2 * Etrax specific IDE functions, like init and PIO-mode setting etc.
3 * Almost the entire ide.c is used for the rest of the Etrax ATA driver.
4 * Copyright (c) 2000-2005 Axis Communications AB
6 * Authors: Bjorn Wesen (initial version)
7 * Mikael Starvik (crisv32 port)
12 * There are two forms of DMA - "DMA handshaking" between the interface and the drive,
13 * and DMA between the memory and the interface. We can ALWAYS use the latter, since it's
14 * something built-in in the Etrax. However only some drives support the DMA-mode handshaking
15 * on the ATA-bus. The normal PC driver and Triton interface disables memory-if DMA when the
16 * device can't do DMA handshaking for some stupid reason. We don't need to do that.
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/timer.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/blkdev.h>
26 #include <linux/hdreg.h>
27 #include <linux/ide.h>
28 #include <linux/init.h>
33 /* number of DMA descriptors */
34 #define MAX_DMA_DESCRS 64
36 /* number of times to retry busy-flags when reading/writing IDE-registers
37 * this can't be too high because a hung harddisk might cause the watchdog
38 * to trigger (sometimes INB and OUTB are called with irq's disabled)
41 #define IDE_REGISTER_TIMEOUT 300
46 enum /* Transfer types */
53 /* CRISv32 specifics */
54 #ifdef CONFIG_ETRAX_ARCH_V32
55 #include <asm/arch/hwregs/ata_defs.h>
56 #include <asm/arch/hwregs/dma_defs.h>
57 #include <asm/arch/hwregs/dma.h>
58 #include <asm/arch/pinmux.h>
60 #define ATA_UDMA2_CYC 2
61 #define ATA_UDMA2_DVS 3
62 #define ATA_UDMA1_CYC 2
63 #define ATA_UDMA1_DVS 4
64 #define ATA_UDMA0_CYC 4
65 #define ATA_UDMA0_DVS 6
66 #define ATA_DMA2_STROBE 7
67 #define ATA_DMA2_HOLD 1
68 #define ATA_DMA1_STROBE 8
69 #define ATA_DMA1_HOLD 3
70 #define ATA_DMA0_STROBE 25
71 #define ATA_DMA0_HOLD 19
72 #define ATA_PIO4_SETUP 3
73 #define ATA_PIO4_STROBE 7
74 #define ATA_PIO4_HOLD 1
75 #define ATA_PIO3_SETUP 3
76 #define ATA_PIO3_STROBE 9
77 #define ATA_PIO3_HOLD 3
78 #define ATA_PIO2_SETUP 3
79 #define ATA_PIO2_STROBE 13
80 #define ATA_PIO2_HOLD 5
81 #define ATA_PIO1_SETUP 5
82 #define ATA_PIO1_STROBE 23
83 #define ATA_PIO1_HOLD 9
84 #define ATA_PIO0_SETUP 9
85 #define ATA_PIO0_STROBE 39
86 #define ATA_PIO0_HOLD 9
89 cris_ide_ack_intr(ide_hwif_t
* hwif
)
91 reg_ata_rw_ctrl2 ctrl2
= REG_TYPE_CONV(reg_ata_rw_ctrl2
,
92 int, hwif
->io_ports
[0]);
93 REG_WR_INT(ata
, regi_ata
, rw_ack_intr
, 1 << ctrl2
.sel
);
100 reg_ata_rs_stat_data stat_data
;
101 stat_data
= REG_RD(ata
, regi_ata
, rs_stat_data
);
102 return stat_data
.busy
;
108 return !cris_ide_busy();
112 cris_ide_data_available(unsigned short* data
)
114 reg_ata_rs_stat_data stat_data
;
115 stat_data
= REG_RD(ata
, regi_ata
, rs_stat_data
);
116 *data
= stat_data
.data
;
117 return stat_data
.dav
;
121 cris_ide_write_command(unsigned long command
)
123 REG_WR_INT(ata
, regi_ata
, rw_ctrl2
, command
); /* write data to the drive's register */
127 cris_ide_set_speed(int type
, int setup
, int strobe
, int hold
)
129 reg_ata_rw_ctrl0 ctrl0
= REG_RD(ata
, regi_ata
, rw_ctrl0
);
130 reg_ata_rw_ctrl1 ctrl1
= REG_RD(ata
, regi_ata
, rw_ctrl1
);
132 if (type
== TYPE_PIO
) {
133 ctrl0
.pio_setup
= setup
;
134 ctrl0
.pio_strb
= strobe
;
135 ctrl0
.pio_hold
= hold
;
136 } else if (type
== TYPE_DMA
) {
137 ctrl0
.dma_strb
= strobe
;
138 ctrl0
.dma_hold
= hold
;
139 } else if (type
== TYPE_UDMA
) {
140 ctrl1
.udma_tcyc
= setup
;
141 ctrl1
.udma_tdvs
= strobe
;
143 REG_WR(ata
, regi_ata
, rw_ctrl0
, ctrl0
);
144 REG_WR(ata
, regi_ata
, rw_ctrl1
, ctrl1
);
148 cris_ide_base_address(int bus
)
150 reg_ata_rw_ctrl2 ctrl2
= {0};
152 return REG_TYPE_CONV(int, reg_ata_rw_ctrl2
, ctrl2
);
156 cris_ide_reg_addr(unsigned long addr
, int cs0
, int cs1
)
158 reg_ata_rw_ctrl2 ctrl2
= {0};
162 return REG_TYPE_CONV(int, reg_ata_rw_ctrl2
, ctrl2
);
166 cris_ide_reset(unsigned val
)
168 reg_ata_rw_ctrl0 ctrl0
= {0};
169 ctrl0
.rst
= val
? regk_ata_active
: regk_ata_inactive
;
170 REG_WR(ata
, regi_ata
, rw_ctrl0
, ctrl0
);
176 reg_ata_rw_ctrl0 ctrl0
= {0};
177 reg_ata_rw_intr_mask intr_mask
= {0};
179 ctrl0
.en
= regk_ata_yes
;
180 REG_WR(ata
, regi_ata
, rw_ctrl0
, ctrl0
);
182 intr_mask
.bus0
= regk_ata_yes
;
183 intr_mask
.bus1
= regk_ata_yes
;
184 intr_mask
.bus2
= regk_ata_yes
;
185 intr_mask
.bus3
= regk_ata_yes
;
187 REG_WR(ata
, regi_ata
, rw_intr_mask
, intr_mask
);
189 crisv32_request_dma(2, "ETRAX FS built-in ATA", DMA_VERBOSE_ON_ERROR
, 0, dma_ata
);
190 crisv32_request_dma(3, "ETRAX FS built-in ATA", DMA_VERBOSE_ON_ERROR
, 0, dma_ata
);
192 crisv32_pinmux_alloc_fixed(pinmux_ata
);
193 crisv32_pinmux_alloc_fixed(pinmux_ata0
);
194 crisv32_pinmux_alloc_fixed(pinmux_ata1
);
195 crisv32_pinmux_alloc_fixed(pinmux_ata2
);
196 crisv32_pinmux_alloc_fixed(pinmux_ata3
);
198 DMA_RESET(regi_dma2
);
199 DMA_ENABLE(regi_dma2
);
200 DMA_RESET(regi_dma3
);
201 DMA_ENABLE(regi_dma3
);
203 DMA_WR_CMD (regi_dma2
, regk_dma_set_w_size2
);
204 DMA_WR_CMD (regi_dma3
, regk_dma_set_w_size2
);
207 static dma_descr_context mycontext
__attribute__ ((__aligned__(32)));
209 #define cris_dma_descr_type dma_descr_data
210 #define cris_pio_read regk_ata_rd
211 #define cris_ultra_mask 0x7
212 #define MAX_DESCR_SIZE 0xffffffffUL
215 cris_ide_get_reg(unsigned long reg
)
217 return (reg
& 0x0e000000) >> 25;
221 cris_ide_fill_descriptor(cris_dma_descr_type
*d
, void* buf
, unsigned int len
, int last
)
223 d
->buf
= (char*)virt_to_phys(buf
);
224 d
->after
= d
->buf
+ len
;
229 cris_ide_start_dma(ide_drive_t
*drive
, cris_dma_descr_type
*d
, int dir
,int type
,int len
)
231 reg_ata_rw_ctrl2 ctrl2
= REG_TYPE_CONV(reg_ata_rw_ctrl2
, int, IDE_DATA_REG
);
232 reg_ata_rw_trf_cnt trf_cnt
= {0};
234 mycontext
.saved_data
= (dma_descr_data
*)virt_to_phys(d
);
235 mycontext
.saved_data_buf
= d
->buf
;
236 /* start the dma channel */
237 DMA_START_CONTEXT(dir
? regi_dma3
: regi_dma2
, virt_to_phys(&mycontext
));
239 /* initiate a multi word dma read using PIO handshaking */
240 trf_cnt
.cnt
= len
>> 1;
241 /* Due to a "feature" the transfer count has to be one extra word for UDMA. */
242 if (type
== TYPE_UDMA
)
244 REG_WR(ata
, regi_ata
, rw_trf_cnt
, trf_cnt
);
246 ctrl2
.rw
= dir
? regk_ata_rd
: regk_ata_wr
;
247 ctrl2
.trf_mode
= regk_ata_dma
;
248 ctrl2
.hsh
= type
== TYPE_PIO
? regk_ata_pio
:
249 type
== TYPE_DMA
? regk_ata_dma
: regk_ata_udma
;
250 ctrl2
.multi
= regk_ata_yes
;
251 ctrl2
.dma_size
= regk_ata_word
;
252 REG_WR(ata
, regi_ata
, rw_ctrl2
, ctrl2
);
256 cris_ide_wait_dma(int dir
)
258 reg_dma_rw_stat status
;
261 status
= REG_RD(dma
, dir
? regi_dma3
: regi_dma2
, rw_stat
);
262 } while(status
.list_state
!= regk_dma_data_at_eol
);
265 static int cris_dma_test_irq(ide_drive_t
*drive
)
267 int intr
= REG_RD_INT(ata
, regi_ata
, r_intr
);
268 reg_ata_rw_ctrl2 ctrl2
= REG_TYPE_CONV(reg_ata_rw_ctrl2
, int, IDE_DATA_REG
);
269 return intr
& (1 << ctrl2
.sel
) ? 1 : 0;
272 static void cris_ide_initialize_dma(int dir
)
277 /* CRISv10 specifics */
278 #include <asm/arch/svinto.h>
279 #include <asm/arch/io_interface_mux.h>
281 /* PIO timing (in R_ATA_CONFIG)
283 * _____________________________
284 * ADDRESS : ________/
287 * DIOR : ____________/ \__________
290 * DATA : XXXXXXXXXXXXXXXX_______________XXXXXXXX
293 * DIOR is unbuffered while address and data is buffered.
294 * This creates two problems:
295 * 1. The DIOR pulse is to early (because it is unbuffered)
296 * 2. The rise time of DIOR is long
298 * There are at least three different plausible solutions
299 * 1. Use a pad capable of larger currents in Etrax
300 * 2. Use an external buffer
301 * 3. Make the strobe pulse longer
303 * Some of the strobe timings below are modified to compensate
304 * for this. This implies a slight performance decrease.
306 * THIS SHOULD NEVER BE CHANGED!
308 * TODO: Is this true for the latest LX boards still ?
311 #define ATA_UDMA2_CYC 0 /* No UDMA supported, just to make it compile. */
312 #define ATA_UDMA2_DVS 0
313 #define ATA_UDMA1_CYC 0
314 #define ATA_UDMA1_DVS 0
315 #define ATA_UDMA0_CYC 0
316 #define ATA_UDMA0_DVS 0
317 #define ATA_DMA2_STROBE 4
318 #define ATA_DMA2_HOLD 0
319 #define ATA_DMA1_STROBE 4
320 #define ATA_DMA1_HOLD 1
321 #define ATA_DMA0_STROBE 12
322 #define ATA_DMA0_HOLD 9
323 #define ATA_PIO4_SETUP 1
324 #define ATA_PIO4_STROBE 5
325 #define ATA_PIO4_HOLD 0
326 #define ATA_PIO3_SETUP 1
327 #define ATA_PIO3_STROBE 5
328 #define ATA_PIO3_HOLD 1
329 #define ATA_PIO2_SETUP 1
330 #define ATA_PIO2_STROBE 6
331 #define ATA_PIO2_HOLD 2
332 #define ATA_PIO1_SETUP 2
333 #define ATA_PIO1_STROBE 11
334 #define ATA_PIO1_HOLD 4
335 #define ATA_PIO0_SETUP 4
336 #define ATA_PIO0_STROBE 19
337 #define ATA_PIO0_HOLD 4
340 cris_ide_ack_intr(ide_hwif_t
* hwif
)
348 return *R_ATA_STATUS_DATA
& IO_MASK(R_ATA_STATUS_DATA
, busy
) ;
354 return *R_ATA_STATUS_DATA
& IO_MASK(R_ATA_STATUS_DATA
, tr_rdy
) ;
358 cris_ide_data_available(unsigned short* data
)
360 unsigned long status
= *R_ATA_STATUS_DATA
;
361 *data
= (unsigned short)status
;
362 return status
& IO_MASK(R_ATA_STATUS_DATA
, dav
);
366 cris_ide_write_command(unsigned long command
)
368 *R_ATA_CTRL_DATA
= command
;
372 cris_ide_set_speed(int type
, int setup
, int strobe
, int hold
)
374 static int pio_setup
= ATA_PIO4_SETUP
;
375 static int pio_strobe
= ATA_PIO4_STROBE
;
376 static int pio_hold
= ATA_PIO4_HOLD
;
377 static int dma_strobe
= ATA_DMA2_STROBE
;
378 static int dma_hold
= ATA_DMA2_HOLD
;
380 if (type
== TYPE_PIO
) {
384 } else if (type
== TYPE_DMA
) {
388 *R_ATA_CONFIG
= ( IO_FIELD( R_ATA_CONFIG
, enable
, 1 ) |
389 IO_FIELD( R_ATA_CONFIG
, dma_strobe
, dma_strobe
) |
390 IO_FIELD( R_ATA_CONFIG
, dma_hold
, dma_hold
) |
391 IO_FIELD( R_ATA_CONFIG
, pio_setup
, pio_setup
) |
392 IO_FIELD( R_ATA_CONFIG
, pio_strobe
, pio_strobe
) |
393 IO_FIELD( R_ATA_CONFIG
, pio_hold
, pio_hold
) );
397 cris_ide_base_address(int bus
)
399 return IO_FIELD(R_ATA_CTRL_DATA
, sel
, bus
);
403 cris_ide_reg_addr(unsigned long addr
, int cs0
, int cs1
)
405 return IO_FIELD(R_ATA_CTRL_DATA
, addr
, addr
) |
406 IO_FIELD(R_ATA_CTRL_DATA
, cs0
, cs0
) |
407 IO_FIELD(R_ATA_CTRL_DATA
, cs1
, cs1
);
411 cris_ide_reset(unsigned val
)
413 #ifdef CONFIG_ETRAX_IDE_G27_RESET
414 REG_SHADOW_SET(R_PORT_G_DATA
, port_g_data_shadow
, 27, val
);
416 #ifdef CONFIG_ETRAX_IDE_PB7_RESET
417 port_pb_dir_shadow
= port_pb_dir_shadow
|
418 IO_STATE(R_PORT_PB_DIR
, dir7
, output
);
419 *R_PORT_PB_DIR
= port_pb_dir_shadow
;
420 REG_SHADOW_SET(R_PORT_PB_DATA
, port_pb_data_shadow
, 7, val
);
427 volatile unsigned int dummy
;
429 *R_ATA_CTRL_DATA
= 0;
430 *R_ATA_TRANSFER_CNT
= 0;
433 if (cris_request_io_interface(if_ata
, "ETRAX100LX IDE")) {
434 printk(KERN_CRIT
"ide: Failed to get IO interface\n");
436 } else if (cris_request_dma(ATA_TX_DMA_NBR
,
438 DMA_VERBOSE_ON_ERROR
,
440 cris_free_io_interface(if_ata
);
441 printk(KERN_CRIT
"ide: Failed to get Tx DMA channel\n");
443 } else if (cris_request_dma(ATA_RX_DMA_NBR
,
445 DMA_VERBOSE_ON_ERROR
,
447 cris_free_dma(ATA_TX_DMA_NBR
, "ETRAX100LX IDE Tx");
448 cris_free_io_interface(if_ata
);
449 printk(KERN_CRIT
"ide: Failed to get Rx DMA channel\n");
453 /* make a dummy read to set the ata controller in a proper state */
454 dummy
= *R_ATA_STATUS_DATA
;
456 *R_ATA_CONFIG
= ( IO_FIELD( R_ATA_CONFIG
, enable
, 1 ));
457 *R_ATA_CTRL_DATA
= ( IO_STATE( R_ATA_CTRL_DATA
, rw
, read
) |
458 IO_FIELD( R_ATA_CTRL_DATA
, addr
, 1 ) );
460 while(*R_ATA_STATUS_DATA
& IO_MASK(R_ATA_STATUS_DATA
, busy
)); /* wait for busy flag*/
462 *R_IRQ_MASK0_SET
= ( IO_STATE( R_IRQ_MASK0_SET
, ata_irq0
, set
) |
463 IO_STATE( R_IRQ_MASK0_SET
, ata_irq1
, set
) |
464 IO_STATE( R_IRQ_MASK0_SET
, ata_irq2
, set
) |
465 IO_STATE( R_IRQ_MASK0_SET
, ata_irq3
, set
) );
467 /* reset the dma channels we will use */
469 RESET_DMA(ATA_TX_DMA_NBR
);
470 RESET_DMA(ATA_RX_DMA_NBR
);
471 WAIT_DMA(ATA_TX_DMA_NBR
);
472 WAIT_DMA(ATA_RX_DMA_NBR
);
475 #define cris_dma_descr_type etrax_dma_descr
476 #define cris_pio_read IO_STATE(R_ATA_CTRL_DATA, rw, read)
477 #define cris_ultra_mask 0x0
478 #define MAX_DESCR_SIZE 0x10000UL
481 cris_ide_get_reg(unsigned long reg
)
483 return (reg
& 0x0e000000) >> 25;
487 cris_ide_fill_descriptor(cris_dma_descr_type
*d
, void* buf
, unsigned int len
, int last
)
489 d
->buf
= virt_to_phys(buf
);
490 d
->sw_len
= len
== MAX_DESCR_SIZE
? 0 : len
;
495 static void cris_ide_start_dma(ide_drive_t
*drive
, cris_dma_descr_type
*d
, int dir
, int type
, int len
)
500 /* need to do this before RX DMA due to a chip bug
501 * it is enough to just flush the part of the cache that
502 * corresponds to the buffers we start, but since HD transfers
503 * usually are more than 8 kB, it is easier to optimize for the
504 * normal case and just flush the entire cache. its the only
505 * way to be sure! (OB movie quote)
508 *R_DMA_CH3_FIRST
= virt_to_phys(d
);
509 *R_DMA_CH3_CMD
= IO_STATE(R_DMA_CH3_CMD
, cmd
, start
);
512 *R_DMA_CH2_FIRST
= virt_to_phys(d
);
513 *R_DMA_CH2_CMD
= IO_STATE(R_DMA_CH2_CMD
, cmd
, start
);
516 /* initiate a multi word dma read using DMA handshaking */
518 *R_ATA_TRANSFER_CNT
=
519 IO_FIELD(R_ATA_TRANSFER_CNT
, count
, len
>> 1);
521 cmd
= dir
? IO_STATE(R_ATA_CTRL_DATA
, rw
, read
) : IO_STATE(R_ATA_CTRL_DATA
, rw
, write
);
522 cmd
|= type
== TYPE_PIO
? IO_STATE(R_ATA_CTRL_DATA
, handsh
, pio
) :
523 IO_STATE(R_ATA_CTRL_DATA
, handsh
, dma
);
526 IO_FIELD(R_ATA_CTRL_DATA
, data
, IDE_DATA_REG
) |
527 IO_STATE(R_ATA_CTRL_DATA
, src_dst
, dma
) |
528 IO_STATE(R_ATA_CTRL_DATA
, multi
, on
) |
529 IO_STATE(R_ATA_CTRL_DATA
, dma_size
, word
);
533 cris_ide_wait_dma(int dir
)
536 WAIT_DMA(ATA_RX_DMA_NBR
);
538 WAIT_DMA(ATA_TX_DMA_NBR
);
541 static int cris_dma_test_irq(ide_drive_t
*drive
)
543 int intr
= *R_IRQ_MASK0_RD
;
544 int bus
= IO_EXTRACT(R_ATA_CTRL_DATA
, sel
, IDE_DATA_REG
);
545 return intr
& (1 << (bus
+ IO_BITNR(R_IRQ_MASK0_RD
, ata_irq0
))) ? 1 : 0;
549 static void cris_ide_initialize_dma(int dir
)
553 RESET_DMA(ATA_RX_DMA_NBR
); /* sometimes the DMA channel get stuck so we need to do this */
554 WAIT_DMA(ATA_RX_DMA_NBR
);
558 RESET_DMA(ATA_TX_DMA_NBR
); /* sometimes the DMA channel get stuck so we need to do this */
559 WAIT_DMA(ATA_TX_DMA_NBR
);
566 cris_ide_outw(unsigned short data
, unsigned long reg
) {
569 LOWDB(printk("ow: data 0x%x, reg 0x%x\n", data
, reg
));
571 /* note the lack of handling any timeouts. we stop waiting, but we don't
572 * really notify anybody.
575 timeleft
= IDE_REGISTER_TIMEOUT
;
576 /* wait for busy flag */
579 } while(timeleft
&& cris_ide_busy());
582 * Fall through at a timeout, so the ongoing command will be
583 * aborted by the write below, which is expected to be a dummy
584 * command to the command register. This happens when a faulty
585 * drive times out on a command. See comment on timeout in
589 printk("ATA timeout reg 0x%lx := 0x%x\n", reg
, data
);
591 cris_ide_write_command(reg
|data
); /* write data to the drive's register */
593 timeleft
= IDE_REGISTER_TIMEOUT
;
594 /* wait for transmitter ready */
597 } while(timeleft
&& !cris_ide_ready());
601 cris_ide_outb(unsigned char data
, unsigned long reg
)
603 cris_ide_outw(data
, reg
);
607 cris_ide_outbsync(ide_drive_t
*drive
, u8 addr
, unsigned long port
)
609 cris_ide_outw(addr
, port
);
613 cris_ide_inw(unsigned long reg
) {
617 timeleft
= IDE_REGISTER_TIMEOUT
;
618 /* wait for busy flag */
621 } while(timeleft
&& cris_ide_busy());
625 * If we're asked to read the status register, like for
626 * example when a command does not complete for an
627 * extended time, but the ATA interface is stuck in a
628 * busy state at the *ETRAX* ATA interface level (as has
629 * happened repeatedly with at least one bad disk), then
630 * the best thing to do is to pretend that we read
631 * "busy" in the status register, so the IDE driver will
632 * time-out, abort the ongoing command and perform a
633 * reset sequence. Note that the subsequent OUT_BYTE
634 * call will also timeout on busy, but as long as the
635 * write is still performed, everything will be fine.
637 if (cris_ide_get_reg(reg
) == IDE_STATUS_OFFSET
)
640 /* For other rare cases we assume 0 is good enough. */
644 cris_ide_write_command(reg
| cris_pio_read
);
646 timeleft
= IDE_REGISTER_TIMEOUT
;
647 /* wait for available */
650 } while(timeleft
&& !cris_ide_data_available(&val
));
655 LOWDB(printk("inb: 0x%x from reg 0x%x\n", val
& 0xff, reg
));
661 cris_ide_inb(unsigned long reg
)
663 return (unsigned char)cris_ide_inw(reg
);
666 static int cris_dma_end (ide_drive_t
*drive
);
667 static int cris_dma_setup (ide_drive_t
*drive
);
668 static void cris_dma_exec_cmd (ide_drive_t
*drive
, u8 command
);
669 static int cris_dma_test_irq(ide_drive_t
*drive
);
670 static void cris_dma_start(ide_drive_t
*drive
);
671 static void cris_ide_input_data (ide_drive_t
*drive
, void *, unsigned int);
672 static void cris_ide_output_data (ide_drive_t
*drive
, void *, unsigned int);
673 static void cris_atapi_input_bytes(ide_drive_t
*drive
, void *, unsigned int);
674 static void cris_atapi_output_bytes(ide_drive_t
*drive
, void *, unsigned int);
676 static void cris_dma_host_set(ide_drive_t
*drive
, int on
)
680 static void cris_set_pio_mode(ide_drive_t
*drive
, const u8 pio
)
682 int setup
, strobe
, hold
;
687 setup
= ATA_PIO0_SETUP
;
688 strobe
= ATA_PIO0_STROBE
;
689 hold
= ATA_PIO0_HOLD
;
692 setup
= ATA_PIO1_SETUP
;
693 strobe
= ATA_PIO1_STROBE
;
694 hold
= ATA_PIO1_HOLD
;
697 setup
= ATA_PIO2_SETUP
;
698 strobe
= ATA_PIO2_STROBE
;
699 hold
= ATA_PIO2_HOLD
;
702 setup
= ATA_PIO3_SETUP
;
703 strobe
= ATA_PIO3_STROBE
;
704 hold
= ATA_PIO3_HOLD
;
707 setup
= ATA_PIO4_SETUP
;
708 strobe
= ATA_PIO4_STROBE
;
709 hold
= ATA_PIO4_HOLD
;
715 cris_ide_set_speed(TYPE_PIO
, setup
, strobe
, hold
);
718 static void cris_set_dma_mode(ide_drive_t
*drive
, const u8 speed
)
720 int cyc
= 0, dvs
= 0, strobe
= 0, hold
= 0;
737 strobe
= ATA_DMA0_STROBE
;
738 hold
= ATA_DMA0_HOLD
;
741 strobe
= ATA_DMA1_STROBE
;
742 hold
= ATA_DMA1_HOLD
;
745 strobe
= ATA_DMA2_STROBE
;
746 hold
= ATA_DMA2_HOLD
;
750 if (speed
>= XFER_UDMA_0
)
751 cris_ide_set_speed(TYPE_UDMA
, cyc
, dvs
, 0);
753 cris_ide_set_speed(TYPE_DMA
, 0, strobe
, hold
);
756 static void __init
cris_setup_ports(hw_regs_t
*hw
, unsigned long base
)
760 memset(hw
, 0, sizeof(*hw
));
762 for (i
= 0; i
<= 7; i
++)
763 hw
->io_ports
[i
] = base
+ cris_ide_reg_addr(i
, 0, 1);
766 * the IDE control register is at ATA address 6,
767 * with CS1 active instead of CS0
769 hw
->io_ports
[IDE_CONTROL_OFFSET
] = base
+ cris_ide_reg_addr(6, 1, 0);
771 hw
->irq
= ide_default_irq(0);
772 hw
->ack_intr
= cris_ide_ack_intr
;
775 static const struct ide_port_info cris_port_info __initdata
= {
776 .chipset
= ide_etrax100
,
777 .host_flags
= IDE_HFLAG_NO_ATAPI_DMA
|
778 IDE_HFLAG_NO_DMA
, /* no SFF-style DMA */
779 .pio_mask
= ATA_PIO4
,
780 .udma_mask
= cris_ultra_mask
,
781 .mwdma_mask
= ATA_MWDMA2
,
784 static int __init
init_e100_ide(void)
788 u8 idx
[4] = { 0xff, 0xff, 0xff, 0xff };
790 printk("ide: ETRAX FS built-in ATA DMA controller\n");
792 for (h
= 0; h
< 4; h
++) {
793 ide_hwif_t
*hwif
= NULL
;
795 cris_setup_ports(&hw
, cris_ide_base_address(h
));
797 hwif
= ide_find_port(hw
.io_ports
[IDE_DATA_OFFSET
]);
800 ide_init_port_data(hwif
, hwif
->index
);
801 ide_init_port_hw(hwif
, &hw
);
803 hwif
->set_pio_mode
= &cris_set_pio_mode
;
804 hwif
->set_dma_mode
= &cris_set_dma_mode
;
805 hwif
->ata_input_data
= &cris_ide_input_data
;
806 hwif
->ata_output_data
= &cris_ide_output_data
;
807 hwif
->atapi_input_bytes
= &cris_atapi_input_bytes
;
808 hwif
->atapi_output_bytes
= &cris_atapi_output_bytes
;
809 hwif
->dma_host_set
= &cris_dma_host_set
;
810 hwif
->ide_dma_end
= &cris_dma_end
;
811 hwif
->dma_setup
= &cris_dma_setup
;
812 hwif
->dma_exec_cmd
= &cris_dma_exec_cmd
;
813 hwif
->ide_dma_test_irq
= &cris_dma_test_irq
;
814 hwif
->dma_start
= &cris_dma_start
;
815 hwif
->OUTB
= &cris_ide_outb
;
816 hwif
->OUTW
= &cris_ide_outw
;
817 hwif
->OUTBSYNC
= &cris_ide_outbsync
;
818 hwif
->INB
= &cris_ide_inb
;
819 hwif
->INW
= &cris_ide_inw
;
820 hwif
->cbl
= ATA_CBL_PATA40
;
822 idx
[h
] = hwif
->index
;
832 cris_ide_set_speed(TYPE_PIO
, ATA_PIO4_SETUP
, ATA_PIO4_STROBE
, ATA_PIO4_HOLD
);
833 cris_ide_set_speed(TYPE_DMA
, 0, ATA_DMA2_STROBE
, ATA_DMA2_HOLD
);
834 cris_ide_set_speed(TYPE_UDMA
, ATA_UDMA2_CYC
, ATA_UDMA2_DVS
, 0);
836 ide_device_add(idx
, &cris_port_info
);
841 static cris_dma_descr_type mydescr
__attribute__ ((__aligned__(16)));
844 * The following routines are mainly used by the ATAPI drivers.
846 * These routines will round up any request for an odd number of bytes,
847 * so if an odd bytecount is specified, be sure that there's at least one
848 * extra byte allocated for the buffer.
851 cris_atapi_input_bytes (ide_drive_t
*drive
, void *buffer
, unsigned int bytecount
)
853 D(printk("atapi_input_bytes, buffer 0x%x, count %d\n",
857 printk("warning, odd bytecount in cdrom_in_bytes = %d.\n", bytecount
);
858 bytecount
++; /* to round off */
861 /* setup DMA and start transfer */
863 cris_ide_fill_descriptor(&mydescr
, buffer
, bytecount
, 1);
864 cris_ide_start_dma(drive
, &mydescr
, 1, TYPE_PIO
, bytecount
);
866 /* wait for completion */
868 cris_ide_wait_dma(1);
873 cris_atapi_output_bytes (ide_drive_t
*drive
, void *buffer
, unsigned int bytecount
)
875 D(printk("atapi_output_bytes, buffer 0x%x, count %d\n",
879 printk("odd bytecount %d in atapi_out_bytes!\n", bytecount
);
883 cris_ide_fill_descriptor(&mydescr
, buffer
, bytecount
, 1);
884 cris_ide_start_dma(drive
, &mydescr
, 0, TYPE_PIO
, bytecount
);
886 /* wait for completion */
890 cris_ide_wait_dma(0);
895 * This is used for most PIO data transfers *from* the IDE interface
898 cris_ide_input_data (ide_drive_t
*drive
, void *buffer
, unsigned int wcount
)
900 cris_atapi_input_bytes(drive
, buffer
, wcount
<< 2);
904 * This is used for most PIO data transfers *to* the IDE interface
907 cris_ide_output_data (ide_drive_t
*drive
, void *buffer
, unsigned int wcount
)
909 cris_atapi_output_bytes(drive
, buffer
, wcount
<< 2);
912 /* we only have one DMA channel on the chip for ATA, so we can keep these statically */
913 static cris_dma_descr_type ata_descrs
[MAX_DMA_DESCRS
] __attribute__ ((__aligned__(16)));
914 static unsigned int ata_tot_size
;
917 * cris_ide_build_dmatable() prepares a dma request.
918 * Returns 0 if all went okay, returns 1 otherwise.
920 static int cris_ide_build_dmatable (ide_drive_t
*drive
)
922 ide_hwif_t
*hwif
= drive
->hwif
;
923 struct scatterlist
* sg
;
924 struct request
*rq
= drive
->hwif
->hwgroup
->rq
;
925 unsigned long size
, addr
;
926 unsigned int count
= 0;
933 ide_map_sg(drive
, rq
);
938 * Determine addr and size of next buffer area. We assume that
939 * individual virtual buffers are always composed linearly in
940 * physical memory. For example, we assume that any 8kB buffer
941 * is always composed of two adjacent physical 4kB pages rather
942 * than two possibly non-adjacent physical 4kB pages.
944 /* group sequential buffers into one large buffer */
946 size
= sg_dma_len(sg
);
949 if ((addr
+ size
) != sg_phys(sg
))
951 size
+= sg_dma_len(sg
);
954 /* did we run out of descriptors? */
956 if(count
>= MAX_DMA_DESCRS
) {
957 printk("%s: too few DMA descriptors\n", drive
->name
);
961 /* however, this case is more difficult - rw_trf_cnt cannot be more
962 than 65536 words per transfer, so in that case we need to either
963 1) use a DMA interrupt to re-trigger rw_trf_cnt and continue with
965 2) simply do the request here, and get dma_intr to only ide_end_request on
966 those blocks that were actually set-up for transfer.
969 if(ata_tot_size
+ size
> 131072) {
970 printk("too large total ATA DMA request, %d + %d!\n", ata_tot_size
, (int)size
);
974 /* If size > MAX_DESCR_SIZE it has to be splitted into new descriptors. Since we
975 don't handle size > 131072 only one split is necessary */
977 if(size
> MAX_DESCR_SIZE
) {
978 cris_ide_fill_descriptor(&ata_descrs
[count
], (void*)addr
, MAX_DESCR_SIZE
, 0);
980 ata_tot_size
+= MAX_DESCR_SIZE
;
981 size
-= MAX_DESCR_SIZE
;
982 addr
+= MAX_DESCR_SIZE
;
985 cris_ide_fill_descriptor(&ata_descrs
[count
], (void*)addr
, size
,i
? 0 : 1);
987 ata_tot_size
+= size
;
991 /* return and say all is ok */
995 printk("%s: empty DMA table?\n", drive
->name
);
996 return 1; /* let the PIO routines handle this weirdness */
1000 * cris_dma_intr() is the handler for disk read/write DMA interrupts
1002 static ide_startstop_t
cris_dma_intr (ide_drive_t
*drive
)
1007 return ide_dma_intr(drive
);
1011 * Functions below initiates/aborts DMA read/write operations on a drive.
1013 * The caller is assumed to have selected the drive and programmed the drive's
1014 * sector address using CHS or LBA. All that remains is to prepare for DMA
1015 * and then issue the actual read/write DMA/PIO command to the drive.
1017 * For ATAPI devices, we just prepare for DMA and return. The caller should
1018 * then issue the packet command to the drive and call us again with
1019 * cris_dma_start afterwards.
1021 * Returns 0 if all went well.
1022 * Returns 1 if DMA read/write could not be started, in which case
1023 * the caller should revert to PIO for the current request.
1026 static int cris_dma_end(ide_drive_t
*drive
)
1028 drive
->waiting_for_dma
= 0;
1032 static int cris_dma_setup(ide_drive_t
*drive
)
1034 struct request
*rq
= drive
->hwif
->hwgroup
->rq
;
1036 cris_ide_initialize_dma(!rq_data_dir(rq
));
1037 if (cris_ide_build_dmatable (drive
)) {
1038 ide_map_sg(drive
, rq
);
1042 drive
->waiting_for_dma
= 1;
1046 static void cris_dma_exec_cmd(ide_drive_t
*drive
, u8 command
)
1048 ide_execute_command(drive
, command
, &cris_dma_intr
, WAIT_CMD
, NULL
);
1051 static void cris_dma_start(ide_drive_t
*drive
)
1053 struct request
*rq
= drive
->hwif
->hwgroup
->rq
;
1054 int writing
= rq_data_dir(rq
);
1055 int type
= TYPE_DMA
;
1057 if (drive
->current_speed
>= XFER_UDMA_0
)
1060 cris_ide_start_dma(drive
, &ata_descrs
[0], writing
? 0 : 1, type
, ata_tot_size
);
1069 module_init(init_e100_ide
);