffer
509 * on success. The returned buffer has a reference count of 1.
511 * As by-product this function converts non-linear &sk_buff to linear
512 * one, so that &sk_buff becomes completely private and caller is allowed
513 * to modify all the data of returned buffer. This means that this
514 * function is not recommended for use in circumstances when only
515 * header is going to be modified. Use pskb_copy() instead.
518 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
520 int headerlen
= skb
->data
- skb
->head
;
522 * Allocate the copy buffer
525 #ifdef NET_SKBUFF_DATA_USES_OFFSET
526 n
= alloc_skb(skb
->end
+ skb
->data_len
, gfp_mask
);
528 n
= alloc_skb(skb
->end
- skb
->head
+ skb
->data_len
, gfp_mask
);
533 /* Set the data pointer */
534 skb_reserve(n
, headerlen
);
535 /* Set the tail pointer and length */
536 skb_put(n
, skb
->len
);
538 n
->ip_summed
= skb
->ip_summed
;
540 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
543 copy_skb_header(n
, skb
);
549 * pskb_copy - create copy of an sk_buff with private head.
550 * @skb: buffer to copy
551 * @gfp_mask: allocation priority
553 * Make a copy of both an &sk_buff and part of its data, located
554 * in header. Fragmented data remain shared. This is used when
555 * the caller wishes to modify only header of &sk_buff and needs
556 * private copy of the header to alter. Returns %NULL on failure
557 * or the pointer to the buffer on success.
558 * The returned buffer has a reference count of 1.
561 struct sk_buff
*pskb_copy(struct sk_buff
*skb
, gfp_t gfp_mask
)
564 * Allocate the copy buffer
567 #ifdef NET_SKBUFF_DATA_USES_OFFSET
568 n
= alloc_skb(skb
->end
, gfp_mask
);
570 n
= alloc_skb(skb
->end
- skb
->head
, gfp_mask
);
575 /* Set the data pointer */
576 skb_reserve(n
, skb
->data
- skb
->head
);
577 /* Set the tail pointer and length */
578 skb_put(n
, skb_headlen(skb
));
580 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
582 n
->ip_summed
= skb
->ip_summed
;
584 n
->truesize
+= skb
->data_len
;
585 n
->data_len
= skb
->data_len
;
588 if (skb_shinfo(skb
)->nr_frags
) {
591 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
592 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
593 get_page(skb_shinfo(n
)->frags
[i
].page
);
595 skb_shinfo(n
)->nr_frags
= i
;
598 if (skb_shinfo(skb
)->frag_list
) {
599 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
600 skb_clone_fraglist(n
);
603 copy_skb_header(n
, skb
);
609 * pskb_expand_head - reallocate header of &sk_buff
610 * @skb: buffer to reallocate
611 * @nhead: room to add at head
612 * @ntail: room to add at tail
613 * @gfp_mask: allocation priority
615 * Expands (or creates identical copy, if &nhead and &ntail are zero)
616 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
617 * reference count of 1. Returns zero in the case of success or error,
618 * if expansion failed. In the last case, &sk_buff is not changed.
620 * All the pointers pointing into skb header may change and must be
621 * reloaded after call to this function.
624 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
629 #ifdef NET_SKBUFF_DATA_USES_OFFSET
630 int size
= nhead
+ skb
->end
+ ntail
;
632 int size
= nhead
+ (skb
->end
- skb
->head
) + ntail
;
639 size
= SKB_DATA_ALIGN(size
);
641 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
645 /* Copy only real data... and, alas, header. This should be
646 * optimized for the cases when header is void. */
647 memcpy(data
+ nhead
, skb
->head
,
648 #ifdef NET_SKBUFF_DATA_USES_OFFSET
651 skb
->tail
- skb
->head
);
653 memcpy(data
+ size
, skb_end_pointer(skb
),
654 sizeof(struct skb_shared_info
));
656 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
657 get_page(skb_shinfo(skb
)->frags
[i
].page
);
659 if (skb_shinfo(skb
)->frag_list
)
660 skb_clone_fraglist(skb
);
662 skb_release_data(skb
);
664 off
= (data
+ nhead
) - skb
->head
;
668 #ifdef NET_SKBUFF_DATA_USES_OFFSET
672 skb
->end
= skb
->head
+ size
;
674 /* {transport,network,mac}_header and tail are relative to skb->head */
676 skb
->transport_header
+= off
;
677 skb
->network_header
+= off
;
678 skb
->mac_header
+= off
;
681 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
688 /* Make private copy of skb with writable head and some headroom */
690 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
692 struct sk_buff
*skb2
;
693 int delta
= headroom
- skb_headroom(skb
);
696 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
698 skb2
= skb_clone(skb
, GFP_ATOMIC
);
699 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
710 * skb_copy_expand - copy and expand sk_buff
711 * @skb: buffer to copy
712 * @newheadroom: new free bytes at head
713 * @newtailroom: new free bytes at tail
714 * @gfp_mask: allocation priority
716 * Make a copy of both an &sk_buff and its data and while doing so
717 * allocate additional space.
719 * This is used when the caller wishes to modify the data and needs a
720 * private copy of the data to alter as well as more space for new fields.
721 * Returns %NULL on failure or the pointer to the buffer
722 * on success. The returned buffer has a reference count of 1.
724 * You must pass %GFP_ATOMIC as the allocation priority if this function
725 * is called from an interrupt.
727 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
728 * only by netfilter in the cases when checksum is recalculated? --ANK
730 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
731 int newheadroom
, int newtailroom
,
735 * Allocate the copy buffer
737 struct sk_buff
*n
= alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
739 int oldheadroom
= skb_headroom(skb
);
740 int head_copy_len
, head_copy_off
;
746 skb_reserve(n
, newheadroom
);
748 /* Set the tail pointer and length */
749 skb_put(n
, skb
->len
);
751 head_copy_len
= oldheadroom
;
753 if (newheadroom
<= head_copy_len
)
754 head_copy_len
= newheadroom
;
756 head_copy_off
= newheadroom
- head_copy_len
;
758 /* Copy the linear header and data. */
759 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
760 skb
->len
+ head_copy_len
))
763 copy_skb_header(n
, skb
);
765 #ifdef NET_SKBUFF_DATA_USES_OFFSET
766 off
= newheadroom
- oldheadroom
;
768 n
->transport_header
+= off
;
769 n
->network_header
+= off
;
770 n
->mac_header
+= off
;
776 * skb_pad - zero pad the tail of an skb
777 * @skb: buffer to pad
780 * Ensure that a buffer is followed by a padding area that is zero
781 * filled. Used by network drivers which may DMA or transfer data
782 * beyond the buffer end onto the wire.
784 * May return error in out of memory cases. The skb is freed on error.
787 int skb_pad(struct sk_buff
*skb
, int pad
)
792 /* If the skbuff is non linear tailroom is always zero.. */
793 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
794 memset(skb
->data
+skb
->len
, 0, pad
);
798 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
799 if (likely(skb_cloned(skb
) || ntail
> 0)) {
800 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
805 /* FIXME: The use of this function with non-linear skb's really needs
808 err
= skb_linearize(skb
);
812 memset(skb
->data
+ skb
->len
, 0, pad
);
820 /* Trims skb to length len. It can change skb pointers.
823 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
825 struct sk_buff
**fragp
;
826 struct sk_buff
*frag
;
827 int offset
= skb_headlen(skb
);
828 int nfrags
= skb_shinfo(skb
)->nr_frags
;
832 if (skb_cloned(skb
) &&
833 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
840 for (; i
< nfrags
; i
++) {
841 int end
= offset
+ skb_shinfo(skb
)->frags
[i
].size
;
848 skb_shinfo(skb
)->frags
[i
++].size
= len
- offset
;
851 skb_shinfo(skb
)->nr_frags
= i
;
853 for (; i
< nfrags
; i
++)
854 put_page(skb_shinfo(skb
)->frags
[i
].page
);
856 if (skb_shinfo(skb
)->frag_list
)
857 skb_drop_fraglist(skb
);
861 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
862 fragp
= &frag
->next
) {
863 int end
= offset
+ frag
->len
;
865 if (skb_shared(frag
)) {
866 struct sk_buff
*nfrag
;
868 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
869 if (unlikely(!nfrag
))
872 nfrag
->next
= frag
->next
;
884 unlikely((err
= pskb_trim(frag
, len
- offset
))))
888 skb_drop_list(&frag
->next
);
893 if (len
> skb_headlen(skb
)) {
894 skb
->data_len
-= skb
->len
- len
;
899 skb_set_tail_pointer(skb
, len
);
906 * __pskb_pull_tail - advance tail of skb header
907 * @skb: buffer to reallocate
908 * @delta: number of bytes to advance tail
910 * The function makes a sense only on a fragmented &sk_buff,
911 * it expands header moving its tail forward and copying necessary
912 * data from fragmented part.
914 * &sk_buff MUST have reference count of 1.
916 * Returns %NULL (and &sk_buff does not change) if pull failed
917 * or value of new tail of skb in the case of success.
919 * All the pointers pointing into skb header may change and must be
920 * reloaded after call to this function.
923 /* Moves tail of skb head forward, copying data from fragmented part,
924 * when it is necessary.
925 * 1. It may fail due to malloc failure.
926 * 2. It may change skb pointers.
928 * It is pretty complicated. Luckily, it is called only in exceptional cases.
930 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
932 /* If skb has not enough free space at tail, get new one
933 * plus 128 bytes for future expansions. If we have enough
934 * room at tail, reallocate without expansion only if skb is cloned.
936 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
938 if (eat
> 0 || skb_cloned(skb
)) {
939 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
944 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
947 /* Optimization: no fragments, no reasons to preestimate
948 * size of pulled pages. Superb.
950 if (!skb_shinfo(skb
)->frag_list
)
953 /* Estimate size of pulled pages. */
955 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
956 if (skb_shinfo(skb
)->frags
[i
].size
>= eat
)
958 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
961 /* If we need update frag list, we are in troubles.
962 * Certainly, it possible to add an offset to skb data,
963 * but taking into account that pulling is expected to
964 * be very rare operation, it is worth to fight against
965 * further bloating skb head and crucify ourselves here instead.
966 * Pure masohism, indeed. 8)8)
969 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
970 struct sk_buff
*clone
= NULL
;
971 struct sk_buff
*insp
= NULL
;
976 if (list
->len
<= eat
) {
977 /* Eaten as whole. */
982 /* Eaten partially. */
984 if (skb_shared(list
)) {
985 /* Sucks! We need to fork list. :-( */
986 clone
= skb_clone(list
, GFP_ATOMIC
);
992 /* This may be pulled without
996 if (!pskb_pull(list
, eat
)) {
1005 /* Free pulled out fragments. */
1006 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1007 skb_shinfo(skb
)->frag_list
= list
->next
;
1010 /* And insert new clone at head. */
1013 skb_shinfo(skb
)->frag_list
= clone
;
1016 /* Success! Now we may commit changes to skb data. */
1021 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1022 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
1023 put_page(skb_shinfo(skb
)->frags
[i
].page
);
1024 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1026 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1028 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1029 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
1035 skb_shinfo(skb
)->nr_frags
= k
;
1038 skb
->data_len
-= delta
;
1040 return skb_tail_pointer(skb
);
1043 /* Copy some data bits from skb to kernel buffer. */
1045 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1048 int start
= skb_headlen(skb
);
1050 if (offset
> (int)skb
->len
- len
)
1054 if ((copy
= start
- offset
) > 0) {
1057 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1058 if ((len
-= copy
) == 0)
1064 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1067 BUG_TRAP(start
<= offset
+ len
);
1069 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1070 if ((copy
= end
- offset
) > 0) {
1076 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
1078 vaddr
+ skb_shinfo(skb
)->frags
[i
].page_offset
+
1079 offset
- start
, copy
);
1080 kunmap_skb_frag(vaddr
);
1082 if ((len
-= copy
) == 0)
1090 if (skb_shinfo(skb
)->frag_list
) {
1091 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1093 for (; list
; list
= list
->next
) {
1096 BUG_TRAP(start
<= offset
+ len
);
1098 end
= start
+ list
->len
;
1099 if ((copy
= end
- offset
) > 0) {
1102 if (skb_copy_bits(list
, offset
- start
,
1105 if ((len
-= copy
) == 0)
1121 * skb_store_bits - store bits from kernel buffer to skb
1122 * @skb: destination buffer
1123 * @offset: offset in destination
1124 * @from: source buffer
1125 * @len: number of bytes to copy
1127 * Copy the specified number of bytes from the source buffer to the
1128 * destination skb. This function handles all the messy bits of
1129 * traversing fragment lists and such.
1132 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
1135 int start
= skb_headlen(skb
);
1137 if (offset
> (int)skb
->len
- len
)
1140 if ((copy
= start
- offset
) > 0) {
1143 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
1144 if ((len
-= copy
) == 0)
1150 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1151 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1154 BUG_TRAP(start
<= offset
+ len
);
1156 end
= start
+ frag
->size
;
1157 if ((copy
= end
- offset
) > 0) {
1163 vaddr
= kmap_skb_frag(frag
);
1164 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1166 kunmap_skb_frag(vaddr
);
1168 if ((len
-= copy
) == 0)
1176 if (skb_shinfo(skb
)->frag_list
) {
1177 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1179 for (; list
; list
= list
->next
) {
1182 BUG_TRAP(start
<= offset
+ len
);
1184 end
= start
+ list
->len
;
1185 if ((copy
= end
- offset
) > 0) {
1188 if (skb_store_bits(list
, offset
- start
,
1191 if ((len
-= copy
) == 0)
1206 EXPORT_SYMBOL(skb_store_bits
);
1208 /* Checksum skb data. */
1210 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1211 int len
, __wsum csum
)
1213 int start
= skb_headlen(skb
);
1214 int i
, copy
= start
- offset
;
1217 /* Checksum header. */
1221 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1222 if ((len
-= copy
) == 0)
1228 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1231 BUG_TRAP(start
<= offset
+ len
);
1233 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1234 if ((copy
= end
- offset
) > 0) {
1237 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1241 vaddr
= kmap_skb_frag(frag
);
1242 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1243 offset
- start
, copy
, 0);
1244 kunmap_skb_frag(vaddr
);
1245 csum
= csum_block_add(csum
, csum2
, pos
);
1254 if (skb_shinfo(skb
)->frag_list
) {
1255 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1257 for (; list
; list
= list
->next
) {
1260 BUG_TRAP(start
<= offset
+ len
);
1262 end
= start
+ list
->len
;
1263 if ((copy
= end
- offset
) > 0) {
1267 csum2
= skb_checksum(list
, offset
- start
,
1269 csum
= csum_block_add(csum
, csum2
, pos
);
1270 if ((len
-= copy
) == 0)
1283 /* Both of above in one bottle. */
1285 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1286 u8
*to
, int len
, __wsum csum
)
1288 int start
= skb_headlen(skb
);
1289 int i
, copy
= start
- offset
;
1296 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
1298 if ((len
-= copy
) == 0)
1305 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1308 BUG_TRAP(start
<= offset
+ len
);
1310 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1311 if ((copy
= end
- offset
) > 0) {
1314 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1318 vaddr
= kmap_skb_frag(frag
);
1319 csum2
= csum_partial_copy_nocheck(vaddr
+
1323 kunmap_skb_frag(vaddr
);
1324 csum
= csum_block_add(csum
, csum2
, pos
);
1334 if (skb_shinfo(skb
)->frag_list
) {
1335 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1337 for (; list
; list
= list
->next
) {
1341 BUG_TRAP(start
<= offset
+ len
);
1343 end
= start
+ list
->len
;
1344 if ((copy
= end
- offset
) > 0) {
1347 csum2
= skb_copy_and_csum_bits(list
,
1350 csum
= csum_block_add(csum
, csum2
, pos
);
1351 if ((len
-= copy
) == 0)
1364 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
1369 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1370 csstart
= skb
->csum_start
- skb_headroom(skb
);
1372 csstart
= skb_headlen(skb
);
1374 BUG_ON(csstart
> skb_headlen(skb
));
1376 skb_copy_from_linear_data(skb
, to
, csstart
);
1379 if (csstart
!= skb
->len
)
1380 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
1381 skb
->len
- csstart
, 0);
1383 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1384 long csstuff
= csstart
+ skb
->csum_offset
;
1386 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
1391 * skb_dequeue - remove from the head of the queue
1392 * @list: list to dequeue from
1394 * Remove the head of the list. The list lock is taken so the function
1395 * may be used safely with other locking list functions. The head item is
1396 * returned or %NULL if the list is empty.
1399 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
1401 unsigned long flags
;
1402 struct sk_buff
*result
;
1404 spin_lock_irqsave(&list
->lock
, flags
);
1405 result
= __skb_dequeue(list
);
1406 spin_unlock_irqrestore(&list
->lock
, flags
);
1411 * skb_dequeue_tail - remove from the tail of the queue
1412 * @list: list to dequeue from
1414 * Remove the tail of the list. The list lock is taken so the function
1415 * may be used safely with other locking list functions. The tail item is
1416 * returned or %NULL if the list is empty.
1418 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
1420 unsigned long flags
;
1421 struct sk_buff
*result
;
1423 spin_lock_irqsave(&list
->lock
, flags
);
1424 result
= __skb_dequeue_tail(list
);
1425 spin_unlock_irqrestore(&list
->lock
, flags
);
1430 * skb_queue_purge - empty a list
1431 * @list: list to empty
1433 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1434 * the list and one reference dropped. This function takes the list
1435 * lock and is atomic with respect to other list locking functions.
1437 void skb_queue_purge(struct sk_buff_head
*list
)
1439 struct sk_buff
*skb
;
1440 while ((skb
= skb_dequeue(list
)) != NULL
)
1445 * skb_queue_head - queue a buffer at the list head
1446 * @list: list to use
1447 * @newsk: buffer to queue
1449 * Queue a buffer at the start of the list. This function takes the
1450 * list lock and can be used safely with other locking &sk_buff functions
1453 * A buffer cannot be placed on two lists at the same time.
1455 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1457 unsigned long flags
;
1459 spin_lock_irqsave(&list
->lock
, flags
);
1460 __skb_queue_head(list
, newsk
);
1461 spin_unlock_irqrestore(&list
->lock
, flags
);
1465 * skb_queue_tail - queue a buffer at the list tail
1466 * @list: list to use
1467 * @newsk: buffer to queue
1469 * Queue a buffer at the tail of the list. This function takes the
1470 * list lock and can be used safely with other locking &sk_buff functions
1473 * A buffer cannot be placed on two lists at the same time.
1475 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1477 unsigned long flags
;
1479 spin_lock_irqsave(&list
->lock
, flags
);
1480 __skb_queue_tail(list
, newsk
);
1481 spin_unlock_irqrestore(&list
->lock
, flags
);
1485 * skb_unlink - remove a buffer from a list
1486 * @skb: buffer to remove
1487 * @list: list to use
1489 * Remove a packet from a list. The list locks are taken and this
1490 * function is atomic with respect to other list locked calls
1492 * You must know what list the SKB is on.
1494 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
1496 unsigned long flags
;
1498 spin_lock_irqsave(&list
->lock
, flags
);
1499 __skb_unlink(skb
, list
);
1500 spin_unlock_irqrestore(&list
->lock
, flags
);
1504 * skb_append - append a buffer
1505 * @old: buffer to insert after
1506 * @newsk: buffer to insert
1507 * @list: list to use
1509 * Place a packet after a given packet in a list. The list locks are taken
1510 * and this function is atomic with respect to other list locked calls.
1511 * A buffer cannot be placed on two lists at the same time.
1513 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1515 unsigned long flags
;
1517 spin_lock_irqsave(&list
->lock
, flags
);
1518 __skb_append(old
, newsk
, list
);
1519 spin_unlock_irqrestore(&list
->lock
, flags
);
1524 * skb_insert - insert a buffer
1525 * @old: buffer to insert before
1526 * @newsk: buffer to insert
1527 * @list: list to use
1529 * Place a packet before a given packet in a list. The list locks are
1530 * taken and this function is atomic with respect to other list locked
1533 * A buffer cannot be placed on two lists at the same time.
1535 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1537 unsigned long flags
;
1539 spin_lock_irqsave(&list
->lock
, flags
);
1540 __skb_insert(newsk
, old
->prev
, old
, list
);
1541 spin_unlock_irqrestore(&list
->lock
, flags
);
1544 static inline void skb_split_inside_header(struct sk_buff
*skb
,
1545 struct sk_buff
* skb1
,
1546 const u32 len
, const int pos
)
1550 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
1552 /* And move data appendix as is. */
1553 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1554 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1556 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
1557 skb_shinfo(skb
)->nr_frags
= 0;
1558 skb1
->data_len
= skb
->data_len
;
1559 skb1
->len
+= skb1
->data_len
;
1562 skb_set_tail_pointer(skb
, len
);
1565 static inline void skb_split_no_header(struct sk_buff
*skb
,
1566 struct sk_buff
* skb1
,
1567 const u32 len
, int pos
)
1570 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
1572 skb_shinfo(skb
)->nr_frags
= 0;
1573 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
1575 skb
->data_len
= len
- pos
;
1577 for (i
= 0; i
< nfrags
; i
++) {
1578 int size
= skb_shinfo(skb
)->frags
[i
].size
;
1580 if (pos
+ size
> len
) {
1581 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1585 * We have two variants in this case:
1586 * 1. Move all the frag to the second
1587 * part, if it is possible. F.e.
1588 * this approach is mandatory for TUX,
1589 * where splitting is expensive.
1590 * 2. Split is accurately. We make this.
1592 get_page(skb_shinfo(skb
)->frags
[i
].page
);
1593 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
1594 skb_shinfo(skb1
)->frags
[0].size
-= len
- pos
;
1595 skb_shinfo(skb
)->frags
[i
].size
= len
- pos
;
1596 skb_shinfo(skb
)->nr_frags
++;
1600 skb_shinfo(skb
)->nr_frags
++;
1603 skb_shinfo(skb1
)->nr_frags
= k
;
1607 * skb_split - Split fragmented skb to two parts at length len.
1608 * @skb: the buffer to split
1609 * @skb1: the buffer to receive the second part
1610 * @len: new length for skb
1612 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
1614 int pos
= skb_headlen(skb
);
1616 if (len
< pos
) /* Split line is inside header. */
1617 skb_split_inside_header(skb
, skb1
, len
, pos
);
1618 else /* Second chunk has no header, nothing to copy. */
1619 skb_split_no_header(skb
, skb1
, len
, pos
);
1623 * skb_prepare_seq_read - Prepare a sequential read of skb data
1624 * @skb: the buffer to read
1625 * @from: lower offset of data to be read
1626 * @to: upper offset of data to be read
1627 * @st: state variable
1629 * Initializes the specified state variable. Must be called before
1630 * invoking skb_seq_read() for the first time.
1632 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
1633 unsigned int to
, struct skb_seq_state
*st
)
1635 st
->lower_offset
= from
;
1636 st
->upper_offset
= to
;
1637 st
->root_skb
= st
->cur_skb
= skb
;
1638 st
->frag_idx
= st
->stepped_offset
= 0;
1639 st
->frag_data
= NULL
;
1643 * skb_seq_read - Sequentially read skb data
1644 * @consumed: number of bytes consumed by the caller so far
1645 * @data: destination pointer for data to be returned
1646 * @st: state variable
1648 * Reads a block of skb data at &consumed relative to the
1649 * lower offset specified to skb_prepare_seq_read(). Assigns
1650 * the head of the data block to &data and returns the length
1651 * of the block or 0 if the end of the skb data or the upper
1652 * offset has been reached.
1654 * The caller is not required to consume all of the data
1655 * returned, i.e. &consumed is typically set to the number
1656 * of bytes already consumed and the next call to
1657 * skb_seq_read() will return the remaining part of the block.
1659 * Note: The size of each block of data returned can be arbitary,
1660 * this limitation is the cost for zerocopy seqeuental
1661 * reads of potentially non linear data.
1663 * Note: Fragment lists within fragments are not implemented
1664 * at the moment, state->root_skb could be replaced with
1665 * a stack for this purpose.
1667 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
1668 struct skb_seq_state
*st
)
1670 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
1673 if (unlikely(abs_offset
>= st
->upper_offset
))
1677 block_limit
= skb_headlen(st
->cur_skb
);
1679 if (abs_offset
< block_limit
) {
1680 *data
= st
->cur_skb
->data
+ abs_offset
;
1681 return block_limit
- abs_offset
;
1684 if (st
->frag_idx
== 0 && !st
->frag_data
)
1685 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
1687 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
1688 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
1689 block_limit
= frag
->size
+ st
->stepped_offset
;
1691 if (abs_offset
< block_limit
) {
1693 st
->frag_data
= kmap_skb_frag(frag
);
1695 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
1696 (abs_offset
- st
->stepped_offset
);
1698 return block_limit
- abs_offset
;
1701 if (st
->frag_data
) {
1702 kunmap_skb_frag(st
->frag_data
);
1703 st
->frag_data
= NULL
;
1707 st
->stepped_offset
+= frag
->size
;
1710 if (st
->cur_skb
->next
) {
1711 st
->cur_skb
= st
->cur_skb
->next
;
1714 } else if (st
->root_skb
== st
->cur_skb
&&
1715 skb_shinfo(st
->root_skb
)->frag_list
) {
1716 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
1724 * skb_abort_seq_read - Abort a sequential read of skb data
1725 * @st: state variable
1727 * Must be called if skb_seq_read() was not called until it
1730 void skb_abort_seq_read(struct skb_seq_state
*st
)
1733 kunmap_skb_frag(st
->frag_data
);
1736 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1738 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
1739 struct ts_config
*conf
,
1740 struct ts_state
*state
)
1742 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
1745 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
1747 skb_abort_seq_read(TS_SKB_CB(state
));
1751 * skb_find_text - Find a text pattern in skb data
1752 * @skb: the buffer to look in
1753 * @from: search offset
1755 * @config: textsearch configuration
1756 * @state: uninitialized textsearch state variable
1758 * Finds a pattern in the skb data according to the specified
1759 * textsearch configuration. Use textsearch_next() to retrieve
1760 * subsequent occurrences of the pattern. Returns the offset
1761 * to the first occurrence or UINT_MAX if no match was found.
1763 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
1764 unsigned int to
, struct ts_config
*config
,
1765 struct ts_state
*state
)
1769 config
->get_next_block
= skb_ts_get_next_block
;
1770 config
->finish
= skb_ts_finish
;
1772 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
1774 ret
= textsearch_find(config
, state
);
1775 return (ret
<= to
- from
? ret
: UINT_MAX
);
1779 * skb_append_datato_frags: - append the user data to a skb
1780 * @sk: sock structure
1781 * @skb: skb structure to be appened with user data.
1782 * @getfrag: call back function to be used for getting the user data
1783 * @from: pointer to user message iov
1784 * @length: length of the iov message
1786 * Description: This procedure append the user data in the fragment part
1787 * of the skb if any page alloc fails user this procedure returns -ENOMEM
1789 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
1790 int (*getfrag
)(void *from
, char *to
, int offset
,
1791 int len
, int odd
, struct sk_buff
*skb
),
1792 void *from
, int length
)
1795 skb_frag_t
*frag
= NULL
;
1796 struct page
*page
= NULL
;
1802 /* Return error if we don't have space for new frag */
1803 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
1804 if (frg_cnt
>= MAX_SKB_FRAGS
)
1807 /* allocate a new page for next frag */
1808 page
= alloc_pages(sk
->sk_allocation
, 0);
1810 /* If alloc_page fails just return failure and caller will
1811 * free previous allocated pages by doing kfree_skb()
1816 /* initialize the next frag */
1817 sk
->sk_sndmsg_page
= page
;
1818 sk
->sk_sndmsg_off
= 0;
1819 skb_fill_page_desc(skb
, frg_cnt
, page
, 0, 0);
1820 skb
->truesize
+= PAGE_SIZE
;
1821 atomic_add(PAGE_SIZE
, &sk
->sk_wmem_alloc
);
1823 /* get the new initialized frag */
1824 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
1825 frag
= &skb_shinfo(skb
)->frags
[frg_cnt
- 1];
1827 /* copy the user data to page */
1828 left
= PAGE_SIZE
- frag
->page_offset
;
1829 copy
= (length
> left
)? left
: length
;
1831 ret
= getfrag(from
, (page_address(frag
->page
) +
1832 frag
->page_offset
+ frag
->size
),
1833 offset
, copy
, 0, skb
);
1837 /* copy was successful so update the size parameters */
1838 sk
->sk_sndmsg_off
+= copy
;
1841 skb
->data_len
+= copy
;
1845 } while (length
> 0);
1851 * skb_pull_rcsum - pull skb and update receive checksum
1852 * @skb: buffer to update
1853 * @start: start of data before pull
1854 * @len: length of data pulled
1856 * This function performs an skb_pull on the packet and updates
1857 * update the CHECKSUM_COMPLETE checksum. It should be used on
1858 * receive path processing instead of skb_pull unless you know
1859 * that the checksum difference is zero (e.g., a valid IP header)
1860 * or you are setting ip_summed to CHECKSUM_NONE.
1862 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
1864 BUG_ON(len
> skb
->len
);
1866 BUG_ON(skb
->len
< skb
->data_len
);
1867 skb_postpull_rcsum(skb
, skb
->data
, len
);
1868 return skb
->data
+= len
;
1871 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
1874 * skb_segment - Perform protocol segmentation on skb.
1875 * @skb: buffer to segment
1876 * @features: features for the output path (see dev->features)
1878 * This function performs segmentation on the given skb. It returns
1879 * the segment at the given position. It returns NULL if there are
1880 * no more segments to generate, or when an error is encountered.
1882 struct sk_buff
*skb_segment(struct sk_buff
*skb
, int features
)
1884 struct sk_buff
*segs
= NULL
;
1885 struct sk_buff
*tail
= NULL
;
1886 unsigned int mss
= skb_shinfo(skb
)->gso_size
;
1887 unsigned int doffset
= skb
->data
- skb_mac_header(skb
);
1888 unsigned int offset
= doffset
;
1889 unsigned int headroom
;
1891 int sg
= features
& NETIF_F_SG
;
1892 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1897 __skb_push(skb
, doffset
);
1898 headroom
= skb_headroom(skb
);
1899 pos
= skb_headlen(skb
);
1902 struct sk_buff
*nskb
;
1908 len
= skb
->len
- offset
;
1912 hsize
= skb_headlen(skb
) - offset
;
1915 if (hsize
> len
|| !sg
)
1918 nskb
= alloc_skb(hsize
+ doffset
+ headroom
, GFP_ATOMIC
);
1919 if (unlikely(!nskb
))
1928 nskb
->dev
= skb
->dev
;
1929 nskb
->priority
= skb
->priority
;
1930 nskb
->protocol
= skb
->protocol
;
1931 nskb
->dst
= dst_clone(skb
->dst
);
1932 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
1933 nskb
->pkt_type
= skb
->pkt_type
;
1934 nskb
->mac_len
= skb
->mac_len
;
1936 skb_reserve(nskb
, headroom
);
1937 skb_reset_mac_header(nskb
);
1938 skb_set_network_header(nskb
, skb
->mac_len
);
1939 nskb
->transport_header
= (nskb
->network_header
+
1940 skb_network_header_len(skb
));
1941 skb_copy_from_linear_data(skb
, skb_put(nskb
, doffset
),
1944 nskb
->csum
= skb_copy_and_csum_bits(skb
, offset
,
1950 frag
= skb_shinfo(nskb
)->frags
;
1953 nskb
->ip_summed
= CHECKSUM_PARTIAL
;
1954 nskb
->csum
= skb
->csum
;
1955 skb_copy_from_linear_data_offset(skb
, offset
,
1956 skb_put(nskb
, hsize
), hsize
);
1958 while (pos
< offset
+ len
) {
1959 BUG_ON(i
>= nfrags
);
1961 *frag
= skb_shinfo(skb
)->frags
[i
];
1962 get_page(frag
->page
);
1966 frag
->page_offset
+= offset
- pos
;
1967 frag
->size
-= offset
- pos
;
1972 if (pos
+ size
<= offset
+ len
) {
1976 frag
->size
-= pos
+ size
- (offset
+ len
);
1983 skb_shinfo(nskb
)->nr_frags
= k
;
1984 nskb
->data_len
= len
- hsize
;
1985 nskb
->len
+= nskb
->data_len
;
1986 nskb
->truesize
+= nskb
->data_len
;
1987 } while ((offset
+= len
) < skb
->len
);
1992 while ((skb
= segs
)) {
1996 return ERR_PTR(err
);
1999 EXPORT_SYMBOL_GPL(skb_segment
);
2001 void __init
skb_init(void)
2003 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
2004 sizeof(struct sk_buff
),
2006 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2008 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
2009 (2*sizeof(struct sk_buff
)) +
2012 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2017 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2018 * @skb: Socket buffer containing the buffers to be mapped
2019 * @sg: The scatter-gather list to map into
2020 * @offset: The offset into the buffer's contents to start mapping
2021 * @len: Length of buffer space to be mapped
2023 * Fill the specified scatter-gather list with mappings/pointers into a
2024 * region of the buffer space attached to a socket buffer.
2027 skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2029 int start
= skb_headlen(skb
);
2030 int i
, copy
= start
- offset
;
2036 sg
[elt
].page
= virt_to_page(skb
->data
+ offset
);
2037 sg
[elt
].offset
= (unsigned long)(skb
->data
+ offset
) % PAGE_SIZE
;
2038 sg
[elt
].length
= copy
;
2040 if ((len
-= copy
) == 0)
2045 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2048 BUG_TRAP(start
<= offset
+ len
);
2050 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
2051 if ((copy
= end
- offset
) > 0) {
2052 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2056 sg
[elt
].page
= frag
->page
;
2057 sg
[elt
].offset
= frag
->page_offset
+offset
-start
;
2058 sg
[elt
].length
= copy
;
2067 if (skb_shinfo(skb
)->frag_list
) {
2068 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
2070 for (; list
; list
= list
->next
) {
2073 BUG_TRAP(start
<= offset
+ len
);
2075 end
= start
+ list
->len
;
2076 if ((copy
= end
- offset
) > 0) {
2079 elt
+= skb_to_sgvec(list
, sg
+elt
, offset
- start
, copy
);
2080 if ((len
-= copy
) == 0)
2092 * skb_cow_data - Check that a socket buffer's data buffers are writable
2093 * @skb: The socket buffer to check.
2094 * @tailbits: Amount of trailing space to be added
2095 * @trailer: Returned pointer to the skb where the @tailbits space begins
2097 * Make sure that the data buffers attached to a socket buffer are
2098 * writable. If they are not, private copies are made of the data buffers
2099 * and the socket buffer is set to use these instead.
2101 * If @tailbits is given, make sure that there is space to write @tailbits
2102 * bytes of data beyond current end of socket buffer. @trailer will be
2103 * set to point to the skb in which this space begins.
2105 * The number of scatterlist elements required to completely map the
2106 * COW'd and extended socket buffer will be returned.
2108 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
2112 struct sk_buff
*skb1
, **skb_p
;
2114 /* If skb is cloned or its head is paged, reallocate
2115 * head pulling out all the pages (pages are considered not writable
2116 * at the moment even if they are anonymous).
2118 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
2119 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
2122 /* Easy case. Most of packets will go this way. */
2123 if (!skb_shinfo(skb
)->frag_list
) {
2124 /* A little of trouble, not enough of space for trailer.
2125 * This should not happen, when stack is tuned to generate
2126 * good frames. OK, on miss we reallocate and reserve even more
2127 * space, 128 bytes is fair. */
2129 if (skb_tailroom(skb
) < tailbits
&&
2130 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
2138 /* Misery. We are in troubles, going to mincer fragments... */
2141 skb_p
= &skb_shinfo(skb
)->frag_list
;
2144 while ((skb1
= *skb_p
) != NULL
) {
2147 /* The fragment is partially pulled by someone,
2148 * this can happen on input. Copy it and everything
2151 if (skb_shared(skb1
))
2154 /* If the skb is the last, worry about trailer. */
2156 if (skb1
->next
== NULL
&& tailbits
) {
2157 if (skb_shinfo(skb1
)->nr_frags
||
2158 skb_shinfo(skb1
)->frag_list
||
2159 skb_tailroom(skb1
) < tailbits
)
2160 ntail
= tailbits
+ 128;
2166 skb_shinfo(skb1
)->nr_frags
||
2167 skb_shinfo(skb1
)->frag_list
) {
2168 struct sk_buff
*skb2
;
2170 /* Fuck, we are miserable poor guys... */
2172 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
2174 skb2
= skb_copy_expand(skb1
,
2178 if (unlikely(skb2
== NULL
))
2182 skb_set_owner_w(skb2
, skb1
->sk
);
2184 /* Looking around. Are we still alive?
2185 * OK, link new skb, drop old one */
2187 skb2
->next
= skb1
->next
;
2194 skb_p
= &skb1
->next
;
2200 EXPORT_SYMBOL(___pskb_trim
);
2201 EXPORT_SYMBOL(__kfree_skb
);
2202 EXPORT_SYMBOL(kfree_skb
);
2203 EXPORT_SYMBOL(__pskb_pull_tail
);
2204 EXPORT_SYMBOL(__alloc_skb
);
2205 EXPORT_SYMBOL(__netdev_alloc_skb
);
2206 EXPORT_SYMBOL(pskb_copy
);
2207 EXPORT_SYMBOL(pskb_expand_head
);
2208 EXPORT_SYMBOL(skb_checksum
);
2209 EXPORT_SYMBOL(skb_clone
);
2210 EXPORT_SYMBOL(skb_clone_fraglist
);
2211 EXPORT_SYMBOL(skb_copy
);
2212 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
2213 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
2214 EXPORT_SYMBOL(skb_copy_bits
);
2215 EXPORT_SYMBOL(skb_copy_expand
);
2216 EXPORT_SYMBOL(skb_over_panic
);
2217 EXPORT_SYMBOL(skb_pad
);
2218 EXPORT_SYMBOL(skb_realloc_headroom
);
2219 EXPORT_SYMBOL(skb_under_panic
);
2220 EXPORT_SYMBOL(skb_dequeue
);
2221 EXPORT_SYMBOL(skb_dequeue_tail
);
2222 EXPORT_SYMBOL(skb_insert
);
2223 EXPORT_SYMBOL(skb_queue_purge
);
2224 EXPORT_SYMBOL(skb_queue_head
);
2225 EXPORT_SYMBOL(skb_queue_tail
);
2226 EXPORT_SYMBOL(skb_unlink
);
2227 EXPORT_SYMBOL(skb_append
);
2228 EXPORT_SYMBOL(skb_split
);
2229 EXPORT_SYMBOL(skb_prepare_seq_read
);
2230 EXPORT_SYMBOL(skb_seq_read
);
2231 EXPORT_SYMBOL(skb_abort_seq_read
);
2232 EXPORT_SYMBOL(skb_find_text
);
2233 EXPORT_SYMBOL(skb_append_datato_frags
);
2235 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
2236 EXPORT_SYMBOL_GPL(skb_cow_data
);