[IPV4]: Correct rp_filter help text.
[linux-2.6/verdex.git] / net / core / skbuff.c
blob142257307fa262a4141ffcf7d0b876304daf8ad3
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
9 * Fixes:
10 * Alan Cox : Fixed the worst of the load
11 * balancer bugs.
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
25 * NOTE:
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
52 #endif
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
60 #include <net/protocol.h>
61 #include <net/dst.h>
62 #include <net/sock.h>
63 #include <net/checksum.h>
64 #include <net/xfrm.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
69 #include "kmap_skb.h"
71 static struct kmem_cache *skbuff_head_cache __read_mostly;
72 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
75 * Keep out-of-line to prevent kernel bloat.
76 * __builtin_return_address is not used because it is not always
77 * reliable.
80 /**
81 * skb_over_panic - private function
82 * @skb: buffer
83 * @sz: size
84 * @here: address
86 * Out of line support code for skb_put(). Not user callable.
88 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
90 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 "data:%p tail:%#lx end:%#lx dev:%s\n",
92 here, skb->len, sz, skb->head, skb->data,
93 (unsigned long)skb->tail, (unsigned long)skb->end,
94 skb->dev ? skb->dev->name : "<NULL>");
95 BUG();
98 /**
99 * skb_under_panic - private function
100 * @skb: buffer
101 * @sz: size
102 * @here: address
104 * Out of line support code for skb_push(). Not user callable.
107 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
109 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
110 "data:%p tail:%#lx end:%#lx dev:%s\n",
111 here, skb->len, sz, skb->head, skb->data,
112 (unsigned long)skb->tail, (unsigned long)skb->end,
113 skb->dev ? skb->dev->name : "<NULL>");
114 BUG();
117 void skb_truesize_bug(struct sk_buff *skb)
119 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
120 "len=%u, sizeof(sk_buff)=%Zd\n",
121 skb->truesize, skb->len, sizeof(struct sk_buff));
123 EXPORT_SYMBOL(skb_truesize_bug);
125 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
126 * 'private' fields and also do memory statistics to find all the
127 * [BEEP] leaks.
132 * __alloc_skb - allocate a network buffer
133 * @size: size to allocate
134 * @gfp_mask: allocation mask
135 * @fclone: allocate from fclone cache instead of head cache
136 * and allocate a cloned (child) skb
137 * @node: numa node to allocate memory on
139 * Allocate a new &sk_buff. The returned buffer has no headroom and a
140 * tail room of size bytes. The object has a reference count of one.
141 * The return is the buffer. On a failure the return is %NULL.
143 * Buffers may only be allocated from interrupts using a @gfp_mask of
144 * %GFP_ATOMIC.
146 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
147 int fclone, int node)
149 struct kmem_cache *cache;
150 struct skb_shared_info *shinfo;
151 struct sk_buff *skb;
152 u8 *data;
154 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
156 /* Get the HEAD */
157 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
158 if (!skb)
159 goto out;
161 size = SKB_DATA_ALIGN(size);
162 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
163 gfp_mask, node);
164 if (!data)
165 goto nodata;
168 * See comment in sk_buff definition, just before the 'tail' member
170 memset(skb, 0, offsetof(struct sk_buff, tail));
171 skb->truesize = size + sizeof(struct sk_buff);
172 atomic_set(&skb->users, 1);
173 skb->head = data;
174 skb->data = data;
175 skb_reset_tail_pointer(skb);
176 skb->end = skb->tail + size;
177 /* make sure we initialize shinfo sequentially */
178 shinfo = skb_shinfo(skb);
179 atomic_set(&shinfo->dataref, 1);
180 shinfo->nr_frags = 0;
181 shinfo->gso_size = 0;
182 shinfo->gso_segs = 0;
183 shinfo->gso_type = 0;
184 shinfo->ip6_frag_id = 0;
185 shinfo->frag_list = NULL;
187 if (fclone) {
188 struct sk_buff *child = skb + 1;
189 atomic_t *fclone_ref = (atomic_t *) (child + 1);
191 skb->fclone = SKB_FCLONE_ORIG;
192 atomic_set(fclone_ref, 1);
194 child->fclone = SKB_FCLONE_UNAVAILABLE;
196 out:
197 return skb;
198 nodata:
199 kmem_cache_free(cache, skb);
200 skb = NULL;
201 goto out;
205 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
206 * @dev: network device to receive on
207 * @length: length to allocate
208 * @gfp_mask: get_free_pages mask, passed to alloc_skb
210 * Allocate a new &sk_buff and assign it a usage count of one. The
211 * buffer has unspecified headroom built in. Users should allocate
212 * the headroom they think they need without accounting for the
213 * built in space. The built in space is used for optimisations.
215 * %NULL is returned if there is no free memory.
217 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
218 unsigned int length, gfp_t gfp_mask)
220 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
221 struct sk_buff *skb;
223 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
224 if (likely(skb)) {
225 skb_reserve(skb, NET_SKB_PAD);
226 skb->dev = dev;
228 return skb;
231 static void skb_drop_list(struct sk_buff **listp)
233 struct sk_buff *list = *listp;
235 *listp = NULL;
237 do {
238 struct sk_buff *this = list;
239 list = list->next;
240 kfree_skb(this);
241 } while (list);
244 static inline void skb_drop_fraglist(struct sk_buff *skb)
246 skb_drop_list(&skb_shinfo(skb)->frag_list);
249 static void skb_clone_fraglist(struct sk_buff *skb)
251 struct sk_buff *list;
253 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
254 skb_get(list);
257 static void skb_release_data(struct sk_buff *skb)
259 if (!skb->cloned ||
260 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
261 &skb_shinfo(skb)->dataref)) {
262 if (skb_shinfo(skb)->nr_frags) {
263 int i;
264 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
265 put_page(skb_shinfo(skb)->frags[i].page);
268 if (skb_shinfo(skb)->frag_list)
269 skb_drop_fraglist(skb);
271 kfree(skb->head);
276 * Free an skbuff by memory without cleaning the state.
278 void kfree_skbmem(struct sk_buff *skb)
280 struct sk_buff *other;
281 atomic_t *fclone_ref;
283 skb_release_data(skb);
284 switch (skb->fclone) {
285 case SKB_FCLONE_UNAVAILABLE:
286 kmem_cache_free(skbuff_head_cache, skb);
287 break;
289 case SKB_FCLONE_ORIG:
290 fclone_ref = (atomic_t *) (skb + 2);
291 if (atomic_dec_and_test(fclone_ref))
292 kmem_cache_free(skbuff_fclone_cache, skb);
293 break;
295 case SKB_FCLONE_CLONE:
296 fclone_ref = (atomic_t *) (skb + 1);
297 other = skb - 1;
299 /* The clone portion is available for
300 * fast-cloning again.
302 skb->fclone = SKB_FCLONE_UNAVAILABLE;
304 if (atomic_dec_and_test(fclone_ref))
305 kmem_cache_free(skbuff_fclone_cache, other);
306 break;
311 * __kfree_skb - private function
312 * @skb: buffer
314 * Free an sk_buff. Release anything attached to the buffer.
315 * Clean the state. This is an internal helper function. Users should
316 * always call kfree_skb
319 void __kfree_skb(struct sk_buff *skb)
321 dst_release(skb->dst);
322 #ifdef CONFIG_XFRM
323 secpath_put(skb->sp);
324 #endif
325 if (skb->destructor) {
326 WARN_ON(in_irq());
327 skb->destructor(skb);
329 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
330 nf_conntrack_put(skb->nfct);
331 nf_conntrack_put_reasm(skb->nfct_reasm);
332 #endif
333 #ifdef CONFIG_BRIDGE_NETFILTER
334 nf_bridge_put(skb->nf_bridge);
335 #endif
336 /* XXX: IS this still necessary? - JHS */
337 #ifdef CONFIG_NET_SCHED
338 skb->tc_index = 0;
339 #ifdef CONFIG_NET_CLS_ACT
340 skb->tc_verd = 0;
341 #endif
342 #endif
344 kfree_skbmem(skb);
348 * kfree_skb - free an sk_buff
349 * @skb: buffer to free
351 * Drop a reference to the buffer and free it if the usage count has
352 * hit zero.
354 void kfree_skb(struct sk_buff *skb)
356 if (unlikely(!skb))
357 return;
358 if (likely(atomic_read(&skb->users) == 1))
359 smp_rmb();
360 else if (likely(!atomic_dec_and_test(&skb->users)))
361 return;
362 __kfree_skb(skb);
366 * skb_clone - duplicate an sk_buff
367 * @skb: buffer to clone
368 * @gfp_mask: allocation priority
370 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
371 * copies share the same packet data but not structure. The new
372 * buffer has a reference count of 1. If the allocation fails the
373 * function returns %NULL otherwise the new buffer is returned.
375 * If this function is called from an interrupt gfp_mask() must be
376 * %GFP_ATOMIC.
379 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
381 struct sk_buff *n;
383 n = skb + 1;
384 if (skb->fclone == SKB_FCLONE_ORIG &&
385 n->fclone == SKB_FCLONE_UNAVAILABLE) {
386 atomic_t *fclone_ref = (atomic_t *) (n + 1);
387 n->fclone = SKB_FCLONE_CLONE;
388 atomic_inc(fclone_ref);
389 } else {
390 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
391 if (!n)
392 return NULL;
393 n->fclone = SKB_FCLONE_UNAVAILABLE;
396 #define C(x) n->x = skb->x
398 n->next = n->prev = NULL;
399 n->sk = NULL;
400 C(tstamp);
401 C(dev);
402 C(transport_header);
403 C(network_header);
404 C(mac_header);
405 C(dst);
406 dst_clone(skb->dst);
407 C(sp);
408 #ifdef CONFIG_INET
409 secpath_get(skb->sp);
410 #endif
411 memcpy(n->cb, skb->cb, sizeof(skb->cb));
412 C(len);
413 C(data_len);
414 C(mac_len);
415 C(csum);
416 C(local_df);
417 n->cloned = 1;
418 n->nohdr = 0;
419 C(pkt_type);
420 C(ip_summed);
421 C(priority);
422 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
423 C(ipvs_property);
424 #endif
425 C(protocol);
426 n->destructor = NULL;
427 C(mark);
428 __nf_copy(n, skb);
429 #ifdef CONFIG_NET_SCHED
430 C(tc_index);
431 #ifdef CONFIG_NET_CLS_ACT
432 n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
433 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
434 n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
435 C(iif);
436 #endif
437 skb_copy_secmark(n, skb);
438 #endif
439 C(truesize);
440 atomic_set(&n->users, 1);
441 C(head);
442 C(data);
443 C(tail);
444 C(end);
446 atomic_inc(&(skb_shinfo(skb)->dataref));
447 skb->cloned = 1;
449 return n;
452 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
454 #ifndef NET_SKBUFF_DATA_USES_OFFSET
456 * Shift between the two data areas in bytes
458 unsigned long offset = new->data - old->data;
459 #endif
460 new->sk = NULL;
461 new->dev = old->dev;
462 new->priority = old->priority;
463 new->protocol = old->protocol;
464 new->dst = dst_clone(old->dst);
465 #ifdef CONFIG_INET
466 new->sp = secpath_get(old->sp);
467 #endif
468 new->transport_header = old->transport_header;
469 new->network_header = old->network_header;
470 new->mac_header = old->mac_header;
471 #ifndef NET_SKBUFF_DATA_USES_OFFSET
472 /* {transport,network,mac}_header are relative to skb->head */
473 new->transport_header += offset;
474 new->network_header += offset;
475 new->mac_header += offset;
476 #endif
477 memcpy(new->cb, old->cb, sizeof(old->cb));
478 new->local_df = old->local_df;
479 new->fclone = SKB_FCLONE_UNAVAILABLE;
480 new->pkt_type = old->pkt_type;
481 new->tstamp = old->tstamp;
482 new->destructor = NULL;
483 new->mark = old->mark;
484 __nf_copy(new, old);
485 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
486 new->ipvs_property = old->ipvs_property;
487 #endif
488 #ifdef CONFIG_NET_SCHED
489 #ifdef CONFIG_NET_CLS_ACT
490 new->tc_verd = old->tc_verd;
491 #endif
492 new->tc_index = old->tc_index;
493 #endif
494 skb_copy_secmark(new, old);
495 atomic_set(&new->users, 1);
496 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
497 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
498 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
502 * skb_copy - create private copy of an sk_buff
503 * @skb: buffer to copy
504 * @gfp_mask: allocation priority
506 * Make a copy of both an &sk_buff and its data. This is used when the
507 * caller wishes to modify the data and needs a private copy of the
508 * data to alter. Returns %NULL on failure or the pointer to the buffer
509 * on success. The returned buffer has a reference count of 1.
511 * As by-product this function converts non-linear &sk_buff to linear
512 * one, so that &sk_buff becomes completely private and caller is allowed
513 * to modify all the data of returned buffer. This means that this
514 * function is not recommended for use in circumstances when only
515 * header is going to be modified. Use pskb_copy() instead.
518 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
520 int headerlen = skb->data - skb->head;
522 * Allocate the copy buffer
524 struct sk_buff *n;
525 #ifdef NET_SKBUFF_DATA_USES_OFFSET
526 n = alloc_skb(skb->end + skb->data_len, gfp_mask);
527 #else
528 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
529 #endif
530 if (!n)
531 return NULL;
533 /* Set the data pointer */
534 skb_reserve(n, headerlen);
535 /* Set the tail pointer and length */
536 skb_put(n, skb->len);
537 n->csum = skb->csum;
538 n->ip_summed = skb->ip_summed;
540 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
541 BUG();
543 copy_skb_header(n, skb);
544 return n;
549 * pskb_copy - create copy of an sk_buff with private head.
550 * @skb: buffer to copy
551 * @gfp_mask: allocation priority
553 * Make a copy of both an &sk_buff and part of its data, located
554 * in header. Fragmented data remain shared. This is used when
555 * the caller wishes to modify only header of &sk_buff and needs
556 * private copy of the header to alter. Returns %NULL on failure
557 * or the pointer to the buffer on success.
558 * The returned buffer has a reference count of 1.
561 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
564 * Allocate the copy buffer
566 struct sk_buff *n;
567 #ifdef NET_SKBUFF_DATA_USES_OFFSET
568 n = alloc_skb(skb->end, gfp_mask);
569 #else
570 n = alloc_skb(skb->end - skb->head, gfp_mask);
571 #endif
572 if (!n)
573 goto out;
575 /* Set the data pointer */
576 skb_reserve(n, skb->data - skb->head);
577 /* Set the tail pointer and length */
578 skb_put(n, skb_headlen(skb));
579 /* Copy the bytes */
580 skb_copy_from_linear_data(skb, n->data, n->len);
581 n->csum = skb->csum;
582 n->ip_summed = skb->ip_summed;
584 n->truesize += skb->data_len;
585 n->data_len = skb->data_len;
586 n->len = skb->len;
588 if (skb_shinfo(skb)->nr_frags) {
589 int i;
591 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
592 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
593 get_page(skb_shinfo(n)->frags[i].page);
595 skb_shinfo(n)->nr_frags = i;
598 if (skb_shinfo(skb)->frag_list) {
599 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
600 skb_clone_fraglist(n);
603 copy_skb_header(n, skb);
604 out:
605 return n;
609 * pskb_expand_head - reallocate header of &sk_buff
610 * @skb: buffer to reallocate
611 * @nhead: room to add at head
612 * @ntail: room to add at tail
613 * @gfp_mask: allocation priority
615 * Expands (or creates identical copy, if &nhead and &ntail are zero)
616 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
617 * reference count of 1. Returns zero in the case of success or error,
618 * if expansion failed. In the last case, &sk_buff is not changed.
620 * All the pointers pointing into skb header may change and must be
621 * reloaded after call to this function.
624 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
625 gfp_t gfp_mask)
627 int i;
628 u8 *data;
629 #ifdef NET_SKBUFF_DATA_USES_OFFSET
630 int size = nhead + skb->end + ntail;
631 #else
632 int size = nhead + (skb->end - skb->head) + ntail;
633 #endif
634 long off;
636 if (skb_shared(skb))
637 BUG();
639 size = SKB_DATA_ALIGN(size);
641 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
642 if (!data)
643 goto nodata;
645 /* Copy only real data... and, alas, header. This should be
646 * optimized for the cases when header is void. */
647 memcpy(data + nhead, skb->head,
648 #ifdef NET_SKBUFF_DATA_USES_OFFSET
649 skb->tail);
650 #else
651 skb->tail - skb->head);
652 #endif
653 memcpy(data + size, skb_end_pointer(skb),
654 sizeof(struct skb_shared_info));
656 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
657 get_page(skb_shinfo(skb)->frags[i].page);
659 if (skb_shinfo(skb)->frag_list)
660 skb_clone_fraglist(skb);
662 skb_release_data(skb);
664 off = (data + nhead) - skb->head;
666 skb->head = data;
667 skb->data += off;
668 #ifdef NET_SKBUFF_DATA_USES_OFFSET
669 skb->end = size;
670 off = nhead;
671 #else
672 skb->end = skb->head + size;
673 #endif
674 /* {transport,network,mac}_header and tail are relative to skb->head */
675 skb->tail += off;
676 skb->transport_header += off;
677 skb->network_header += off;
678 skb->mac_header += off;
679 skb->cloned = 0;
680 skb->nohdr = 0;
681 atomic_set(&skb_shinfo(skb)->dataref, 1);
682 return 0;
684 nodata:
685 return -ENOMEM;
688 /* Make private copy of skb with writable head and some headroom */
690 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
692 struct sk_buff *skb2;
693 int delta = headroom - skb_headroom(skb);
695 if (delta <= 0)
696 skb2 = pskb_copy(skb, GFP_ATOMIC);
697 else {
698 skb2 = skb_clone(skb, GFP_ATOMIC);
699 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
700 GFP_ATOMIC)) {
701 kfree_skb(skb2);
702 skb2 = NULL;
705 return skb2;
710 * skb_copy_expand - copy and expand sk_buff
711 * @skb: buffer to copy
712 * @newheadroom: new free bytes at head
713 * @newtailroom: new free bytes at tail
714 * @gfp_mask: allocation priority
716 * Make a copy of both an &sk_buff and its data and while doing so
717 * allocate additional space.
719 * This is used when the caller wishes to modify the data and needs a
720 * private copy of the data to alter as well as more space for new fields.
721 * Returns %NULL on failure or the pointer to the buffer
722 * on success. The returned buffer has a reference count of 1.
724 * You must pass %GFP_ATOMIC as the allocation priority if this function
725 * is called from an interrupt.
727 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
728 * only by netfilter in the cases when checksum is recalculated? --ANK
730 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
731 int newheadroom, int newtailroom,
732 gfp_t gfp_mask)
735 * Allocate the copy buffer
737 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
738 gfp_mask);
739 int oldheadroom = skb_headroom(skb);
740 int head_copy_len, head_copy_off;
741 int off = 0;
743 if (!n)
744 return NULL;
746 skb_reserve(n, newheadroom);
748 /* Set the tail pointer and length */
749 skb_put(n, skb->len);
751 head_copy_len = oldheadroom;
752 head_copy_off = 0;
753 if (newheadroom <= head_copy_len)
754 head_copy_len = newheadroom;
755 else
756 head_copy_off = newheadroom - head_copy_len;
758 /* Copy the linear header and data. */
759 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
760 skb->len + head_copy_len))
761 BUG();
763 copy_skb_header(n, skb);
765 #ifdef NET_SKBUFF_DATA_USES_OFFSET
766 off = newheadroom - oldheadroom;
767 #endif
768 n->transport_header += off;
769 n->network_header += off;
770 n->mac_header += off;
772 return n;
776 * skb_pad - zero pad the tail of an skb
777 * @skb: buffer to pad
778 * @pad: space to pad
780 * Ensure that a buffer is followed by a padding area that is zero
781 * filled. Used by network drivers which may DMA or transfer data
782 * beyond the buffer end onto the wire.
784 * May return error in out of memory cases. The skb is freed on error.
787 int skb_pad(struct sk_buff *skb, int pad)
789 int err;
790 int ntail;
792 /* If the skbuff is non linear tailroom is always zero.. */
793 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
794 memset(skb->data+skb->len, 0, pad);
795 return 0;
798 ntail = skb->data_len + pad - (skb->end - skb->tail);
799 if (likely(skb_cloned(skb) || ntail > 0)) {
800 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
801 if (unlikely(err))
802 goto free_skb;
805 /* FIXME: The use of this function with non-linear skb's really needs
806 * to be audited.
808 err = skb_linearize(skb);
809 if (unlikely(err))
810 goto free_skb;
812 memset(skb->data + skb->len, 0, pad);
813 return 0;
815 free_skb:
816 kfree_skb(skb);
817 return err;
820 /* Trims skb to length len. It can change skb pointers.
823 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
825 struct sk_buff **fragp;
826 struct sk_buff *frag;
827 int offset = skb_headlen(skb);
828 int nfrags = skb_shinfo(skb)->nr_frags;
829 int i;
830 int err;
832 if (skb_cloned(skb) &&
833 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
834 return err;
836 i = 0;
837 if (offset >= len)
838 goto drop_pages;
840 for (; i < nfrags; i++) {
841 int end = offset + skb_shinfo(skb)->frags[i].size;
843 if (end < len) {
844 offset = end;
845 continue;
848 skb_shinfo(skb)->frags[i++].size = len - offset;
850 drop_pages:
851 skb_shinfo(skb)->nr_frags = i;
853 for (; i < nfrags; i++)
854 put_page(skb_shinfo(skb)->frags[i].page);
856 if (skb_shinfo(skb)->frag_list)
857 skb_drop_fraglist(skb);
858 goto done;
861 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
862 fragp = &frag->next) {
863 int end = offset + frag->len;
865 if (skb_shared(frag)) {
866 struct sk_buff *nfrag;
868 nfrag = skb_clone(frag, GFP_ATOMIC);
869 if (unlikely(!nfrag))
870 return -ENOMEM;
872 nfrag->next = frag->next;
873 kfree_skb(frag);
874 frag = nfrag;
875 *fragp = frag;
878 if (end < len) {
879 offset = end;
880 continue;
883 if (end > len &&
884 unlikely((err = pskb_trim(frag, len - offset))))
885 return err;
887 if (frag->next)
888 skb_drop_list(&frag->next);
889 break;
892 done:
893 if (len > skb_headlen(skb)) {
894 skb->data_len -= skb->len - len;
895 skb->len = len;
896 } else {
897 skb->len = len;
898 skb->data_len = 0;
899 skb_set_tail_pointer(skb, len);
902 return 0;
906 * __pskb_pull_tail - advance tail of skb header
907 * @skb: buffer to reallocate
908 * @delta: number of bytes to advance tail
910 * The function makes a sense only on a fragmented &sk_buff,
911 * it expands header moving its tail forward and copying necessary
912 * data from fragmented part.
914 * &sk_buff MUST have reference count of 1.
916 * Returns %NULL (and &sk_buff does not change) if pull failed
917 * or value of new tail of skb in the case of success.
919 * All the pointers pointing into skb header may change and must be
920 * reloaded after call to this function.
923 /* Moves tail of skb head forward, copying data from fragmented part,
924 * when it is necessary.
925 * 1. It may fail due to malloc failure.
926 * 2. It may change skb pointers.
928 * It is pretty complicated. Luckily, it is called only in exceptional cases.
930 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
932 /* If skb has not enough free space at tail, get new one
933 * plus 128 bytes for future expansions. If we have enough
934 * room at tail, reallocate without expansion only if skb is cloned.
936 int i, k, eat = (skb->tail + delta) - skb->end;
938 if (eat > 0 || skb_cloned(skb)) {
939 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
940 GFP_ATOMIC))
941 return NULL;
944 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
945 BUG();
947 /* Optimization: no fragments, no reasons to preestimate
948 * size of pulled pages. Superb.
950 if (!skb_shinfo(skb)->frag_list)
951 goto pull_pages;
953 /* Estimate size of pulled pages. */
954 eat = delta;
955 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
956 if (skb_shinfo(skb)->frags[i].size >= eat)
957 goto pull_pages;
958 eat -= skb_shinfo(skb)->frags[i].size;
961 /* If we need update frag list, we are in troubles.
962 * Certainly, it possible to add an offset to skb data,
963 * but taking into account that pulling is expected to
964 * be very rare operation, it is worth to fight against
965 * further bloating skb head and crucify ourselves here instead.
966 * Pure masohism, indeed. 8)8)
968 if (eat) {
969 struct sk_buff *list = skb_shinfo(skb)->frag_list;
970 struct sk_buff *clone = NULL;
971 struct sk_buff *insp = NULL;
973 do {
974 BUG_ON(!list);
976 if (list->len <= eat) {
977 /* Eaten as whole. */
978 eat -= list->len;
979 list = list->next;
980 insp = list;
981 } else {
982 /* Eaten partially. */
984 if (skb_shared(list)) {
985 /* Sucks! We need to fork list. :-( */
986 clone = skb_clone(list, GFP_ATOMIC);
987 if (!clone)
988 return NULL;
989 insp = list->next;
990 list = clone;
991 } else {
992 /* This may be pulled without
993 * problems. */
994 insp = list;
996 if (!pskb_pull(list, eat)) {
997 if (clone)
998 kfree_skb(clone);
999 return NULL;
1001 break;
1003 } while (eat);
1005 /* Free pulled out fragments. */
1006 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1007 skb_shinfo(skb)->frag_list = list->next;
1008 kfree_skb(list);
1010 /* And insert new clone at head. */
1011 if (clone) {
1012 clone->next = list;
1013 skb_shinfo(skb)->frag_list = clone;
1016 /* Success! Now we may commit changes to skb data. */
1018 pull_pages:
1019 eat = delta;
1020 k = 0;
1021 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1022 if (skb_shinfo(skb)->frags[i].size <= eat) {
1023 put_page(skb_shinfo(skb)->frags[i].page);
1024 eat -= skb_shinfo(skb)->frags[i].size;
1025 } else {
1026 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1027 if (eat) {
1028 skb_shinfo(skb)->frags[k].page_offset += eat;
1029 skb_shinfo(skb)->frags[k].size -= eat;
1030 eat = 0;
1032 k++;
1035 skb_shinfo(skb)->nr_frags = k;
1037 skb->tail += delta;
1038 skb->data_len -= delta;
1040 return skb_tail_pointer(skb);
1043 /* Copy some data bits from skb to kernel buffer. */
1045 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1047 int i, copy;
1048 int start = skb_headlen(skb);
1050 if (offset > (int)skb->len - len)
1051 goto fault;
1053 /* Copy header. */
1054 if ((copy = start - offset) > 0) {
1055 if (copy > len)
1056 copy = len;
1057 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1058 if ((len -= copy) == 0)
1059 return 0;
1060 offset += copy;
1061 to += copy;
1064 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1065 int end;
1067 BUG_TRAP(start <= offset + len);
1069 end = start + skb_shinfo(skb)->frags[i].size;
1070 if ((copy = end - offset) > 0) {
1071 u8 *vaddr;
1073 if (copy > len)
1074 copy = len;
1076 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1077 memcpy(to,
1078 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1079 offset - start, copy);
1080 kunmap_skb_frag(vaddr);
1082 if ((len -= copy) == 0)
1083 return 0;
1084 offset += copy;
1085 to += copy;
1087 start = end;
1090 if (skb_shinfo(skb)->frag_list) {
1091 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1093 for (; list; list = list->next) {
1094 int end;
1096 BUG_TRAP(start <= offset + len);
1098 end = start + list->len;
1099 if ((copy = end - offset) > 0) {
1100 if (copy > len)
1101 copy = len;
1102 if (skb_copy_bits(list, offset - start,
1103 to, copy))
1104 goto fault;
1105 if ((len -= copy) == 0)
1106 return 0;
1107 offset += copy;
1108 to += copy;
1110 start = end;
1113 if (!len)
1114 return 0;
1116 fault:
1117 return -EFAULT;
1121 * skb_store_bits - store bits from kernel buffer to skb
1122 * @skb: destination buffer
1123 * @offset: offset in destination
1124 * @from: source buffer
1125 * @len: number of bytes to copy
1127 * Copy the specified number of bytes from the source buffer to the
1128 * destination skb. This function handles all the messy bits of
1129 * traversing fragment lists and such.
1132 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1134 int i, copy;
1135 int start = skb_headlen(skb);
1137 if (offset > (int)skb->len - len)
1138 goto fault;
1140 if ((copy = start - offset) > 0) {
1141 if (copy > len)
1142 copy = len;
1143 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1144 if ((len -= copy) == 0)
1145 return 0;
1146 offset += copy;
1147 from += copy;
1150 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1151 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1152 int end;
1154 BUG_TRAP(start <= offset + len);
1156 end = start + frag->size;
1157 if ((copy = end - offset) > 0) {
1158 u8 *vaddr;
1160 if (copy > len)
1161 copy = len;
1163 vaddr = kmap_skb_frag(frag);
1164 memcpy(vaddr + frag->page_offset + offset - start,
1165 from, copy);
1166 kunmap_skb_frag(vaddr);
1168 if ((len -= copy) == 0)
1169 return 0;
1170 offset += copy;
1171 from += copy;
1173 start = end;
1176 if (skb_shinfo(skb)->frag_list) {
1177 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1179 for (; list; list = list->next) {
1180 int end;
1182 BUG_TRAP(start <= offset + len);
1184 end = start + list->len;
1185 if ((copy = end - offset) > 0) {
1186 if (copy > len)
1187 copy = len;
1188 if (skb_store_bits(list, offset - start,
1189 from, copy))
1190 goto fault;
1191 if ((len -= copy) == 0)
1192 return 0;
1193 offset += copy;
1194 from += copy;
1196 start = end;
1199 if (!len)
1200 return 0;
1202 fault:
1203 return -EFAULT;
1206 EXPORT_SYMBOL(skb_store_bits);
1208 /* Checksum skb data. */
1210 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1211 int len, __wsum csum)
1213 int start = skb_headlen(skb);
1214 int i, copy = start - offset;
1215 int pos = 0;
1217 /* Checksum header. */
1218 if (copy > 0) {
1219 if (copy > len)
1220 copy = len;
1221 csum = csum_partial(skb->data + offset, copy, csum);
1222 if ((len -= copy) == 0)
1223 return csum;
1224 offset += copy;
1225 pos = copy;
1228 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1229 int end;
1231 BUG_TRAP(start <= offset + len);
1233 end = start + skb_shinfo(skb)->frags[i].size;
1234 if ((copy = end - offset) > 0) {
1235 __wsum csum2;
1236 u8 *vaddr;
1237 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1239 if (copy > len)
1240 copy = len;
1241 vaddr = kmap_skb_frag(frag);
1242 csum2 = csum_partial(vaddr + frag->page_offset +
1243 offset - start, copy, 0);
1244 kunmap_skb_frag(vaddr);
1245 csum = csum_block_add(csum, csum2, pos);
1246 if (!(len -= copy))
1247 return csum;
1248 offset += copy;
1249 pos += copy;
1251 start = end;
1254 if (skb_shinfo(skb)->frag_list) {
1255 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1257 for (; list; list = list->next) {
1258 int end;
1260 BUG_TRAP(start <= offset + len);
1262 end = start + list->len;
1263 if ((copy = end - offset) > 0) {
1264 __wsum csum2;
1265 if (copy > len)
1266 copy = len;
1267 csum2 = skb_checksum(list, offset - start,
1268 copy, 0);
1269 csum = csum_block_add(csum, csum2, pos);
1270 if ((len -= copy) == 0)
1271 return csum;
1272 offset += copy;
1273 pos += copy;
1275 start = end;
1278 BUG_ON(len);
1280 return csum;
1283 /* Both of above in one bottle. */
1285 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1286 u8 *to, int len, __wsum csum)
1288 int start = skb_headlen(skb);
1289 int i, copy = start - offset;
1290 int pos = 0;
1292 /* Copy header. */
1293 if (copy > 0) {
1294 if (copy > len)
1295 copy = len;
1296 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1297 copy, csum);
1298 if ((len -= copy) == 0)
1299 return csum;
1300 offset += copy;
1301 to += copy;
1302 pos = copy;
1305 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1306 int end;
1308 BUG_TRAP(start <= offset + len);
1310 end = start + skb_shinfo(skb)->frags[i].size;
1311 if ((copy = end - offset) > 0) {
1312 __wsum csum2;
1313 u8 *vaddr;
1314 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1316 if (copy > len)
1317 copy = len;
1318 vaddr = kmap_skb_frag(frag);
1319 csum2 = csum_partial_copy_nocheck(vaddr +
1320 frag->page_offset +
1321 offset - start, to,
1322 copy, 0);
1323 kunmap_skb_frag(vaddr);
1324 csum = csum_block_add(csum, csum2, pos);
1325 if (!(len -= copy))
1326 return csum;
1327 offset += copy;
1328 to += copy;
1329 pos += copy;
1331 start = end;
1334 if (skb_shinfo(skb)->frag_list) {
1335 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1337 for (; list; list = list->next) {
1338 __wsum csum2;
1339 int end;
1341 BUG_TRAP(start <= offset + len);
1343 end = start + list->len;
1344 if ((copy = end - offset) > 0) {
1345 if (copy > len)
1346 copy = len;
1347 csum2 = skb_copy_and_csum_bits(list,
1348 offset - start,
1349 to, copy, 0);
1350 csum = csum_block_add(csum, csum2, pos);
1351 if ((len -= copy) == 0)
1352 return csum;
1353 offset += copy;
1354 to += copy;
1355 pos += copy;
1357 start = end;
1360 BUG_ON(len);
1361 return csum;
1364 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1366 __wsum csum;
1367 long csstart;
1369 if (skb->ip_summed == CHECKSUM_PARTIAL)
1370 csstart = skb->csum_start - skb_headroom(skb);
1371 else
1372 csstart = skb_headlen(skb);
1374 BUG_ON(csstart > skb_headlen(skb));
1376 skb_copy_from_linear_data(skb, to, csstart);
1378 csum = 0;
1379 if (csstart != skb->len)
1380 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1381 skb->len - csstart, 0);
1383 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1384 long csstuff = csstart + skb->csum_offset;
1386 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1391 * skb_dequeue - remove from the head of the queue
1392 * @list: list to dequeue from
1394 * Remove the head of the list. The list lock is taken so the function
1395 * may be used safely with other locking list functions. The head item is
1396 * returned or %NULL if the list is empty.
1399 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1401 unsigned long flags;
1402 struct sk_buff *result;
1404 spin_lock_irqsave(&list->lock, flags);
1405 result = __skb_dequeue(list);
1406 spin_unlock_irqrestore(&list->lock, flags);
1407 return result;
1411 * skb_dequeue_tail - remove from the tail of the queue
1412 * @list: list to dequeue from
1414 * Remove the tail of the list. The list lock is taken so the function
1415 * may be used safely with other locking list functions. The tail item is
1416 * returned or %NULL if the list is empty.
1418 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1420 unsigned long flags;
1421 struct sk_buff *result;
1423 spin_lock_irqsave(&list->lock, flags);
1424 result = __skb_dequeue_tail(list);
1425 spin_unlock_irqrestore(&list->lock, flags);
1426 return result;
1430 * skb_queue_purge - empty a list
1431 * @list: list to empty
1433 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1434 * the list and one reference dropped. This function takes the list
1435 * lock and is atomic with respect to other list locking functions.
1437 void skb_queue_purge(struct sk_buff_head *list)
1439 struct sk_buff *skb;
1440 while ((skb = skb_dequeue(list)) != NULL)
1441 kfree_skb(skb);
1445 * skb_queue_head - queue a buffer at the list head
1446 * @list: list to use
1447 * @newsk: buffer to queue
1449 * Queue a buffer at the start of the list. This function takes the
1450 * list lock and can be used safely with other locking &sk_buff functions
1451 * safely.
1453 * A buffer cannot be placed on two lists at the same time.
1455 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1457 unsigned long flags;
1459 spin_lock_irqsave(&list->lock, flags);
1460 __skb_queue_head(list, newsk);
1461 spin_unlock_irqrestore(&list->lock, flags);
1465 * skb_queue_tail - queue a buffer at the list tail
1466 * @list: list to use
1467 * @newsk: buffer to queue
1469 * Queue a buffer at the tail of the list. This function takes the
1470 * list lock and can be used safely with other locking &sk_buff functions
1471 * safely.
1473 * A buffer cannot be placed on two lists at the same time.
1475 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1477 unsigned long flags;
1479 spin_lock_irqsave(&list->lock, flags);
1480 __skb_queue_tail(list, newsk);
1481 spin_unlock_irqrestore(&list->lock, flags);
1485 * skb_unlink - remove a buffer from a list
1486 * @skb: buffer to remove
1487 * @list: list to use
1489 * Remove a packet from a list. The list locks are taken and this
1490 * function is atomic with respect to other list locked calls
1492 * You must know what list the SKB is on.
1494 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1496 unsigned long flags;
1498 spin_lock_irqsave(&list->lock, flags);
1499 __skb_unlink(skb, list);
1500 spin_unlock_irqrestore(&list->lock, flags);
1504 * skb_append - append a buffer
1505 * @old: buffer to insert after
1506 * @newsk: buffer to insert
1507 * @list: list to use
1509 * Place a packet after a given packet in a list. The list locks are taken
1510 * and this function is atomic with respect to other list locked calls.
1511 * A buffer cannot be placed on two lists at the same time.
1513 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1515 unsigned long flags;
1517 spin_lock_irqsave(&list->lock, flags);
1518 __skb_append(old, newsk, list);
1519 spin_unlock_irqrestore(&list->lock, flags);
1524 * skb_insert - insert a buffer
1525 * @old: buffer to insert before
1526 * @newsk: buffer to insert
1527 * @list: list to use
1529 * Place a packet before a given packet in a list. The list locks are
1530 * taken and this function is atomic with respect to other list locked
1531 * calls.
1533 * A buffer cannot be placed on two lists at the same time.
1535 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1537 unsigned long flags;
1539 spin_lock_irqsave(&list->lock, flags);
1540 __skb_insert(newsk, old->prev, old, list);
1541 spin_unlock_irqrestore(&list->lock, flags);
1544 static inline void skb_split_inside_header(struct sk_buff *skb,
1545 struct sk_buff* skb1,
1546 const u32 len, const int pos)
1548 int i;
1550 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1551 pos - len);
1552 /* And move data appendix as is. */
1553 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1554 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1556 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1557 skb_shinfo(skb)->nr_frags = 0;
1558 skb1->data_len = skb->data_len;
1559 skb1->len += skb1->data_len;
1560 skb->data_len = 0;
1561 skb->len = len;
1562 skb_set_tail_pointer(skb, len);
1565 static inline void skb_split_no_header(struct sk_buff *skb,
1566 struct sk_buff* skb1,
1567 const u32 len, int pos)
1569 int i, k = 0;
1570 const int nfrags = skb_shinfo(skb)->nr_frags;
1572 skb_shinfo(skb)->nr_frags = 0;
1573 skb1->len = skb1->data_len = skb->len - len;
1574 skb->len = len;
1575 skb->data_len = len - pos;
1577 for (i = 0; i < nfrags; i++) {
1578 int size = skb_shinfo(skb)->frags[i].size;
1580 if (pos + size > len) {
1581 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1583 if (pos < len) {
1584 /* Split frag.
1585 * We have two variants in this case:
1586 * 1. Move all the frag to the second
1587 * part, if it is possible. F.e.
1588 * this approach is mandatory for TUX,
1589 * where splitting is expensive.
1590 * 2. Split is accurately. We make this.
1592 get_page(skb_shinfo(skb)->frags[i].page);
1593 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1594 skb_shinfo(skb1)->frags[0].size -= len - pos;
1595 skb_shinfo(skb)->frags[i].size = len - pos;
1596 skb_shinfo(skb)->nr_frags++;
1598 k++;
1599 } else
1600 skb_shinfo(skb)->nr_frags++;
1601 pos += size;
1603 skb_shinfo(skb1)->nr_frags = k;
1607 * skb_split - Split fragmented skb to two parts at length len.
1608 * @skb: the buffer to split
1609 * @skb1: the buffer to receive the second part
1610 * @len: new length for skb
1612 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1614 int pos = skb_headlen(skb);
1616 if (len < pos) /* Split line is inside header. */
1617 skb_split_inside_header(skb, skb1, len, pos);
1618 else /* Second chunk has no header, nothing to copy. */
1619 skb_split_no_header(skb, skb1, len, pos);
1623 * skb_prepare_seq_read - Prepare a sequential read of skb data
1624 * @skb: the buffer to read
1625 * @from: lower offset of data to be read
1626 * @to: upper offset of data to be read
1627 * @st: state variable
1629 * Initializes the specified state variable. Must be called before
1630 * invoking skb_seq_read() for the first time.
1632 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1633 unsigned int to, struct skb_seq_state *st)
1635 st->lower_offset = from;
1636 st->upper_offset = to;
1637 st->root_skb = st->cur_skb = skb;
1638 st->frag_idx = st->stepped_offset = 0;
1639 st->frag_data = NULL;
1643 * skb_seq_read - Sequentially read skb data
1644 * @consumed: number of bytes consumed by the caller so far
1645 * @data: destination pointer for data to be returned
1646 * @st: state variable
1648 * Reads a block of skb data at &consumed relative to the
1649 * lower offset specified to skb_prepare_seq_read(). Assigns
1650 * the head of the data block to &data and returns the length
1651 * of the block or 0 if the end of the skb data or the upper
1652 * offset has been reached.
1654 * The caller is not required to consume all of the data
1655 * returned, i.e. &consumed is typically set to the number
1656 * of bytes already consumed and the next call to
1657 * skb_seq_read() will return the remaining part of the block.
1659 * Note: The size of each block of data returned can be arbitary,
1660 * this limitation is the cost for zerocopy seqeuental
1661 * reads of potentially non linear data.
1663 * Note: Fragment lists within fragments are not implemented
1664 * at the moment, state->root_skb could be replaced with
1665 * a stack for this purpose.
1667 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1668 struct skb_seq_state *st)
1670 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1671 skb_frag_t *frag;
1673 if (unlikely(abs_offset >= st->upper_offset))
1674 return 0;
1676 next_skb:
1677 block_limit = skb_headlen(st->cur_skb);
1679 if (abs_offset < block_limit) {
1680 *data = st->cur_skb->data + abs_offset;
1681 return block_limit - abs_offset;
1684 if (st->frag_idx == 0 && !st->frag_data)
1685 st->stepped_offset += skb_headlen(st->cur_skb);
1687 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1688 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1689 block_limit = frag->size + st->stepped_offset;
1691 if (abs_offset < block_limit) {
1692 if (!st->frag_data)
1693 st->frag_data = kmap_skb_frag(frag);
1695 *data = (u8 *) st->frag_data + frag->page_offset +
1696 (abs_offset - st->stepped_offset);
1698 return block_limit - abs_offset;
1701 if (st->frag_data) {
1702 kunmap_skb_frag(st->frag_data);
1703 st->frag_data = NULL;
1706 st->frag_idx++;
1707 st->stepped_offset += frag->size;
1710 if (st->cur_skb->next) {
1711 st->cur_skb = st->cur_skb->next;
1712 st->frag_idx = 0;
1713 goto next_skb;
1714 } else if (st->root_skb == st->cur_skb &&
1715 skb_shinfo(st->root_skb)->frag_list) {
1716 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1717 goto next_skb;
1720 return 0;
1724 * skb_abort_seq_read - Abort a sequential read of skb data
1725 * @st: state variable
1727 * Must be called if skb_seq_read() was not called until it
1728 * returned 0.
1730 void skb_abort_seq_read(struct skb_seq_state *st)
1732 if (st->frag_data)
1733 kunmap_skb_frag(st->frag_data);
1736 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1738 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1739 struct ts_config *conf,
1740 struct ts_state *state)
1742 return skb_seq_read(offset, text, TS_SKB_CB(state));
1745 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1747 skb_abort_seq_read(TS_SKB_CB(state));
1751 * skb_find_text - Find a text pattern in skb data
1752 * @skb: the buffer to look in
1753 * @from: search offset
1754 * @to: search limit
1755 * @config: textsearch configuration
1756 * @state: uninitialized textsearch state variable
1758 * Finds a pattern in the skb data according to the specified
1759 * textsearch configuration. Use textsearch_next() to retrieve
1760 * subsequent occurrences of the pattern. Returns the offset
1761 * to the first occurrence or UINT_MAX if no match was found.
1763 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1764 unsigned int to, struct ts_config *config,
1765 struct ts_state *state)
1767 unsigned int ret;
1769 config->get_next_block = skb_ts_get_next_block;
1770 config->finish = skb_ts_finish;
1772 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1774 ret = textsearch_find(config, state);
1775 return (ret <= to - from ? ret : UINT_MAX);
1779 * skb_append_datato_frags: - append the user data to a skb
1780 * @sk: sock structure
1781 * @skb: skb structure to be appened with user data.
1782 * @getfrag: call back function to be used for getting the user data
1783 * @from: pointer to user message iov
1784 * @length: length of the iov message
1786 * Description: This procedure append the user data in the fragment part
1787 * of the skb if any page alloc fails user this procedure returns -ENOMEM
1789 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1790 int (*getfrag)(void *from, char *to, int offset,
1791 int len, int odd, struct sk_buff *skb),
1792 void *from, int length)
1794 int frg_cnt = 0;
1795 skb_frag_t *frag = NULL;
1796 struct page *page = NULL;
1797 int copy, left;
1798 int offset = 0;
1799 int ret;
1801 do {
1802 /* Return error if we don't have space for new frag */
1803 frg_cnt = skb_shinfo(skb)->nr_frags;
1804 if (frg_cnt >= MAX_SKB_FRAGS)
1805 return -EFAULT;
1807 /* allocate a new page for next frag */
1808 page = alloc_pages(sk->sk_allocation, 0);
1810 /* If alloc_page fails just return failure and caller will
1811 * free previous allocated pages by doing kfree_skb()
1813 if (page == NULL)
1814 return -ENOMEM;
1816 /* initialize the next frag */
1817 sk->sk_sndmsg_page = page;
1818 sk->sk_sndmsg_off = 0;
1819 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1820 skb->truesize += PAGE_SIZE;
1821 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1823 /* get the new initialized frag */
1824 frg_cnt = skb_shinfo(skb)->nr_frags;
1825 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1827 /* copy the user data to page */
1828 left = PAGE_SIZE - frag->page_offset;
1829 copy = (length > left)? left : length;
1831 ret = getfrag(from, (page_address(frag->page) +
1832 frag->page_offset + frag->size),
1833 offset, copy, 0, skb);
1834 if (ret < 0)
1835 return -EFAULT;
1837 /* copy was successful so update the size parameters */
1838 sk->sk_sndmsg_off += copy;
1839 frag->size += copy;
1840 skb->len += copy;
1841 skb->data_len += copy;
1842 offset += copy;
1843 length -= copy;
1845 } while (length > 0);
1847 return 0;
1851 * skb_pull_rcsum - pull skb and update receive checksum
1852 * @skb: buffer to update
1853 * @start: start of data before pull
1854 * @len: length of data pulled
1856 * This function performs an skb_pull on the packet and updates
1857 * update the CHECKSUM_COMPLETE checksum. It should be used on
1858 * receive path processing instead of skb_pull unless you know
1859 * that the checksum difference is zero (e.g., a valid IP header)
1860 * or you are setting ip_summed to CHECKSUM_NONE.
1862 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1864 BUG_ON(len > skb->len);
1865 skb->len -= len;
1866 BUG_ON(skb->len < skb->data_len);
1867 skb_postpull_rcsum(skb, skb->data, len);
1868 return skb->data += len;
1871 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1874 * skb_segment - Perform protocol segmentation on skb.
1875 * @skb: buffer to segment
1876 * @features: features for the output path (see dev->features)
1878 * This function performs segmentation on the given skb. It returns
1879 * the segment at the given position. It returns NULL if there are
1880 * no more segments to generate, or when an error is encountered.
1882 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1884 struct sk_buff *segs = NULL;
1885 struct sk_buff *tail = NULL;
1886 unsigned int mss = skb_shinfo(skb)->gso_size;
1887 unsigned int doffset = skb->data - skb_mac_header(skb);
1888 unsigned int offset = doffset;
1889 unsigned int headroom;
1890 unsigned int len;
1891 int sg = features & NETIF_F_SG;
1892 int nfrags = skb_shinfo(skb)->nr_frags;
1893 int err = -ENOMEM;
1894 int i = 0;
1895 int pos;
1897 __skb_push(skb, doffset);
1898 headroom = skb_headroom(skb);
1899 pos = skb_headlen(skb);
1901 do {
1902 struct sk_buff *nskb;
1903 skb_frag_t *frag;
1904 int hsize;
1905 int k;
1906 int size;
1908 len = skb->len - offset;
1909 if (len > mss)
1910 len = mss;
1912 hsize = skb_headlen(skb) - offset;
1913 if (hsize < 0)
1914 hsize = 0;
1915 if (hsize > len || !sg)
1916 hsize = len;
1918 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
1919 if (unlikely(!nskb))
1920 goto err;
1922 if (segs)
1923 tail->next = nskb;
1924 else
1925 segs = nskb;
1926 tail = nskb;
1928 nskb->dev = skb->dev;
1929 nskb->priority = skb->priority;
1930 nskb->protocol = skb->protocol;
1931 nskb->dst = dst_clone(skb->dst);
1932 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1933 nskb->pkt_type = skb->pkt_type;
1934 nskb->mac_len = skb->mac_len;
1936 skb_reserve(nskb, headroom);
1937 skb_reset_mac_header(nskb);
1938 skb_set_network_header(nskb, skb->mac_len);
1939 nskb->transport_header = (nskb->network_header +
1940 skb_network_header_len(skb));
1941 skb_copy_from_linear_data(skb, skb_put(nskb, doffset),
1942 doffset);
1943 if (!sg) {
1944 nskb->csum = skb_copy_and_csum_bits(skb, offset,
1945 skb_put(nskb, len),
1946 len, 0);
1947 continue;
1950 frag = skb_shinfo(nskb)->frags;
1951 k = 0;
1953 nskb->ip_summed = CHECKSUM_PARTIAL;
1954 nskb->csum = skb->csum;
1955 skb_copy_from_linear_data_offset(skb, offset,
1956 skb_put(nskb, hsize), hsize);
1958 while (pos < offset + len) {
1959 BUG_ON(i >= nfrags);
1961 *frag = skb_shinfo(skb)->frags[i];
1962 get_page(frag->page);
1963 size = frag->size;
1965 if (pos < offset) {
1966 frag->page_offset += offset - pos;
1967 frag->size -= offset - pos;
1970 k++;
1972 if (pos + size <= offset + len) {
1973 i++;
1974 pos += size;
1975 } else {
1976 frag->size -= pos + size - (offset + len);
1977 break;
1980 frag++;
1983 skb_shinfo(nskb)->nr_frags = k;
1984 nskb->data_len = len - hsize;
1985 nskb->len += nskb->data_len;
1986 nskb->truesize += nskb->data_len;
1987 } while ((offset += len) < skb->len);
1989 return segs;
1991 err:
1992 while ((skb = segs)) {
1993 segs = skb->next;
1994 kfree_skb(skb);
1996 return ERR_PTR(err);
1999 EXPORT_SYMBOL_GPL(skb_segment);
2001 void __init skb_init(void)
2003 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2004 sizeof(struct sk_buff),
2006 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2007 NULL, NULL);
2008 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2009 (2*sizeof(struct sk_buff)) +
2010 sizeof(atomic_t),
2012 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2013 NULL, NULL);
2017 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2018 * @skb: Socket buffer containing the buffers to be mapped
2019 * @sg: The scatter-gather list to map into
2020 * @offset: The offset into the buffer's contents to start mapping
2021 * @len: Length of buffer space to be mapped
2023 * Fill the specified scatter-gather list with mappings/pointers into a
2024 * region of the buffer space attached to a socket buffer.
2027 skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2029 int start = skb_headlen(skb);
2030 int i, copy = start - offset;
2031 int elt = 0;
2033 if (copy > 0) {
2034 if (copy > len)
2035 copy = len;
2036 sg[elt].page = virt_to_page(skb->data + offset);
2037 sg[elt].offset = (unsigned long)(skb->data + offset) % PAGE_SIZE;
2038 sg[elt].length = copy;
2039 elt++;
2040 if ((len -= copy) == 0)
2041 return elt;
2042 offset += copy;
2045 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2046 int end;
2048 BUG_TRAP(start <= offset + len);
2050 end = start + skb_shinfo(skb)->frags[i].size;
2051 if ((copy = end - offset) > 0) {
2052 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2054 if (copy > len)
2055 copy = len;
2056 sg[elt].page = frag->page;
2057 sg[elt].offset = frag->page_offset+offset-start;
2058 sg[elt].length = copy;
2059 elt++;
2060 if (!(len -= copy))
2061 return elt;
2062 offset += copy;
2064 start = end;
2067 if (skb_shinfo(skb)->frag_list) {
2068 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2070 for (; list; list = list->next) {
2071 int end;
2073 BUG_TRAP(start <= offset + len);
2075 end = start + list->len;
2076 if ((copy = end - offset) > 0) {
2077 if (copy > len)
2078 copy = len;
2079 elt += skb_to_sgvec(list, sg+elt, offset - start, copy);
2080 if ((len -= copy) == 0)
2081 return elt;
2082 offset += copy;
2084 start = end;
2087 BUG_ON(len);
2088 return elt;
2092 * skb_cow_data - Check that a socket buffer's data buffers are writable
2093 * @skb: The socket buffer to check.
2094 * @tailbits: Amount of trailing space to be added
2095 * @trailer: Returned pointer to the skb where the @tailbits space begins
2097 * Make sure that the data buffers attached to a socket buffer are
2098 * writable. If they are not, private copies are made of the data buffers
2099 * and the socket buffer is set to use these instead.
2101 * If @tailbits is given, make sure that there is space to write @tailbits
2102 * bytes of data beyond current end of socket buffer. @trailer will be
2103 * set to point to the skb in which this space begins.
2105 * The number of scatterlist elements required to completely map the
2106 * COW'd and extended socket buffer will be returned.
2108 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2110 int copyflag;
2111 int elt;
2112 struct sk_buff *skb1, **skb_p;
2114 /* If skb is cloned or its head is paged, reallocate
2115 * head pulling out all the pages (pages are considered not writable
2116 * at the moment even if they are anonymous).
2118 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2119 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2120 return -ENOMEM;
2122 /* Easy case. Most of packets will go this way. */
2123 if (!skb_shinfo(skb)->frag_list) {
2124 /* A little of trouble, not enough of space for trailer.
2125 * This should not happen, when stack is tuned to generate
2126 * good frames. OK, on miss we reallocate and reserve even more
2127 * space, 128 bytes is fair. */
2129 if (skb_tailroom(skb) < tailbits &&
2130 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2131 return -ENOMEM;
2133 /* Voila! */
2134 *trailer = skb;
2135 return 1;
2138 /* Misery. We are in troubles, going to mincer fragments... */
2140 elt = 1;
2141 skb_p = &skb_shinfo(skb)->frag_list;
2142 copyflag = 0;
2144 while ((skb1 = *skb_p) != NULL) {
2145 int ntail = 0;
2147 /* The fragment is partially pulled by someone,
2148 * this can happen on input. Copy it and everything
2149 * after it. */
2151 if (skb_shared(skb1))
2152 copyflag = 1;
2154 /* If the skb is the last, worry about trailer. */
2156 if (skb1->next == NULL && tailbits) {
2157 if (skb_shinfo(skb1)->nr_frags ||
2158 skb_shinfo(skb1)->frag_list ||
2159 skb_tailroom(skb1) < tailbits)
2160 ntail = tailbits + 128;
2163 if (copyflag ||
2164 skb_cloned(skb1) ||
2165 ntail ||
2166 skb_shinfo(skb1)->nr_frags ||
2167 skb_shinfo(skb1)->frag_list) {
2168 struct sk_buff *skb2;
2170 /* Fuck, we are miserable poor guys... */
2171 if (ntail == 0)
2172 skb2 = skb_copy(skb1, GFP_ATOMIC);
2173 else
2174 skb2 = skb_copy_expand(skb1,
2175 skb_headroom(skb1),
2176 ntail,
2177 GFP_ATOMIC);
2178 if (unlikely(skb2 == NULL))
2179 return -ENOMEM;
2181 if (skb1->sk)
2182 skb_set_owner_w(skb2, skb1->sk);
2184 /* Looking around. Are we still alive?
2185 * OK, link new skb, drop old one */
2187 skb2->next = skb1->next;
2188 *skb_p = skb2;
2189 kfree_skb(skb1);
2190 skb1 = skb2;
2192 elt++;
2193 *trailer = skb1;
2194 skb_p = &skb1->next;
2197 return elt;
2200 EXPORT_SYMBOL(___pskb_trim);
2201 EXPORT_SYMBOL(__kfree_skb);
2202 EXPORT_SYMBOL(kfree_skb);
2203 EXPORT_SYMBOL(__pskb_pull_tail);
2204 EXPORT_SYMBOL(__alloc_skb);
2205 EXPORT_SYMBOL(__netdev_alloc_skb);
2206 EXPORT_SYMBOL(pskb_copy);
2207 EXPORT_SYMBOL(pskb_expand_head);
2208 EXPORT_SYMBOL(skb_checksum);
2209 EXPORT_SYMBOL(skb_clone);
2210 EXPORT_SYMBOL(skb_clone_fraglist);
2211 EXPORT_SYMBOL(skb_copy);
2212 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2213 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2214 EXPORT_SYMBOL(skb_copy_bits);
2215 EXPORT_SYMBOL(skb_copy_expand);
2216 EXPORT_SYMBOL(skb_over_panic);
2217 EXPORT_SYMBOL(skb_pad);
2218 EXPORT_SYMBOL(skb_realloc_headroom);
2219 EXPORT_SYMBOL(skb_under_panic);
2220 EXPORT_SYMBOL(skb_dequeue);
2221 EXPORT_SYMBOL(skb_dequeue_tail);
2222 EXPORT_SYMBOL(skb_insert);
2223 EXPORT_SYMBOL(skb_queue_purge);
2224 EXPORT_SYMBOL(skb_queue_head);
2225 EXPORT_SYMBOL(skb_queue_tail);
2226 EXPORT_SYMBOL(skb_unlink);
2227 EXPORT_SYMBOL(skb_append);
2228 EXPORT_SYMBOL(skb_split);
2229 EXPORT_SYMBOL(skb_prepare_seq_read);
2230 EXPORT_SYMBOL(skb_seq_read);
2231 EXPORT_SYMBOL(skb_abort_seq_read);
2232 EXPORT_SYMBOL(skb_find_text);
2233 EXPORT_SYMBOL(skb_append_datato_frags);
2235 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2236 EXPORT_SYMBOL_GPL(skb_cow_data);