2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/highmem.h>
50 #include <linux/spinlock.h>
51 #include <linux/blkdev.h>
52 #include <linux/delay.h>
53 #include <linux/timer.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/jiffies.h>
59 #include <linux/scatterlist.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/semaphore.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
72 /* debounce timing parameters in msecs { interval, duration, timeout } */
73 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
74 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
75 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
77 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
78 u16 heads
, u16 sectors
);
79 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
80 static unsigned int ata_dev_set_feature(struct ata_device
*dev
,
81 u8 enable
, u8 feature
);
82 static void ata_dev_xfermask(struct ata_device
*dev
);
83 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
85 unsigned int ata_print_id
= 1;
86 static struct workqueue_struct
*ata_wq
;
88 struct workqueue_struct
*ata_aux_wq
;
90 struct ata_force_param
{
94 unsigned long xfer_mask
;
95 unsigned int horkage_on
;
96 unsigned int horkage_off
;
99 struct ata_force_ent
{
102 struct ata_force_param param
;
105 static struct ata_force_ent
*ata_force_tbl
;
106 static int ata_force_tbl_size
;
108 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
109 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0444);
110 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
112 int atapi_enabled
= 1;
113 module_param(atapi_enabled
, int, 0444);
114 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
116 static int atapi_dmadir
= 0;
117 module_param(atapi_dmadir
, int, 0444);
118 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
120 int atapi_passthru16
= 1;
121 module_param(atapi_passthru16
, int, 0444);
122 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
125 module_param_named(fua
, libata_fua
, int, 0444);
126 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
128 static int ata_ignore_hpa
;
129 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
130 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
132 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
133 module_param_named(dma
, libata_dma_mask
, int, 0444);
134 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
136 static int ata_probe_timeout
= ATA_TMOUT_INTERNAL
/ HZ
;
137 module_param(ata_probe_timeout
, int, 0444);
138 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
140 int libata_noacpi
= 0;
141 module_param_named(noacpi
, libata_noacpi
, int, 0444);
142 MODULE_PARM_DESC(noacpi
, "Disables the use of ACPI in probe/suspend/resume when set");
144 int libata_allow_tpm
= 0;
145 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
146 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands");
148 MODULE_AUTHOR("Jeff Garzik");
149 MODULE_DESCRIPTION("Library module for ATA devices");
150 MODULE_LICENSE("GPL");
151 MODULE_VERSION(DRV_VERSION
);
155 * ata_force_cbl - force cable type according to libata.force
156 * @ap: ATA port of interest
158 * Force cable type according to libata.force and whine about it.
159 * The last entry which has matching port number is used, so it
160 * can be specified as part of device force parameters. For
161 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
167 void ata_force_cbl(struct ata_port
*ap
)
171 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
172 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
174 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
177 if (fe
->param
.cbl
== ATA_CBL_NONE
)
180 ap
->cbl
= fe
->param
.cbl
;
181 ata_port_printk(ap
, KERN_NOTICE
,
182 "FORCE: cable set to %s\n", fe
->param
.name
);
188 * ata_force_spd_limit - force SATA spd limit according to libata.force
189 * @link: ATA link of interest
191 * Force SATA spd limit according to libata.force and whine about
192 * it. When only the port part is specified (e.g. 1:), the limit
193 * applies to all links connected to both the host link and all
194 * fan-out ports connected via PMP. If the device part is
195 * specified as 0 (e.g. 1.00:), it specifies the first fan-out
196 * link not the host link. Device number 15 always points to the
197 * host link whether PMP is attached or not.
202 static void ata_force_spd_limit(struct ata_link
*link
)
206 if (ata_is_host_link(link
))
211 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
212 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
214 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
217 if (fe
->device
!= -1 && fe
->device
!= linkno
)
220 if (!fe
->param
.spd_limit
)
223 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
224 ata_link_printk(link
, KERN_NOTICE
,
225 "FORCE: PHY spd limit set to %s\n", fe
->param
.name
);
231 * ata_force_xfermask - force xfermask according to libata.force
232 * @dev: ATA device of interest
234 * Force xfer_mask according to libata.force and whine about it.
235 * For consistency with link selection, device number 15 selects
236 * the first device connected to the host link.
241 static void ata_force_xfermask(struct ata_device
*dev
)
243 int devno
= dev
->link
->pmp
+ dev
->devno
;
244 int alt_devno
= devno
;
247 /* allow n.15 for the first device attached to host port */
248 if (ata_is_host_link(dev
->link
) && devno
== 0)
251 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
252 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
253 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
255 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
258 if (fe
->device
!= -1 && fe
->device
!= devno
&&
259 fe
->device
!= alt_devno
)
262 if (!fe
->param
.xfer_mask
)
265 ata_unpack_xfermask(fe
->param
.xfer_mask
,
266 &pio_mask
, &mwdma_mask
, &udma_mask
);
268 dev
->udma_mask
= udma_mask
;
269 else if (mwdma_mask
) {
271 dev
->mwdma_mask
= mwdma_mask
;
275 dev
->pio_mask
= pio_mask
;
278 ata_dev_printk(dev
, KERN_NOTICE
,
279 "FORCE: xfer_mask set to %s\n", fe
->param
.name
);
285 * ata_force_horkage - force horkage according to libata.force
286 * @dev: ATA device of interest
288 * Force horkage according to libata.force and whine about it.
289 * For consistency with link selection, device number 15 selects
290 * the first device connected to the host link.
295 static void ata_force_horkage(struct ata_device
*dev
)
297 int devno
= dev
->link
->pmp
+ dev
->devno
;
298 int alt_devno
= devno
;
301 /* allow n.15 for the first device attached to host port */
302 if (ata_is_host_link(dev
->link
) && devno
== 0)
305 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
306 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
308 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
311 if (fe
->device
!= -1 && fe
->device
!= devno
&&
312 fe
->device
!= alt_devno
)
315 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
316 !(dev
->horkage
& fe
->param
.horkage_off
))
319 dev
->horkage
|= fe
->param
.horkage_on
;
320 dev
->horkage
&= ~fe
->param
.horkage_off
;
322 ata_dev_printk(dev
, KERN_NOTICE
,
323 "FORCE: horkage modified (%s)\n", fe
->param
.name
);
328 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
329 * @tf: Taskfile to convert
330 * @pmp: Port multiplier port
331 * @is_cmd: This FIS is for command
332 * @fis: Buffer into which data will output
334 * Converts a standard ATA taskfile to a Serial ATA
335 * FIS structure (Register - Host to Device).
338 * Inherited from caller.
340 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
342 fis
[0] = 0x27; /* Register - Host to Device FIS */
343 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
345 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
347 fis
[2] = tf
->command
;
348 fis
[3] = tf
->feature
;
355 fis
[8] = tf
->hob_lbal
;
356 fis
[9] = tf
->hob_lbam
;
357 fis
[10] = tf
->hob_lbah
;
358 fis
[11] = tf
->hob_feature
;
361 fis
[13] = tf
->hob_nsect
;
372 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
373 * @fis: Buffer from which data will be input
374 * @tf: Taskfile to output
376 * Converts a serial ATA FIS structure to a standard ATA taskfile.
379 * Inherited from caller.
382 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
384 tf
->command
= fis
[2]; /* status */
385 tf
->feature
= fis
[3]; /* error */
392 tf
->hob_lbal
= fis
[8];
393 tf
->hob_lbam
= fis
[9];
394 tf
->hob_lbah
= fis
[10];
397 tf
->hob_nsect
= fis
[13];
400 static const u8 ata_rw_cmds
[] = {
404 ATA_CMD_READ_MULTI_EXT
,
405 ATA_CMD_WRITE_MULTI_EXT
,
409 ATA_CMD_WRITE_MULTI_FUA_EXT
,
413 ATA_CMD_PIO_READ_EXT
,
414 ATA_CMD_PIO_WRITE_EXT
,
427 ATA_CMD_WRITE_FUA_EXT
431 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
432 * @tf: command to examine and configure
433 * @dev: device tf belongs to
435 * Examine the device configuration and tf->flags to calculate
436 * the proper read/write commands and protocol to use.
441 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
445 int index
, fua
, lba48
, write
;
447 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
448 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
449 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
451 if (dev
->flags
& ATA_DFLAG_PIO
) {
452 tf
->protocol
= ATA_PROT_PIO
;
453 index
= dev
->multi_count
? 0 : 8;
454 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
455 /* Unable to use DMA due to host limitation */
456 tf
->protocol
= ATA_PROT_PIO
;
457 index
= dev
->multi_count
? 0 : 8;
459 tf
->protocol
= ATA_PROT_DMA
;
463 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
472 * ata_tf_read_block - Read block address from ATA taskfile
473 * @tf: ATA taskfile of interest
474 * @dev: ATA device @tf belongs to
479 * Read block address from @tf. This function can handle all
480 * three address formats - LBA, LBA48 and CHS. tf->protocol and
481 * flags select the address format to use.
484 * Block address read from @tf.
486 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
490 if (tf
->flags
& ATA_TFLAG_LBA
) {
491 if (tf
->flags
& ATA_TFLAG_LBA48
) {
492 block
|= (u64
)tf
->hob_lbah
<< 40;
493 block
|= (u64
)tf
->hob_lbam
<< 32;
494 block
|= tf
->hob_lbal
<< 24;
496 block
|= (tf
->device
& 0xf) << 24;
498 block
|= tf
->lbah
<< 16;
499 block
|= tf
->lbam
<< 8;
504 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
505 head
= tf
->device
& 0xf;
508 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
;
515 * ata_build_rw_tf - Build ATA taskfile for given read/write request
516 * @tf: Target ATA taskfile
517 * @dev: ATA device @tf belongs to
518 * @block: Block address
519 * @n_block: Number of blocks
520 * @tf_flags: RW/FUA etc...
526 * Build ATA taskfile @tf for read/write request described by
527 * @block, @n_block, @tf_flags and @tag on @dev.
531 * 0 on success, -ERANGE if the request is too large for @dev,
532 * -EINVAL if the request is invalid.
534 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
535 u64 block
, u32 n_block
, unsigned int tf_flags
,
538 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
539 tf
->flags
|= tf_flags
;
541 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
543 if (!lba_48_ok(block
, n_block
))
546 tf
->protocol
= ATA_PROT_NCQ
;
547 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
549 if (tf
->flags
& ATA_TFLAG_WRITE
)
550 tf
->command
= ATA_CMD_FPDMA_WRITE
;
552 tf
->command
= ATA_CMD_FPDMA_READ
;
554 tf
->nsect
= tag
<< 3;
555 tf
->hob_feature
= (n_block
>> 8) & 0xff;
556 tf
->feature
= n_block
& 0xff;
558 tf
->hob_lbah
= (block
>> 40) & 0xff;
559 tf
->hob_lbam
= (block
>> 32) & 0xff;
560 tf
->hob_lbal
= (block
>> 24) & 0xff;
561 tf
->lbah
= (block
>> 16) & 0xff;
562 tf
->lbam
= (block
>> 8) & 0xff;
563 tf
->lbal
= block
& 0xff;
566 if (tf
->flags
& ATA_TFLAG_FUA
)
567 tf
->device
|= 1 << 7;
568 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
569 tf
->flags
|= ATA_TFLAG_LBA
;
571 if (lba_28_ok(block
, n_block
)) {
573 tf
->device
|= (block
>> 24) & 0xf;
574 } else if (lba_48_ok(block
, n_block
)) {
575 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
579 tf
->flags
|= ATA_TFLAG_LBA48
;
581 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
583 tf
->hob_lbah
= (block
>> 40) & 0xff;
584 tf
->hob_lbam
= (block
>> 32) & 0xff;
585 tf
->hob_lbal
= (block
>> 24) & 0xff;
587 /* request too large even for LBA48 */
590 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
593 tf
->nsect
= n_block
& 0xff;
595 tf
->lbah
= (block
>> 16) & 0xff;
596 tf
->lbam
= (block
>> 8) & 0xff;
597 tf
->lbal
= block
& 0xff;
599 tf
->device
|= ATA_LBA
;
602 u32 sect
, head
, cyl
, track
;
604 /* The request -may- be too large for CHS addressing. */
605 if (!lba_28_ok(block
, n_block
))
608 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
611 /* Convert LBA to CHS */
612 track
= (u32
)block
/ dev
->sectors
;
613 cyl
= track
/ dev
->heads
;
614 head
= track
% dev
->heads
;
615 sect
= (u32
)block
% dev
->sectors
+ 1;
617 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
618 (u32
)block
, track
, cyl
, head
, sect
);
620 /* Check whether the converted CHS can fit.
624 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
627 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
638 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
639 * @pio_mask: pio_mask
640 * @mwdma_mask: mwdma_mask
641 * @udma_mask: udma_mask
643 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
644 * unsigned int xfer_mask.
652 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
653 unsigned long mwdma_mask
,
654 unsigned long udma_mask
)
656 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
657 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
658 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
662 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
663 * @xfer_mask: xfer_mask to unpack
664 * @pio_mask: resulting pio_mask
665 * @mwdma_mask: resulting mwdma_mask
666 * @udma_mask: resulting udma_mask
668 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
669 * Any NULL distination masks will be ignored.
671 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
672 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
675 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
677 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
679 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
682 static const struct ata_xfer_ent
{
686 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
687 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
688 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
693 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
694 * @xfer_mask: xfer_mask of interest
696 * Return matching XFER_* value for @xfer_mask. Only the highest
697 * bit of @xfer_mask is considered.
703 * Matching XFER_* value, 0xff if no match found.
705 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
707 int highbit
= fls(xfer_mask
) - 1;
708 const struct ata_xfer_ent
*ent
;
710 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
711 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
712 return ent
->base
+ highbit
- ent
->shift
;
717 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
718 * @xfer_mode: XFER_* of interest
720 * Return matching xfer_mask for @xfer_mode.
726 * Matching xfer_mask, 0 if no match found.
728 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
730 const struct ata_xfer_ent
*ent
;
732 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
733 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
734 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
735 & ~((1 << ent
->shift
) - 1);
740 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
741 * @xfer_mode: XFER_* of interest
743 * Return matching xfer_shift for @xfer_mode.
749 * Matching xfer_shift, -1 if no match found.
751 int ata_xfer_mode2shift(unsigned long xfer_mode
)
753 const struct ata_xfer_ent
*ent
;
755 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
756 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
762 * ata_mode_string - convert xfer_mask to string
763 * @xfer_mask: mask of bits supported; only highest bit counts.
765 * Determine string which represents the highest speed
766 * (highest bit in @modemask).
772 * Constant C string representing highest speed listed in
773 * @mode_mask, or the constant C string "<n/a>".
775 const char *ata_mode_string(unsigned long xfer_mask
)
777 static const char * const xfer_mode_str
[] = {
801 highbit
= fls(xfer_mask
) - 1;
802 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
803 return xfer_mode_str
[highbit
];
807 static const char *sata_spd_string(unsigned int spd
)
809 static const char * const spd_str
[] = {
814 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
816 return spd_str
[spd
- 1];
819 void ata_dev_disable(struct ata_device
*dev
)
821 if (ata_dev_enabled(dev
)) {
822 if (ata_msg_drv(dev
->link
->ap
))
823 ata_dev_printk(dev
, KERN_WARNING
, "disabled\n");
824 ata_acpi_on_disable(dev
);
825 ata_down_xfermask_limit(dev
, ATA_DNXFER_FORCE_PIO0
|
831 static int ata_dev_set_dipm(struct ata_device
*dev
, enum link_pm policy
)
833 struct ata_link
*link
= dev
->link
;
834 struct ata_port
*ap
= link
->ap
;
836 unsigned int err_mask
;
840 * disallow DIPM for drivers which haven't set
841 * ATA_FLAG_IPM. This is because when DIPM is enabled,
842 * phy ready will be set in the interrupt status on
843 * state changes, which will cause some drivers to
844 * think there are errors - additionally drivers will
845 * need to disable hot plug.
847 if (!(ap
->flags
& ATA_FLAG_IPM
) || !ata_dev_enabled(dev
)) {
848 ap
->pm_policy
= NOT_AVAILABLE
;
853 * For DIPM, we will only enable it for the
856 * Why? Because Disks are too stupid to know that
857 * If the host rejects a request to go to SLUMBER
858 * they should retry at PARTIAL, and instead it
859 * just would give up. So, for medium_power to
860 * work at all, we need to only allow HIPM.
862 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
868 /* no restrictions on IPM transitions */
869 scontrol
&= ~(0x3 << 8);
870 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
875 if (dev
->flags
& ATA_DFLAG_DIPM
)
876 err_mask
= ata_dev_set_feature(dev
,
877 SETFEATURES_SATA_ENABLE
, SATA_DIPM
);
880 /* allow IPM to PARTIAL */
881 scontrol
&= ~(0x1 << 8);
882 scontrol
|= (0x2 << 8);
883 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
888 * we don't have to disable DIPM since IPM flags
889 * disallow transitions to SLUMBER, which effectively
890 * disable DIPM if it does not support PARTIAL
894 case MAX_PERFORMANCE
:
895 /* disable all IPM transitions */
896 scontrol
|= (0x3 << 8);
897 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
902 * we don't have to disable DIPM since IPM flags
903 * disallow all transitions which effectively
904 * disable DIPM anyway.
909 /* FIXME: handle SET FEATURES failure */
916 * ata_dev_enable_pm - enable SATA interface power management
917 * @dev: device to enable power management
918 * @policy: the link power management policy
920 * Enable SATA Interface power management. This will enable
921 * Device Interface Power Management (DIPM) for min_power
922 * policy, and then call driver specific callbacks for
923 * enabling Host Initiated Power management.
926 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
928 void ata_dev_enable_pm(struct ata_device
*dev
, enum link_pm policy
)
931 struct ata_port
*ap
= dev
->link
->ap
;
933 /* set HIPM first, then DIPM */
934 if (ap
->ops
->enable_pm
)
935 rc
= ap
->ops
->enable_pm(ap
, policy
);
938 rc
= ata_dev_set_dipm(dev
, policy
);
942 ap
->pm_policy
= MAX_PERFORMANCE
;
944 ap
->pm_policy
= policy
;
945 return /* rc */; /* hopefully we can use 'rc' eventually */
950 * ata_dev_disable_pm - disable SATA interface power management
951 * @dev: device to disable power management
953 * Disable SATA Interface power management. This will disable
954 * Device Interface Power Management (DIPM) without changing
955 * policy, call driver specific callbacks for disabling Host
956 * Initiated Power management.
961 static void ata_dev_disable_pm(struct ata_device
*dev
)
963 struct ata_port
*ap
= dev
->link
->ap
;
965 ata_dev_set_dipm(dev
, MAX_PERFORMANCE
);
966 if (ap
->ops
->disable_pm
)
967 ap
->ops
->disable_pm(ap
);
969 #endif /* CONFIG_PM */
971 void ata_lpm_schedule(struct ata_port
*ap
, enum link_pm policy
)
973 ap
->pm_policy
= policy
;
974 ap
->link
.eh_info
.action
|= ATA_EHI_LPM
;
975 ap
->link
.eh_info
.flags
|= ATA_EHI_NO_AUTOPSY
;
976 ata_port_schedule_eh(ap
);
980 static void ata_lpm_enable(struct ata_host
*host
)
982 struct ata_link
*link
;
984 struct ata_device
*dev
;
987 for (i
= 0; i
< host
->n_ports
; i
++) {
989 ata_port_for_each_link(link
, ap
) {
990 ata_link_for_each_dev(dev
, link
)
991 ata_dev_disable_pm(dev
);
996 static void ata_lpm_disable(struct ata_host
*host
)
1000 for (i
= 0; i
< host
->n_ports
; i
++) {
1001 struct ata_port
*ap
= host
->ports
[i
];
1002 ata_lpm_schedule(ap
, ap
->pm_policy
);
1005 #endif /* CONFIG_PM */
1009 * ata_devchk - PATA device presence detection
1010 * @ap: ATA channel to examine
1011 * @device: Device to examine (starting at zero)
1013 * This technique was originally described in
1014 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1015 * later found its way into the ATA/ATAPI spec.
1017 * Write a pattern to the ATA shadow registers,
1018 * and if a device is present, it will respond by
1019 * correctly storing and echoing back the
1020 * ATA shadow register contents.
1026 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
1028 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1031 ap
->ops
->dev_select(ap
, device
);
1033 iowrite8(0x55, ioaddr
->nsect_addr
);
1034 iowrite8(0xaa, ioaddr
->lbal_addr
);
1036 iowrite8(0xaa, ioaddr
->nsect_addr
);
1037 iowrite8(0x55, ioaddr
->lbal_addr
);
1039 iowrite8(0x55, ioaddr
->nsect_addr
);
1040 iowrite8(0xaa, ioaddr
->lbal_addr
);
1042 nsect
= ioread8(ioaddr
->nsect_addr
);
1043 lbal
= ioread8(ioaddr
->lbal_addr
);
1045 if ((nsect
== 0x55) && (lbal
== 0xaa))
1046 return 1; /* we found a device */
1048 return 0; /* nothing found */
1052 * ata_dev_classify - determine device type based on ATA-spec signature
1053 * @tf: ATA taskfile register set for device to be identified
1055 * Determine from taskfile register contents whether a device is
1056 * ATA or ATAPI, as per "Signature and persistence" section
1057 * of ATA/PI spec (volume 1, sect 5.14).
1063 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1064 * %ATA_DEV_UNKNOWN the event of failure.
1066 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1068 /* Apple's open source Darwin code hints that some devices only
1069 * put a proper signature into the LBA mid/high registers,
1070 * So, we only check those. It's sufficient for uniqueness.
1072 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1073 * signatures for ATA and ATAPI devices attached on SerialATA,
1074 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1075 * spec has never mentioned about using different signatures
1076 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1077 * Multiplier specification began to use 0x69/0x96 to identify
1078 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1079 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1080 * 0x69/0x96 shortly and described them as reserved for
1083 * We follow the current spec and consider that 0x69/0x96
1084 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1086 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1087 DPRINTK("found ATA device by sig\n");
1091 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1092 DPRINTK("found ATAPI device by sig\n");
1093 return ATA_DEV_ATAPI
;
1096 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1097 DPRINTK("found PMP device by sig\n");
1101 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1102 printk(KERN_INFO
"ata: SEMB device ignored\n");
1103 return ATA_DEV_SEMB_UNSUP
; /* not yet */
1106 DPRINTK("unknown device\n");
1107 return ATA_DEV_UNKNOWN
;
1111 * ata_dev_try_classify - Parse returned ATA device signature
1112 * @dev: ATA device to classify (starting at zero)
1113 * @present: device seems present
1114 * @r_err: Value of error register on completion
1116 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1117 * an ATA/ATAPI-defined set of values is placed in the ATA
1118 * shadow registers, indicating the results of device detection
1121 * Select the ATA device, and read the values from the ATA shadow
1122 * registers. Then parse according to the Error register value,
1123 * and the spec-defined values examined by ata_dev_classify().
1129 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1131 unsigned int ata_dev_try_classify(struct ata_device
*dev
, int present
,
1134 struct ata_port
*ap
= dev
->link
->ap
;
1135 struct ata_taskfile tf
;
1139 ap
->ops
->dev_select(ap
, dev
->devno
);
1141 memset(&tf
, 0, sizeof(tf
));
1143 ap
->ops
->tf_read(ap
, &tf
);
1148 /* see if device passed diags: continue and warn later */
1150 /* diagnostic fail : do nothing _YET_ */
1151 dev
->horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
1154 else if ((dev
->devno
== 0) && (err
== 0x81))
1157 return ATA_DEV_NONE
;
1159 /* determine if device is ATA or ATAPI */
1160 class = ata_dev_classify(&tf
);
1162 if (class == ATA_DEV_UNKNOWN
) {
1163 /* If the device failed diagnostic, it's likely to
1164 * have reported incorrect device signature too.
1165 * Assume ATA device if the device seems present but
1166 * device signature is invalid with diagnostic
1169 if (present
&& (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
))
1170 class = ATA_DEV_ATA
;
1172 class = ATA_DEV_NONE
;
1173 } else if ((class == ATA_DEV_ATA
) && (ata_chk_status(ap
) == 0))
1174 class = ATA_DEV_NONE
;
1180 * ata_id_string - Convert IDENTIFY DEVICE page into string
1181 * @id: IDENTIFY DEVICE results we will examine
1182 * @s: string into which data is output
1183 * @ofs: offset into identify device page
1184 * @len: length of string to return. must be an even number.
1186 * The strings in the IDENTIFY DEVICE page are broken up into
1187 * 16-bit chunks. Run through the string, and output each
1188 * 8-bit chunk linearly, regardless of platform.
1194 void ata_id_string(const u16
*id
, unsigned char *s
,
1195 unsigned int ofs
, unsigned int len
)
1214 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1215 * @id: IDENTIFY DEVICE results we will examine
1216 * @s: string into which data is output
1217 * @ofs: offset into identify device page
1218 * @len: length of string to return. must be an odd number.
1220 * This function is identical to ata_id_string except that it
1221 * trims trailing spaces and terminates the resulting string with
1222 * null. @len must be actual maximum length (even number) + 1.
1227 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1228 unsigned int ofs
, unsigned int len
)
1232 WARN_ON(!(len
& 1));
1234 ata_id_string(id
, s
, ofs
, len
- 1);
1236 p
= s
+ strnlen(s
, len
- 1);
1237 while (p
> s
&& p
[-1] == ' ')
1242 static u64
ata_id_n_sectors(const u16
*id
)
1244 if (ata_id_has_lba(id
)) {
1245 if (ata_id_has_lba48(id
))
1246 return ata_id_u64(id
, 100);
1248 return ata_id_u32(id
, 60);
1250 if (ata_id_current_chs_valid(id
))
1251 return ata_id_u32(id
, 57);
1253 return id
[1] * id
[3] * id
[6];
1257 static u64
ata_tf_to_lba48(struct ata_taskfile
*tf
)
1261 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1262 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1263 sectors
|= (tf
->hob_lbal
& 0xff) << 24;
1264 sectors
|= (tf
->lbah
& 0xff) << 16;
1265 sectors
|= (tf
->lbam
& 0xff) << 8;
1266 sectors
|= (tf
->lbal
& 0xff);
1271 static u64
ata_tf_to_lba(struct ata_taskfile
*tf
)
1275 sectors
|= (tf
->device
& 0x0f) << 24;
1276 sectors
|= (tf
->lbah
& 0xff) << 16;
1277 sectors
|= (tf
->lbam
& 0xff) << 8;
1278 sectors
|= (tf
->lbal
& 0xff);
1284 * ata_read_native_max_address - Read native max address
1285 * @dev: target device
1286 * @max_sectors: out parameter for the result native max address
1288 * Perform an LBA48 or LBA28 native size query upon the device in
1292 * 0 on success, -EACCES if command is aborted by the drive.
1293 * -EIO on other errors.
1295 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1297 unsigned int err_mask
;
1298 struct ata_taskfile tf
;
1299 int lba48
= ata_id_has_lba48(dev
->id
);
1301 ata_tf_init(dev
, &tf
);
1303 /* always clear all address registers */
1304 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1307 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1308 tf
.flags
|= ATA_TFLAG_LBA48
;
1310 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1312 tf
.protocol
|= ATA_PROT_NODATA
;
1313 tf
.device
|= ATA_LBA
;
1315 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1317 ata_dev_printk(dev
, KERN_WARNING
, "failed to read native "
1318 "max address (err_mask=0x%x)\n", err_mask
);
1319 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1325 *max_sectors
= ata_tf_to_lba48(&tf
);
1327 *max_sectors
= ata_tf_to_lba(&tf
);
1328 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1334 * ata_set_max_sectors - Set max sectors
1335 * @dev: target device
1336 * @new_sectors: new max sectors value to set for the device
1338 * Set max sectors of @dev to @new_sectors.
1341 * 0 on success, -EACCES if command is aborted or denied (due to
1342 * previous non-volatile SET_MAX) by the drive. -EIO on other
1345 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1347 unsigned int err_mask
;
1348 struct ata_taskfile tf
;
1349 int lba48
= ata_id_has_lba48(dev
->id
);
1353 ata_tf_init(dev
, &tf
);
1355 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1358 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1359 tf
.flags
|= ATA_TFLAG_LBA48
;
1361 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1362 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1363 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1365 tf
.command
= ATA_CMD_SET_MAX
;
1367 tf
.device
|= (new_sectors
>> 24) & 0xf;
1370 tf
.protocol
|= ATA_PROT_NODATA
;
1371 tf
.device
|= ATA_LBA
;
1373 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1374 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1375 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1377 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1379 ata_dev_printk(dev
, KERN_WARNING
, "failed to set "
1380 "max address (err_mask=0x%x)\n", err_mask
);
1381 if (err_mask
== AC_ERR_DEV
&&
1382 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1391 * ata_hpa_resize - Resize a device with an HPA set
1392 * @dev: Device to resize
1394 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1395 * it if required to the full size of the media. The caller must check
1396 * the drive has the HPA feature set enabled.
1399 * 0 on success, -errno on failure.
1401 static int ata_hpa_resize(struct ata_device
*dev
)
1403 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1404 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1405 u64 sectors
= ata_id_n_sectors(dev
->id
);
1409 /* do we need to do it? */
1410 if (dev
->class != ATA_DEV_ATA
||
1411 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1412 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1415 /* read native max address */
1416 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1418 /* If HPA isn't going to be unlocked, skip HPA
1419 * resizing from the next try.
1421 if (!ata_ignore_hpa
) {
1422 ata_dev_printk(dev
, KERN_WARNING
, "HPA support seems "
1423 "broken, will skip HPA handling\n");
1424 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1426 /* we can continue if device aborted the command */
1434 /* nothing to do? */
1435 if (native_sectors
<= sectors
|| !ata_ignore_hpa
) {
1436 if (!print_info
|| native_sectors
== sectors
)
1439 if (native_sectors
> sectors
)
1440 ata_dev_printk(dev
, KERN_INFO
,
1441 "HPA detected: current %llu, native %llu\n",
1442 (unsigned long long)sectors
,
1443 (unsigned long long)native_sectors
);
1444 else if (native_sectors
< sectors
)
1445 ata_dev_printk(dev
, KERN_WARNING
,
1446 "native sectors (%llu) is smaller than "
1448 (unsigned long long)native_sectors
,
1449 (unsigned long long)sectors
);
1453 /* let's unlock HPA */
1454 rc
= ata_set_max_sectors(dev
, native_sectors
);
1455 if (rc
== -EACCES
) {
1456 /* if device aborted the command, skip HPA resizing */
1457 ata_dev_printk(dev
, KERN_WARNING
, "device aborted resize "
1458 "(%llu -> %llu), skipping HPA handling\n",
1459 (unsigned long long)sectors
,
1460 (unsigned long long)native_sectors
);
1461 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1466 /* re-read IDENTIFY data */
1467 rc
= ata_dev_reread_id(dev
, 0);
1469 ata_dev_printk(dev
, KERN_ERR
, "failed to re-read IDENTIFY "
1470 "data after HPA resizing\n");
1475 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1476 ata_dev_printk(dev
, KERN_INFO
,
1477 "HPA unlocked: %llu -> %llu, native %llu\n",
1478 (unsigned long long)sectors
,
1479 (unsigned long long)new_sectors
,
1480 (unsigned long long)native_sectors
);
1487 * ata_noop_dev_select - Select device 0/1 on ATA bus
1488 * @ap: ATA channel to manipulate
1489 * @device: ATA device (numbered from zero) to select
1491 * This function performs no actual function.
1493 * May be used as the dev_select() entry in ata_port_operations.
1498 void ata_noop_dev_select(struct ata_port
*ap
, unsigned int device
)
1504 * ata_std_dev_select - Select device 0/1 on ATA bus
1505 * @ap: ATA channel to manipulate
1506 * @device: ATA device (numbered from zero) to select
1508 * Use the method defined in the ATA specification to
1509 * make either device 0, or device 1, active on the
1510 * ATA channel. Works with both PIO and MMIO.
1512 * May be used as the dev_select() entry in ata_port_operations.
1518 void ata_std_dev_select(struct ata_port
*ap
, unsigned int device
)
1523 tmp
= ATA_DEVICE_OBS
;
1525 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
1527 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
1528 ata_pause(ap
); /* needed; also flushes, for mmio */
1532 * ata_dev_select - Select device 0/1 on ATA bus
1533 * @ap: ATA channel to manipulate
1534 * @device: ATA device (numbered from zero) to select
1535 * @wait: non-zero to wait for Status register BSY bit to clear
1536 * @can_sleep: non-zero if context allows sleeping
1538 * Use the method defined in the ATA specification to
1539 * make either device 0, or device 1, active on the
1542 * This is a high-level version of ata_std_dev_select(),
1543 * which additionally provides the services of inserting
1544 * the proper pauses and status polling, where needed.
1550 void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
1551 unsigned int wait
, unsigned int can_sleep
)
1553 if (ata_msg_probe(ap
))
1554 ata_port_printk(ap
, KERN_INFO
, "ata_dev_select: ENTER, "
1555 "device %u, wait %u\n", device
, wait
);
1560 ap
->ops
->dev_select(ap
, device
);
1563 if (can_sleep
&& ap
->link
.device
[device
].class == ATA_DEV_ATAPI
)
1570 * ata_dump_id - IDENTIFY DEVICE info debugging output
1571 * @id: IDENTIFY DEVICE page to dump
1573 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1580 static inline void ata_dump_id(const u16
*id
)
1582 DPRINTK("49==0x%04x "
1592 DPRINTK("80==0x%04x "
1602 DPRINTK("88==0x%04x "
1609 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1610 * @id: IDENTIFY data to compute xfer mask from
1612 * Compute the xfermask for this device. This is not as trivial
1613 * as it seems if we must consider early devices correctly.
1615 * FIXME: pre IDE drive timing (do we care ?).
1623 unsigned long ata_id_xfermask(const u16
*id
)
1625 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1627 /* Usual case. Word 53 indicates word 64 is valid */
1628 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1629 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1633 /* If word 64 isn't valid then Word 51 high byte holds
1634 * the PIO timing number for the maximum. Turn it into
1637 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1638 if (mode
< 5) /* Valid PIO range */
1639 pio_mask
= (2 << mode
) - 1;
1643 /* But wait.. there's more. Design your standards by
1644 * committee and you too can get a free iordy field to
1645 * process. However its the speeds not the modes that
1646 * are supported... Note drivers using the timing API
1647 * will get this right anyway
1651 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1653 if (ata_id_is_cfa(id
)) {
1655 * Process compact flash extended modes
1657 int pio
= id
[163] & 0x7;
1658 int dma
= (id
[163] >> 3) & 7;
1661 pio_mask
|= (1 << 5);
1663 pio_mask
|= (1 << 6);
1665 mwdma_mask
|= (1 << 3);
1667 mwdma_mask
|= (1 << 4);
1671 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1672 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1674 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1678 * ata_pio_queue_task - Queue port_task
1679 * @ap: The ata_port to queue port_task for
1680 * @fn: workqueue function to be scheduled
1681 * @data: data for @fn to use
1682 * @delay: delay time for workqueue function
1684 * Schedule @fn(@data) for execution after @delay jiffies using
1685 * port_task. There is one port_task per port and it's the
1686 * user(low level driver)'s responsibility to make sure that only
1687 * one task is active at any given time.
1689 * libata core layer takes care of synchronization between
1690 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1694 * Inherited from caller.
1696 static void ata_pio_queue_task(struct ata_port
*ap
, void *data
,
1697 unsigned long delay
)
1699 ap
->port_task_data
= data
;
1701 /* may fail if ata_port_flush_task() in progress */
1702 queue_delayed_work(ata_wq
, &ap
->port_task
, delay
);
1706 * ata_port_flush_task - Flush port_task
1707 * @ap: The ata_port to flush port_task for
1709 * After this function completes, port_task is guranteed not to
1710 * be running or scheduled.
1713 * Kernel thread context (may sleep)
1715 void ata_port_flush_task(struct ata_port
*ap
)
1719 cancel_rearming_delayed_work(&ap
->port_task
);
1721 if (ata_msg_ctl(ap
))
1722 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __FUNCTION__
);
1725 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1727 struct completion
*waiting
= qc
->private_data
;
1733 * ata_exec_internal_sg - execute libata internal command
1734 * @dev: Device to which the command is sent
1735 * @tf: Taskfile registers for the command and the result
1736 * @cdb: CDB for packet command
1737 * @dma_dir: Data tranfer direction of the command
1738 * @sgl: sg list for the data buffer of the command
1739 * @n_elem: Number of sg entries
1740 * @timeout: Timeout in msecs (0 for default)
1742 * Executes libata internal command with timeout. @tf contains
1743 * command on entry and result on return. Timeout and error
1744 * conditions are reported via return value. No recovery action
1745 * is taken after a command times out. It's caller's duty to
1746 * clean up after timeout.
1749 * None. Should be called with kernel context, might sleep.
1752 * Zero on success, AC_ERR_* mask on failure
1754 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1755 struct ata_taskfile
*tf
, const u8
*cdb
,
1756 int dma_dir
, struct scatterlist
*sgl
,
1757 unsigned int n_elem
, unsigned long timeout
)
1759 struct ata_link
*link
= dev
->link
;
1760 struct ata_port
*ap
= link
->ap
;
1761 u8 command
= tf
->command
;
1762 struct ata_queued_cmd
*qc
;
1763 unsigned int tag
, preempted_tag
;
1764 u32 preempted_sactive
, preempted_qc_active
;
1765 int preempted_nr_active_links
;
1766 DECLARE_COMPLETION_ONSTACK(wait
);
1767 unsigned long flags
;
1768 unsigned int err_mask
;
1771 spin_lock_irqsave(ap
->lock
, flags
);
1773 /* no internal command while frozen */
1774 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1775 spin_unlock_irqrestore(ap
->lock
, flags
);
1776 return AC_ERR_SYSTEM
;
1779 /* initialize internal qc */
1781 /* XXX: Tag 0 is used for drivers with legacy EH as some
1782 * drivers choke if any other tag is given. This breaks
1783 * ata_tag_internal() test for those drivers. Don't use new
1784 * EH stuff without converting to it.
1786 if (ap
->ops
->error_handler
)
1787 tag
= ATA_TAG_INTERNAL
;
1791 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1793 qc
= __ata_qc_from_tag(ap
, tag
);
1801 preempted_tag
= link
->active_tag
;
1802 preempted_sactive
= link
->sactive
;
1803 preempted_qc_active
= ap
->qc_active
;
1804 preempted_nr_active_links
= ap
->nr_active_links
;
1805 link
->active_tag
= ATA_TAG_POISON
;
1808 ap
->nr_active_links
= 0;
1810 /* prepare & issue qc */
1813 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1814 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1815 qc
->dma_dir
= dma_dir
;
1816 if (dma_dir
!= DMA_NONE
) {
1817 unsigned int i
, buflen
= 0;
1818 struct scatterlist
*sg
;
1820 for_each_sg(sgl
, sg
, n_elem
, i
)
1821 buflen
+= sg
->length
;
1823 ata_sg_init(qc
, sgl
, n_elem
);
1824 qc
->nbytes
= buflen
;
1827 qc
->private_data
= &wait
;
1828 qc
->complete_fn
= ata_qc_complete_internal
;
1832 spin_unlock_irqrestore(ap
->lock
, flags
);
1835 timeout
= ata_probe_timeout
* 1000 / HZ
;
1837 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1839 ata_port_flush_task(ap
);
1842 spin_lock_irqsave(ap
->lock
, flags
);
1844 /* We're racing with irq here. If we lose, the
1845 * following test prevents us from completing the qc
1846 * twice. If we win, the port is frozen and will be
1847 * cleaned up by ->post_internal_cmd().
1849 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1850 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1852 if (ap
->ops
->error_handler
)
1853 ata_port_freeze(ap
);
1855 ata_qc_complete(qc
);
1857 if (ata_msg_warn(ap
))
1858 ata_dev_printk(dev
, KERN_WARNING
,
1859 "qc timeout (cmd 0x%x)\n", command
);
1862 spin_unlock_irqrestore(ap
->lock
, flags
);
1865 /* do post_internal_cmd */
1866 if (ap
->ops
->post_internal_cmd
)
1867 ap
->ops
->post_internal_cmd(qc
);
1869 /* perform minimal error analysis */
1870 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1871 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1872 qc
->err_mask
|= AC_ERR_DEV
;
1875 qc
->err_mask
|= AC_ERR_OTHER
;
1877 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1878 qc
->err_mask
&= ~AC_ERR_OTHER
;
1882 spin_lock_irqsave(ap
->lock
, flags
);
1884 *tf
= qc
->result_tf
;
1885 err_mask
= qc
->err_mask
;
1888 link
->active_tag
= preempted_tag
;
1889 link
->sactive
= preempted_sactive
;
1890 ap
->qc_active
= preempted_qc_active
;
1891 ap
->nr_active_links
= preempted_nr_active_links
;
1893 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1894 * Until those drivers are fixed, we detect the condition
1895 * here, fail the command with AC_ERR_SYSTEM and reenable the
1898 * Note that this doesn't change any behavior as internal
1899 * command failure results in disabling the device in the
1900 * higher layer for LLDDs without new reset/EH callbacks.
1902 * Kill the following code as soon as those drivers are fixed.
1904 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1905 err_mask
|= AC_ERR_SYSTEM
;
1909 spin_unlock_irqrestore(ap
->lock
, flags
);
1915 * ata_exec_internal - execute libata internal command
1916 * @dev: Device to which the command is sent
1917 * @tf: Taskfile registers for the command and the result
1918 * @cdb: CDB for packet command
1919 * @dma_dir: Data tranfer direction of the command
1920 * @buf: Data buffer of the command
1921 * @buflen: Length of data buffer
1922 * @timeout: Timeout in msecs (0 for default)
1924 * Wrapper around ata_exec_internal_sg() which takes simple
1925 * buffer instead of sg list.
1928 * None. Should be called with kernel context, might sleep.
1931 * Zero on success, AC_ERR_* mask on failure
1933 unsigned ata_exec_internal(struct ata_device
*dev
,
1934 struct ata_taskfile
*tf
, const u8
*cdb
,
1935 int dma_dir
, void *buf
, unsigned int buflen
,
1936 unsigned long timeout
)
1938 struct scatterlist
*psg
= NULL
, sg
;
1939 unsigned int n_elem
= 0;
1941 if (dma_dir
!= DMA_NONE
) {
1943 sg_init_one(&sg
, buf
, buflen
);
1948 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1953 * ata_do_simple_cmd - execute simple internal command
1954 * @dev: Device to which the command is sent
1955 * @cmd: Opcode to execute
1957 * Execute a 'simple' command, that only consists of the opcode
1958 * 'cmd' itself, without filling any other registers
1961 * Kernel thread context (may sleep).
1964 * Zero on success, AC_ERR_* mask on failure
1966 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1968 struct ata_taskfile tf
;
1970 ata_tf_init(dev
, &tf
);
1973 tf
.flags
|= ATA_TFLAG_DEVICE
;
1974 tf
.protocol
= ATA_PROT_NODATA
;
1976 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1980 * ata_pio_need_iordy - check if iordy needed
1983 * Check if the current speed of the device requires IORDY. Used
1984 * by various controllers for chip configuration.
1987 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1989 /* Controller doesn't support IORDY. Probably a pointless check
1990 as the caller should know this */
1991 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1993 /* PIO3 and higher it is mandatory */
1994 if (adev
->pio_mode
> XFER_PIO_2
)
1996 /* We turn it on when possible */
1997 if (ata_id_has_iordy(adev
->id
))
2003 * ata_pio_mask_no_iordy - Return the non IORDY mask
2006 * Compute the highest mode possible if we are not using iordy. Return
2007 * -1 if no iordy mode is available.
2010 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
2012 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2013 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
2014 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
2015 /* Is the speed faster than the drive allows non IORDY ? */
2017 /* This is cycle times not frequency - watch the logic! */
2018 if (pio
> 240) /* PIO2 is 240nS per cycle */
2019 return 3 << ATA_SHIFT_PIO
;
2020 return 7 << ATA_SHIFT_PIO
;
2023 return 3 << ATA_SHIFT_PIO
;
2027 * ata_dev_read_id - Read ID data from the specified device
2028 * @dev: target device
2029 * @p_class: pointer to class of the target device (may be changed)
2030 * @flags: ATA_READID_* flags
2031 * @id: buffer to read IDENTIFY data into
2033 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2034 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2035 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2036 * for pre-ATA4 drives.
2038 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2039 * now we abort if we hit that case.
2042 * Kernel thread context (may sleep)
2045 * 0 on success, -errno otherwise.
2047 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
2048 unsigned int flags
, u16
*id
)
2050 struct ata_port
*ap
= dev
->link
->ap
;
2051 unsigned int class = *p_class
;
2052 struct ata_taskfile tf
;
2053 unsigned int err_mask
= 0;
2055 int may_fallback
= 1, tried_spinup
= 0;
2058 if (ata_msg_ctl(ap
))
2059 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __FUNCTION__
);
2061 ata_dev_select(ap
, dev
->devno
, 1, 1); /* select device 0/1 */
2063 ata_tf_init(dev
, &tf
);
2067 tf
.command
= ATA_CMD_ID_ATA
;
2070 tf
.command
= ATA_CMD_ID_ATAPI
;
2074 reason
= "unsupported class";
2078 tf
.protocol
= ATA_PROT_PIO
;
2080 /* Some devices choke if TF registers contain garbage. Make
2081 * sure those are properly initialized.
2083 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
2085 /* Device presence detection is unreliable on some
2086 * controllers. Always poll IDENTIFY if available.
2088 tf
.flags
|= ATA_TFLAG_POLLING
;
2090 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_FROM_DEVICE
,
2091 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
2093 if (err_mask
& AC_ERR_NODEV_HINT
) {
2094 DPRINTK("ata%u.%d: NODEV after polling detection\n",
2095 ap
->print_id
, dev
->devno
);
2099 /* Device or controller might have reported the wrong
2100 * device class. Give a shot at the other IDENTIFY if
2101 * the current one is aborted by the device.
2104 (err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
2107 if (class == ATA_DEV_ATA
)
2108 class = ATA_DEV_ATAPI
;
2110 class = ATA_DEV_ATA
;
2115 reason
= "I/O error";
2119 /* Falling back doesn't make sense if ID data was read
2120 * successfully at least once.
2124 swap_buf_le16(id
, ATA_ID_WORDS
);
2128 reason
= "device reports invalid type";
2130 if (class == ATA_DEV_ATA
) {
2131 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
2134 if (ata_id_is_ata(id
))
2138 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
2141 * Drive powered-up in standby mode, and requires a specific
2142 * SET_FEATURES spin-up subcommand before it will accept
2143 * anything other than the original IDENTIFY command.
2145 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
2146 if (err_mask
&& id
[2] != 0x738c) {
2148 reason
= "SPINUP failed";
2152 * If the drive initially returned incomplete IDENTIFY info,
2153 * we now must reissue the IDENTIFY command.
2155 if (id
[2] == 0x37c8)
2159 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
2161 * The exact sequence expected by certain pre-ATA4 drives is:
2163 * IDENTIFY (optional in early ATA)
2164 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2166 * Some drives were very specific about that exact sequence.
2168 * Note that ATA4 says lba is mandatory so the second check
2169 * shoud never trigger.
2171 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2172 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2175 reason
= "INIT_DEV_PARAMS failed";
2179 /* current CHS translation info (id[53-58]) might be
2180 * changed. reread the identify device info.
2182 flags
&= ~ATA_READID_POSTRESET
;
2192 if (ata_msg_warn(ap
))
2193 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
2194 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
2198 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2200 struct ata_port
*ap
= dev
->link
->ap
;
2201 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2204 static void ata_dev_config_ncq(struct ata_device
*dev
,
2205 char *desc
, size_t desc_sz
)
2207 struct ata_port
*ap
= dev
->link
->ap
;
2208 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2210 if (!ata_id_has_ncq(dev
->id
)) {
2214 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2215 snprintf(desc
, desc_sz
, "NCQ (not used)");
2218 if (ap
->flags
& ATA_FLAG_NCQ
) {
2219 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
2220 dev
->flags
|= ATA_DFLAG_NCQ
;
2223 if (hdepth
>= ddepth
)
2224 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
2226 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
2230 * ata_dev_configure - Configure the specified ATA/ATAPI device
2231 * @dev: Target device to configure
2233 * Configure @dev according to @dev->id. Generic and low-level
2234 * driver specific fixups are also applied.
2237 * Kernel thread context (may sleep)
2240 * 0 on success, -errno otherwise
2242 int ata_dev_configure(struct ata_device
*dev
)
2244 struct ata_port
*ap
= dev
->link
->ap
;
2245 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2246 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2247 const u16
*id
= dev
->id
;
2248 unsigned long xfer_mask
;
2249 char revbuf
[7]; /* XYZ-99\0 */
2250 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2251 char modelbuf
[ATA_ID_PROD_LEN
+1];
2254 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2255 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
2260 if (ata_msg_probe(ap
))
2261 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __FUNCTION__
);
2264 dev
->horkage
|= ata_dev_blacklisted(dev
);
2265 ata_force_horkage(dev
);
2267 /* let ACPI work its magic */
2268 rc
= ata_acpi_on_devcfg(dev
);
2272 /* massage HPA, do it early as it might change IDENTIFY data */
2273 rc
= ata_hpa_resize(dev
);
2277 /* print device capabilities */
2278 if (ata_msg_probe(ap
))
2279 ata_dev_printk(dev
, KERN_DEBUG
,
2280 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2281 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2283 id
[49], id
[82], id
[83], id
[84],
2284 id
[85], id
[86], id
[87], id
[88]);
2286 /* initialize to-be-configured parameters */
2287 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2288 dev
->max_sectors
= 0;
2296 * common ATA, ATAPI feature tests
2299 /* find max transfer mode; for printk only */
2300 xfer_mask
= ata_id_xfermask(id
);
2302 if (ata_msg_probe(ap
))
2305 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2306 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2309 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2312 /* ATA-specific feature tests */
2313 if (dev
->class == ATA_DEV_ATA
) {
2314 if (ata_id_is_cfa(id
)) {
2315 if (id
[162] & 1) /* CPRM may make this media unusable */
2316 ata_dev_printk(dev
, KERN_WARNING
,
2317 "supports DRM functions and may "
2318 "not be fully accessable.\n");
2319 snprintf(revbuf
, 7, "CFA");
2321 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2322 /* Warn the user if the device has TPM extensions */
2323 if (ata_id_has_tpm(id
))
2324 ata_dev_printk(dev
, KERN_WARNING
,
2325 "supports DRM functions and may "
2326 "not be fully accessable.\n");
2329 dev
->n_sectors
= ata_id_n_sectors(id
);
2331 if (dev
->id
[59] & 0x100)
2332 dev
->multi_count
= dev
->id
[59] & 0xff;
2334 if (ata_id_has_lba(id
)) {
2335 const char *lba_desc
;
2339 dev
->flags
|= ATA_DFLAG_LBA
;
2340 if (ata_id_has_lba48(id
)) {
2341 dev
->flags
|= ATA_DFLAG_LBA48
;
2344 if (dev
->n_sectors
>= (1UL << 28) &&
2345 ata_id_has_flush_ext(id
))
2346 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2350 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2352 /* print device info to dmesg */
2353 if (ata_msg_drv(ap
) && print_info
) {
2354 ata_dev_printk(dev
, KERN_INFO
,
2355 "%s: %s, %s, max %s\n",
2356 revbuf
, modelbuf
, fwrevbuf
,
2357 ata_mode_string(xfer_mask
));
2358 ata_dev_printk(dev
, KERN_INFO
,
2359 "%Lu sectors, multi %u: %s %s\n",
2360 (unsigned long long)dev
->n_sectors
,
2361 dev
->multi_count
, lba_desc
, ncq_desc
);
2366 /* Default translation */
2367 dev
->cylinders
= id
[1];
2369 dev
->sectors
= id
[6];
2371 if (ata_id_current_chs_valid(id
)) {
2372 /* Current CHS translation is valid. */
2373 dev
->cylinders
= id
[54];
2374 dev
->heads
= id
[55];
2375 dev
->sectors
= id
[56];
2378 /* print device info to dmesg */
2379 if (ata_msg_drv(ap
) && print_info
) {
2380 ata_dev_printk(dev
, KERN_INFO
,
2381 "%s: %s, %s, max %s\n",
2382 revbuf
, modelbuf
, fwrevbuf
,
2383 ata_mode_string(xfer_mask
));
2384 ata_dev_printk(dev
, KERN_INFO
,
2385 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2386 (unsigned long long)dev
->n_sectors
,
2387 dev
->multi_count
, dev
->cylinders
,
2388 dev
->heads
, dev
->sectors
);
2395 /* ATAPI-specific feature tests */
2396 else if (dev
->class == ATA_DEV_ATAPI
) {
2397 const char *cdb_intr_string
= "";
2398 const char *atapi_an_string
= "";
2399 const char *dma_dir_string
= "";
2402 rc
= atapi_cdb_len(id
);
2403 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2404 if (ata_msg_warn(ap
))
2405 ata_dev_printk(dev
, KERN_WARNING
,
2406 "unsupported CDB len\n");
2410 dev
->cdb_len
= (unsigned int) rc
;
2412 /* Enable ATAPI AN if both the host and device have
2413 * the support. If PMP is attached, SNTF is required
2414 * to enable ATAPI AN to discern between PHY status
2415 * changed notifications and ATAPI ANs.
2417 if ((ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2418 (!ap
->nr_pmp_links
||
2419 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2420 unsigned int err_mask
;
2422 /* issue SET feature command to turn this on */
2423 err_mask
= ata_dev_set_feature(dev
,
2424 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2426 ata_dev_printk(dev
, KERN_ERR
,
2427 "failed to enable ATAPI AN "
2428 "(err_mask=0x%x)\n", err_mask
);
2430 dev
->flags
|= ATA_DFLAG_AN
;
2431 atapi_an_string
= ", ATAPI AN";
2435 if (ata_id_cdb_intr(dev
->id
)) {
2436 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2437 cdb_intr_string
= ", CDB intr";
2440 if (atapi_dmadir
|| atapi_id_dmadir(dev
->id
)) {
2441 dev
->flags
|= ATA_DFLAG_DMADIR
;
2442 dma_dir_string
= ", DMADIR";
2445 /* print device info to dmesg */
2446 if (ata_msg_drv(ap
) && print_info
)
2447 ata_dev_printk(dev
, KERN_INFO
,
2448 "ATAPI: %s, %s, max %s%s%s%s\n",
2450 ata_mode_string(xfer_mask
),
2451 cdb_intr_string
, atapi_an_string
,
2455 /* determine max_sectors */
2456 dev
->max_sectors
= ATA_MAX_SECTORS
;
2457 if (dev
->flags
& ATA_DFLAG_LBA48
)
2458 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2460 if (!(dev
->horkage
& ATA_HORKAGE_IPM
)) {
2461 if (ata_id_has_hipm(dev
->id
))
2462 dev
->flags
|= ATA_DFLAG_HIPM
;
2463 if (ata_id_has_dipm(dev
->id
))
2464 dev
->flags
|= ATA_DFLAG_DIPM
;
2467 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2469 if (ata_dev_knobble(dev
)) {
2470 if (ata_msg_drv(ap
) && print_info
)
2471 ata_dev_printk(dev
, KERN_INFO
,
2472 "applying bridge limits\n");
2473 dev
->udma_mask
&= ATA_UDMA5
;
2474 dev
->max_sectors
= ATA_MAX_SECTORS
;
2477 if ((dev
->class == ATA_DEV_ATAPI
) &&
2478 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2479 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2480 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2483 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2484 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2487 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_IPM
) {
2488 dev
->horkage
|= ATA_HORKAGE_IPM
;
2490 /* reset link pm_policy for this port to no pm */
2491 ap
->pm_policy
= MAX_PERFORMANCE
;
2494 if (ap
->ops
->dev_config
)
2495 ap
->ops
->dev_config(dev
);
2497 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2498 /* Let the user know. We don't want to disallow opens for
2499 rescue purposes, or in case the vendor is just a blithering
2500 idiot. Do this after the dev_config call as some controllers
2501 with buggy firmware may want to avoid reporting false device
2505 ata_dev_printk(dev
, KERN_WARNING
,
2506 "Drive reports diagnostics failure. This may indicate a drive\n");
2507 ata_dev_printk(dev
, KERN_WARNING
,
2508 "fault or invalid emulation. Contact drive vendor for information.\n");
2512 if (ata_msg_probe(ap
))
2513 ata_dev_printk(dev
, KERN_DEBUG
, "%s: EXIT, drv_stat = 0x%x\n",
2514 __FUNCTION__
, ata_chk_status(ap
));
2518 if (ata_msg_probe(ap
))
2519 ata_dev_printk(dev
, KERN_DEBUG
,
2520 "%s: EXIT, err\n", __FUNCTION__
);
2525 * ata_cable_40wire - return 40 wire cable type
2528 * Helper method for drivers which want to hardwire 40 wire cable
2532 int ata_cable_40wire(struct ata_port
*ap
)
2534 return ATA_CBL_PATA40
;
2538 * ata_cable_80wire - return 80 wire cable type
2541 * Helper method for drivers which want to hardwire 80 wire cable
2545 int ata_cable_80wire(struct ata_port
*ap
)
2547 return ATA_CBL_PATA80
;
2551 * ata_cable_unknown - return unknown PATA cable.
2554 * Helper method for drivers which have no PATA cable detection.
2557 int ata_cable_unknown(struct ata_port
*ap
)
2559 return ATA_CBL_PATA_UNK
;
2563 * ata_cable_ignore - return ignored PATA cable.
2566 * Helper method for drivers which don't use cable type to limit
2569 int ata_cable_ignore(struct ata_port
*ap
)
2571 return ATA_CBL_PATA_IGN
;
2575 * ata_cable_sata - return SATA cable type
2578 * Helper method for drivers which have SATA cables
2581 int ata_cable_sata(struct ata_port
*ap
)
2583 return ATA_CBL_SATA
;
2587 * ata_bus_probe - Reset and probe ATA bus
2590 * Master ATA bus probing function. Initiates a hardware-dependent
2591 * bus reset, then attempts to identify any devices found on
2595 * PCI/etc. bus probe sem.
2598 * Zero on success, negative errno otherwise.
2601 int ata_bus_probe(struct ata_port
*ap
)
2603 unsigned int classes
[ATA_MAX_DEVICES
];
2604 int tries
[ATA_MAX_DEVICES
];
2606 struct ata_device
*dev
;
2610 ata_link_for_each_dev(dev
, &ap
->link
)
2611 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2614 ata_link_for_each_dev(dev
, &ap
->link
) {
2615 /* If we issue an SRST then an ATA drive (not ATAPI)
2616 * may change configuration and be in PIO0 timing. If
2617 * we do a hard reset (or are coming from power on)
2618 * this is true for ATA or ATAPI. Until we've set a
2619 * suitable controller mode we should not touch the
2620 * bus as we may be talking too fast.
2622 dev
->pio_mode
= XFER_PIO_0
;
2624 /* If the controller has a pio mode setup function
2625 * then use it to set the chipset to rights. Don't
2626 * touch the DMA setup as that will be dealt with when
2627 * configuring devices.
2629 if (ap
->ops
->set_piomode
)
2630 ap
->ops
->set_piomode(ap
, dev
);
2633 /* reset and determine device classes */
2634 ap
->ops
->phy_reset(ap
);
2636 ata_link_for_each_dev(dev
, &ap
->link
) {
2637 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
2638 dev
->class != ATA_DEV_UNKNOWN
)
2639 classes
[dev
->devno
] = dev
->class;
2641 classes
[dev
->devno
] = ATA_DEV_NONE
;
2643 dev
->class = ATA_DEV_UNKNOWN
;
2648 /* read IDENTIFY page and configure devices. We have to do the identify
2649 specific sequence bass-ackwards so that PDIAG- is released by
2652 ata_link_for_each_dev(dev
, &ap
->link
) {
2653 if (tries
[dev
->devno
])
2654 dev
->class = classes
[dev
->devno
];
2656 if (!ata_dev_enabled(dev
))
2659 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2665 /* Now ask for the cable type as PDIAG- should have been released */
2666 if (ap
->ops
->cable_detect
)
2667 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2669 /* We may have SATA bridge glue hiding here irrespective of the
2670 reported cable types and sensed types */
2671 ata_link_for_each_dev(dev
, &ap
->link
) {
2672 if (!ata_dev_enabled(dev
))
2674 /* SATA drives indicate we have a bridge. We don't know which
2675 end of the link the bridge is which is a problem */
2676 if (ata_id_is_sata(dev
->id
))
2677 ap
->cbl
= ATA_CBL_SATA
;
2680 /* After the identify sequence we can now set up the devices. We do
2681 this in the normal order so that the user doesn't get confused */
2683 ata_link_for_each_dev(dev
, &ap
->link
) {
2684 if (!ata_dev_enabled(dev
))
2687 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2688 rc
= ata_dev_configure(dev
);
2689 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2694 /* configure transfer mode */
2695 rc
= ata_set_mode(&ap
->link
, &dev
);
2699 ata_link_for_each_dev(dev
, &ap
->link
)
2700 if (ata_dev_enabled(dev
))
2703 /* no device present, disable port */
2704 ata_port_disable(ap
);
2708 tries
[dev
->devno
]--;
2712 /* eeek, something went very wrong, give up */
2713 tries
[dev
->devno
] = 0;
2717 /* give it just one more chance */
2718 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2720 if (tries
[dev
->devno
] == 1) {
2721 /* This is the last chance, better to slow
2722 * down than lose it.
2724 sata_down_spd_limit(&ap
->link
);
2725 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2729 if (!tries
[dev
->devno
])
2730 ata_dev_disable(dev
);
2736 * ata_port_probe - Mark port as enabled
2737 * @ap: Port for which we indicate enablement
2739 * Modify @ap data structure such that the system
2740 * thinks that the entire port is enabled.
2742 * LOCKING: host lock, or some other form of
2746 void ata_port_probe(struct ata_port
*ap
)
2748 ap
->flags
&= ~ATA_FLAG_DISABLED
;
2752 * sata_print_link_status - Print SATA link status
2753 * @link: SATA link to printk link status about
2755 * This function prints link speed and status of a SATA link.
2760 void sata_print_link_status(struct ata_link
*link
)
2762 u32 sstatus
, scontrol
, tmp
;
2764 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2766 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2768 if (ata_link_online(link
)) {
2769 tmp
= (sstatus
>> 4) & 0xf;
2770 ata_link_printk(link
, KERN_INFO
,
2771 "SATA link up %s (SStatus %X SControl %X)\n",
2772 sata_spd_string(tmp
), sstatus
, scontrol
);
2774 ata_link_printk(link
, KERN_INFO
,
2775 "SATA link down (SStatus %X SControl %X)\n",
2781 * ata_dev_pair - return other device on cable
2784 * Obtain the other device on the same cable, or if none is
2785 * present NULL is returned
2788 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2790 struct ata_link
*link
= adev
->link
;
2791 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
2792 if (!ata_dev_enabled(pair
))
2798 * ata_port_disable - Disable port.
2799 * @ap: Port to be disabled.
2801 * Modify @ap data structure such that the system
2802 * thinks that the entire port is disabled, and should
2803 * never attempt to probe or communicate with devices
2806 * LOCKING: host lock, or some other form of
2810 void ata_port_disable(struct ata_port
*ap
)
2812 ap
->link
.device
[0].class = ATA_DEV_NONE
;
2813 ap
->link
.device
[1].class = ATA_DEV_NONE
;
2814 ap
->flags
|= ATA_FLAG_DISABLED
;
2818 * sata_down_spd_limit - adjust SATA spd limit downward
2819 * @link: Link to adjust SATA spd limit for
2821 * Adjust SATA spd limit of @link downward. Note that this
2822 * function only adjusts the limit. The change must be applied
2823 * using sata_set_spd().
2826 * Inherited from caller.
2829 * 0 on success, negative errno on failure
2831 int sata_down_spd_limit(struct ata_link
*link
)
2833 u32 sstatus
, spd
, mask
;
2836 if (!sata_scr_valid(link
))
2839 /* If SCR can be read, use it to determine the current SPD.
2840 * If not, use cached value in link->sata_spd.
2842 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2844 spd
= (sstatus
>> 4) & 0xf;
2846 spd
= link
->sata_spd
;
2848 mask
= link
->sata_spd_limit
;
2852 /* unconditionally mask off the highest bit */
2853 highbit
= fls(mask
) - 1;
2854 mask
&= ~(1 << highbit
);
2856 /* Mask off all speeds higher than or equal to the current
2857 * one. Force 1.5Gbps if current SPD is not available.
2860 mask
&= (1 << (spd
- 1)) - 1;
2864 /* were we already at the bottom? */
2868 link
->sata_spd_limit
= mask
;
2870 ata_link_printk(link
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2871 sata_spd_string(fls(mask
)));
2876 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
2878 struct ata_link
*host_link
= &link
->ap
->link
;
2879 u32 limit
, target
, spd
;
2881 limit
= link
->sata_spd_limit
;
2883 /* Don't configure downstream link faster than upstream link.
2884 * It doesn't speed up anything and some PMPs choke on such
2887 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
2888 limit
&= (1 << host_link
->sata_spd
) - 1;
2890 if (limit
== UINT_MAX
)
2893 target
= fls(limit
);
2895 spd
= (*scontrol
>> 4) & 0xf;
2896 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
2898 return spd
!= target
;
2902 * sata_set_spd_needed - is SATA spd configuration needed
2903 * @link: Link in question
2905 * Test whether the spd limit in SControl matches
2906 * @link->sata_spd_limit. This function is used to determine
2907 * whether hardreset is necessary to apply SATA spd
2911 * Inherited from caller.
2914 * 1 if SATA spd configuration is needed, 0 otherwise.
2916 int sata_set_spd_needed(struct ata_link
*link
)
2920 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
2923 return __sata_set_spd_needed(link
, &scontrol
);
2927 * sata_set_spd - set SATA spd according to spd limit
2928 * @link: Link to set SATA spd for
2930 * Set SATA spd of @link according to sata_spd_limit.
2933 * Inherited from caller.
2936 * 0 if spd doesn't need to be changed, 1 if spd has been
2937 * changed. Negative errno if SCR registers are inaccessible.
2939 int sata_set_spd(struct ata_link
*link
)
2944 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
2947 if (!__sata_set_spd_needed(link
, &scontrol
))
2950 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
2957 * This mode timing computation functionality is ported over from
2958 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2961 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2962 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2963 * for UDMA6, which is currently supported only by Maxtor drives.
2965 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2968 static const struct ata_timing ata_timing
[] = {
2969 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2970 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
2971 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
2972 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
2973 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
2974 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
2975 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 100, 0 },
2976 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 80, 0 },
2978 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
2979 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
2980 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
2982 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
2983 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
2984 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
2985 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 100, 0 },
2986 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 80, 0 },
2988 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2989 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
2990 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
2991 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
2992 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
2993 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
2994 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
2995 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
3000 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3001 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3003 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
3005 q
->setup
= EZ(t
->setup
* 1000, T
);
3006 q
->act8b
= EZ(t
->act8b
* 1000, T
);
3007 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
3008 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
3009 q
->active
= EZ(t
->active
* 1000, T
);
3010 q
->recover
= EZ(t
->recover
* 1000, T
);
3011 q
->cycle
= EZ(t
->cycle
* 1000, T
);
3012 q
->udma
= EZ(t
->udma
* 1000, UT
);
3015 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
3016 struct ata_timing
*m
, unsigned int what
)
3018 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
3019 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
3020 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
3021 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
3022 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
3023 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
3024 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
3025 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
3028 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
3030 const struct ata_timing
*t
= ata_timing
;
3032 while (xfer_mode
> t
->mode
)
3035 if (xfer_mode
== t
->mode
)
3040 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
3041 struct ata_timing
*t
, int T
, int UT
)
3043 const struct ata_timing
*s
;
3044 struct ata_timing p
;
3050 if (!(s
= ata_timing_find_mode(speed
)))
3053 memcpy(t
, s
, sizeof(*s
));
3056 * If the drive is an EIDE drive, it can tell us it needs extended
3057 * PIO/MW_DMA cycle timing.
3060 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
3061 memset(&p
, 0, sizeof(p
));
3062 if (speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
3063 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
3064 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
3065 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
3066 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
3068 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
3072 * Convert the timing to bus clock counts.
3075 ata_timing_quantize(t
, t
, T
, UT
);
3078 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3079 * S.M.A.R.T * and some other commands. We have to ensure that the
3080 * DMA cycle timing is slower/equal than the fastest PIO timing.
3083 if (speed
> XFER_PIO_6
) {
3084 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
3085 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
3089 * Lengthen active & recovery time so that cycle time is correct.
3092 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
3093 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
3094 t
->rec8b
= t
->cyc8b
- t
->act8b
;
3097 if (t
->active
+ t
->recover
< t
->cycle
) {
3098 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
3099 t
->recover
= t
->cycle
- t
->active
;
3102 /* In a few cases quantisation may produce enough errors to
3103 leave t->cycle too low for the sum of active and recovery
3104 if so we must correct this */
3105 if (t
->active
+ t
->recover
> t
->cycle
)
3106 t
->cycle
= t
->active
+ t
->recover
;
3112 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3113 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3114 * @cycle: cycle duration in ns
3116 * Return matching xfer mode for @cycle. The returned mode is of
3117 * the transfer type specified by @xfer_shift. If @cycle is too
3118 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3119 * than the fastest known mode, the fasted mode is returned.
3125 * Matching xfer_mode, 0xff if no match found.
3127 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
3129 u8 base_mode
= 0xff, last_mode
= 0xff;
3130 const struct ata_xfer_ent
*ent
;
3131 const struct ata_timing
*t
;
3133 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
3134 if (ent
->shift
== xfer_shift
)
3135 base_mode
= ent
->base
;
3137 for (t
= ata_timing_find_mode(base_mode
);
3138 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
3139 unsigned short this_cycle
;
3141 switch (xfer_shift
) {
3143 case ATA_SHIFT_MWDMA
:
3144 this_cycle
= t
->cycle
;
3146 case ATA_SHIFT_UDMA
:
3147 this_cycle
= t
->udma
;
3153 if (cycle
> this_cycle
)
3156 last_mode
= t
->mode
;
3163 * ata_down_xfermask_limit - adjust dev xfer masks downward
3164 * @dev: Device to adjust xfer masks
3165 * @sel: ATA_DNXFER_* selector
3167 * Adjust xfer masks of @dev downward. Note that this function
3168 * does not apply the change. Invoking ata_set_mode() afterwards
3169 * will apply the limit.
3172 * Inherited from caller.
3175 * 0 on success, negative errno on failure
3177 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3180 unsigned long orig_mask
, xfer_mask
;
3181 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3184 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3185 sel
&= ~ATA_DNXFER_QUIET
;
3187 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3190 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3193 case ATA_DNXFER_PIO
:
3194 highbit
= fls(pio_mask
) - 1;
3195 pio_mask
&= ~(1 << highbit
);
3198 case ATA_DNXFER_DMA
:
3200 highbit
= fls(udma_mask
) - 1;
3201 udma_mask
&= ~(1 << highbit
);
3204 } else if (mwdma_mask
) {
3205 highbit
= fls(mwdma_mask
) - 1;
3206 mwdma_mask
&= ~(1 << highbit
);
3212 case ATA_DNXFER_40C
:
3213 udma_mask
&= ATA_UDMA_MASK_40C
;
3216 case ATA_DNXFER_FORCE_PIO0
:
3218 case ATA_DNXFER_FORCE_PIO
:
3227 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3229 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3233 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3234 snprintf(buf
, sizeof(buf
), "%s:%s",
3235 ata_mode_string(xfer_mask
),
3236 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3238 snprintf(buf
, sizeof(buf
), "%s",
3239 ata_mode_string(xfer_mask
));
3241 ata_dev_printk(dev
, KERN_WARNING
,
3242 "limiting speed to %s\n", buf
);
3245 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3251 static int ata_dev_set_mode(struct ata_device
*dev
)
3253 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3254 const char *dev_err_whine
= "";
3255 int ign_dev_err
= 0;
3256 unsigned int err_mask
;
3259 dev
->flags
&= ~ATA_DFLAG_PIO
;
3260 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3261 dev
->flags
|= ATA_DFLAG_PIO
;
3263 err_mask
= ata_dev_set_xfermode(dev
);
3265 if (err_mask
& ~AC_ERR_DEV
)
3269 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3270 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3271 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3275 /* Old CFA may refuse this command, which is just fine */
3276 if (dev
->xfer_shift
== ATA_SHIFT_PIO
&& ata_id_is_cfa(dev
->id
))
3279 /* Some very old devices and some bad newer ones fail any kind of
3280 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3281 if (dev
->xfer_shift
== ATA_SHIFT_PIO
&& !ata_id_has_iordy(dev
->id
) &&
3282 dev
->pio_mode
<= XFER_PIO_2
)
3285 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3286 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3287 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3288 dev
->dma_mode
== XFER_MW_DMA_0
&&
3289 (dev
->id
[63] >> 8) & 1)
3292 /* if the device is actually configured correctly, ignore dev err */
3293 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3296 if (err_mask
& AC_ERR_DEV
) {
3300 dev_err_whine
= " (device error ignored)";
3303 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3304 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3306 ata_dev_printk(dev
, KERN_INFO
, "configured for %s%s\n",
3307 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3313 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
3314 "(err_mask=0x%x)\n", err_mask
);
3319 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3320 * @link: link on which timings will be programmed
3321 * @r_failed_dev: out parameter for failed device
3323 * Standard implementation of the function used to tune and set
3324 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3325 * ata_dev_set_mode() fails, pointer to the failing device is
3326 * returned in @r_failed_dev.
3329 * PCI/etc. bus probe sem.
3332 * 0 on success, negative errno otherwise
3335 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3337 struct ata_port
*ap
= link
->ap
;
3338 struct ata_device
*dev
;
3339 int rc
= 0, used_dma
= 0, found
= 0;
3341 /* step 1: calculate xfer_mask */
3342 ata_link_for_each_dev(dev
, link
) {
3343 unsigned long pio_mask
, dma_mask
;
3344 unsigned int mode_mask
;
3346 if (!ata_dev_enabled(dev
))
3349 mode_mask
= ATA_DMA_MASK_ATA
;
3350 if (dev
->class == ATA_DEV_ATAPI
)
3351 mode_mask
= ATA_DMA_MASK_ATAPI
;
3352 else if (ata_id_is_cfa(dev
->id
))
3353 mode_mask
= ATA_DMA_MASK_CFA
;
3355 ata_dev_xfermask(dev
);
3356 ata_force_xfermask(dev
);
3358 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3359 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3361 if (libata_dma_mask
& mode_mask
)
3362 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3366 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3367 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3370 if (dev
->dma_mode
!= 0xff)
3376 /* step 2: always set host PIO timings */
3377 ata_link_for_each_dev(dev
, link
) {
3378 if (!ata_dev_enabled(dev
))
3381 if (dev
->pio_mode
== 0xff) {
3382 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
3387 dev
->xfer_mode
= dev
->pio_mode
;
3388 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3389 if (ap
->ops
->set_piomode
)
3390 ap
->ops
->set_piomode(ap
, dev
);
3393 /* step 3: set host DMA timings */
3394 ata_link_for_each_dev(dev
, link
) {
3395 if (!ata_dev_enabled(dev
) || dev
->dma_mode
== 0xff)
3398 dev
->xfer_mode
= dev
->dma_mode
;
3399 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3400 if (ap
->ops
->set_dmamode
)
3401 ap
->ops
->set_dmamode(ap
, dev
);
3404 /* step 4: update devices' xfer mode */
3405 ata_link_for_each_dev(dev
, link
) {
3406 /* don't update suspended devices' xfer mode */
3407 if (!ata_dev_enabled(dev
))
3410 rc
= ata_dev_set_mode(dev
);
3415 /* Record simplex status. If we selected DMA then the other
3416 * host channels are not permitted to do so.
3418 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3419 ap
->host
->simplex_claimed
= ap
;
3423 *r_failed_dev
= dev
;
3428 * ata_tf_to_host - issue ATA taskfile to host controller
3429 * @ap: port to which command is being issued
3430 * @tf: ATA taskfile register set
3432 * Issues ATA taskfile register set to ATA host controller,
3433 * with proper synchronization with interrupt handler and
3437 * spin_lock_irqsave(host lock)
3440 static inline void ata_tf_to_host(struct ata_port
*ap
,
3441 const struct ata_taskfile
*tf
)
3443 ap
->ops
->tf_load(ap
, tf
);
3444 ap
->ops
->exec_command(ap
, tf
);
3448 * ata_busy_sleep - sleep until BSY clears, or timeout
3449 * @ap: port containing status register to be polled
3450 * @tmout_pat: impatience timeout
3451 * @tmout: overall timeout
3453 * Sleep until ATA Status register bit BSY clears,
3454 * or a timeout occurs.
3457 * Kernel thread context (may sleep).
3460 * 0 on success, -errno otherwise.
3462 int ata_busy_sleep(struct ata_port
*ap
,
3463 unsigned long tmout_pat
, unsigned long tmout
)
3465 unsigned long timer_start
, timeout
;
3468 status
= ata_busy_wait(ap
, ATA_BUSY
, 300);
3469 timer_start
= jiffies
;
3470 timeout
= timer_start
+ tmout_pat
;
3471 while (status
!= 0xff && (status
& ATA_BUSY
) &&
3472 time_before(jiffies
, timeout
)) {
3474 status
= ata_busy_wait(ap
, ATA_BUSY
, 3);
3477 if (status
!= 0xff && (status
& ATA_BUSY
))
3478 ata_port_printk(ap
, KERN_WARNING
,
3479 "port is slow to respond, please be patient "
3480 "(Status 0x%x)\n", status
);
3482 timeout
= timer_start
+ tmout
;
3483 while (status
!= 0xff && (status
& ATA_BUSY
) &&
3484 time_before(jiffies
, timeout
)) {
3486 status
= ata_chk_status(ap
);
3492 if (status
& ATA_BUSY
) {
3493 ata_port_printk(ap
, KERN_ERR
, "port failed to respond "
3494 "(%lu secs, Status 0x%x)\n",
3495 tmout
/ HZ
, status
);
3503 * ata_wait_after_reset - wait before checking status after reset
3504 * @ap: port containing status register to be polled
3505 * @deadline: deadline jiffies for the operation
3507 * After reset, we need to pause a while before reading status.
3508 * Also, certain combination of controller and device report 0xff
3509 * for some duration (e.g. until SATA PHY is up and running)
3510 * which is interpreted as empty port in ATA world. This
3511 * function also waits for such devices to get out of 0xff
3515 * Kernel thread context (may sleep).
3517 void ata_wait_after_reset(struct ata_port
*ap
, unsigned long deadline
)
3519 unsigned long until
= jiffies
+ ATA_TMOUT_FF_WAIT
;
3521 if (time_before(until
, deadline
))
3524 /* Spec mandates ">= 2ms" before checking status. We wait
3525 * 150ms, because that was the magic delay used for ATAPI
3526 * devices in Hale Landis's ATADRVR, for the period of time
3527 * between when the ATA command register is written, and then
3528 * status is checked. Because waiting for "a while" before
3529 * checking status is fine, post SRST, we perform this magic
3530 * delay here as well.
3532 * Old drivers/ide uses the 2mS rule and then waits for ready.
3536 /* Wait for 0xff to clear. Some SATA devices take a long time
3537 * to clear 0xff after reset. For example, HHD424020F7SV00
3538 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3541 * Note that some PATA controllers (pata_ali) explode if
3542 * status register is read more than once when there's no
3545 if (ap
->flags
& ATA_FLAG_SATA
) {
3547 u8 status
= ata_chk_status(ap
);
3549 if (status
!= 0xff || time_after(jiffies
, deadline
))
3558 * ata_wait_ready - sleep until BSY clears, or timeout
3559 * @ap: port containing status register to be polled
3560 * @deadline: deadline jiffies for the operation
3562 * Sleep until ATA Status register bit BSY clears, or timeout
3566 * Kernel thread context (may sleep).
3569 * 0 on success, -errno otherwise.
3571 int ata_wait_ready(struct ata_port
*ap
, unsigned long deadline
)
3573 unsigned long start
= jiffies
;
3577 u8 status
= ata_chk_status(ap
);
3578 unsigned long now
= jiffies
;
3580 if (!(status
& ATA_BUSY
))
3582 if (!ata_link_online(&ap
->link
) && status
== 0xff)
3584 if (time_after(now
, deadline
))
3587 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3588 (deadline
- now
> 3 * HZ
)) {
3589 ata_port_printk(ap
, KERN_WARNING
,
3590 "port is slow to respond, please be patient "
3591 "(Status 0x%x)\n", status
);
3599 static int ata_bus_post_reset(struct ata_port
*ap
, unsigned int devmask
,
3600 unsigned long deadline
)
3602 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3603 unsigned int dev0
= devmask
& (1 << 0);
3604 unsigned int dev1
= devmask
& (1 << 1);
3607 /* if device 0 was found in ata_devchk, wait for its
3611 rc
= ata_wait_ready(ap
, deadline
);
3619 /* if device 1 was found in ata_devchk, wait for register
3620 * access briefly, then wait for BSY to clear.
3625 ap
->ops
->dev_select(ap
, 1);
3627 /* Wait for register access. Some ATAPI devices fail
3628 * to set nsect/lbal after reset, so don't waste too
3629 * much time on it. We're gonna wait for !BSY anyway.
3631 for (i
= 0; i
< 2; i
++) {
3634 nsect
= ioread8(ioaddr
->nsect_addr
);
3635 lbal
= ioread8(ioaddr
->lbal_addr
);
3636 if ((nsect
== 1) && (lbal
== 1))
3638 msleep(50); /* give drive a breather */
3641 rc
= ata_wait_ready(ap
, deadline
);
3649 /* is all this really necessary? */
3650 ap
->ops
->dev_select(ap
, 0);
3652 ap
->ops
->dev_select(ap
, 1);
3654 ap
->ops
->dev_select(ap
, 0);
3659 static int ata_bus_softreset(struct ata_port
*ap
, unsigned int devmask
,
3660 unsigned long deadline
)
3662 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3664 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
3666 /* software reset. causes dev0 to be selected */
3667 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3668 udelay(20); /* FIXME: flush */
3669 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
3670 udelay(20); /* FIXME: flush */
3671 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3673 /* wait a while before checking status */
3674 ata_wait_after_reset(ap
, deadline
);
3676 /* Before we perform post reset processing we want to see if
3677 * the bus shows 0xFF because the odd clown forgets the D7
3678 * pulldown resistor.
3680 if (ata_chk_status(ap
) == 0xFF)
3683 return ata_bus_post_reset(ap
, devmask
, deadline
);
3687 * ata_bus_reset - reset host port and associated ATA channel
3688 * @ap: port to reset
3690 * This is typically the first time we actually start issuing
3691 * commands to the ATA channel. We wait for BSY to clear, then
3692 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3693 * result. Determine what devices, if any, are on the channel
3694 * by looking at the device 0/1 error register. Look at the signature
3695 * stored in each device's taskfile registers, to determine if
3696 * the device is ATA or ATAPI.
3699 * PCI/etc. bus probe sem.
3700 * Obtains host lock.
3703 * Sets ATA_FLAG_DISABLED if bus reset fails.
3706 void ata_bus_reset(struct ata_port
*ap
)
3708 struct ata_device
*device
= ap
->link
.device
;
3709 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3710 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3712 unsigned int dev0
, dev1
= 0, devmask
= 0;
3715 DPRINTK("ENTER, host %u, port %u\n", ap
->print_id
, ap
->port_no
);
3717 /* determine if device 0/1 are present */
3718 if (ap
->flags
& ATA_FLAG_SATA_RESET
)
3721 dev0
= ata_devchk(ap
, 0);
3723 dev1
= ata_devchk(ap
, 1);
3727 devmask
|= (1 << 0);
3729 devmask
|= (1 << 1);
3731 /* select device 0 again */
3732 ap
->ops
->dev_select(ap
, 0);
3734 /* issue bus reset */
3735 if (ap
->flags
& ATA_FLAG_SRST
) {
3736 rc
= ata_bus_softreset(ap
, devmask
, jiffies
+ 40 * HZ
);
3737 if (rc
&& rc
!= -ENODEV
)
3742 * determine by signature whether we have ATA or ATAPI devices
3744 device
[0].class = ata_dev_try_classify(&device
[0], dev0
, &err
);
3745 if ((slave_possible
) && (err
!= 0x81))
3746 device
[1].class = ata_dev_try_classify(&device
[1], dev1
, &err
);
3748 /* is double-select really necessary? */
3749 if (device
[1].class != ATA_DEV_NONE
)
3750 ap
->ops
->dev_select(ap
, 1);
3751 if (device
[0].class != ATA_DEV_NONE
)
3752 ap
->ops
->dev_select(ap
, 0);
3754 /* if no devices were detected, disable this port */
3755 if ((device
[0].class == ATA_DEV_NONE
) &&
3756 (device
[1].class == ATA_DEV_NONE
))
3759 if (ap
->flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
)) {
3760 /* set up device control for ATA_FLAG_SATA_RESET */
3761 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3768 ata_port_printk(ap
, KERN_ERR
, "disabling port\n");
3769 ata_port_disable(ap
);
3775 * sata_link_debounce - debounce SATA phy status
3776 * @link: ATA link to debounce SATA phy status for
3777 * @params: timing parameters { interval, duratinon, timeout } in msec
3778 * @deadline: deadline jiffies for the operation
3780 * Make sure SStatus of @link reaches stable state, determined by
3781 * holding the same value where DET is not 1 for @duration polled
3782 * every @interval, before @timeout. Timeout constraints the
3783 * beginning of the stable state. Because DET gets stuck at 1 on
3784 * some controllers after hot unplugging, this functions waits
3785 * until timeout then returns 0 if DET is stable at 1.
3787 * @timeout is further limited by @deadline. The sooner of the
3791 * Kernel thread context (may sleep)
3794 * 0 on success, -errno on failure.
3796 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3797 unsigned long deadline
)
3799 unsigned long interval_msec
= params
[0];
3800 unsigned long duration
= msecs_to_jiffies(params
[1]);
3801 unsigned long last_jiffies
, t
;
3805 t
= jiffies
+ msecs_to_jiffies(params
[2]);
3806 if (time_before(t
, deadline
))
3809 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3814 last_jiffies
= jiffies
;
3817 msleep(interval_msec
);
3818 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3824 if (cur
== 1 && time_before(jiffies
, deadline
))
3826 if (time_after(jiffies
, last_jiffies
+ duration
))
3831 /* unstable, start over */
3833 last_jiffies
= jiffies
;
3835 /* Check deadline. If debouncing failed, return
3836 * -EPIPE to tell upper layer to lower link speed.
3838 if (time_after(jiffies
, deadline
))
3844 * sata_link_resume - resume SATA link
3845 * @link: ATA link to resume SATA
3846 * @params: timing parameters { interval, duratinon, timeout } in msec
3847 * @deadline: deadline jiffies for the operation
3849 * Resume SATA phy @link and debounce it.
3852 * Kernel thread context (may sleep)
3855 * 0 on success, -errno on failure.
3857 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3858 unsigned long deadline
)
3863 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3866 scontrol
= (scontrol
& 0x0f0) | 0x300;
3868 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3871 /* Some PHYs react badly if SStatus is pounded immediately
3872 * after resuming. Delay 200ms before debouncing.
3876 return sata_link_debounce(link
, params
, deadline
);
3880 * ata_std_prereset - prepare for reset
3881 * @link: ATA link to be reset
3882 * @deadline: deadline jiffies for the operation
3884 * @link is about to be reset. Initialize it. Failure from
3885 * prereset makes libata abort whole reset sequence and give up
3886 * that port, so prereset should be best-effort. It does its
3887 * best to prepare for reset sequence but if things go wrong, it
3888 * should just whine, not fail.
3891 * Kernel thread context (may sleep)
3894 * 0 on success, -errno otherwise.
3896 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
3898 struct ata_port
*ap
= link
->ap
;
3899 struct ata_eh_context
*ehc
= &link
->eh_context
;
3900 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3903 /* handle link resume */
3904 if ((ehc
->i
.flags
& ATA_EHI_RESUME_LINK
) &&
3905 (link
->flags
& ATA_LFLAG_HRST_TO_RESUME
))
3906 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3908 /* Some PMPs don't work with only SRST, force hardreset if PMP
3911 if (ap
->flags
& ATA_FLAG_PMP
)
3912 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3914 /* if we're about to do hardreset, nothing more to do */
3915 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3918 /* if SATA, resume link */
3919 if (ap
->flags
& ATA_FLAG_SATA
) {
3920 rc
= sata_link_resume(link
, timing
, deadline
);
3921 /* whine about phy resume failure but proceed */
3922 if (rc
&& rc
!= -EOPNOTSUPP
)
3923 ata_link_printk(link
, KERN_WARNING
, "failed to resume "
3924 "link for reset (errno=%d)\n", rc
);
3927 /* Wait for !BSY if the controller can wait for the first D2H
3928 * Reg FIS and we don't know that no device is attached.
3930 if (!(link
->flags
& ATA_LFLAG_SKIP_D2H_BSY
) && !ata_link_offline(link
)) {
3931 rc
= ata_wait_ready(ap
, deadline
);
3932 if (rc
&& rc
!= -ENODEV
) {
3933 ata_link_printk(link
, KERN_WARNING
, "device not ready "
3934 "(errno=%d), forcing hardreset\n", rc
);
3935 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3943 * ata_std_softreset - reset host port via ATA SRST
3944 * @link: ATA link to reset
3945 * @classes: resulting classes of attached devices
3946 * @deadline: deadline jiffies for the operation
3948 * Reset host port using ATA SRST.
3951 * Kernel thread context (may sleep)
3954 * 0 on success, -errno otherwise.
3956 int ata_std_softreset(struct ata_link
*link
, unsigned int *classes
,
3957 unsigned long deadline
)
3959 struct ata_port
*ap
= link
->ap
;
3960 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3961 unsigned int devmask
= 0;
3967 if (ata_link_offline(link
)) {
3968 classes
[0] = ATA_DEV_NONE
;
3972 /* determine if device 0/1 are present */
3973 if (ata_devchk(ap
, 0))
3974 devmask
|= (1 << 0);
3975 if (slave_possible
&& ata_devchk(ap
, 1))
3976 devmask
|= (1 << 1);
3978 /* select device 0 again */
3979 ap
->ops
->dev_select(ap
, 0);
3981 /* issue bus reset */
3982 DPRINTK("about to softreset, devmask=%x\n", devmask
);
3983 rc
= ata_bus_softreset(ap
, devmask
, deadline
);
3984 /* if link is occupied, -ENODEV too is an error */
3985 if (rc
&& (rc
!= -ENODEV
|| sata_scr_valid(link
))) {
3986 ata_link_printk(link
, KERN_ERR
, "SRST failed (errno=%d)\n", rc
);
3990 /* determine by signature whether we have ATA or ATAPI devices */
3991 classes
[0] = ata_dev_try_classify(&link
->device
[0],
3992 devmask
& (1 << 0), &err
);
3993 if (slave_possible
&& err
!= 0x81)
3994 classes
[1] = ata_dev_try_classify(&link
->device
[1],
3995 devmask
& (1 << 1), &err
);
3998 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
4003 * sata_link_hardreset - reset link via SATA phy reset
4004 * @link: link to reset
4005 * @timing: timing parameters { interval, duratinon, timeout } in msec
4006 * @deadline: deadline jiffies for the operation
4008 * SATA phy-reset @link using DET bits of SControl register.
4011 * Kernel thread context (may sleep)
4014 * 0 on success, -errno otherwise.
4016 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
4017 unsigned long deadline
)
4024 if (sata_set_spd_needed(link
)) {
4025 /* SATA spec says nothing about how to reconfigure
4026 * spd. To be on the safe side, turn off phy during
4027 * reconfiguration. This works for at least ICH7 AHCI
4030 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
4033 scontrol
= (scontrol
& 0x0f0) | 0x304;
4035 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
4041 /* issue phy wake/reset */
4042 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
4045 scontrol
= (scontrol
& 0x0f0) | 0x301;
4047 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
4050 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4051 * 10.4.2 says at least 1 ms.
4055 /* bring link back */
4056 rc
= sata_link_resume(link
, timing
, deadline
);
4058 DPRINTK("EXIT, rc=%d\n", rc
);
4063 * sata_std_hardreset - reset host port via SATA phy reset
4064 * @link: link to reset
4065 * @class: resulting class of attached device
4066 * @deadline: deadline jiffies for the operation
4068 * SATA phy-reset host port using DET bits of SControl register,
4069 * wait for !BSY and classify the attached device.
4072 * Kernel thread context (may sleep)
4075 * 0 on success, -errno otherwise.
4077 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
4078 unsigned long deadline
)
4080 struct ata_port
*ap
= link
->ap
;
4081 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
4087 rc
= sata_link_hardreset(link
, timing
, deadline
);
4089 ata_link_printk(link
, KERN_ERR
,
4090 "COMRESET failed (errno=%d)\n", rc
);
4094 /* TODO: phy layer with polling, timeouts, etc. */
4095 if (ata_link_offline(link
)) {
4096 *class = ATA_DEV_NONE
;
4097 DPRINTK("EXIT, link offline\n");
4101 /* wait a while before checking status */
4102 ata_wait_after_reset(ap
, deadline
);
4104 /* If PMP is supported, we have to do follow-up SRST. Note
4105 * that some PMPs don't send D2H Reg FIS after hardreset at
4106 * all if the first port is empty. Wait for it just for a
4107 * second and request follow-up SRST.
4109 if (ap
->flags
& ATA_FLAG_PMP
) {
4110 ata_wait_ready(ap
, jiffies
+ HZ
);
4114 rc
= ata_wait_ready(ap
, deadline
);
4115 /* link occupied, -ENODEV too is an error */
4117 ata_link_printk(link
, KERN_ERR
,
4118 "COMRESET failed (errno=%d)\n", rc
);
4122 ap
->ops
->dev_select(ap
, 0); /* probably unnecessary */
4124 *class = ata_dev_try_classify(link
->device
, 1, NULL
);
4126 DPRINTK("EXIT, class=%u\n", *class);
4131 * ata_std_postreset - standard postreset callback
4132 * @link: the target ata_link
4133 * @classes: classes of attached devices
4135 * This function is invoked after a successful reset. Note that
4136 * the device might have been reset more than once using
4137 * different reset methods before postreset is invoked.
4140 * Kernel thread context (may sleep)
4142 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
4144 struct ata_port
*ap
= link
->ap
;
4149 /* print link status */
4150 sata_print_link_status(link
);
4153 if (sata_scr_read(link
, SCR_ERROR
, &serror
) == 0)
4154 sata_scr_write(link
, SCR_ERROR
, serror
);
4155 link
->eh_info
.serror
= 0;
4157 /* is double-select really necessary? */
4158 if (classes
[0] != ATA_DEV_NONE
)
4159 ap
->ops
->dev_select(ap
, 1);
4160 if (classes
[1] != ATA_DEV_NONE
)
4161 ap
->ops
->dev_select(ap
, 0);
4163 /* bail out if no device is present */
4164 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
4165 DPRINTK("EXIT, no device\n");
4169 /* set up device control */
4170 if (ap
->ioaddr
.ctl_addr
)
4171 iowrite8(ap
->ctl
, ap
->ioaddr
.ctl_addr
);
4177 * ata_dev_same_device - Determine whether new ID matches configured device
4178 * @dev: device to compare against
4179 * @new_class: class of the new device
4180 * @new_id: IDENTIFY page of the new device
4182 * Compare @new_class and @new_id against @dev and determine
4183 * whether @dev is the device indicated by @new_class and
4190 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4192 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
4195 const u16
*old_id
= dev
->id
;
4196 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
4197 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
4199 if (dev
->class != new_class
) {
4200 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
4201 dev
->class, new_class
);
4205 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
4206 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
4207 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
4208 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
4210 if (strcmp(model
[0], model
[1])) {
4211 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
4212 "'%s' != '%s'\n", model
[0], model
[1]);
4216 if (strcmp(serial
[0], serial
[1])) {
4217 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
4218 "'%s' != '%s'\n", serial
[0], serial
[1]);
4226 * ata_dev_reread_id - Re-read IDENTIFY data
4227 * @dev: target ATA device
4228 * @readid_flags: read ID flags
4230 * Re-read IDENTIFY page and make sure @dev is still attached to
4234 * Kernel thread context (may sleep)
4237 * 0 on success, negative errno otherwise
4239 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
4241 unsigned int class = dev
->class;
4242 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
4246 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
4250 /* is the device still there? */
4251 if (!ata_dev_same_device(dev
, class, id
))
4254 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
4259 * ata_dev_revalidate - Revalidate ATA device
4260 * @dev: device to revalidate
4261 * @new_class: new class code
4262 * @readid_flags: read ID flags
4264 * Re-read IDENTIFY page, make sure @dev is still attached to the
4265 * port and reconfigure it according to the new IDENTIFY page.
4268 * Kernel thread context (may sleep)
4271 * 0 on success, negative errno otherwise
4273 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
4274 unsigned int readid_flags
)
4276 u64 n_sectors
= dev
->n_sectors
;
4279 if (!ata_dev_enabled(dev
))
4282 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4283 if (ata_class_enabled(new_class
) &&
4284 new_class
!= ATA_DEV_ATA
&& new_class
!= ATA_DEV_ATAPI
) {
4285 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %u != %u\n",
4286 dev
->class, new_class
);
4292 rc
= ata_dev_reread_id(dev
, readid_flags
);
4296 /* configure device according to the new ID */
4297 rc
= ata_dev_configure(dev
);
4301 /* verify n_sectors hasn't changed */
4302 if (dev
->class == ATA_DEV_ATA
&& n_sectors
&&
4303 dev
->n_sectors
!= n_sectors
) {
4304 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
4306 (unsigned long long)n_sectors
,
4307 (unsigned long long)dev
->n_sectors
);
4309 /* restore original n_sectors */
4310 dev
->n_sectors
= n_sectors
;
4319 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
4323 struct ata_blacklist_entry
{
4324 const char *model_num
;
4325 const char *model_rev
;
4326 unsigned long horkage
;
4329 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
4330 /* Devices with DMA related problems under Linux */
4331 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
4332 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
4333 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
4334 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
4335 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
4336 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
4337 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
4338 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
4339 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
4340 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
4341 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
4342 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
4343 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
4344 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
4345 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
4346 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
4347 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
4348 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
4349 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
4350 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
4351 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
4352 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
4353 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
4354 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
4355 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
4356 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
4357 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
4358 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
4359 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
4360 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
4361 /* Odd clown on sil3726/4726 PMPs */
4362 { "Config Disk", NULL
, ATA_HORKAGE_NODMA
|
4363 ATA_HORKAGE_SKIP_PM
},
4365 /* Weird ATAPI devices */
4366 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
4368 /* Devices we expect to fail diagnostics */
4370 /* Devices where NCQ should be avoided */
4372 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
4373 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
4374 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4375 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
4377 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
4378 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
4379 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
4380 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
4382 /* Blacklist entries taken from Silicon Image 3124/3132
4383 Windows driver .inf file - also several Linux problem reports */
4384 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
4385 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
4386 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
4388 /* devices which puke on READ_NATIVE_MAX */
4389 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
4390 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
4391 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
4392 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
4394 /* Devices which report 1 sector over size HPA */
4395 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4396 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4397 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4399 /* Devices which get the IVB wrong */
4400 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
4401 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB
, },
4402 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB
, },
4403 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB
, },
4404 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB
, },
4410 static int strn_pattern_cmp(const char *patt
, const char *name
, int wildchar
)
4416 * check for trailing wildcard: *\0
4418 p
= strchr(patt
, wildchar
);
4419 if (p
&& ((*(p
+ 1)) == 0))
4430 return strncmp(patt
, name
, len
);
4433 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
4435 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
4436 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
4437 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
4439 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
4440 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
4442 while (ad
->model_num
) {
4443 if (!strn_pattern_cmp(ad
->model_num
, model_num
, '*')) {
4444 if (ad
->model_rev
== NULL
)
4446 if (!strn_pattern_cmp(ad
->model_rev
, model_rev
, '*'))
4454 static int ata_dma_blacklisted(const struct ata_device
*dev
)
4456 /* We don't support polling DMA.
4457 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4458 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4460 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
4461 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4463 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4467 * ata_is_40wire - check drive side detection
4470 * Perform drive side detection decoding, allowing for device vendors
4471 * who can't follow the documentation.
4474 static int ata_is_40wire(struct ata_device
*dev
)
4476 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4477 return ata_drive_40wire_relaxed(dev
->id
);
4478 return ata_drive_40wire(dev
->id
);
4482 * ata_dev_xfermask - Compute supported xfermask of the given device
4483 * @dev: Device to compute xfermask for
4485 * Compute supported xfermask of @dev and store it in
4486 * dev->*_mask. This function is responsible for applying all
4487 * known limits including host controller limits, device
4493 static void ata_dev_xfermask(struct ata_device
*dev
)
4495 struct ata_link
*link
= dev
->link
;
4496 struct ata_port
*ap
= link
->ap
;
4497 struct ata_host
*host
= ap
->host
;
4498 unsigned long xfer_mask
;
4500 /* controller modes available */
4501 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4502 ap
->mwdma_mask
, ap
->udma_mask
);
4504 /* drive modes available */
4505 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4506 dev
->mwdma_mask
, dev
->udma_mask
);
4507 xfer_mask
&= ata_id_xfermask(dev
->id
);
4510 * CFA Advanced TrueIDE timings are not allowed on a shared
4513 if (ata_dev_pair(dev
)) {
4514 /* No PIO5 or PIO6 */
4515 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4516 /* No MWDMA3 or MWDMA 4 */
4517 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4520 if (ata_dma_blacklisted(dev
)) {
4521 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4522 ata_dev_printk(dev
, KERN_WARNING
,
4523 "device is on DMA blacklist, disabling DMA\n");
4526 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4527 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4528 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4529 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
4530 "other device, disabling DMA\n");
4533 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4534 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4536 if (ap
->ops
->mode_filter
)
4537 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4539 /* Apply cable rule here. Don't apply it early because when
4540 * we handle hot plug the cable type can itself change.
4541 * Check this last so that we know if the transfer rate was
4542 * solely limited by the cable.
4543 * Unknown or 80 wire cables reported host side are checked
4544 * drive side as well. Cases where we know a 40wire cable
4545 * is used safely for 80 are not checked here.
4547 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4548 /* UDMA/44 or higher would be available */
4549 if ((ap
->cbl
== ATA_CBL_PATA40
) ||
4550 (ata_is_40wire(dev
) &&
4551 (ap
->cbl
== ATA_CBL_PATA_UNK
||
4552 ap
->cbl
== ATA_CBL_PATA80
))) {
4553 ata_dev_printk(dev
, KERN_WARNING
,
4554 "limited to UDMA/33 due to 40-wire cable\n");
4555 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4558 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4559 &dev
->mwdma_mask
, &dev
->udma_mask
);
4563 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4564 * @dev: Device to which command will be sent
4566 * Issue SET FEATURES - XFER MODE command to device @dev
4570 * PCI/etc. bus probe sem.
4573 * 0 on success, AC_ERR_* mask otherwise.
4576 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4578 struct ata_taskfile tf
;
4579 unsigned int err_mask
;
4581 /* set up set-features taskfile */
4582 DPRINTK("set features - xfer mode\n");
4584 /* Some controllers and ATAPI devices show flaky interrupt
4585 * behavior after setting xfer mode. Use polling instead.
4587 ata_tf_init(dev
, &tf
);
4588 tf
.command
= ATA_CMD_SET_FEATURES
;
4589 tf
.feature
= SETFEATURES_XFER
;
4590 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4591 tf
.protocol
= ATA_PROT_NODATA
;
4592 /* If we are using IORDY we must send the mode setting command */
4593 if (ata_pio_need_iordy(dev
))
4594 tf
.nsect
= dev
->xfer_mode
;
4595 /* If the device has IORDY and the controller does not - turn it off */
4596 else if (ata_id_has_iordy(dev
->id
))
4598 else /* In the ancient relic department - skip all of this */
4601 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4603 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4607 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4608 * @dev: Device to which command will be sent
4609 * @enable: Whether to enable or disable the feature
4610 * @feature: The sector count represents the feature to set
4612 * Issue SET FEATURES - SATA FEATURES command to device @dev
4613 * on port @ap with sector count
4616 * PCI/etc. bus probe sem.
4619 * 0 on success, AC_ERR_* mask otherwise.
4621 static unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
,
4624 struct ata_taskfile tf
;
4625 unsigned int err_mask
;
4627 /* set up set-features taskfile */
4628 DPRINTK("set features - SATA features\n");
4630 ata_tf_init(dev
, &tf
);
4631 tf
.command
= ATA_CMD_SET_FEATURES
;
4632 tf
.feature
= enable
;
4633 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4634 tf
.protocol
= ATA_PROT_NODATA
;
4637 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4639 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4644 * ata_dev_init_params - Issue INIT DEV PARAMS command
4645 * @dev: Device to which command will be sent
4646 * @heads: Number of heads (taskfile parameter)
4647 * @sectors: Number of sectors (taskfile parameter)
4650 * Kernel thread context (may sleep)
4653 * 0 on success, AC_ERR_* mask otherwise.
4655 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4656 u16 heads
, u16 sectors
)
4658 struct ata_taskfile tf
;
4659 unsigned int err_mask
;
4661 /* Number of sectors per track 1-255. Number of heads 1-16 */
4662 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4663 return AC_ERR_INVALID
;
4665 /* set up init dev params taskfile */
4666 DPRINTK("init dev params \n");
4668 ata_tf_init(dev
, &tf
);
4669 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4670 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4671 tf
.protocol
= ATA_PROT_NODATA
;
4673 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4675 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4676 /* A clean abort indicates an original or just out of spec drive
4677 and we should continue as we issue the setup based on the
4678 drive reported working geometry */
4679 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4682 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4687 * ata_sg_clean - Unmap DMA memory associated with command
4688 * @qc: Command containing DMA memory to be released
4690 * Unmap all mapped DMA memory associated with this command.
4693 * spin_lock_irqsave(host lock)
4695 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4697 struct ata_port
*ap
= qc
->ap
;
4698 struct scatterlist
*sg
= qc
->sg
;
4699 int dir
= qc
->dma_dir
;
4701 WARN_ON(sg
== NULL
);
4703 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4706 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
4708 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4713 * ata_fill_sg - Fill PCI IDE PRD table
4714 * @qc: Metadata associated with taskfile to be transferred
4716 * Fill PCI IDE PRD (scatter-gather) table with segments
4717 * associated with the current disk command.
4720 * spin_lock_irqsave(host lock)
4723 static void ata_fill_sg(struct ata_queued_cmd
*qc
)
4725 struct ata_port
*ap
= qc
->ap
;
4726 struct scatterlist
*sg
;
4727 unsigned int si
, pi
;
4730 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
4734 /* determine if physical DMA addr spans 64K boundary.
4735 * Note h/w doesn't support 64-bit, so we unconditionally
4736 * truncate dma_addr_t to u32.
4738 addr
= (u32
) sg_dma_address(sg
);
4739 sg_len
= sg_dma_len(sg
);
4742 offset
= addr
& 0xffff;
4744 if ((offset
+ sg_len
) > 0x10000)
4745 len
= 0x10000 - offset
;
4747 ap
->prd
[pi
].addr
= cpu_to_le32(addr
);
4748 ap
->prd
[pi
].flags_len
= cpu_to_le32(len
& 0xffff);
4749 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
4757 ap
->prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
4761 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4762 * @qc: Metadata associated with taskfile to be transferred
4764 * Fill PCI IDE PRD (scatter-gather) table with segments
4765 * associated with the current disk command. Perform the fill
4766 * so that we avoid writing any length 64K records for
4767 * controllers that don't follow the spec.
4770 * spin_lock_irqsave(host lock)
4773 static void ata_fill_sg_dumb(struct ata_queued_cmd
*qc
)
4775 struct ata_port
*ap
= qc
->ap
;
4776 struct scatterlist
*sg
;
4777 unsigned int si
, pi
;
4780 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
4782 u32 sg_len
, len
, blen
;
4784 /* determine if physical DMA addr spans 64K boundary.
4785 * Note h/w doesn't support 64-bit, so we unconditionally
4786 * truncate dma_addr_t to u32.
4788 addr
= (u32
) sg_dma_address(sg
);
4789 sg_len
= sg_dma_len(sg
);
4792 offset
= addr
& 0xffff;
4794 if ((offset
+ sg_len
) > 0x10000)
4795 len
= 0x10000 - offset
;
4797 blen
= len
& 0xffff;
4798 ap
->prd
[pi
].addr
= cpu_to_le32(addr
);
4800 /* Some PATA chipsets like the CS5530 can't
4801 cope with 0x0000 meaning 64K as the spec says */
4802 ap
->prd
[pi
].flags_len
= cpu_to_le32(0x8000);
4804 ap
->prd
[++pi
].addr
= cpu_to_le32(addr
+ 0x8000);
4806 ap
->prd
[pi
].flags_len
= cpu_to_le32(blen
);
4807 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
4815 ap
->prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
4819 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4820 * @qc: Metadata associated with taskfile to check
4822 * Allow low-level driver to filter ATA PACKET commands, returning
4823 * a status indicating whether or not it is OK to use DMA for the
4824 * supplied PACKET command.
4827 * spin_lock_irqsave(host lock)
4829 * RETURNS: 0 when ATAPI DMA can be used
4832 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
4834 struct ata_port
*ap
= qc
->ap
;
4836 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4837 * few ATAPI devices choke on such DMA requests.
4839 if (unlikely(qc
->nbytes
& 15))
4842 if (ap
->ops
->check_atapi_dma
)
4843 return ap
->ops
->check_atapi_dma(qc
);
4849 * ata_std_qc_defer - Check whether a qc needs to be deferred
4850 * @qc: ATA command in question
4852 * Non-NCQ commands cannot run with any other command, NCQ or
4853 * not. As upper layer only knows the queue depth, we are
4854 * responsible for maintaining exclusion. This function checks
4855 * whether a new command @qc can be issued.
4858 * spin_lock_irqsave(host lock)
4861 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4863 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4865 struct ata_link
*link
= qc
->dev
->link
;
4867 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4868 if (!ata_tag_valid(link
->active_tag
))
4871 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4875 return ATA_DEFER_LINK
;
4879 * ata_qc_prep - Prepare taskfile for submission
4880 * @qc: Metadata associated with taskfile to be prepared
4882 * Prepare ATA taskfile for submission.
4885 * spin_lock_irqsave(host lock)
4887 void ata_qc_prep(struct ata_queued_cmd
*qc
)
4889 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4896 * ata_dumb_qc_prep - Prepare taskfile for submission
4897 * @qc: Metadata associated with taskfile to be prepared
4899 * Prepare ATA taskfile for submission.
4902 * spin_lock_irqsave(host lock)
4904 void ata_dumb_qc_prep(struct ata_queued_cmd
*qc
)
4906 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4909 ata_fill_sg_dumb(qc
);
4912 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4915 * ata_sg_init - Associate command with scatter-gather table.
4916 * @qc: Command to be associated
4917 * @sg: Scatter-gather table.
4918 * @n_elem: Number of elements in s/g table.
4920 * Initialize the data-related elements of queued_cmd @qc
4921 * to point to a scatter-gather table @sg, containing @n_elem
4925 * spin_lock_irqsave(host lock)
4927 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4928 unsigned int n_elem
)
4931 qc
->n_elem
= n_elem
;
4936 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4937 * @qc: Command with scatter-gather table to be mapped.
4939 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4942 * spin_lock_irqsave(host lock)
4945 * Zero on success, negative on error.
4948 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4950 struct ata_port
*ap
= qc
->ap
;
4951 unsigned int n_elem
;
4953 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4955 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
4959 DPRINTK("%d sg elements mapped\n", n_elem
);
4961 qc
->n_elem
= n_elem
;
4962 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
4968 * swap_buf_le16 - swap halves of 16-bit words in place
4969 * @buf: Buffer to swap
4970 * @buf_words: Number of 16-bit words in buffer.
4972 * Swap halves of 16-bit words if needed to convert from
4973 * little-endian byte order to native cpu byte order, or
4977 * Inherited from caller.
4979 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4984 for (i
= 0; i
< buf_words
; i
++)
4985 buf
[i
] = le16_to_cpu(buf
[i
]);
4986 #endif /* __BIG_ENDIAN */
4990 * ata_data_xfer - Transfer data by PIO
4991 * @dev: device to target
4993 * @buflen: buffer length
4996 * Transfer data from/to the device data register by PIO.
4999 * Inherited from caller.
5004 unsigned int ata_data_xfer(struct ata_device
*dev
, unsigned char *buf
,
5005 unsigned int buflen
, int rw
)
5007 struct ata_port
*ap
= dev
->link
->ap
;
5008 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
5009 unsigned int words
= buflen
>> 1;
5011 /* Transfer multiple of 2 bytes */
5013 ioread16_rep(data_addr
, buf
, words
);
5015 iowrite16_rep(data_addr
, buf
, words
);
5017 /* Transfer trailing 1 byte, if any. */
5018 if (unlikely(buflen
& 0x01)) {
5019 __le16 align_buf
[1] = { 0 };
5020 unsigned char *trailing_buf
= buf
+ buflen
- 1;
5023 align_buf
[0] = cpu_to_le16(ioread16(data_addr
));
5024 memcpy(trailing_buf
, align_buf
, 1);
5026 memcpy(align_buf
, trailing_buf
, 1);
5027 iowrite16(le16_to_cpu(align_buf
[0]), data_addr
);
5036 * ata_data_xfer_noirq - Transfer data by PIO
5037 * @dev: device to target
5039 * @buflen: buffer length
5042 * Transfer data from/to the device data register by PIO. Do the
5043 * transfer with interrupts disabled.
5046 * Inherited from caller.
5051 unsigned int ata_data_xfer_noirq(struct ata_device
*dev
, unsigned char *buf
,
5052 unsigned int buflen
, int rw
)
5054 unsigned long flags
;
5055 unsigned int consumed
;
5057 local_irq_save(flags
);
5058 consumed
= ata_data_xfer(dev
, buf
, buflen
, rw
);
5059 local_irq_restore(flags
);
5066 * ata_pio_sector - Transfer a sector of data.
5067 * @qc: Command on going
5069 * Transfer qc->sect_size bytes of data from/to the ATA device.
5072 * Inherited from caller.
5075 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
5077 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
5078 struct ata_port
*ap
= qc
->ap
;
5080 unsigned int offset
;
5083 if (qc
->curbytes
== qc
->nbytes
- qc
->sect_size
)
5084 ap
->hsm_task_state
= HSM_ST_LAST
;
5086 page
= sg_page(qc
->cursg
);
5087 offset
= qc
->cursg
->offset
+ qc
->cursg_ofs
;
5089 /* get the current page and offset */
5090 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
5091 offset
%= PAGE_SIZE
;
5093 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
5095 if (PageHighMem(page
)) {
5096 unsigned long flags
;
5098 /* FIXME: use a bounce buffer */
5099 local_irq_save(flags
);
5100 buf
= kmap_atomic(page
, KM_IRQ0
);
5102 /* do the actual data transfer */
5103 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
5105 kunmap_atomic(buf
, KM_IRQ0
);
5106 local_irq_restore(flags
);
5108 buf
= page_address(page
);
5109 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
5112 qc
->curbytes
+= qc
->sect_size
;
5113 qc
->cursg_ofs
+= qc
->sect_size
;
5115 if (qc
->cursg_ofs
== qc
->cursg
->length
) {
5116 qc
->cursg
= sg_next(qc
->cursg
);
5122 * ata_pio_sectors - Transfer one or many sectors.
5123 * @qc: Command on going
5125 * Transfer one or many sectors of data from/to the
5126 * ATA device for the DRQ request.
5129 * Inherited from caller.
5132 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
5134 if (is_multi_taskfile(&qc
->tf
)) {
5135 /* READ/WRITE MULTIPLE */
5138 WARN_ON(qc
->dev
->multi_count
== 0);
5140 nsect
= min((qc
->nbytes
- qc
->curbytes
) / qc
->sect_size
,
5141 qc
->dev
->multi_count
);
5147 ata_altstatus(qc
->ap
); /* flush */
5151 * atapi_send_cdb - Write CDB bytes to hardware
5152 * @ap: Port to which ATAPI device is attached.
5153 * @qc: Taskfile currently active
5155 * When device has indicated its readiness to accept
5156 * a CDB, this function is called. Send the CDB.
5162 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
5165 DPRINTK("send cdb\n");
5166 WARN_ON(qc
->dev
->cdb_len
< 12);
5168 ap
->ops
->data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
5169 ata_altstatus(ap
); /* flush */
5171 switch (qc
->tf
.protocol
) {
5172 case ATAPI_PROT_PIO
:
5173 ap
->hsm_task_state
= HSM_ST
;
5175 case ATAPI_PROT_NODATA
:
5176 ap
->hsm_task_state
= HSM_ST_LAST
;
5178 case ATAPI_PROT_DMA
:
5179 ap
->hsm_task_state
= HSM_ST_LAST
;
5180 /* initiate bmdma */
5181 ap
->ops
->bmdma_start(qc
);
5187 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5188 * @qc: Command on going
5189 * @bytes: number of bytes
5191 * Transfer Transfer data from/to the ATAPI device.
5194 * Inherited from caller.
5197 static int __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
5199 int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? WRITE
: READ
;
5200 struct ata_port
*ap
= qc
->ap
;
5201 struct ata_device
*dev
= qc
->dev
;
5202 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
5203 struct scatterlist
*sg
;
5206 unsigned int offset
, count
, consumed
;
5210 if (unlikely(!sg
)) {
5211 ata_ehi_push_desc(ehi
, "unexpected or too much trailing data "
5212 "buf=%u cur=%u bytes=%u",
5213 qc
->nbytes
, qc
->curbytes
, bytes
);
5218 offset
= sg
->offset
+ qc
->cursg_ofs
;
5220 /* get the current page and offset */
5221 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
5222 offset
%= PAGE_SIZE
;
5224 /* don't overrun current sg */
5225 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
5227 /* don't cross page boundaries */
5228 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
5230 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
5232 if (PageHighMem(page
)) {
5233 unsigned long flags
;
5235 /* FIXME: use bounce buffer */
5236 local_irq_save(flags
);
5237 buf
= kmap_atomic(page
, KM_IRQ0
);
5239 /* do the actual data transfer */
5240 consumed
= ap
->ops
->data_xfer(dev
, buf
+ offset
, count
, rw
);
5242 kunmap_atomic(buf
, KM_IRQ0
);
5243 local_irq_restore(flags
);
5245 buf
= page_address(page
);
5246 consumed
= ap
->ops
->data_xfer(dev
, buf
+ offset
, count
, rw
);
5249 bytes
-= min(bytes
, consumed
);
5250 qc
->curbytes
+= count
;
5251 qc
->cursg_ofs
+= count
;
5253 if (qc
->cursg_ofs
== sg
->length
) {
5254 qc
->cursg
= sg_next(qc
->cursg
);
5258 /* consumed can be larger than count only for the last transfer */
5259 WARN_ON(qc
->cursg
&& count
!= consumed
);
5267 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5268 * @qc: Command on going
5270 * Transfer Transfer data from/to the ATAPI device.
5273 * Inherited from caller.
5276 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
5278 struct ata_port
*ap
= qc
->ap
;
5279 struct ata_device
*dev
= qc
->dev
;
5280 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
5281 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
5282 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
5284 /* Abuse qc->result_tf for temp storage of intermediate TF
5285 * here to save some kernel stack usage.
5286 * For normal completion, qc->result_tf is not relevant. For
5287 * error, qc->result_tf is later overwritten by ata_qc_complete().
5288 * So, the correctness of qc->result_tf is not affected.
5290 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
5291 ireason
= qc
->result_tf
.nsect
;
5292 bc_lo
= qc
->result_tf
.lbam
;
5293 bc_hi
= qc
->result_tf
.lbah
;
5294 bytes
= (bc_hi
<< 8) | bc_lo
;
5296 /* shall be cleared to zero, indicating xfer of data */
5297 if (unlikely(ireason
& (1 << 0)))
5300 /* make sure transfer direction matches expected */
5301 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
5302 if (unlikely(do_write
!= i_write
))
5305 if (unlikely(!bytes
))
5308 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
5310 if (unlikely(__atapi_pio_bytes(qc
, bytes
)))
5312 ata_altstatus(ap
); /* flush */
5317 ata_ehi_push_desc(ehi
, "ATAPI check failed (ireason=0x%x bytes=%u)",
5320 qc
->err_mask
|= AC_ERR_HSM
;
5321 ap
->hsm_task_state
= HSM_ST_ERR
;
5325 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5326 * @ap: the target ata_port
5330 * 1 if ok in workqueue, 0 otherwise.
5333 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
5335 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5338 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
5339 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
5340 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
5343 if (ata_is_atapi(qc
->tf
.protocol
) &&
5344 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
5352 * ata_hsm_qc_complete - finish a qc running on standard HSM
5353 * @qc: Command to complete
5354 * @in_wq: 1 if called from workqueue, 0 otherwise
5356 * Finish @qc which is running on standard HSM.
5359 * If @in_wq is zero, spin_lock_irqsave(host lock).
5360 * Otherwise, none on entry and grabs host lock.
5362 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
5364 struct ata_port
*ap
= qc
->ap
;
5365 unsigned long flags
;
5367 if (ap
->ops
->error_handler
) {
5369 spin_lock_irqsave(ap
->lock
, flags
);
5371 /* EH might have kicked in while host lock is
5374 qc
= ata_qc_from_tag(ap
, qc
->tag
);
5376 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
5377 ap
->ops
->irq_on(ap
);
5378 ata_qc_complete(qc
);
5380 ata_port_freeze(ap
);
5383 spin_unlock_irqrestore(ap
->lock
, flags
);
5385 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
5386 ata_qc_complete(qc
);
5388 ata_port_freeze(ap
);
5392 spin_lock_irqsave(ap
->lock
, flags
);
5393 ap
->ops
->irq_on(ap
);
5394 ata_qc_complete(qc
);
5395 spin_unlock_irqrestore(ap
->lock
, flags
);
5397 ata_qc_complete(qc
);
5402 * ata_hsm_move - move the HSM to the next state.
5403 * @ap: the target ata_port
5405 * @status: current device status
5406 * @in_wq: 1 if called from workqueue, 0 otherwise
5409 * 1 when poll next status needed, 0 otherwise.
5411 int ata_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
5412 u8 status
, int in_wq
)
5414 unsigned long flags
= 0;
5417 WARN_ON((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
5419 /* Make sure ata_qc_issue_prot() does not throw things
5420 * like DMA polling into the workqueue. Notice that
5421 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5423 WARN_ON(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
5426 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5427 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
5429 switch (ap
->hsm_task_state
) {
5431 /* Send first data block or PACKET CDB */
5433 /* If polling, we will stay in the work queue after
5434 * sending the data. Otherwise, interrupt handler
5435 * takes over after sending the data.
5437 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
5439 /* check device status */
5440 if (unlikely((status
& ATA_DRQ
) == 0)) {
5441 /* handle BSY=0, DRQ=0 as error */
5442 if (likely(status
& (ATA_ERR
| ATA_DF
)))
5443 /* device stops HSM for abort/error */
5444 qc
->err_mask
|= AC_ERR_DEV
;
5446 /* HSM violation. Let EH handle this */
5447 qc
->err_mask
|= AC_ERR_HSM
;
5449 ap
->hsm_task_state
= HSM_ST_ERR
;
5453 /* Device should not ask for data transfer (DRQ=1)
5454 * when it finds something wrong.
5455 * We ignore DRQ here and stop the HSM by
5456 * changing hsm_task_state to HSM_ST_ERR and
5457 * let the EH abort the command or reset the device.
5459 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
5460 /* Some ATAPI tape drives forget to clear the ERR bit
5461 * when doing the next command (mostly request sense).
5462 * We ignore ERR here to workaround and proceed sending
5465 if (!(qc
->dev
->horkage
& ATA_HORKAGE_STUCK_ERR
)) {
5466 ata_port_printk(ap
, KERN_WARNING
,
5467 "DRQ=1 with device error, "
5468 "dev_stat 0x%X\n", status
);
5469 qc
->err_mask
|= AC_ERR_HSM
;
5470 ap
->hsm_task_state
= HSM_ST_ERR
;
5475 /* Send the CDB (atapi) or the first data block (ata pio out).
5476 * During the state transition, interrupt handler shouldn't
5477 * be invoked before the data transfer is complete and
5478 * hsm_task_state is changed. Hence, the following locking.
5481 spin_lock_irqsave(ap
->lock
, flags
);
5483 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
5484 /* PIO data out protocol.
5485 * send first data block.
5488 /* ata_pio_sectors() might change the state
5489 * to HSM_ST_LAST. so, the state is changed here
5490 * before ata_pio_sectors().
5492 ap
->hsm_task_state
= HSM_ST
;
5493 ata_pio_sectors(qc
);
5496 atapi_send_cdb(ap
, qc
);
5499 spin_unlock_irqrestore(ap
->lock
, flags
);
5501 /* if polling, ata_pio_task() handles the rest.
5502 * otherwise, interrupt handler takes over from here.
5507 /* complete command or read/write the data register */
5508 if (qc
->tf
.protocol
== ATAPI_PROT_PIO
) {
5509 /* ATAPI PIO protocol */
5510 if ((status
& ATA_DRQ
) == 0) {
5511 /* No more data to transfer or device error.
5512 * Device error will be tagged in HSM_ST_LAST.
5514 ap
->hsm_task_state
= HSM_ST_LAST
;
5518 /* Device should not ask for data transfer (DRQ=1)
5519 * when it finds something wrong.
5520 * We ignore DRQ here and stop the HSM by
5521 * changing hsm_task_state to HSM_ST_ERR and
5522 * let the EH abort the command or reset the device.
5524 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
5525 ata_port_printk(ap
, KERN_WARNING
, "DRQ=1 with "
5526 "device error, dev_stat 0x%X\n",
5528 qc
->err_mask
|= AC_ERR_HSM
;
5529 ap
->hsm_task_state
= HSM_ST_ERR
;
5533 atapi_pio_bytes(qc
);
5535 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
5536 /* bad ireason reported by device */
5540 /* ATA PIO protocol */
5541 if (unlikely((status
& ATA_DRQ
) == 0)) {
5542 /* handle BSY=0, DRQ=0 as error */
5543 if (likely(status
& (ATA_ERR
| ATA_DF
)))
5544 /* device stops HSM for abort/error */
5545 qc
->err_mask
|= AC_ERR_DEV
;
5547 /* HSM violation. Let EH handle this.
5548 * Phantom devices also trigger this
5549 * condition. Mark hint.
5551 qc
->err_mask
|= AC_ERR_HSM
|
5554 ap
->hsm_task_state
= HSM_ST_ERR
;
5558 /* For PIO reads, some devices may ask for
5559 * data transfer (DRQ=1) alone with ERR=1.
5560 * We respect DRQ here and transfer one
5561 * block of junk data before changing the
5562 * hsm_task_state to HSM_ST_ERR.
5564 * For PIO writes, ERR=1 DRQ=1 doesn't make
5565 * sense since the data block has been
5566 * transferred to the device.
5568 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
5569 /* data might be corrputed */
5570 qc
->err_mask
|= AC_ERR_DEV
;
5572 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
5573 ata_pio_sectors(qc
);
5574 status
= ata_wait_idle(ap
);
5577 if (status
& (ATA_BUSY
| ATA_DRQ
))
5578 qc
->err_mask
|= AC_ERR_HSM
;
5580 /* ata_pio_sectors() might change the
5581 * state to HSM_ST_LAST. so, the state
5582 * is changed after ata_pio_sectors().
5584 ap
->hsm_task_state
= HSM_ST_ERR
;
5588 ata_pio_sectors(qc
);
5590 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
5591 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
5593 status
= ata_wait_idle(ap
);
5602 if (unlikely(!ata_ok(status
))) {
5603 qc
->err_mask
|= __ac_err_mask(status
);
5604 ap
->hsm_task_state
= HSM_ST_ERR
;
5608 /* no more data to transfer */
5609 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5610 ap
->print_id
, qc
->dev
->devno
, status
);
5612 WARN_ON(qc
->err_mask
);
5614 ap
->hsm_task_state
= HSM_ST_IDLE
;
5616 /* complete taskfile transaction */
5617 ata_hsm_qc_complete(qc
, in_wq
);
5623 /* make sure qc->err_mask is available to
5624 * know what's wrong and recover
5626 WARN_ON(qc
->err_mask
== 0);
5628 ap
->hsm_task_state
= HSM_ST_IDLE
;
5630 /* complete taskfile transaction */
5631 ata_hsm_qc_complete(qc
, in_wq
);
5643 static void ata_pio_task(struct work_struct
*work
)
5645 struct ata_port
*ap
=
5646 container_of(work
, struct ata_port
, port_task
.work
);
5647 struct ata_queued_cmd
*qc
= ap
->port_task_data
;
5652 WARN_ON(ap
->hsm_task_state
== HSM_ST_IDLE
);
5655 * This is purely heuristic. This is a fast path.
5656 * Sometimes when we enter, BSY will be cleared in
5657 * a chk-status or two. If not, the drive is probably seeking
5658 * or something. Snooze for a couple msecs, then
5659 * chk-status again. If still busy, queue delayed work.
5661 status
= ata_busy_wait(ap
, ATA_BUSY
, 5);
5662 if (status
& ATA_BUSY
) {
5664 status
= ata_busy_wait(ap
, ATA_BUSY
, 10);
5665 if (status
& ATA_BUSY
) {
5666 ata_pio_queue_task(ap
, qc
, ATA_SHORT_PAUSE
);
5672 poll_next
= ata_hsm_move(ap
, qc
, status
, 1);
5674 /* another command or interrupt handler
5675 * may be running at this point.
5682 * ata_qc_new - Request an available ATA command, for queueing
5683 * @ap: Port associated with device @dev
5684 * @dev: Device from whom we request an available command structure
5690 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
5692 struct ata_queued_cmd
*qc
= NULL
;
5695 /* no command while frozen */
5696 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
5699 /* the last tag is reserved for internal command. */
5700 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
5701 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
5702 qc
= __ata_qc_from_tag(ap
, i
);
5713 * ata_qc_new_init - Request an available ATA command, and initialize it
5714 * @dev: Device from whom we request an available command structure
5720 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
5722 struct ata_port
*ap
= dev
->link
->ap
;
5723 struct ata_queued_cmd
*qc
;
5725 qc
= ata_qc_new(ap
);
5738 * ata_qc_free - free unused ata_queued_cmd
5739 * @qc: Command to complete
5741 * Designed to free unused ata_queued_cmd object
5742 * in case something prevents using it.
5745 * spin_lock_irqsave(host lock)
5747 void ata_qc_free(struct ata_queued_cmd
*qc
)
5749 struct ata_port
*ap
= qc
->ap
;
5752 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5756 if (likely(ata_tag_valid(tag
))) {
5757 qc
->tag
= ATA_TAG_POISON
;
5758 clear_bit(tag
, &ap
->qc_allocated
);
5762 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
5764 struct ata_port
*ap
= qc
->ap
;
5765 struct ata_link
*link
= qc
->dev
->link
;
5767 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5768 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
5770 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
5773 /* command should be marked inactive atomically with qc completion */
5774 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
5775 link
->sactive
&= ~(1 << qc
->tag
);
5777 ap
->nr_active_links
--;
5779 link
->active_tag
= ATA_TAG_POISON
;
5780 ap
->nr_active_links
--;
5783 /* clear exclusive status */
5784 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
5785 ap
->excl_link
== link
))
5786 ap
->excl_link
= NULL
;
5788 /* atapi: mark qc as inactive to prevent the interrupt handler
5789 * from completing the command twice later, before the error handler
5790 * is called. (when rc != 0 and atapi request sense is needed)
5792 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
5793 ap
->qc_active
&= ~(1 << qc
->tag
);
5795 /* call completion callback */
5796 qc
->complete_fn(qc
);
5799 static void fill_result_tf(struct ata_queued_cmd
*qc
)
5801 struct ata_port
*ap
= qc
->ap
;
5803 qc
->result_tf
.flags
= qc
->tf
.flags
;
5804 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
5807 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
5809 struct ata_device
*dev
= qc
->dev
;
5811 if (ata_tag_internal(qc
->tag
))
5814 if (ata_is_nodata(qc
->tf
.protocol
))
5817 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
5820 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
5824 * ata_qc_complete - Complete an active ATA command
5825 * @qc: Command to complete
5826 * @err_mask: ATA Status register contents
5828 * Indicate to the mid and upper layers that an ATA
5829 * command has completed, with either an ok or not-ok status.
5832 * spin_lock_irqsave(host lock)
5834 void ata_qc_complete(struct ata_queued_cmd
*qc
)
5836 struct ata_port
*ap
= qc
->ap
;
5838 /* XXX: New EH and old EH use different mechanisms to
5839 * synchronize EH with regular execution path.
5841 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5842 * Normal execution path is responsible for not accessing a
5843 * failed qc. libata core enforces the rule by returning NULL
5844 * from ata_qc_from_tag() for failed qcs.
5846 * Old EH depends on ata_qc_complete() nullifying completion
5847 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5848 * not synchronize with interrupt handler. Only PIO task is
5851 if (ap
->ops
->error_handler
) {
5852 struct ata_device
*dev
= qc
->dev
;
5853 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
5855 WARN_ON(ap
->pflags
& ATA_PFLAG_FROZEN
);
5857 if (unlikely(qc
->err_mask
))
5858 qc
->flags
|= ATA_QCFLAG_FAILED
;
5860 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
5861 if (!ata_tag_internal(qc
->tag
)) {
5862 /* always fill result TF for failed qc */
5864 ata_qc_schedule_eh(qc
);
5869 /* read result TF if requested */
5870 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5873 /* Some commands need post-processing after successful
5876 switch (qc
->tf
.command
) {
5877 case ATA_CMD_SET_FEATURES
:
5878 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
5879 qc
->tf
.feature
!= SETFEATURES_WC_OFF
)
5882 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
5883 case ATA_CMD_SET_MULTI
: /* multi_count changed */
5884 /* revalidate device */
5885 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
5886 ata_port_schedule_eh(ap
);
5890 dev
->flags
|= ATA_DFLAG_SLEEPING
;
5894 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
5895 ata_verify_xfer(qc
);
5897 __ata_qc_complete(qc
);
5899 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
5902 /* read result TF if failed or requested */
5903 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5906 __ata_qc_complete(qc
);
5911 * ata_qc_complete_multiple - Complete multiple qcs successfully
5912 * @ap: port in question
5913 * @qc_active: new qc_active mask
5914 * @finish_qc: LLDD callback invoked before completing a qc
5916 * Complete in-flight commands. This functions is meant to be
5917 * called from low-level driver's interrupt routine to complete
5918 * requests normally. ap->qc_active and @qc_active is compared
5919 * and commands are completed accordingly.
5922 * spin_lock_irqsave(host lock)
5925 * Number of completed commands on success, -errno otherwise.
5927 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
,
5928 void (*finish_qc
)(struct ata_queued_cmd
*))
5934 done_mask
= ap
->qc_active
^ qc_active
;
5936 if (unlikely(done_mask
& qc_active
)) {
5937 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
5938 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
5942 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
5943 struct ata_queued_cmd
*qc
;
5945 if (!(done_mask
& (1 << i
)))
5948 if ((qc
= ata_qc_from_tag(ap
, i
))) {
5951 ata_qc_complete(qc
);
5960 * ata_qc_issue - issue taskfile to device
5961 * @qc: command to issue to device
5963 * Prepare an ATA command to submission to device.
5964 * This includes mapping the data into a DMA-able
5965 * area, filling in the S/G table, and finally
5966 * writing the taskfile to hardware, starting the command.
5969 * spin_lock_irqsave(host lock)
5971 void ata_qc_issue(struct ata_queued_cmd
*qc
)
5973 struct ata_port
*ap
= qc
->ap
;
5974 struct ata_link
*link
= qc
->dev
->link
;
5975 u8 prot
= qc
->tf
.protocol
;
5977 /* Make sure only one non-NCQ command is outstanding. The
5978 * check is skipped for old EH because it reuses active qc to
5979 * request ATAPI sense.
5981 WARN_ON(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
5983 if (ata_is_ncq(prot
)) {
5984 WARN_ON(link
->sactive
& (1 << qc
->tag
));
5987 ap
->nr_active_links
++;
5988 link
->sactive
|= 1 << qc
->tag
;
5990 WARN_ON(link
->sactive
);
5992 ap
->nr_active_links
++;
5993 link
->active_tag
= qc
->tag
;
5996 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5997 ap
->qc_active
|= 1 << qc
->tag
;
5999 /* We guarantee to LLDs that they will have at least one
6000 * non-zero sg if the command is a data command.
6002 BUG_ON(ata_is_data(prot
) && (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
));
6004 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
6005 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
6006 if (ata_sg_setup(qc
))
6009 /* if device is sleeping, schedule softreset and abort the link */
6010 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
6011 link
->eh_info
.action
|= ATA_EH_SOFTRESET
;
6012 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
6013 ata_link_abort(link
);
6017 ap
->ops
->qc_prep(qc
);
6019 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
6020 if (unlikely(qc
->err_mask
))
6025 qc
->err_mask
|= AC_ERR_SYSTEM
;
6027 ata_qc_complete(qc
);
6031 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6032 * @qc: command to issue to device
6034 * Using various libata functions and hooks, this function
6035 * starts an ATA command. ATA commands are grouped into
6036 * classes called "protocols", and issuing each type of protocol
6037 * is slightly different.
6039 * May be used as the qc_issue() entry in ata_port_operations.
6042 * spin_lock_irqsave(host lock)
6045 * Zero on success, AC_ERR_* mask on failure
6048 unsigned int ata_qc_issue_prot(struct ata_queued_cmd
*qc
)
6050 struct ata_port
*ap
= qc
->ap
;
6052 /* Use polling pio if the LLD doesn't handle
6053 * interrupt driven pio and atapi CDB interrupt.
6055 if (ap
->flags
& ATA_FLAG_PIO_POLLING
) {
6056 switch (qc
->tf
.protocol
) {
6058 case ATA_PROT_NODATA
:
6059 case ATAPI_PROT_PIO
:
6060 case ATAPI_PROT_NODATA
:
6061 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
6063 case ATAPI_PROT_DMA
:
6064 if (qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)
6065 /* see ata_dma_blacklisted() */
6073 /* select the device */
6074 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
6076 /* start the command */
6077 switch (qc
->tf
.protocol
) {
6078 case ATA_PROT_NODATA
:
6079 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6080 ata_qc_set_polling(qc
);
6082 ata_tf_to_host(ap
, &qc
->tf
);
6083 ap
->hsm_task_state
= HSM_ST_LAST
;
6085 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6086 ata_pio_queue_task(ap
, qc
, 0);
6091 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
6093 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
6094 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
6095 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
6096 ap
->hsm_task_state
= HSM_ST_LAST
;
6100 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6101 ata_qc_set_polling(qc
);
6103 ata_tf_to_host(ap
, &qc
->tf
);
6105 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
6106 /* PIO data out protocol */
6107 ap
->hsm_task_state
= HSM_ST_FIRST
;
6108 ata_pio_queue_task(ap
, qc
, 0);
6110 /* always send first data block using
6111 * the ata_pio_task() codepath.
6114 /* PIO data in protocol */
6115 ap
->hsm_task_state
= HSM_ST
;
6117 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6118 ata_pio_queue_task(ap
, qc
, 0);
6120 /* if polling, ata_pio_task() handles the rest.
6121 * otherwise, interrupt handler takes over from here.
6127 case ATAPI_PROT_PIO
:
6128 case ATAPI_PROT_NODATA
:
6129 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6130 ata_qc_set_polling(qc
);
6132 ata_tf_to_host(ap
, &qc
->tf
);
6134 ap
->hsm_task_state
= HSM_ST_FIRST
;
6136 /* send cdb by polling if no cdb interrupt */
6137 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
6138 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
6139 ata_pio_queue_task(ap
, qc
, 0);
6142 case ATAPI_PROT_DMA
:
6143 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
6145 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
6146 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
6147 ap
->hsm_task_state
= HSM_ST_FIRST
;
6149 /* send cdb by polling if no cdb interrupt */
6150 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
6151 ata_pio_queue_task(ap
, qc
, 0);
6156 return AC_ERR_SYSTEM
;
6163 * ata_host_intr - Handle host interrupt for given (port, task)
6164 * @ap: Port on which interrupt arrived (possibly...)
6165 * @qc: Taskfile currently active in engine
6167 * Handle host interrupt for given queued command. Currently,
6168 * only DMA interrupts are handled. All other commands are
6169 * handled via polling with interrupts disabled (nIEN bit).
6172 * spin_lock_irqsave(host lock)
6175 * One if interrupt was handled, zero if not (shared irq).
6178 inline unsigned int ata_host_intr(struct ata_port
*ap
,
6179 struct ata_queued_cmd
*qc
)
6181 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
6182 u8 status
, host_stat
= 0;
6184 VPRINTK("ata%u: protocol %d task_state %d\n",
6185 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
6187 /* Check whether we are expecting interrupt in this state */
6188 switch (ap
->hsm_task_state
) {
6190 /* Some pre-ATAPI-4 devices assert INTRQ
6191 * at this state when ready to receive CDB.
6194 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6195 * The flag was turned on only for atapi devices. No
6196 * need to check ata_is_atapi(qc->tf.protocol) again.
6198 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
6202 if (qc
->tf
.protocol
== ATA_PROT_DMA
||
6203 qc
->tf
.protocol
== ATAPI_PROT_DMA
) {
6204 /* check status of DMA engine */
6205 host_stat
= ap
->ops
->bmdma_status(ap
);
6206 VPRINTK("ata%u: host_stat 0x%X\n",
6207 ap
->print_id
, host_stat
);
6209 /* if it's not our irq... */
6210 if (!(host_stat
& ATA_DMA_INTR
))
6213 /* before we do anything else, clear DMA-Start bit */
6214 ap
->ops
->bmdma_stop(qc
);
6216 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
6217 /* error when transfering data to/from memory */
6218 qc
->err_mask
|= AC_ERR_HOST_BUS
;
6219 ap
->hsm_task_state
= HSM_ST_ERR
;
6229 /* check altstatus */
6230 status
= ata_altstatus(ap
);
6231 if (status
& ATA_BUSY
)
6234 /* check main status, clearing INTRQ */
6235 status
= ata_chk_status(ap
);
6236 if (unlikely(status
& ATA_BUSY
))
6239 /* ack bmdma irq events */
6240 ap
->ops
->irq_clear(ap
);
6242 ata_hsm_move(ap
, qc
, status
, 0);
6244 if (unlikely(qc
->err_mask
) && (qc
->tf
.protocol
== ATA_PROT_DMA
||
6245 qc
->tf
.protocol
== ATAPI_PROT_DMA
))
6246 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
6248 return 1; /* irq handled */
6251 ap
->stats
.idle_irq
++;
6254 if ((ap
->stats
.idle_irq
% 1000) == 0) {
6256 ap
->ops
->irq_clear(ap
);
6257 ata_port_printk(ap
, KERN_WARNING
, "irq trap\n");
6261 return 0; /* irq not handled */
6265 * ata_interrupt - Default ATA host interrupt handler
6266 * @irq: irq line (unused)
6267 * @dev_instance: pointer to our ata_host information structure
6269 * Default interrupt handler for PCI IDE devices. Calls
6270 * ata_host_intr() for each port that is not disabled.
6273 * Obtains host lock during operation.
6276 * IRQ_NONE or IRQ_HANDLED.
6279 irqreturn_t
ata_interrupt(int irq
, void *dev_instance
)
6281 struct ata_host
*host
= dev_instance
;
6283 unsigned int handled
= 0;
6284 unsigned long flags
;
6286 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6287 spin_lock_irqsave(&host
->lock
, flags
);
6289 for (i
= 0; i
< host
->n_ports
; i
++) {
6290 struct ata_port
*ap
;
6292 ap
= host
->ports
[i
];
6294 !(ap
->flags
& ATA_FLAG_DISABLED
)) {
6295 struct ata_queued_cmd
*qc
;
6297 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
6298 if (qc
&& (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
)) &&
6299 (qc
->flags
& ATA_QCFLAG_ACTIVE
))
6300 handled
|= ata_host_intr(ap
, qc
);
6304 spin_unlock_irqrestore(&host
->lock
, flags
);
6306 return IRQ_RETVAL(handled
);
6310 * sata_scr_valid - test whether SCRs are accessible
6311 * @link: ATA link to test SCR accessibility for
6313 * Test whether SCRs are accessible for @link.
6319 * 1 if SCRs are accessible, 0 otherwise.
6321 int sata_scr_valid(struct ata_link
*link
)
6323 struct ata_port
*ap
= link
->ap
;
6325 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
6329 * sata_scr_read - read SCR register of the specified port
6330 * @link: ATA link to read SCR for
6332 * @val: Place to store read value
6334 * Read SCR register @reg of @link into *@val. This function is
6335 * guaranteed to succeed if @link is ap->link, the cable type of
6336 * the port is SATA and the port implements ->scr_read.
6339 * None if @link is ap->link. Kernel thread context otherwise.
6342 * 0 on success, negative errno on failure.
6344 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
6346 if (ata_is_host_link(link
)) {
6347 struct ata_port
*ap
= link
->ap
;
6349 if (sata_scr_valid(link
))
6350 return ap
->ops
->scr_read(ap
, reg
, val
);
6354 return sata_pmp_scr_read(link
, reg
, val
);
6358 * sata_scr_write - write SCR register of the specified port
6359 * @link: ATA link to write SCR for
6360 * @reg: SCR to write
6361 * @val: value to write
6363 * Write @val to SCR register @reg of @link. This function is
6364 * guaranteed to succeed if @link is ap->link, the cable type of
6365 * the port is SATA and the port implements ->scr_read.
6368 * None if @link is ap->link. Kernel thread context otherwise.
6371 * 0 on success, negative errno on failure.
6373 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
6375 if (ata_is_host_link(link
)) {
6376 struct ata_port
*ap
= link
->ap
;
6378 if (sata_scr_valid(link
))
6379 return ap
->ops
->scr_write(ap
, reg
, val
);
6383 return sata_pmp_scr_write(link
, reg
, val
);
6387 * sata_scr_write_flush - write SCR register of the specified port and flush
6388 * @link: ATA link to write SCR for
6389 * @reg: SCR to write
6390 * @val: value to write
6392 * This function is identical to sata_scr_write() except that this
6393 * function performs flush after writing to the register.
6396 * None if @link is ap->link. Kernel thread context otherwise.
6399 * 0 on success, negative errno on failure.
6401 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
6403 if (ata_is_host_link(link
)) {
6404 struct ata_port
*ap
= link
->ap
;
6407 if (sata_scr_valid(link
)) {
6408 rc
= ap
->ops
->scr_write(ap
, reg
, val
);
6410 rc
= ap
->ops
->scr_read(ap
, reg
, &val
);
6416 return sata_pmp_scr_write(link
, reg
, val
);
6420 * ata_link_online - test whether the given link is online
6421 * @link: ATA link to test
6423 * Test whether @link is online. Note that this function returns
6424 * 0 if online status of @link cannot be obtained, so
6425 * ata_link_online(link) != !ata_link_offline(link).
6431 * 1 if the port online status is available and online.
6433 int ata_link_online(struct ata_link
*link
)
6437 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
6438 (sstatus
& 0xf) == 0x3)
6444 * ata_link_offline - test whether the given link is offline
6445 * @link: ATA link to test
6447 * Test whether @link is offline. Note that this function
6448 * returns 0 if offline status of @link cannot be obtained, so
6449 * ata_link_online(link) != !ata_link_offline(link).
6455 * 1 if the port offline status is available and offline.
6457 int ata_link_offline(struct ata_link
*link
)
6461 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
6462 (sstatus
& 0xf) != 0x3)
6467 int ata_flush_cache(struct ata_device
*dev
)
6469 unsigned int err_mask
;
6472 if (!ata_try_flush_cache(dev
))
6475 if (dev
->flags
& ATA_DFLAG_FLUSH_EXT
)
6476 cmd
= ATA_CMD_FLUSH_EXT
;
6478 cmd
= ATA_CMD_FLUSH
;
6480 /* This is wrong. On a failed flush we get back the LBA of the lost
6481 sector and we should (assuming it wasn't aborted as unknown) issue
6482 a further flush command to continue the writeback until it
6484 err_mask
= ata_do_simple_cmd(dev
, cmd
);
6486 ata_dev_printk(dev
, KERN_ERR
, "failed to flush cache\n");
6494 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
6495 unsigned int action
, unsigned int ehi_flags
,
6498 unsigned long flags
;
6501 for (i
= 0; i
< host
->n_ports
; i
++) {
6502 struct ata_port
*ap
= host
->ports
[i
];
6503 struct ata_link
*link
;
6505 /* Previous resume operation might still be in
6506 * progress. Wait for PM_PENDING to clear.
6508 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
6509 ata_port_wait_eh(ap
);
6510 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
6513 /* request PM ops to EH */
6514 spin_lock_irqsave(ap
->lock
, flags
);
6519 ap
->pm_result
= &rc
;
6522 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
6523 __ata_port_for_each_link(link
, ap
) {
6524 link
->eh_info
.action
|= action
;
6525 link
->eh_info
.flags
|= ehi_flags
;
6528 ata_port_schedule_eh(ap
);
6530 spin_unlock_irqrestore(ap
->lock
, flags
);
6532 /* wait and check result */
6534 ata_port_wait_eh(ap
);
6535 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
6545 * ata_host_suspend - suspend host
6546 * @host: host to suspend
6549 * Suspend @host. Actual operation is performed by EH. This
6550 * function requests EH to perform PM operations and waits for EH
6554 * Kernel thread context (may sleep).
6557 * 0 on success, -errno on failure.
6559 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
6564 * disable link pm on all ports before requesting
6567 ata_lpm_enable(host
);
6569 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
6571 host
->dev
->power
.power_state
= mesg
;
6576 * ata_host_resume - resume host
6577 * @host: host to resume
6579 * Resume @host. Actual operation is performed by EH. This
6580 * function requests EH to perform PM operations and returns.
6581 * Note that all resume operations are performed parallely.
6584 * Kernel thread context (may sleep).
6586 void ata_host_resume(struct ata_host
*host
)
6588 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_SOFTRESET
,
6589 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
6590 host
->dev
->power
.power_state
= PMSG_ON
;
6592 /* reenable link pm */
6593 ata_lpm_disable(host
);
6598 * ata_port_start - Set port up for dma.
6599 * @ap: Port to initialize
6601 * Called just after data structures for each port are
6602 * initialized. Allocates space for PRD table.
6604 * May be used as the port_start() entry in ata_port_operations.
6607 * Inherited from caller.
6609 int ata_port_start(struct ata_port
*ap
)
6611 struct device
*dev
= ap
->dev
;
6613 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
6622 * ata_dev_init - Initialize an ata_device structure
6623 * @dev: Device structure to initialize
6625 * Initialize @dev in preparation for probing.
6628 * Inherited from caller.
6630 void ata_dev_init(struct ata_device
*dev
)
6632 struct ata_link
*link
= dev
->link
;
6633 struct ata_port
*ap
= link
->ap
;
6634 unsigned long flags
;
6636 /* SATA spd limit is bound to the first device */
6637 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
6640 /* High bits of dev->flags are used to record warm plug
6641 * requests which occur asynchronously. Synchronize using
6644 spin_lock_irqsave(ap
->lock
, flags
);
6645 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
6647 spin_unlock_irqrestore(ap
->lock
, flags
);
6649 memset((void *)dev
+ ATA_DEVICE_CLEAR_OFFSET
, 0,
6650 sizeof(*dev
) - ATA_DEVICE_CLEAR_OFFSET
);
6651 dev
->pio_mask
= UINT_MAX
;
6652 dev
->mwdma_mask
= UINT_MAX
;
6653 dev
->udma_mask
= UINT_MAX
;
6657 * ata_link_init - Initialize an ata_link structure
6658 * @ap: ATA port link is attached to
6659 * @link: Link structure to initialize
6660 * @pmp: Port multiplier port number
6665 * Kernel thread context (may sleep)
6667 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
6671 /* clear everything except for devices */
6672 memset(link
, 0, offsetof(struct ata_link
, device
[0]));
6676 link
->active_tag
= ATA_TAG_POISON
;
6677 link
->hw_sata_spd_limit
= UINT_MAX
;
6679 /* can't use iterator, ap isn't initialized yet */
6680 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
6681 struct ata_device
*dev
= &link
->device
[i
];
6684 dev
->devno
= dev
- link
->device
;
6690 * sata_link_init_spd - Initialize link->sata_spd_limit
6691 * @link: Link to configure sata_spd_limit for
6693 * Initialize @link->[hw_]sata_spd_limit to the currently
6697 * Kernel thread context (may sleep).
6700 * 0 on success, -errno on failure.
6702 int sata_link_init_spd(struct ata_link
*link
)
6708 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
6712 spd
= (scontrol
>> 4) & 0xf;
6714 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
6716 ata_force_spd_limit(link
);
6718 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
6724 * ata_port_alloc - allocate and initialize basic ATA port resources
6725 * @host: ATA host this allocated port belongs to
6727 * Allocate and initialize basic ATA port resources.
6730 * Allocate ATA port on success, NULL on failure.
6733 * Inherited from calling layer (may sleep).
6735 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
6737 struct ata_port
*ap
;
6741 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
6745 ap
->pflags
|= ATA_PFLAG_INITIALIZING
;
6746 ap
->lock
= &host
->lock
;
6747 ap
->flags
= ATA_FLAG_DISABLED
;
6749 ap
->ctl
= ATA_DEVCTL_OBS
;
6751 ap
->dev
= host
->dev
;
6752 ap
->last_ctl
= 0xFF;
6754 #if defined(ATA_VERBOSE_DEBUG)
6755 /* turn on all debugging levels */
6756 ap
->msg_enable
= 0x00FF;
6757 #elif defined(ATA_DEBUG)
6758 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
6760 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
6763 INIT_DELAYED_WORK(&ap
->port_task
, ata_pio_task
);
6764 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
6765 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
6766 INIT_LIST_HEAD(&ap
->eh_done_q
);
6767 init_waitqueue_head(&ap
->eh_wait_q
);
6768 init_timer_deferrable(&ap
->fastdrain_timer
);
6769 ap
->fastdrain_timer
.function
= ata_eh_fastdrain_timerfn
;
6770 ap
->fastdrain_timer
.data
= (unsigned long)ap
;
6772 ap
->cbl
= ATA_CBL_NONE
;
6774 ata_link_init(ap
, &ap
->link
, 0);
6777 ap
->stats
.unhandled_irq
= 1;
6778 ap
->stats
.idle_irq
= 1;
6783 static void ata_host_release(struct device
*gendev
, void *res
)
6785 struct ata_host
*host
= dev_get_drvdata(gendev
);
6788 for (i
= 0; i
< host
->n_ports
; i
++) {
6789 struct ata_port
*ap
= host
->ports
[i
];
6795 scsi_host_put(ap
->scsi_host
);
6797 kfree(ap
->pmp_link
);
6799 host
->ports
[i
] = NULL
;
6802 dev_set_drvdata(gendev
, NULL
);
6806 * ata_host_alloc - allocate and init basic ATA host resources
6807 * @dev: generic device this host is associated with
6808 * @max_ports: maximum number of ATA ports associated with this host
6810 * Allocate and initialize basic ATA host resources. LLD calls
6811 * this function to allocate a host, initializes it fully and
6812 * attaches it using ata_host_register().
6814 * @max_ports ports are allocated and host->n_ports is
6815 * initialized to @max_ports. The caller is allowed to decrease
6816 * host->n_ports before calling ata_host_register(). The unused
6817 * ports will be automatically freed on registration.
6820 * Allocate ATA host on success, NULL on failure.
6823 * Inherited from calling layer (may sleep).
6825 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
6827 struct ata_host
*host
;
6833 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
6836 /* alloc a container for our list of ATA ports (buses) */
6837 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
6838 /* alloc a container for our list of ATA ports (buses) */
6839 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
6843 devres_add(dev
, host
);
6844 dev_set_drvdata(dev
, host
);
6846 spin_lock_init(&host
->lock
);
6848 host
->n_ports
= max_ports
;
6850 /* allocate ports bound to this host */
6851 for (i
= 0; i
< max_ports
; i
++) {
6852 struct ata_port
*ap
;
6854 ap
= ata_port_alloc(host
);
6859 host
->ports
[i
] = ap
;
6862 devres_remove_group(dev
, NULL
);
6866 devres_release_group(dev
, NULL
);
6871 * ata_host_alloc_pinfo - alloc host and init with port_info array
6872 * @dev: generic device this host is associated with
6873 * @ppi: array of ATA port_info to initialize host with
6874 * @n_ports: number of ATA ports attached to this host
6876 * Allocate ATA host and initialize with info from @ppi. If NULL
6877 * terminated, @ppi may contain fewer entries than @n_ports. The
6878 * last entry will be used for the remaining ports.
6881 * Allocate ATA host on success, NULL on failure.
6884 * Inherited from calling layer (may sleep).
6886 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
6887 const struct ata_port_info
* const * ppi
,
6890 const struct ata_port_info
*pi
;
6891 struct ata_host
*host
;
6894 host
= ata_host_alloc(dev
, n_ports
);
6898 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
6899 struct ata_port
*ap
= host
->ports
[i
];
6904 ap
->pio_mask
= pi
->pio_mask
;
6905 ap
->mwdma_mask
= pi
->mwdma_mask
;
6906 ap
->udma_mask
= pi
->udma_mask
;
6907 ap
->flags
|= pi
->flags
;
6908 ap
->link
.flags
|= pi
->link_flags
;
6909 ap
->ops
= pi
->port_ops
;
6911 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
6912 host
->ops
= pi
->port_ops
;
6913 if (!host
->private_data
&& pi
->private_data
)
6914 host
->private_data
= pi
->private_data
;
6920 static void ata_host_stop(struct device
*gendev
, void *res
)
6922 struct ata_host
*host
= dev_get_drvdata(gendev
);
6925 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
6927 for (i
= 0; i
< host
->n_ports
; i
++) {
6928 struct ata_port
*ap
= host
->ports
[i
];
6930 if (ap
->ops
->port_stop
)
6931 ap
->ops
->port_stop(ap
);
6934 if (host
->ops
->host_stop
)
6935 host
->ops
->host_stop(host
);
6939 * ata_host_start - start and freeze ports of an ATA host
6940 * @host: ATA host to start ports for
6942 * Start and then freeze ports of @host. Started status is
6943 * recorded in host->flags, so this function can be called
6944 * multiple times. Ports are guaranteed to get started only
6945 * once. If host->ops isn't initialized yet, its set to the
6946 * first non-dummy port ops.
6949 * Inherited from calling layer (may sleep).
6952 * 0 if all ports are started successfully, -errno otherwise.
6954 int ata_host_start(struct ata_host
*host
)
6957 void *start_dr
= NULL
;
6960 if (host
->flags
& ATA_HOST_STARTED
)
6963 for (i
= 0; i
< host
->n_ports
; i
++) {
6964 struct ata_port
*ap
= host
->ports
[i
];
6966 if (!host
->ops
&& !ata_port_is_dummy(ap
))
6967 host
->ops
= ap
->ops
;
6969 if (ap
->ops
->port_stop
)
6973 if (host
->ops
->host_stop
)
6977 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
6982 for (i
= 0; i
< host
->n_ports
; i
++) {
6983 struct ata_port
*ap
= host
->ports
[i
];
6985 if (ap
->ops
->port_start
) {
6986 rc
= ap
->ops
->port_start(ap
);
6989 dev_printk(KERN_ERR
, host
->dev
,
6990 "failed to start port %d "
6991 "(errno=%d)\n", i
, rc
);
6995 ata_eh_freeze_port(ap
);
6999 devres_add(host
->dev
, start_dr
);
7000 host
->flags
|= ATA_HOST_STARTED
;
7005 struct ata_port
*ap
= host
->ports
[i
];
7007 if (ap
->ops
->port_stop
)
7008 ap
->ops
->port_stop(ap
);
7010 devres_free(start_dr
);
7015 * ata_sas_host_init - Initialize a host struct
7016 * @host: host to initialize
7017 * @dev: device host is attached to
7018 * @flags: host flags
7022 * PCI/etc. bus probe sem.
7025 /* KILLME - the only user left is ipr */
7026 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
7027 unsigned long flags
, const struct ata_port_operations
*ops
)
7029 spin_lock_init(&host
->lock
);
7031 host
->flags
= flags
;
7036 * ata_host_register - register initialized ATA host
7037 * @host: ATA host to register
7038 * @sht: template for SCSI host
7040 * Register initialized ATA host. @host is allocated using
7041 * ata_host_alloc() and fully initialized by LLD. This function
7042 * starts ports, registers @host with ATA and SCSI layers and
7043 * probe registered devices.
7046 * Inherited from calling layer (may sleep).
7049 * 0 on success, -errno otherwise.
7051 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
7055 /* host must have been started */
7056 if (!(host
->flags
& ATA_HOST_STARTED
)) {
7057 dev_printk(KERN_ERR
, host
->dev
,
7058 "BUG: trying to register unstarted host\n");
7063 /* Blow away unused ports. This happens when LLD can't
7064 * determine the exact number of ports to allocate at
7067 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
7068 kfree(host
->ports
[i
]);
7070 /* give ports names and add SCSI hosts */
7071 for (i
= 0; i
< host
->n_ports
; i
++)
7072 host
->ports
[i
]->print_id
= ata_print_id
++;
7074 rc
= ata_scsi_add_hosts(host
, sht
);
7078 /* associate with ACPI nodes */
7079 ata_acpi_associate(host
);
7081 /* set cable, sata_spd_limit and report */
7082 for (i
= 0; i
< host
->n_ports
; i
++) {
7083 struct ata_port
*ap
= host
->ports
[i
];
7084 unsigned long xfer_mask
;
7086 /* set SATA cable type if still unset */
7087 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
7088 ap
->cbl
= ATA_CBL_SATA
;
7090 /* init sata_spd_limit to the current value */
7091 sata_link_init_spd(&ap
->link
);
7093 /* print per-port info to dmesg */
7094 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
7097 if (!ata_port_is_dummy(ap
)) {
7098 ata_port_printk(ap
, KERN_INFO
,
7099 "%cATA max %s %s\n",
7100 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
7101 ata_mode_string(xfer_mask
),
7102 ap
->link
.eh_info
.desc
);
7103 ata_ehi_clear_desc(&ap
->link
.eh_info
);
7105 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
7108 /* perform each probe synchronously */
7109 DPRINTK("probe begin\n");
7110 for (i
= 0; i
< host
->n_ports
; i
++) {
7111 struct ata_port
*ap
= host
->ports
[i
];
7114 if (ap
->ops
->error_handler
) {
7115 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
7116 unsigned long flags
;
7120 /* kick EH for boot probing */
7121 spin_lock_irqsave(ap
->lock
, flags
);
7124 (1 << ata_link_max_devices(&ap
->link
)) - 1;
7125 ehi
->action
|= ATA_EH_SOFTRESET
;
7126 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
7128 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
7129 ap
->pflags
|= ATA_PFLAG_LOADING
;
7130 ata_port_schedule_eh(ap
);
7132 spin_unlock_irqrestore(ap
->lock
, flags
);
7134 /* wait for EH to finish */
7135 ata_port_wait_eh(ap
);
7137 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
7138 rc
= ata_bus_probe(ap
);
7139 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
7142 /* FIXME: do something useful here?
7143 * Current libata behavior will
7144 * tear down everything when
7145 * the module is removed
7146 * or the h/w is unplugged.
7152 /* probes are done, now scan each port's disk(s) */
7153 DPRINTK("host probe begin\n");
7154 for (i
= 0; i
< host
->n_ports
; i
++) {
7155 struct ata_port
*ap
= host
->ports
[i
];
7157 ata_scsi_scan_host(ap
, 1);
7158 ata_lpm_schedule(ap
, ap
->pm_policy
);
7165 * ata_host_activate - start host, request IRQ and register it
7166 * @host: target ATA host
7167 * @irq: IRQ to request
7168 * @irq_handler: irq_handler used when requesting IRQ
7169 * @irq_flags: irq_flags used when requesting IRQ
7170 * @sht: scsi_host_template to use when registering the host
7172 * After allocating an ATA host and initializing it, most libata
7173 * LLDs perform three steps to activate the host - start host,
7174 * request IRQ and register it. This helper takes necessasry
7175 * arguments and performs the three steps in one go.
7177 * An invalid IRQ skips the IRQ registration and expects the host to
7178 * have set polling mode on the port. In this case, @irq_handler
7182 * Inherited from calling layer (may sleep).
7185 * 0 on success, -errno otherwise.
7187 int ata_host_activate(struct ata_host
*host
, int irq
,
7188 irq_handler_t irq_handler
, unsigned long irq_flags
,
7189 struct scsi_host_template
*sht
)
7193 rc
= ata_host_start(host
);
7197 /* Special case for polling mode */
7199 WARN_ON(irq_handler
);
7200 return ata_host_register(host
, sht
);
7203 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
7204 dev_driver_string(host
->dev
), host
);
7208 for (i
= 0; i
< host
->n_ports
; i
++)
7209 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
7211 rc
= ata_host_register(host
, sht
);
7212 /* if failed, just free the IRQ and leave ports alone */
7214 devm_free_irq(host
->dev
, irq
, host
);
7220 * ata_port_detach - Detach ATA port in prepration of device removal
7221 * @ap: ATA port to be detached
7223 * Detach all ATA devices and the associated SCSI devices of @ap;
7224 * then, remove the associated SCSI host. @ap is guaranteed to
7225 * be quiescent on return from this function.
7228 * Kernel thread context (may sleep).
7230 static void ata_port_detach(struct ata_port
*ap
)
7232 unsigned long flags
;
7233 struct ata_link
*link
;
7234 struct ata_device
*dev
;
7236 if (!ap
->ops
->error_handler
)
7239 /* tell EH we're leaving & flush EH */
7240 spin_lock_irqsave(ap
->lock
, flags
);
7241 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
7242 spin_unlock_irqrestore(ap
->lock
, flags
);
7244 ata_port_wait_eh(ap
);
7246 /* EH is now guaranteed to see UNLOADING - EH context belongs
7247 * to us. Disable all existing devices.
7249 ata_port_for_each_link(link
, ap
) {
7250 ata_link_for_each_dev(dev
, link
)
7251 ata_dev_disable(dev
);
7254 /* Final freeze & EH. All in-flight commands are aborted. EH
7255 * will be skipped and retrials will be terminated with bad
7258 spin_lock_irqsave(ap
->lock
, flags
);
7259 ata_port_freeze(ap
); /* won't be thawed */
7260 spin_unlock_irqrestore(ap
->lock
, flags
);
7262 ata_port_wait_eh(ap
);
7263 cancel_rearming_delayed_work(&ap
->hotplug_task
);
7266 /* remove the associated SCSI host */
7267 scsi_remove_host(ap
->scsi_host
);
7271 * ata_host_detach - Detach all ports of an ATA host
7272 * @host: Host to detach
7274 * Detach all ports of @host.
7277 * Kernel thread context (may sleep).
7279 void ata_host_detach(struct ata_host
*host
)
7283 for (i
= 0; i
< host
->n_ports
; i
++)
7284 ata_port_detach(host
->ports
[i
]);
7286 /* the host is dead now, dissociate ACPI */
7287 ata_acpi_dissociate(host
);
7291 * ata_std_ports - initialize ioaddr with standard port offsets.
7292 * @ioaddr: IO address structure to be initialized
7294 * Utility function which initializes data_addr, error_addr,
7295 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7296 * device_addr, status_addr, and command_addr to standard offsets
7297 * relative to cmd_addr.
7299 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7302 void ata_std_ports(struct ata_ioports
*ioaddr
)
7304 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
7305 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
7306 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
7307 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
7308 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
7309 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
7310 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
7311 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
7312 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
7313 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
7320 * ata_pci_remove_one - PCI layer callback for device removal
7321 * @pdev: PCI device that was removed
7323 * PCI layer indicates to libata via this hook that hot-unplug or
7324 * module unload event has occurred. Detach all ports. Resource
7325 * release is handled via devres.
7328 * Inherited from PCI layer (may sleep).
7330 void ata_pci_remove_one(struct pci_dev
*pdev
)
7332 struct device
*dev
= &pdev
->dev
;
7333 struct ata_host
*host
= dev_get_drvdata(dev
);
7335 ata_host_detach(host
);
7338 /* move to PCI subsystem */
7339 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
7341 unsigned long tmp
= 0;
7343 switch (bits
->width
) {
7346 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
7352 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
7358 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
7369 return (tmp
== bits
->val
) ? 1 : 0;
7373 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
7375 pci_save_state(pdev
);
7376 pci_disable_device(pdev
);
7378 if (mesg
.event
& PM_EVENT_SLEEP
)
7379 pci_set_power_state(pdev
, PCI_D3hot
);
7382 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
7386 pci_set_power_state(pdev
, PCI_D0
);
7387 pci_restore_state(pdev
);
7389 rc
= pcim_enable_device(pdev
);
7391 dev_printk(KERN_ERR
, &pdev
->dev
,
7392 "failed to enable device after resume (%d)\n", rc
);
7396 pci_set_master(pdev
);
7400 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
7402 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
7405 rc
= ata_host_suspend(host
, mesg
);
7409 ata_pci_device_do_suspend(pdev
, mesg
);
7414 int ata_pci_device_resume(struct pci_dev
*pdev
)
7416 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
7419 rc
= ata_pci_device_do_resume(pdev
);
7421 ata_host_resume(host
);
7424 #endif /* CONFIG_PM */
7426 #endif /* CONFIG_PCI */
7428 static int __init
ata_parse_force_one(char **cur
,
7429 struct ata_force_ent
*force_ent
,
7430 const char **reason
)
7432 /* FIXME: Currently, there's no way to tag init const data and
7433 * using __initdata causes build failure on some versions of
7434 * gcc. Once __initdataconst is implemented, add const to the
7435 * following structure.
7437 static struct ata_force_param force_tbl
[] __initdata
= {
7438 { "40c", .cbl
= ATA_CBL_PATA40
},
7439 { "80c", .cbl
= ATA_CBL_PATA80
},
7440 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
7441 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
7442 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
7443 { "sata", .cbl
= ATA_CBL_SATA
},
7444 { "1.5Gbps", .spd_limit
= 1 },
7445 { "3.0Gbps", .spd_limit
= 2 },
7446 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
7447 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
7448 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
7449 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
7450 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
7451 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
7452 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
7453 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
7454 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
7455 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
7456 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
7457 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
7458 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
7459 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
7460 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
7461 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
7462 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
7463 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
7464 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
7465 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
7466 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
7467 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
7468 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
7469 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
7470 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
7471 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
7472 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
7473 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
7474 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
7475 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
7476 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
7477 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
7478 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
7479 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
7480 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
7481 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
7483 char *start
= *cur
, *p
= *cur
;
7484 char *id
, *val
, *endp
;
7485 const struct ata_force_param
*match_fp
= NULL
;
7486 int nr_matches
= 0, i
;
7488 /* find where this param ends and update *cur */
7489 while (*p
!= '\0' && *p
!= ',')
7500 p
= strchr(start
, ':');
7502 val
= strstrip(start
);
7507 id
= strstrip(start
);
7508 val
= strstrip(p
+ 1);
7511 p
= strchr(id
, '.');
7514 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
7515 if (p
== endp
|| *endp
!= '\0') {
7516 *reason
= "invalid device";
7521 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
7522 if (p
== endp
|| *endp
!= '\0') {
7523 *reason
= "invalid port/link";
7528 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
7529 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
7530 const struct ata_force_param
*fp
= &force_tbl
[i
];
7532 if (strncasecmp(val
, fp
->name
, strlen(val
)))
7538 if (strcasecmp(val
, fp
->name
) == 0) {
7545 *reason
= "unknown value";
7548 if (nr_matches
> 1) {
7549 *reason
= "ambigious value";
7553 force_ent
->param
= *match_fp
;
7558 static void __init
ata_parse_force_param(void)
7560 int idx
= 0, size
= 1;
7561 int last_port
= -1, last_device
= -1;
7562 char *p
, *cur
, *next
;
7564 /* calculate maximum number of params and allocate force_tbl */
7565 for (p
= ata_force_param_buf
; *p
; p
++)
7569 ata_force_tbl
= kzalloc(sizeof(ata_force_tbl
[0]) * size
, GFP_KERNEL
);
7570 if (!ata_force_tbl
) {
7571 printk(KERN_WARNING
"ata: failed to extend force table, "
7572 "libata.force ignored\n");
7576 /* parse and populate the table */
7577 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
7578 const char *reason
= "";
7579 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
7582 if (ata_parse_force_one(&next
, &te
, &reason
)) {
7583 printk(KERN_WARNING
"ata: failed to parse force "
7584 "parameter \"%s\" (%s)\n",
7589 if (te
.port
== -1) {
7590 te
.port
= last_port
;
7591 te
.device
= last_device
;
7594 ata_force_tbl
[idx
++] = te
;
7596 last_port
= te
.port
;
7597 last_device
= te
.device
;
7600 ata_force_tbl_size
= idx
;
7603 static int __init
ata_init(void)
7605 ata_probe_timeout
*= HZ
;
7607 ata_parse_force_param();
7609 ata_wq
= create_workqueue("ata");
7613 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
7615 destroy_workqueue(ata_wq
);
7619 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
7623 static void __exit
ata_exit(void)
7625 kfree(ata_force_tbl
);
7626 destroy_workqueue(ata_wq
);
7627 destroy_workqueue(ata_aux_wq
);
7630 subsys_initcall(ata_init
);
7631 module_exit(ata_exit
);
7633 static unsigned long ratelimit_time
;
7634 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
7636 int ata_ratelimit(void)
7639 unsigned long flags
;
7641 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
7643 if (time_after(jiffies
, ratelimit_time
)) {
7645 ratelimit_time
= jiffies
+ (HZ
/5);
7649 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
7655 * ata_wait_register - wait until register value changes
7656 * @reg: IO-mapped register
7657 * @mask: Mask to apply to read register value
7658 * @val: Wait condition
7659 * @interval_msec: polling interval in milliseconds
7660 * @timeout_msec: timeout in milliseconds
7662 * Waiting for some bits of register to change is a common
7663 * operation for ATA controllers. This function reads 32bit LE
7664 * IO-mapped register @reg and tests for the following condition.
7666 * (*@reg & mask) != val
7668 * If the condition is met, it returns; otherwise, the process is
7669 * repeated after @interval_msec until timeout.
7672 * Kernel thread context (may sleep)
7675 * The final register value.
7677 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
7678 unsigned long interval_msec
,
7679 unsigned long timeout_msec
)
7681 unsigned long timeout
;
7684 tmp
= ioread32(reg
);
7686 /* Calculate timeout _after_ the first read to make sure
7687 * preceding writes reach the controller before starting to
7688 * eat away the timeout.
7690 timeout
= jiffies
+ (timeout_msec
* HZ
) / 1000;
7692 while ((tmp
& mask
) == val
&& time_before(jiffies
, timeout
)) {
7693 msleep(interval_msec
);
7694 tmp
= ioread32(reg
);
7703 static void ata_dummy_noret(struct ata_port
*ap
) { }
7704 static int ata_dummy_ret0(struct ata_port
*ap
) { return 0; }
7705 static void ata_dummy_qc_noret(struct ata_queued_cmd
*qc
) { }
7707 static u8
ata_dummy_check_status(struct ata_port
*ap
)
7712 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
7714 return AC_ERR_SYSTEM
;
7717 const struct ata_port_operations ata_dummy_port_ops
= {
7718 .check_status
= ata_dummy_check_status
,
7719 .check_altstatus
= ata_dummy_check_status
,
7720 .dev_select
= ata_noop_dev_select
,
7721 .qc_prep
= ata_noop_qc_prep
,
7722 .qc_issue
= ata_dummy_qc_issue
,
7723 .freeze
= ata_dummy_noret
,
7724 .thaw
= ata_dummy_noret
,
7725 .error_handler
= ata_dummy_noret
,
7726 .post_internal_cmd
= ata_dummy_qc_noret
,
7727 .irq_clear
= ata_dummy_noret
,
7728 .port_start
= ata_dummy_ret0
,
7729 .port_stop
= ata_dummy_noret
,
7732 const struct ata_port_info ata_dummy_port_info
= {
7733 .port_ops
= &ata_dummy_port_ops
,
7737 * libata is essentially a library of internal helper functions for
7738 * low-level ATA host controller drivers. As such, the API/ABI is
7739 * likely to change as new drivers are added and updated.
7740 * Do not depend on ABI/API stability.
7742 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
7743 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
7744 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
7745 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
7746 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
7747 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
7748 EXPORT_SYMBOL_GPL(ata_std_ports
);
7749 EXPORT_SYMBOL_GPL(ata_host_init
);
7750 EXPORT_SYMBOL_GPL(ata_host_alloc
);
7751 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
7752 EXPORT_SYMBOL_GPL(ata_host_start
);
7753 EXPORT_SYMBOL_GPL(ata_host_register
);
7754 EXPORT_SYMBOL_GPL(ata_host_activate
);
7755 EXPORT_SYMBOL_GPL(ata_host_detach
);
7756 EXPORT_SYMBOL_GPL(ata_sg_init
);
7757 EXPORT_SYMBOL_GPL(ata_hsm_move
);
7758 EXPORT_SYMBOL_GPL(ata_qc_complete
);
7759 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
7760 EXPORT_SYMBOL_GPL(ata_qc_issue_prot
);
7761 EXPORT_SYMBOL_GPL(ata_tf_load
);
7762 EXPORT_SYMBOL_GPL(ata_tf_read
);
7763 EXPORT_SYMBOL_GPL(ata_noop_dev_select
);
7764 EXPORT_SYMBOL_GPL(ata_std_dev_select
);
7765 EXPORT_SYMBOL_GPL(sata_print_link_status
);
7766 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
7767 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
7768 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
7769 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
7770 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
7771 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
7772 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
7773 EXPORT_SYMBOL_GPL(ata_mode_string
);
7774 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
7775 EXPORT_SYMBOL_GPL(ata_check_status
);
7776 EXPORT_SYMBOL_GPL(ata_altstatus
);
7777 EXPORT_SYMBOL_GPL(ata_exec_command
);
7778 EXPORT_SYMBOL_GPL(ata_port_start
);
7779 EXPORT_SYMBOL_GPL(ata_sff_port_start
);
7780 EXPORT_SYMBOL_GPL(ata_interrupt
);
7781 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
7782 EXPORT_SYMBOL_GPL(ata_data_xfer
);
7783 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq
);
7784 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
7785 EXPORT_SYMBOL_GPL(ata_qc_prep
);
7786 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep
);
7787 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
7788 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
7789 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
7790 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
7791 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
7792 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
7793 EXPORT_SYMBOL_GPL(ata_bmdma_freeze
);
7794 EXPORT_SYMBOL_GPL(ata_bmdma_thaw
);
7795 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh
);
7796 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
7797 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
7798 EXPORT_SYMBOL_GPL(ata_port_probe
);
7799 EXPORT_SYMBOL_GPL(ata_dev_disable
);
7800 EXPORT_SYMBOL_GPL(sata_set_spd
);
7801 EXPORT_SYMBOL_GPL(sata_link_debounce
);
7802 EXPORT_SYMBOL_GPL(sata_link_resume
);
7803 EXPORT_SYMBOL_GPL(ata_bus_reset
);
7804 EXPORT_SYMBOL_GPL(ata_std_prereset
);
7805 EXPORT_SYMBOL_GPL(ata_std_softreset
);
7806 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
7807 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
7808 EXPORT_SYMBOL_GPL(ata_std_postreset
);
7809 EXPORT_SYMBOL_GPL(ata_dev_classify
);
7810 EXPORT_SYMBOL_GPL(ata_dev_pair
);
7811 EXPORT_SYMBOL_GPL(ata_port_disable
);
7812 EXPORT_SYMBOL_GPL(ata_ratelimit
);
7813 EXPORT_SYMBOL_GPL(ata_wait_register
);
7814 EXPORT_SYMBOL_GPL(ata_busy_sleep
);
7815 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
7816 EXPORT_SYMBOL_GPL(ata_wait_ready
);
7817 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
7818 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
7819 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
7820 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
7821 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
7822 EXPORT_SYMBOL_GPL(ata_host_intr
);
7823 EXPORT_SYMBOL_GPL(sata_scr_valid
);
7824 EXPORT_SYMBOL_GPL(sata_scr_read
);
7825 EXPORT_SYMBOL_GPL(sata_scr_write
);
7826 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
7827 EXPORT_SYMBOL_GPL(ata_link_online
);
7828 EXPORT_SYMBOL_GPL(ata_link_offline
);
7830 EXPORT_SYMBOL_GPL(ata_host_suspend
);
7831 EXPORT_SYMBOL_GPL(ata_host_resume
);
7832 #endif /* CONFIG_PM */
7833 EXPORT_SYMBOL_GPL(ata_id_string
);
7834 EXPORT_SYMBOL_GPL(ata_id_c_string
);
7835 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
7837 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
7838 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
7839 EXPORT_SYMBOL_GPL(ata_timing_compute
);
7840 EXPORT_SYMBOL_GPL(ata_timing_merge
);
7841 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
7844 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
7845 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host
);
7846 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma
);
7847 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host
);
7848 EXPORT_SYMBOL_GPL(ata_pci_activate_sff_host
);
7849 EXPORT_SYMBOL_GPL(ata_pci_init_one
);
7850 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
7852 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
7853 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
7854 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
7855 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
7856 #endif /* CONFIG_PM */
7857 EXPORT_SYMBOL_GPL(ata_pci_default_filter
);
7858 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex
);
7859 #endif /* CONFIG_PCI */
7861 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch
);
7862 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset
);
7863 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset
);
7864 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset
);
7865 EXPORT_SYMBOL_GPL(sata_pmp_do_eh
);
7867 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
7868 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
7869 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
7870 EXPORT_SYMBOL_GPL(ata_port_desc
);
7872 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
7873 #endif /* CONFIG_PCI */
7874 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
7875 EXPORT_SYMBOL_GPL(ata_link_abort
);
7876 EXPORT_SYMBOL_GPL(ata_port_abort
);
7877 EXPORT_SYMBOL_GPL(ata_port_freeze
);
7878 EXPORT_SYMBOL_GPL(sata_async_notification
);
7879 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
7880 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
7881 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
7882 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
7883 EXPORT_SYMBOL_GPL(ata_do_eh
);
7884 EXPORT_SYMBOL_GPL(ata_irq_on
);
7885 EXPORT_SYMBOL_GPL(ata_dev_try_classify
);
7887 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
7888 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
7889 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
7890 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
7891 EXPORT_SYMBOL_GPL(ata_cable_sata
);