[PATCH] RPC: Lazy RPC receive buffer allocation
[linux-2.6/verdex.git] / include / asm-ia64 / sn / sn_sal.h
blobeb0395ad0d6a68c1a93e98d86ac045c76928ce51
1 #ifndef _ASM_IA64_SN_SN_SAL_H
2 #define _ASM_IA64_SN_SN_SAL_H
4 /*
5 * System Abstraction Layer definitions for IA64
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file "COPYING" in the main directory of this archive
9 * for more details.
11 * Copyright (c) 2000-2005 Silicon Graphics, Inc. All rights reserved.
15 #include <linux/config.h>
16 #include <asm/sal.h>
17 #include <asm/sn/sn_cpuid.h>
18 #include <asm/sn/arch.h>
19 #include <asm/sn/geo.h>
20 #include <asm/sn/nodepda.h>
21 #include <asm/sn/shub_mmr.h>
23 // SGI Specific Calls
24 #define SN_SAL_POD_MODE 0x02000001
25 #define SN_SAL_SYSTEM_RESET 0x02000002
26 #define SN_SAL_PROBE 0x02000003
27 #define SN_SAL_GET_MASTER_NASID 0x02000004
28 #define SN_SAL_GET_KLCONFIG_ADDR 0x02000005
29 #define SN_SAL_LOG_CE 0x02000006
30 #define SN_SAL_REGISTER_CE 0x02000007
31 #define SN_SAL_GET_PARTITION_ADDR 0x02000009
32 #define SN_SAL_XP_ADDR_REGION 0x0200000f
33 #define SN_SAL_NO_FAULT_ZONE_VIRTUAL 0x02000010
34 #define SN_SAL_NO_FAULT_ZONE_PHYSICAL 0x02000011
35 #define SN_SAL_PRINT_ERROR 0x02000012
36 #define SN_SAL_SET_ERROR_HANDLING_FEATURES 0x0200001a // reentrant
37 #define SN_SAL_GET_FIT_COMPT 0x0200001b // reentrant
38 #define SN_SAL_GET_SAPIC_INFO 0x0200001d
39 #define SN_SAL_GET_SN_INFO 0x0200001e
40 #define SN_SAL_CONSOLE_PUTC 0x02000021
41 #define SN_SAL_CONSOLE_GETC 0x02000022
42 #define SN_SAL_CONSOLE_PUTS 0x02000023
43 #define SN_SAL_CONSOLE_GETS 0x02000024
44 #define SN_SAL_CONSOLE_GETS_TIMEOUT 0x02000025
45 #define SN_SAL_CONSOLE_POLL 0x02000026
46 #define SN_SAL_CONSOLE_INTR 0x02000027
47 #define SN_SAL_CONSOLE_PUTB 0x02000028
48 #define SN_SAL_CONSOLE_XMIT_CHARS 0x0200002a
49 #define SN_SAL_CONSOLE_READC 0x0200002b
50 #define SN_SAL_SYSCTL_MODID_GET 0x02000031
51 #define SN_SAL_SYSCTL_GET 0x02000032
52 #define SN_SAL_SYSCTL_IOBRICK_MODULE_GET 0x02000033
53 #define SN_SAL_SYSCTL_IO_PORTSPEED_GET 0x02000035
54 #define SN_SAL_SYSCTL_SLAB_GET 0x02000036
55 #define SN_SAL_BUS_CONFIG 0x02000037
56 #define SN_SAL_SYS_SERIAL_GET 0x02000038
57 #define SN_SAL_PARTITION_SERIAL_GET 0x02000039
58 #define SN_SAL_SYSCTL_PARTITION_GET 0x0200003a
59 #define SN_SAL_SYSTEM_POWER_DOWN 0x0200003b
60 #define SN_SAL_GET_MASTER_BASEIO_NASID 0x0200003c
61 #define SN_SAL_COHERENCE 0x0200003d
62 #define SN_SAL_MEMPROTECT 0x0200003e
63 #define SN_SAL_SYSCTL_FRU_CAPTURE 0x0200003f
65 #define SN_SAL_SYSCTL_IOBRICK_PCI_OP 0x02000042 // reentrant
66 #define SN_SAL_IROUTER_OP 0x02000043
67 #define SN_SAL_SYSCTL_EVENT 0x02000044
68 #define SN_SAL_IOIF_INTERRUPT 0x0200004a
69 #define SN_SAL_HWPERF_OP 0x02000050 // lock
70 #define SN_SAL_IOIF_ERROR_INTERRUPT 0x02000051
72 #define SN_SAL_IOIF_SLOT_ENABLE 0x02000053
73 #define SN_SAL_IOIF_SLOT_DISABLE 0x02000054
74 #define SN_SAL_IOIF_GET_HUBDEV_INFO 0x02000055
75 #define SN_SAL_IOIF_GET_PCIBUS_INFO 0x02000056
76 #define SN_SAL_IOIF_GET_PCIDEV_INFO 0x02000057
77 #define SN_SAL_IOIF_GET_WIDGET_DMAFLUSH_LIST 0x02000058
79 #define SN_SAL_HUB_ERROR_INTERRUPT 0x02000060
80 #define SN_SAL_BTE_RECOVER 0x02000061
81 #define SN_SAL_IOIF_GET_PCI_TOPOLOGY 0x02000062
84 * Service-specific constants
87 /* Console interrupt manipulation */
88 /* action codes */
89 #define SAL_CONSOLE_INTR_OFF 0 /* turn the interrupt off */
90 #define SAL_CONSOLE_INTR_ON 1 /* turn the interrupt on */
91 #define SAL_CONSOLE_INTR_STATUS 2 /* retrieve the interrupt status */
92 /* interrupt specification & status return codes */
93 #define SAL_CONSOLE_INTR_XMIT 1 /* output interrupt */
94 #define SAL_CONSOLE_INTR_RECV 2 /* input interrupt */
96 /* interrupt handling */
97 #define SAL_INTR_ALLOC 1
98 #define SAL_INTR_FREE 2
101 * IRouter (i.e. generalized system controller) operations
103 #define SAL_IROUTER_OPEN 0 /* open a subchannel */
104 #define SAL_IROUTER_CLOSE 1 /* close a subchannel */
105 #define SAL_IROUTER_SEND 2 /* send part of an IRouter packet */
106 #define SAL_IROUTER_RECV 3 /* receive part of an IRouter packet */
107 #define SAL_IROUTER_INTR_STATUS 4 /* check the interrupt status for
108 * an open subchannel
110 #define SAL_IROUTER_INTR_ON 5 /* enable an interrupt */
111 #define SAL_IROUTER_INTR_OFF 6 /* disable an interrupt */
112 #define SAL_IROUTER_INIT 7 /* initialize IRouter driver */
114 /* IRouter interrupt mask bits */
115 #define SAL_IROUTER_INTR_XMIT SAL_CONSOLE_INTR_XMIT
116 #define SAL_IROUTER_INTR_RECV SAL_CONSOLE_INTR_RECV
119 * Error Handling Features
121 #define SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV 0x1
122 #define SAL_ERR_FEAT_LOG_SBES 0x2
123 #define SAL_ERR_FEAT_MFR_OVERRIDE 0x4
124 #define SAL_ERR_FEAT_SBE_THRESHOLD 0xffff0000
127 * SAL Error Codes
129 #define SALRET_MORE_PASSES 1
130 #define SALRET_OK 0
131 #define SALRET_NOT_IMPLEMENTED (-1)
132 #define SALRET_INVALID_ARG (-2)
133 #define SALRET_ERROR (-3)
137 * sn_sal_rev_major - get the major SGI SAL revision number
139 * The SGI PROM stores its version in sal_[ab]_rev_(major|minor).
140 * This routine simply extracts the major value from the
141 * @ia64_sal_systab structure constructed by ia64_sal_init().
143 static inline int
144 sn_sal_rev_major(void)
146 struct ia64_sal_systab *systab = efi.sal_systab;
148 return (int)systab->sal_b_rev_major;
152 * sn_sal_rev_minor - get the minor SGI SAL revision number
154 * The SGI PROM stores its version in sal_[ab]_rev_(major|minor).
155 * This routine simply extracts the minor value from the
156 * @ia64_sal_systab structure constructed by ia64_sal_init().
158 static inline int
159 sn_sal_rev_minor(void)
161 struct ia64_sal_systab *systab = efi.sal_systab;
163 return (int)systab->sal_b_rev_minor;
167 * Specify the minimum PROM revsion required for this kernel.
168 * Note that they're stored in hex format...
170 #define SN_SAL_MIN_MAJOR 0x4 /* SN2 kernels need at least PROM 4.0 */
171 #define SN_SAL_MIN_MINOR 0x0
174 * Returns the master console nasid, if the call fails, return an illegal
175 * value.
177 static inline u64
178 ia64_sn_get_console_nasid(void)
180 struct ia64_sal_retval ret_stuff;
182 ret_stuff.status = 0;
183 ret_stuff.v0 = 0;
184 ret_stuff.v1 = 0;
185 ret_stuff.v2 = 0;
186 SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_NASID, 0, 0, 0, 0, 0, 0, 0);
188 if (ret_stuff.status < 0)
189 return ret_stuff.status;
191 /* Master console nasid is in 'v0' */
192 return ret_stuff.v0;
196 * Returns the master baseio nasid, if the call fails, return an illegal
197 * value.
199 static inline u64
200 ia64_sn_get_master_baseio_nasid(void)
202 struct ia64_sal_retval ret_stuff;
204 ret_stuff.status = 0;
205 ret_stuff.v0 = 0;
206 ret_stuff.v1 = 0;
207 ret_stuff.v2 = 0;
208 SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_BASEIO_NASID, 0, 0, 0, 0, 0, 0, 0);
210 if (ret_stuff.status < 0)
211 return ret_stuff.status;
213 /* Master baseio nasid is in 'v0' */
214 return ret_stuff.v0;
217 static inline char *
218 ia64_sn_get_klconfig_addr(nasid_t nasid)
220 struct ia64_sal_retval ret_stuff;
221 int cnodeid;
223 cnodeid = nasid_to_cnodeid(nasid);
224 ret_stuff.status = 0;
225 ret_stuff.v0 = 0;
226 ret_stuff.v1 = 0;
227 ret_stuff.v2 = 0;
228 SAL_CALL(ret_stuff, SN_SAL_GET_KLCONFIG_ADDR, (u64)nasid, 0, 0, 0, 0, 0, 0);
231 * We should panic if a valid cnode nasid does not produce
232 * a klconfig address.
234 if (ret_stuff.status != 0) {
235 panic("ia64_sn_get_klconfig_addr: Returned error %lx\n", ret_stuff.status);
237 return ret_stuff.v0 ? __va(ret_stuff.v0) : NULL;
241 * Returns the next console character.
243 static inline u64
244 ia64_sn_console_getc(int *ch)
246 struct ia64_sal_retval ret_stuff;
248 ret_stuff.status = 0;
249 ret_stuff.v0 = 0;
250 ret_stuff.v1 = 0;
251 ret_stuff.v2 = 0;
252 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_GETC, 0, 0, 0, 0, 0, 0, 0);
254 /* character is in 'v0' */
255 *ch = (int)ret_stuff.v0;
257 return ret_stuff.status;
261 * Read a character from the SAL console device, after a previous interrupt
262 * or poll operation has given us to know that a character is available
263 * to be read.
265 static inline u64
266 ia64_sn_console_readc(void)
268 struct ia64_sal_retval ret_stuff;
270 ret_stuff.status = 0;
271 ret_stuff.v0 = 0;
272 ret_stuff.v1 = 0;
273 ret_stuff.v2 = 0;
274 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_READC, 0, 0, 0, 0, 0, 0, 0);
276 /* character is in 'v0' */
277 return ret_stuff.v0;
281 * Sends the given character to the console.
283 static inline u64
284 ia64_sn_console_putc(char ch)
286 struct ia64_sal_retval ret_stuff;
288 ret_stuff.status = 0;
289 ret_stuff.v0 = 0;
290 ret_stuff.v1 = 0;
291 ret_stuff.v2 = 0;
292 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTC, (uint64_t)ch, 0, 0, 0, 0, 0, 0);
294 return ret_stuff.status;
298 * Sends the given buffer to the console.
300 static inline u64
301 ia64_sn_console_putb(const char *buf, int len)
303 struct ia64_sal_retval ret_stuff;
305 ret_stuff.status = 0;
306 ret_stuff.v0 = 0;
307 ret_stuff.v1 = 0;
308 ret_stuff.v2 = 0;
309 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTB, (uint64_t)buf, (uint64_t)len, 0, 0, 0, 0, 0);
311 if ( ret_stuff.status == 0 ) {
312 return ret_stuff.v0;
314 return (u64)0;
318 * Print a platform error record
320 static inline u64
321 ia64_sn_plat_specific_err_print(int (*hook)(const char*, ...), char *rec)
323 struct ia64_sal_retval ret_stuff;
325 ret_stuff.status = 0;
326 ret_stuff.v0 = 0;
327 ret_stuff.v1 = 0;
328 ret_stuff.v2 = 0;
329 SAL_CALL_REENTRANT(ret_stuff, SN_SAL_PRINT_ERROR, (uint64_t)hook, (uint64_t)rec, 0, 0, 0, 0, 0);
331 return ret_stuff.status;
335 * Check for Platform errors
337 static inline u64
338 ia64_sn_plat_cpei_handler(void)
340 struct ia64_sal_retval ret_stuff;
342 ret_stuff.status = 0;
343 ret_stuff.v0 = 0;
344 ret_stuff.v1 = 0;
345 ret_stuff.v2 = 0;
346 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_LOG_CE, 0, 0, 0, 0, 0, 0, 0);
348 return ret_stuff.status;
352 * Set Error Handling Features
354 static inline u64
355 ia64_sn_plat_set_error_handling_features(void)
357 struct ia64_sal_retval ret_stuff;
359 ret_stuff.status = 0;
360 ret_stuff.v0 = 0;
361 ret_stuff.v1 = 0;
362 ret_stuff.v2 = 0;
363 SAL_CALL_REENTRANT(ret_stuff, SN_SAL_SET_ERROR_HANDLING_FEATURES,
364 (SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV | SAL_ERR_FEAT_LOG_SBES),
365 0, 0, 0, 0, 0, 0);
367 return ret_stuff.status;
371 * Checks for console input.
373 static inline u64
374 ia64_sn_console_check(int *result)
376 struct ia64_sal_retval ret_stuff;
378 ret_stuff.status = 0;
379 ret_stuff.v0 = 0;
380 ret_stuff.v1 = 0;
381 ret_stuff.v2 = 0;
382 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_POLL, 0, 0, 0, 0, 0, 0, 0);
384 /* result is in 'v0' */
385 *result = (int)ret_stuff.v0;
387 return ret_stuff.status;
391 * Checks console interrupt status
393 static inline u64
394 ia64_sn_console_intr_status(void)
396 struct ia64_sal_retval ret_stuff;
398 ret_stuff.status = 0;
399 ret_stuff.v0 = 0;
400 ret_stuff.v1 = 0;
401 ret_stuff.v2 = 0;
402 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
403 0, SAL_CONSOLE_INTR_STATUS,
404 0, 0, 0, 0, 0);
406 if (ret_stuff.status == 0) {
407 return ret_stuff.v0;
410 return 0;
414 * Enable an interrupt on the SAL console device.
416 static inline void
417 ia64_sn_console_intr_enable(uint64_t intr)
419 struct ia64_sal_retval ret_stuff;
421 ret_stuff.status = 0;
422 ret_stuff.v0 = 0;
423 ret_stuff.v1 = 0;
424 ret_stuff.v2 = 0;
425 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
426 intr, SAL_CONSOLE_INTR_ON,
427 0, 0, 0, 0, 0);
431 * Disable an interrupt on the SAL console device.
433 static inline void
434 ia64_sn_console_intr_disable(uint64_t intr)
436 struct ia64_sal_retval ret_stuff;
438 ret_stuff.status = 0;
439 ret_stuff.v0 = 0;
440 ret_stuff.v1 = 0;
441 ret_stuff.v2 = 0;
442 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
443 intr, SAL_CONSOLE_INTR_OFF,
444 0, 0, 0, 0, 0);
448 * Sends a character buffer to the console asynchronously.
450 static inline u64
451 ia64_sn_console_xmit_chars(char *buf, int len)
453 struct ia64_sal_retval ret_stuff;
455 ret_stuff.status = 0;
456 ret_stuff.v0 = 0;
457 ret_stuff.v1 = 0;
458 ret_stuff.v2 = 0;
459 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_XMIT_CHARS,
460 (uint64_t)buf, (uint64_t)len,
461 0, 0, 0, 0, 0);
463 if (ret_stuff.status == 0) {
464 return ret_stuff.v0;
467 return 0;
471 * Returns the iobrick module Id
473 static inline u64
474 ia64_sn_sysctl_iobrick_module_get(nasid_t nasid, int *result)
476 struct ia64_sal_retval ret_stuff;
478 ret_stuff.status = 0;
479 ret_stuff.v0 = 0;
480 ret_stuff.v1 = 0;
481 ret_stuff.v2 = 0;
482 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYSCTL_IOBRICK_MODULE_GET, nasid, 0, 0, 0, 0, 0, 0);
484 /* result is in 'v0' */
485 *result = (int)ret_stuff.v0;
487 return ret_stuff.status;
491 * ia64_sn_pod_mode - call the SN_SAL_POD_MODE function
493 * SN_SAL_POD_MODE actually takes an argument, but it's always
494 * 0 when we call it from the kernel, so we don't have to expose
495 * it to the caller.
497 static inline u64
498 ia64_sn_pod_mode(void)
500 struct ia64_sal_retval isrv;
501 SAL_CALL_REENTRANT(isrv, SN_SAL_POD_MODE, 0, 0, 0, 0, 0, 0, 0);
502 if (isrv.status)
503 return 0;
504 return isrv.v0;
508 * ia64_sn_probe_mem - read from memory safely
509 * @addr: address to probe
510 * @size: number bytes to read (1,2,4,8)
511 * @data_ptr: address to store value read by probe (-1 returned if probe fails)
513 * Call into the SAL to do a memory read. If the read generates a machine
514 * check, this routine will recover gracefully and return -1 to the caller.
515 * @addr is usually a kernel virtual address in uncached space (i.e. the
516 * address starts with 0xc), but if called in physical mode, @addr should
517 * be a physical address.
519 * Return values:
520 * 0 - probe successful
521 * 1 - probe failed (generated MCA)
522 * 2 - Bad arg
523 * <0 - PAL error
525 static inline u64
526 ia64_sn_probe_mem(long addr, long size, void *data_ptr)
528 struct ia64_sal_retval isrv;
530 SAL_CALL(isrv, SN_SAL_PROBE, addr, size, 0, 0, 0, 0, 0);
532 if (data_ptr) {
533 switch (size) {
534 case 1:
535 *((u8*)data_ptr) = (u8)isrv.v0;
536 break;
537 case 2:
538 *((u16*)data_ptr) = (u16)isrv.v0;
539 break;
540 case 4:
541 *((u32*)data_ptr) = (u32)isrv.v0;
542 break;
543 case 8:
544 *((u64*)data_ptr) = (u64)isrv.v0;
545 break;
546 default:
547 isrv.status = 2;
550 return isrv.status;
554 * Retrieve the system serial number as an ASCII string.
556 static inline u64
557 ia64_sn_sys_serial_get(char *buf)
559 struct ia64_sal_retval ret_stuff;
560 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYS_SERIAL_GET, buf, 0, 0, 0, 0, 0, 0);
561 return ret_stuff.status;
564 extern char sn_system_serial_number_string[];
565 extern u64 sn_partition_serial_number;
567 static inline char *
568 sn_system_serial_number(void) {
569 if (sn_system_serial_number_string[0]) {
570 return(sn_system_serial_number_string);
571 } else {
572 ia64_sn_sys_serial_get(sn_system_serial_number_string);
573 return(sn_system_serial_number_string);
579 * Returns a unique id number for this system and partition (suitable for
580 * use with license managers), based in part on the system serial number.
582 static inline u64
583 ia64_sn_partition_serial_get(void)
585 struct ia64_sal_retval ret_stuff;
586 ia64_sal_oemcall_reentrant(&ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0,
587 0, 0, 0, 0, 0, 0);
588 if (ret_stuff.status != 0)
589 return 0;
590 return ret_stuff.v0;
593 static inline u64
594 sn_partition_serial_number_val(void) {
595 if (unlikely(sn_partition_serial_number == 0)) {
596 sn_partition_serial_number = ia64_sn_partition_serial_get();
598 return sn_partition_serial_number;
602 * Returns the partition id of the nasid passed in as an argument,
603 * or INVALID_PARTID if the partition id cannot be retrieved.
605 static inline partid_t
606 ia64_sn_sysctl_partition_get(nasid_t nasid)
608 struct ia64_sal_retval ret_stuff;
609 ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid,
610 0, 0, 0, 0, 0, 0);
611 if (ret_stuff.status != 0)
612 return INVALID_PARTID;
613 return ((partid_t)ret_stuff.v0);
617 * Returns the partition id of the current processor.
620 extern partid_t sn_partid;
622 static inline partid_t
623 sn_local_partid(void) {
624 if (unlikely(sn_partid < 0)) {
625 sn_partid = ia64_sn_sysctl_partition_get(cpuid_to_nasid(smp_processor_id()));
627 return sn_partid;
631 * Returns the physical address of the partition's reserved page through
632 * an iterative number of calls.
634 * On first call, 'cookie' and 'len' should be set to 0, and 'addr'
635 * set to the nasid of the partition whose reserved page's address is
636 * being sought.
637 * On subsequent calls, pass the values, that were passed back on the
638 * previous call.
640 * While the return status equals SALRET_MORE_PASSES, keep calling
641 * this function after first copying 'len' bytes starting at 'addr'
642 * into 'buf'. Once the return status equals SALRET_OK, 'addr' will
643 * be the physical address of the partition's reserved page. If the
644 * return status equals neither of these, an error as occurred.
646 static inline s64
647 sn_partition_reserved_page_pa(u64 buf, u64 *cookie, u64 *addr, u64 *len)
649 struct ia64_sal_retval rv;
650 ia64_sal_oemcall_reentrant(&rv, SN_SAL_GET_PARTITION_ADDR, *cookie,
651 *addr, buf, *len, 0, 0, 0);
652 *cookie = rv.v0;
653 *addr = rv.v1;
654 *len = rv.v2;
655 return rv.status;
659 * Register or unregister a physical address range being referenced across
660 * a partition boundary for which certain SAL errors should be scanned for,
661 * cleaned up and ignored. This is of value for kernel partitioning code only.
662 * Values for the operation argument:
663 * 1 = register this address range with SAL
664 * 0 = unregister this address range with SAL
666 * SAL maintains a reference count on an address range in case it is registered
667 * multiple times.
669 * On success, returns the reference count of the address range after the SAL
670 * call has performed the current registration/unregistration. Returns a
671 * negative value if an error occurred.
673 static inline int
674 sn_register_xp_addr_region(u64 paddr, u64 len, int operation)
676 struct ia64_sal_retval ret_stuff;
677 ia64_sal_oemcall(&ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len,
678 (u64)operation, 0, 0, 0, 0);
679 return ret_stuff.status;
683 * Register or unregister an instruction range for which SAL errors should
684 * be ignored. If an error occurs while in the registered range, SAL jumps
685 * to return_addr after ignoring the error. Values for the operation argument:
686 * 1 = register this instruction range with SAL
687 * 0 = unregister this instruction range with SAL
689 * Returns 0 on success, or a negative value if an error occurred.
691 static inline int
692 sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr,
693 int virtual, int operation)
695 struct ia64_sal_retval ret_stuff;
696 u64 call;
697 if (virtual) {
698 call = SN_SAL_NO_FAULT_ZONE_VIRTUAL;
699 } else {
700 call = SN_SAL_NO_FAULT_ZONE_PHYSICAL;
702 ia64_sal_oemcall(&ret_stuff, call, start_addr, end_addr, return_addr,
703 (u64)1, 0, 0, 0);
704 return ret_stuff.status;
708 * Change or query the coherence domain for this partition. Each cpu-based
709 * nasid is represented by a bit in an array of 64-bit words:
710 * 0 = not in this partition's coherency domain
711 * 1 = in this partition's coherency domain
713 * It is not possible for the local system's nasids to be removed from
714 * the coherency domain. Purpose of the domain arguments:
715 * new_domain = set the coherence domain to the given nasids
716 * old_domain = return the current coherence domain
718 * Returns 0 on success, or a negative value if an error occurred.
720 static inline int
721 sn_change_coherence(u64 *new_domain, u64 *old_domain)
723 struct ia64_sal_retval ret_stuff;
724 ia64_sal_oemcall(&ret_stuff, SN_SAL_COHERENCE, (u64)new_domain,
725 (u64)old_domain, 0, 0, 0, 0, 0);
726 return ret_stuff.status;
730 * Change memory access protections for a physical address range.
731 * nasid_array is not used on Altix, but may be in future architectures.
732 * Available memory protection access classes are defined after the function.
734 static inline int
735 sn_change_memprotect(u64 paddr, u64 len, u64 perms, u64 *nasid_array)
737 struct ia64_sal_retval ret_stuff;
738 int cnodeid;
739 unsigned long irq_flags;
741 cnodeid = nasid_to_cnodeid(get_node_number(paddr));
742 // spin_lock(&NODEPDA(cnodeid)->bist_lock);
743 local_irq_save(irq_flags);
744 ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_MEMPROTECT, paddr, len,
745 (u64)nasid_array, perms, 0, 0, 0);
746 local_irq_restore(irq_flags);
747 // spin_unlock(&NODEPDA(cnodeid)->bist_lock);
748 return ret_stuff.status;
750 #define SN_MEMPROT_ACCESS_CLASS_0 0x14a080
751 #define SN_MEMPROT_ACCESS_CLASS_1 0x2520c2
752 #define SN_MEMPROT_ACCESS_CLASS_2 0x14a1ca
753 #define SN_MEMPROT_ACCESS_CLASS_3 0x14a290
754 #define SN_MEMPROT_ACCESS_CLASS_6 0x084080
755 #define SN_MEMPROT_ACCESS_CLASS_7 0x021080
758 * Turns off system power.
760 static inline void
761 ia64_sn_power_down(void)
763 struct ia64_sal_retval ret_stuff;
764 SAL_CALL(ret_stuff, SN_SAL_SYSTEM_POWER_DOWN, 0, 0, 0, 0, 0, 0, 0);
765 while(1);
766 /* never returns */
770 * ia64_sn_fru_capture - tell the system controller to capture hw state
772 * This routine will call the SAL which will tell the system controller(s)
773 * to capture hw mmr information from each SHub in the system.
775 static inline u64
776 ia64_sn_fru_capture(void)
778 struct ia64_sal_retval isrv;
779 SAL_CALL(isrv, SN_SAL_SYSCTL_FRU_CAPTURE, 0, 0, 0, 0, 0, 0, 0);
780 if (isrv.status)
781 return 0;
782 return isrv.v0;
786 * Performs an operation on a PCI bus or slot -- power up, power down
787 * or reset.
789 static inline u64
790 ia64_sn_sysctl_iobrick_pci_op(nasid_t n, u64 connection_type,
791 u64 bus, char slot,
792 u64 action)
794 struct ia64_sal_retval rv = {0, 0, 0, 0};
796 SAL_CALL_NOLOCK(rv, SN_SAL_SYSCTL_IOBRICK_PCI_OP, connection_type, n, action,
797 bus, (u64) slot, 0, 0);
798 if (rv.status)
799 return rv.v0;
800 return 0;
805 * Open a subchannel for sending arbitrary data to the system
806 * controller network via the system controller device associated with
807 * 'nasid'. Return the subchannel number or a negative error code.
809 static inline int
810 ia64_sn_irtr_open(nasid_t nasid)
812 struct ia64_sal_retval rv;
813 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_OPEN, nasid,
814 0, 0, 0, 0, 0);
815 return (int) rv.v0;
819 * Close system controller subchannel 'subch' previously opened on 'nasid'.
821 static inline int
822 ia64_sn_irtr_close(nasid_t nasid, int subch)
824 struct ia64_sal_retval rv;
825 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_CLOSE,
826 (u64) nasid, (u64) subch, 0, 0, 0, 0);
827 return (int) rv.status;
831 * Read data from system controller associated with 'nasid' on
832 * subchannel 'subch'. The buffer to be filled is pointed to by
833 * 'buf', and its capacity is in the integer pointed to by 'len'. The
834 * referent of 'len' is set to the number of bytes read by the SAL
835 * call. The return value is either SALRET_OK (for bytes read) or
836 * SALRET_ERROR (for error or "no data available").
838 static inline int
839 ia64_sn_irtr_recv(nasid_t nasid, int subch, char *buf, int *len)
841 struct ia64_sal_retval rv;
842 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_RECV,
843 (u64) nasid, (u64) subch, (u64) buf, (u64) len,
844 0, 0);
845 return (int) rv.status;
849 * Write data to the system controller network via the system
850 * controller associated with 'nasid' on suchannel 'subch'. The
851 * buffer to be written out is pointed to by 'buf', and 'len' is the
852 * number of bytes to be written. The return value is either the
853 * number of bytes written (which could be zero) or a negative error
854 * code.
856 static inline int
857 ia64_sn_irtr_send(nasid_t nasid, int subch, char *buf, int len)
859 struct ia64_sal_retval rv;
860 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_SEND,
861 (u64) nasid, (u64) subch, (u64) buf, (u64) len,
862 0, 0);
863 return (int) rv.v0;
867 * Check whether any interrupts are pending for the system controller
868 * associated with 'nasid' and its subchannel 'subch'. The return
869 * value is a mask of pending interrupts (SAL_IROUTER_INTR_XMIT and/or
870 * SAL_IROUTER_INTR_RECV).
872 static inline int
873 ia64_sn_irtr_intr(nasid_t nasid, int subch)
875 struct ia64_sal_retval rv;
876 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_STATUS,
877 (u64) nasid, (u64) subch, 0, 0, 0, 0);
878 return (int) rv.v0;
882 * Enable the interrupt indicated by the intr parameter (either
883 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
885 static inline int
886 ia64_sn_irtr_intr_enable(nasid_t nasid, int subch, u64 intr)
888 struct ia64_sal_retval rv;
889 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_ON,
890 (u64) nasid, (u64) subch, intr, 0, 0, 0);
891 return (int) rv.v0;
895 * Disable the interrupt indicated by the intr parameter (either
896 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
898 static inline int
899 ia64_sn_irtr_intr_disable(nasid_t nasid, int subch, u64 intr)
901 struct ia64_sal_retval rv;
902 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_OFF,
903 (u64) nasid, (u64) subch, intr, 0, 0, 0);
904 return (int) rv.v0;
908 * Set up a node as the point of contact for system controller
909 * environmental event delivery.
911 static inline int
912 ia64_sn_sysctl_event_init(nasid_t nasid)
914 struct ia64_sal_retval rv;
915 SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_EVENT, (u64) nasid,
916 0, 0, 0, 0, 0, 0);
917 return (int) rv.v0;
921 * ia64_sn_get_fit_compt - read a FIT entry from the PROM header
922 * @nasid: NASID of node to read
923 * @index: FIT entry index to be retrieved (0..n)
924 * @fitentry: 16 byte buffer where FIT entry will be stored.
925 * @banbuf: optional buffer for retrieving banner
926 * @banlen: length of banner buffer
928 * Access to the physical PROM chips needs to be serialized since reads and
929 * writes can't occur at the same time, so we need to call into the SAL when
930 * we want to look at the FIT entries on the chips.
932 * Returns:
933 * %SALRET_OK if ok
934 * %SALRET_INVALID_ARG if index too big
935 * %SALRET_NOT_IMPLEMENTED if running on older PROM
936 * ??? if nasid invalid OR banner buffer not large enough
938 static inline int
939 ia64_sn_get_fit_compt(u64 nasid, u64 index, void *fitentry, void *banbuf,
940 u64 banlen)
942 struct ia64_sal_retval rv;
943 SAL_CALL_NOLOCK(rv, SN_SAL_GET_FIT_COMPT, nasid, index, fitentry,
944 banbuf, banlen, 0, 0);
945 return (int) rv.status;
949 * Initialize the SAL components of the system controller
950 * communication driver; specifically pass in a sizable buffer that
951 * can be used for allocation of subchannel queues as new subchannels
952 * are opened. "buf" points to the buffer, and "len" specifies its
953 * length.
955 static inline int
956 ia64_sn_irtr_init(nasid_t nasid, void *buf, int len)
958 struct ia64_sal_retval rv;
959 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INIT,
960 (u64) nasid, (u64) buf, (u64) len, 0, 0, 0);
961 return (int) rv.status;
965 * Returns the nasid, subnode & slice corresponding to a SAPIC ID
967 * In:
968 * arg0 - SN_SAL_GET_SAPIC_INFO
969 * arg1 - sapicid (lid >> 16)
970 * Out:
971 * v0 - nasid
972 * v1 - subnode
973 * v2 - slice
975 static inline u64
976 ia64_sn_get_sapic_info(int sapicid, int *nasid, int *subnode, int *slice)
978 struct ia64_sal_retval ret_stuff;
980 ret_stuff.status = 0;
981 ret_stuff.v0 = 0;
982 ret_stuff.v1 = 0;
983 ret_stuff.v2 = 0;
984 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SAPIC_INFO, sapicid, 0, 0, 0, 0, 0, 0);
986 /***** BEGIN HACK - temp til old proms no longer supported ********/
987 if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
988 if (nasid) *nasid = sapicid & 0xfff;
989 if (subnode) *subnode = (sapicid >> 13) & 1;
990 if (slice) *slice = (sapicid >> 12) & 3;
991 return 0;
993 /***** END HACK *******/
995 if (ret_stuff.status < 0)
996 return ret_stuff.status;
998 if (nasid) *nasid = (int) ret_stuff.v0;
999 if (subnode) *subnode = (int) ret_stuff.v1;
1000 if (slice) *slice = (int) ret_stuff.v2;
1001 return 0;
1005 * Returns information about the HUB/SHUB.
1006 * In:
1007 * arg0 - SN_SAL_GET_SN_INFO
1008 * arg1 - 0 (other values reserved for future use)
1009 * Out:
1010 * v0
1011 * [7:0] - shub type (0=shub1, 1=shub2)
1012 * [15:8] - Log2 max number of nodes in entire system (includes
1013 * C-bricks, I-bricks, etc)
1014 * [23:16] - Log2 of nodes per sharing domain
1015 * [31:24] - partition ID
1016 * [39:32] - coherency_id
1017 * [47:40] - regionsize
1018 * v1
1019 * [15:0] - nasid mask (ex., 0x7ff for 11 bit nasid)
1020 * [23:15] - bit position of low nasid bit
1022 static inline u64
1023 ia64_sn_get_sn_info(int fc, u8 *shubtype, u16 *nasid_bitmask, u8 *nasid_shift,
1024 u8 *systemsize, u8 *sharing_domain_size, u8 *partid, u8 *coher, u8 *reg)
1026 struct ia64_sal_retval ret_stuff;
1028 ret_stuff.status = 0;
1029 ret_stuff.v0 = 0;
1030 ret_stuff.v1 = 0;
1031 ret_stuff.v2 = 0;
1032 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SN_INFO, fc, 0, 0, 0, 0, 0, 0);
1034 /***** BEGIN HACK - temp til old proms no longer supported ********/
1035 if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
1036 int nasid = get_sapicid() & 0xfff;;
1037 #define SH_SHUB_ID_NODES_PER_BIT_MASK 0x001f000000000000UL
1038 #define SH_SHUB_ID_NODES_PER_BIT_SHFT 48
1039 if (shubtype) *shubtype = 0;
1040 if (nasid_bitmask) *nasid_bitmask = 0x7ff;
1041 if (nasid_shift) *nasid_shift = 38;
1042 if (systemsize) *systemsize = 11;
1043 if (sharing_domain_size) *sharing_domain_size = 9;
1044 if (partid) *partid = ia64_sn_sysctl_partition_get(nasid);
1045 if (coher) *coher = nasid >> 9;
1046 if (reg) *reg = (HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_SHUB_ID)) & SH_SHUB_ID_NODES_PER_BIT_MASK) >>
1047 SH_SHUB_ID_NODES_PER_BIT_SHFT;
1048 return 0;
1050 /***** END HACK *******/
1052 if (ret_stuff.status < 0)
1053 return ret_stuff.status;
1055 if (shubtype) *shubtype = ret_stuff.v0 & 0xff;
1056 if (systemsize) *systemsize = (ret_stuff.v0 >> 8) & 0xff;
1057 if (sharing_domain_size) *sharing_domain_size = (ret_stuff.v0 >> 16) & 0xff;
1058 if (partid) *partid = (ret_stuff.v0 >> 24) & 0xff;
1059 if (coher) *coher = (ret_stuff.v0 >> 32) & 0xff;
1060 if (reg) *reg = (ret_stuff.v0 >> 40) & 0xff;
1061 if (nasid_bitmask) *nasid_bitmask = (ret_stuff.v1 & 0xffff);
1062 if (nasid_shift) *nasid_shift = (ret_stuff.v1 >> 16) & 0xff;
1063 return 0;
1067 * This is the access point to the Altix PROM hardware performance
1068 * and status monitoring interface. For info on using this, see
1069 * include/asm-ia64/sn/sn2/sn_hwperf.h
1071 static inline int
1072 ia64_sn_hwperf_op(nasid_t nasid, u64 opcode, u64 a0, u64 a1, u64 a2,
1073 u64 a3, u64 a4, int *v0)
1075 struct ia64_sal_retval rv;
1076 SAL_CALL_NOLOCK(rv, SN_SAL_HWPERF_OP, (u64)nasid,
1077 opcode, a0, a1, a2, a3, a4);
1078 if (v0)
1079 *v0 = (int) rv.v0;
1080 return (int) rv.status;
1083 static inline int
1084 ia64_sn_ioif_get_pci_topology(u64 rack, u64 bay, u64 slot, u64 slab,
1085 u64 buf, u64 len)
1087 struct ia64_sal_retval rv;
1088 SAL_CALL_NOLOCK(rv, SN_SAL_IOIF_GET_PCI_TOPOLOGY,
1089 rack, bay, slot, slab, buf, len, 0);
1090 return (int) rv.status;
1094 * BTE error recovery is implemented in SAL
1096 static inline int
1097 ia64_sn_bte_recovery(nasid_t nasid)
1099 struct ia64_sal_retval rv;
1101 rv.status = 0;
1102 SAL_CALL_NOLOCK(rv, SN_SAL_BTE_RECOVER, 0, 0, 0, 0, 0, 0, 0);
1103 if (rv.status == SALRET_NOT_IMPLEMENTED)
1104 return 0;
1105 return (int) rv.status;
1108 #endif /* _ASM_IA64_SN_SN_SAL_H */