schedule_on_each_cpu(): use preempt_disable()
[linux-2.6/verdex.git] / kernel / signal.c
blob4c8f49eadf7d344fb73846df5592d4e0b08d9aee
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/capability.h>
25 #include <linux/freezer.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/nsproxy.h>
29 #include <asm/param.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
32 #include <asm/siginfo.h>
33 #include "audit.h" /* audit_signal_info() */
36 * SLAB caches for signal bits.
39 static struct kmem_cache *sigqueue_cachep;
42 static int sig_ignored(struct task_struct *t, int sig)
44 void __user * handler;
47 * Tracers always want to know about signals..
49 if (t->ptrace & PT_PTRACED)
50 return 0;
53 * Blocked signals are never ignored, since the
54 * signal handler may change by the time it is
55 * unblocked.
57 if (sigismember(&t->blocked, sig))
58 return 0;
60 /* Is it explicitly or implicitly ignored? */
61 handler = t->sighand->action[sig-1].sa.sa_handler;
62 return handler == SIG_IGN ||
63 (handler == SIG_DFL && sig_kernel_ignore(sig));
67 * Re-calculate pending state from the set of locally pending
68 * signals, globally pending signals, and blocked signals.
70 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
72 unsigned long ready;
73 long i;
75 switch (_NSIG_WORDS) {
76 default:
77 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
78 ready |= signal->sig[i] &~ blocked->sig[i];
79 break;
81 case 4: ready = signal->sig[3] &~ blocked->sig[3];
82 ready |= signal->sig[2] &~ blocked->sig[2];
83 ready |= signal->sig[1] &~ blocked->sig[1];
84 ready |= signal->sig[0] &~ blocked->sig[0];
85 break;
87 case 2: ready = signal->sig[1] &~ blocked->sig[1];
88 ready |= signal->sig[0] &~ blocked->sig[0];
89 break;
91 case 1: ready = signal->sig[0] &~ blocked->sig[0];
93 return ready != 0;
96 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
98 fastcall void recalc_sigpending_tsk(struct task_struct *t)
100 if (t->signal->group_stop_count > 0 ||
101 (freezing(t)) ||
102 PENDING(&t->pending, &t->blocked) ||
103 PENDING(&t->signal->shared_pending, &t->blocked))
104 set_tsk_thread_flag(t, TIF_SIGPENDING);
105 else
106 clear_tsk_thread_flag(t, TIF_SIGPENDING);
109 void recalc_sigpending(void)
111 recalc_sigpending_tsk(current);
114 /* Given the mask, find the first available signal that should be serviced. */
116 static int
117 next_signal(struct sigpending *pending, sigset_t *mask)
119 unsigned long i, *s, *m, x;
120 int sig = 0;
122 s = pending->signal.sig;
123 m = mask->sig;
124 switch (_NSIG_WORDS) {
125 default:
126 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
127 if ((x = *s &~ *m) != 0) {
128 sig = ffz(~x) + i*_NSIG_BPW + 1;
129 break;
131 break;
133 case 2: if ((x = s[0] &~ m[0]) != 0)
134 sig = 1;
135 else if ((x = s[1] &~ m[1]) != 0)
136 sig = _NSIG_BPW + 1;
137 else
138 break;
139 sig += ffz(~x);
140 break;
142 case 1: if ((x = *s &~ *m) != 0)
143 sig = ffz(~x) + 1;
144 break;
147 return sig;
150 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
151 int override_rlimit)
153 struct sigqueue *q = NULL;
154 struct user_struct *user;
157 * In order to avoid problems with "switch_user()", we want to make
158 * sure that the compiler doesn't re-load "t->user"
160 user = t->user;
161 barrier();
162 atomic_inc(&user->sigpending);
163 if (override_rlimit ||
164 atomic_read(&user->sigpending) <=
165 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
166 q = kmem_cache_alloc(sigqueue_cachep, flags);
167 if (unlikely(q == NULL)) {
168 atomic_dec(&user->sigpending);
169 } else {
170 INIT_LIST_HEAD(&q->list);
171 q->flags = 0;
172 q->user = get_uid(user);
174 return(q);
177 static void __sigqueue_free(struct sigqueue *q)
179 if (q->flags & SIGQUEUE_PREALLOC)
180 return;
181 atomic_dec(&q->user->sigpending);
182 free_uid(q->user);
183 kmem_cache_free(sigqueue_cachep, q);
186 void flush_sigqueue(struct sigpending *queue)
188 struct sigqueue *q;
190 sigemptyset(&queue->signal);
191 while (!list_empty(&queue->list)) {
192 q = list_entry(queue->list.next, struct sigqueue , list);
193 list_del_init(&q->list);
194 __sigqueue_free(q);
199 * Flush all pending signals for a task.
201 void flush_signals(struct task_struct *t)
203 unsigned long flags;
205 spin_lock_irqsave(&t->sighand->siglock, flags);
206 clear_tsk_thread_flag(t,TIF_SIGPENDING);
207 flush_sigqueue(&t->pending);
208 flush_sigqueue(&t->signal->shared_pending);
209 spin_unlock_irqrestore(&t->sighand->siglock, flags);
213 * Flush all handlers for a task.
216 void
217 flush_signal_handlers(struct task_struct *t, int force_default)
219 int i;
220 struct k_sigaction *ka = &t->sighand->action[0];
221 for (i = _NSIG ; i != 0 ; i--) {
222 if (force_default || ka->sa.sa_handler != SIG_IGN)
223 ka->sa.sa_handler = SIG_DFL;
224 ka->sa.sa_flags = 0;
225 sigemptyset(&ka->sa.sa_mask);
226 ka++;
231 /* Notify the system that a driver wants to block all signals for this
232 * process, and wants to be notified if any signals at all were to be
233 * sent/acted upon. If the notifier routine returns non-zero, then the
234 * signal will be acted upon after all. If the notifier routine returns 0,
235 * then then signal will be blocked. Only one block per process is
236 * allowed. priv is a pointer to private data that the notifier routine
237 * can use to determine if the signal should be blocked or not. */
239 void
240 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
242 unsigned long flags;
244 spin_lock_irqsave(&current->sighand->siglock, flags);
245 current->notifier_mask = mask;
246 current->notifier_data = priv;
247 current->notifier = notifier;
248 spin_unlock_irqrestore(&current->sighand->siglock, flags);
251 /* Notify the system that blocking has ended. */
253 void
254 unblock_all_signals(void)
256 unsigned long flags;
258 spin_lock_irqsave(&current->sighand->siglock, flags);
259 current->notifier = NULL;
260 current->notifier_data = NULL;
261 recalc_sigpending();
262 spin_unlock_irqrestore(&current->sighand->siglock, flags);
265 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
267 struct sigqueue *q, *first = NULL;
268 int still_pending = 0;
270 if (unlikely(!sigismember(&list->signal, sig)))
271 return 0;
274 * Collect the siginfo appropriate to this signal. Check if
275 * there is another siginfo for the same signal.
277 list_for_each_entry(q, &list->list, list) {
278 if (q->info.si_signo == sig) {
279 if (first) {
280 still_pending = 1;
281 break;
283 first = q;
286 if (first) {
287 list_del_init(&first->list);
288 copy_siginfo(info, &first->info);
289 __sigqueue_free(first);
290 if (!still_pending)
291 sigdelset(&list->signal, sig);
292 } else {
294 /* Ok, it wasn't in the queue. This must be
295 a fast-pathed signal or we must have been
296 out of queue space. So zero out the info.
298 sigdelset(&list->signal, sig);
299 info->si_signo = sig;
300 info->si_errno = 0;
301 info->si_code = 0;
302 info->si_pid = 0;
303 info->si_uid = 0;
305 return 1;
308 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
309 siginfo_t *info)
311 int sig = next_signal(pending, mask);
313 if (sig) {
314 if (current->notifier) {
315 if (sigismember(current->notifier_mask, sig)) {
316 if (!(current->notifier)(current->notifier_data)) {
317 clear_thread_flag(TIF_SIGPENDING);
318 return 0;
323 if (!collect_signal(sig, pending, info))
324 sig = 0;
327 return sig;
331 * Dequeue a signal and return the element to the caller, which is
332 * expected to free it.
334 * All callers have to hold the siglock.
336 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
338 int signr = __dequeue_signal(&tsk->pending, mask, info);
339 if (!signr) {
340 signr = __dequeue_signal(&tsk->signal->shared_pending,
341 mask, info);
343 * itimer signal ?
345 * itimers are process shared and we restart periodic
346 * itimers in the signal delivery path to prevent DoS
347 * attacks in the high resolution timer case. This is
348 * compliant with the old way of self restarting
349 * itimers, as the SIGALRM is a legacy signal and only
350 * queued once. Changing the restart behaviour to
351 * restart the timer in the signal dequeue path is
352 * reducing the timer noise on heavy loaded !highres
353 * systems too.
355 if (unlikely(signr == SIGALRM)) {
356 struct hrtimer *tmr = &tsk->signal->real_timer;
358 if (!hrtimer_is_queued(tmr) &&
359 tsk->signal->it_real_incr.tv64 != 0) {
360 hrtimer_forward(tmr, tmr->base->get_time(),
361 tsk->signal->it_real_incr);
362 hrtimer_restart(tmr);
366 recalc_sigpending_tsk(tsk);
367 if (signr && unlikely(sig_kernel_stop(signr))) {
369 * Set a marker that we have dequeued a stop signal. Our
370 * caller might release the siglock and then the pending
371 * stop signal it is about to process is no longer in the
372 * pending bitmasks, but must still be cleared by a SIGCONT
373 * (and overruled by a SIGKILL). So those cases clear this
374 * shared flag after we've set it. Note that this flag may
375 * remain set after the signal we return is ignored or
376 * handled. That doesn't matter because its only purpose
377 * is to alert stop-signal processing code when another
378 * processor has come along and cleared the flag.
380 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
381 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
383 if ( signr &&
384 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
385 info->si_sys_private){
387 * Release the siglock to ensure proper locking order
388 * of timer locks outside of siglocks. Note, we leave
389 * irqs disabled here, since the posix-timers code is
390 * about to disable them again anyway.
392 spin_unlock(&tsk->sighand->siglock);
393 do_schedule_next_timer(info);
394 spin_lock(&tsk->sighand->siglock);
396 return signr;
400 * Tell a process that it has a new active signal..
402 * NOTE! we rely on the previous spin_lock to
403 * lock interrupts for us! We can only be called with
404 * "siglock" held, and the local interrupt must
405 * have been disabled when that got acquired!
407 * No need to set need_resched since signal event passing
408 * goes through ->blocked
410 void signal_wake_up(struct task_struct *t, int resume)
412 unsigned int mask;
414 set_tsk_thread_flag(t, TIF_SIGPENDING);
417 * For SIGKILL, we want to wake it up in the stopped/traced case.
418 * We don't check t->state here because there is a race with it
419 * executing another processor and just now entering stopped state.
420 * By using wake_up_state, we ensure the process will wake up and
421 * handle its death signal.
423 mask = TASK_INTERRUPTIBLE;
424 if (resume)
425 mask |= TASK_STOPPED | TASK_TRACED;
426 if (!wake_up_state(t, mask))
427 kick_process(t);
431 * Remove signals in mask from the pending set and queue.
432 * Returns 1 if any signals were found.
434 * All callers must be holding the siglock.
436 * This version takes a sigset mask and looks at all signals,
437 * not just those in the first mask word.
439 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
441 struct sigqueue *q, *n;
442 sigset_t m;
444 sigandsets(&m, mask, &s->signal);
445 if (sigisemptyset(&m))
446 return 0;
448 signandsets(&s->signal, &s->signal, mask);
449 list_for_each_entry_safe(q, n, &s->list, list) {
450 if (sigismember(mask, q->info.si_signo)) {
451 list_del_init(&q->list);
452 __sigqueue_free(q);
455 return 1;
458 * Remove signals in mask from the pending set and queue.
459 * Returns 1 if any signals were found.
461 * All callers must be holding the siglock.
463 static int rm_from_queue(unsigned long mask, struct sigpending *s)
465 struct sigqueue *q, *n;
467 if (!sigtestsetmask(&s->signal, mask))
468 return 0;
470 sigdelsetmask(&s->signal, mask);
471 list_for_each_entry_safe(q, n, &s->list, list) {
472 if (q->info.si_signo < SIGRTMIN &&
473 (mask & sigmask(q->info.si_signo))) {
474 list_del_init(&q->list);
475 __sigqueue_free(q);
478 return 1;
482 * Bad permissions for sending the signal
484 static int check_kill_permission(int sig, struct siginfo *info,
485 struct task_struct *t)
487 int error = -EINVAL;
488 if (!valid_signal(sig))
489 return error;
490 error = -EPERM;
491 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
492 && ((sig != SIGCONT) ||
493 (process_session(current) != process_session(t)))
494 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
495 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
496 && !capable(CAP_KILL))
497 return error;
499 error = security_task_kill(t, info, sig, 0);
500 if (!error)
501 audit_signal_info(sig, t); /* Let audit system see the signal */
502 return error;
505 /* forward decl */
506 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
509 * Handle magic process-wide effects of stop/continue signals.
510 * Unlike the signal actions, these happen immediately at signal-generation
511 * time regardless of blocking, ignoring, or handling. This does the
512 * actual continuing for SIGCONT, but not the actual stopping for stop
513 * signals. The process stop is done as a signal action for SIG_DFL.
515 static void handle_stop_signal(int sig, struct task_struct *p)
517 struct task_struct *t;
519 if (p->signal->flags & SIGNAL_GROUP_EXIT)
521 * The process is in the middle of dying already.
523 return;
525 if (sig_kernel_stop(sig)) {
527 * This is a stop signal. Remove SIGCONT from all queues.
529 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
530 t = p;
531 do {
532 rm_from_queue(sigmask(SIGCONT), &t->pending);
533 t = next_thread(t);
534 } while (t != p);
535 } else if (sig == SIGCONT) {
537 * Remove all stop signals from all queues,
538 * and wake all threads.
540 if (unlikely(p->signal->group_stop_count > 0)) {
542 * There was a group stop in progress. We'll
543 * pretend it finished before we got here. We are
544 * obliged to report it to the parent: if the
545 * SIGSTOP happened "after" this SIGCONT, then it
546 * would have cleared this pending SIGCONT. If it
547 * happened "before" this SIGCONT, then the parent
548 * got the SIGCHLD about the stop finishing before
549 * the continue happened. We do the notification
550 * now, and it's as if the stop had finished and
551 * the SIGCHLD was pending on entry to this kill.
553 p->signal->group_stop_count = 0;
554 p->signal->flags = SIGNAL_STOP_CONTINUED;
555 spin_unlock(&p->sighand->siglock);
556 do_notify_parent_cldstop(p, CLD_STOPPED);
557 spin_lock(&p->sighand->siglock);
559 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
560 t = p;
561 do {
562 unsigned int state;
563 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
566 * If there is a handler for SIGCONT, we must make
567 * sure that no thread returns to user mode before
568 * we post the signal, in case it was the only
569 * thread eligible to run the signal handler--then
570 * it must not do anything between resuming and
571 * running the handler. With the TIF_SIGPENDING
572 * flag set, the thread will pause and acquire the
573 * siglock that we hold now and until we've queued
574 * the pending signal.
576 * Wake up the stopped thread _after_ setting
577 * TIF_SIGPENDING
579 state = TASK_STOPPED;
580 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
581 set_tsk_thread_flag(t, TIF_SIGPENDING);
582 state |= TASK_INTERRUPTIBLE;
584 wake_up_state(t, state);
586 t = next_thread(t);
587 } while (t != p);
589 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
591 * We were in fact stopped, and are now continued.
592 * Notify the parent with CLD_CONTINUED.
594 p->signal->flags = SIGNAL_STOP_CONTINUED;
595 p->signal->group_exit_code = 0;
596 spin_unlock(&p->sighand->siglock);
597 do_notify_parent_cldstop(p, CLD_CONTINUED);
598 spin_lock(&p->sighand->siglock);
599 } else {
601 * We are not stopped, but there could be a stop
602 * signal in the middle of being processed after
603 * being removed from the queue. Clear that too.
605 p->signal->flags = 0;
607 } else if (sig == SIGKILL) {
609 * Make sure that any pending stop signal already dequeued
610 * is undone by the wakeup for SIGKILL.
612 p->signal->flags = 0;
616 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
617 struct sigpending *signals)
619 struct sigqueue * q = NULL;
620 int ret = 0;
623 * fast-pathed signals for kernel-internal things like SIGSTOP
624 * or SIGKILL.
626 if (info == SEND_SIG_FORCED)
627 goto out_set;
629 /* Real-time signals must be queued if sent by sigqueue, or
630 some other real-time mechanism. It is implementation
631 defined whether kill() does so. We attempt to do so, on
632 the principle of least surprise, but since kill is not
633 allowed to fail with EAGAIN when low on memory we just
634 make sure at least one signal gets delivered and don't
635 pass on the info struct. */
637 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
638 (is_si_special(info) ||
639 info->si_code >= 0)));
640 if (q) {
641 list_add_tail(&q->list, &signals->list);
642 switch ((unsigned long) info) {
643 case (unsigned long) SEND_SIG_NOINFO:
644 q->info.si_signo = sig;
645 q->info.si_errno = 0;
646 q->info.si_code = SI_USER;
647 q->info.si_pid = current->pid;
648 q->info.si_uid = current->uid;
649 break;
650 case (unsigned long) SEND_SIG_PRIV:
651 q->info.si_signo = sig;
652 q->info.si_errno = 0;
653 q->info.si_code = SI_KERNEL;
654 q->info.si_pid = 0;
655 q->info.si_uid = 0;
656 break;
657 default:
658 copy_siginfo(&q->info, info);
659 break;
661 } else if (!is_si_special(info)) {
662 if (sig >= SIGRTMIN && info->si_code != SI_USER)
664 * Queue overflow, abort. We may abort if the signal was rt
665 * and sent by user using something other than kill().
667 return -EAGAIN;
670 out_set:
671 sigaddset(&signals->signal, sig);
672 return ret;
675 #define LEGACY_QUEUE(sigptr, sig) \
676 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
679 static int
680 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
682 int ret = 0;
684 BUG_ON(!irqs_disabled());
685 assert_spin_locked(&t->sighand->siglock);
687 /* Short-circuit ignored signals. */
688 if (sig_ignored(t, sig))
689 goto out;
691 /* Support queueing exactly one non-rt signal, so that we
692 can get more detailed information about the cause of
693 the signal. */
694 if (LEGACY_QUEUE(&t->pending, sig))
695 goto out;
697 ret = send_signal(sig, info, t, &t->pending);
698 if (!ret && !sigismember(&t->blocked, sig))
699 signal_wake_up(t, sig == SIGKILL);
700 out:
701 return ret;
705 * Force a signal that the process can't ignore: if necessary
706 * we unblock the signal and change any SIG_IGN to SIG_DFL.
708 * Note: If we unblock the signal, we always reset it to SIG_DFL,
709 * since we do not want to have a signal handler that was blocked
710 * be invoked when user space had explicitly blocked it.
712 * We don't want to have recursive SIGSEGV's etc, for example.
715 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
717 unsigned long int flags;
718 int ret, blocked, ignored;
719 struct k_sigaction *action;
721 spin_lock_irqsave(&t->sighand->siglock, flags);
722 action = &t->sighand->action[sig-1];
723 ignored = action->sa.sa_handler == SIG_IGN;
724 blocked = sigismember(&t->blocked, sig);
725 if (blocked || ignored) {
726 action->sa.sa_handler = SIG_DFL;
727 if (blocked) {
728 sigdelset(&t->blocked, sig);
729 recalc_sigpending_tsk(t);
732 ret = specific_send_sig_info(sig, info, t);
733 spin_unlock_irqrestore(&t->sighand->siglock, flags);
735 return ret;
738 void
739 force_sig_specific(int sig, struct task_struct *t)
741 force_sig_info(sig, SEND_SIG_FORCED, t);
745 * Test if P wants to take SIG. After we've checked all threads with this,
746 * it's equivalent to finding no threads not blocking SIG. Any threads not
747 * blocking SIG were ruled out because they are not running and already
748 * have pending signals. Such threads will dequeue from the shared queue
749 * as soon as they're available, so putting the signal on the shared queue
750 * will be equivalent to sending it to one such thread.
752 static inline int wants_signal(int sig, struct task_struct *p)
754 if (sigismember(&p->blocked, sig))
755 return 0;
756 if (p->flags & PF_EXITING)
757 return 0;
758 if (sig == SIGKILL)
759 return 1;
760 if (p->state & (TASK_STOPPED | TASK_TRACED))
761 return 0;
762 return task_curr(p) || !signal_pending(p);
765 static void
766 __group_complete_signal(int sig, struct task_struct *p)
768 struct task_struct *t;
771 * Now find a thread we can wake up to take the signal off the queue.
773 * If the main thread wants the signal, it gets first crack.
774 * Probably the least surprising to the average bear.
776 if (wants_signal(sig, p))
777 t = p;
778 else if (thread_group_empty(p))
780 * There is just one thread and it does not need to be woken.
781 * It will dequeue unblocked signals before it runs again.
783 return;
784 else {
786 * Otherwise try to find a suitable thread.
788 t = p->signal->curr_target;
789 if (t == NULL)
790 /* restart balancing at this thread */
791 t = p->signal->curr_target = p;
793 while (!wants_signal(sig, t)) {
794 t = next_thread(t);
795 if (t == p->signal->curr_target)
797 * No thread needs to be woken.
798 * Any eligible threads will see
799 * the signal in the queue soon.
801 return;
803 p->signal->curr_target = t;
807 * Found a killable thread. If the signal will be fatal,
808 * then start taking the whole group down immediately.
810 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
811 !sigismember(&t->real_blocked, sig) &&
812 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
814 * This signal will be fatal to the whole group.
816 if (!sig_kernel_coredump(sig)) {
818 * Start a group exit and wake everybody up.
819 * This way we don't have other threads
820 * running and doing things after a slower
821 * thread has the fatal signal pending.
823 p->signal->flags = SIGNAL_GROUP_EXIT;
824 p->signal->group_exit_code = sig;
825 p->signal->group_stop_count = 0;
826 t = p;
827 do {
828 sigaddset(&t->pending.signal, SIGKILL);
829 signal_wake_up(t, 1);
830 t = next_thread(t);
831 } while (t != p);
832 return;
836 * There will be a core dump. We make all threads other
837 * than the chosen one go into a group stop so that nothing
838 * happens until it gets scheduled, takes the signal off
839 * the shared queue, and does the core dump. This is a
840 * little more complicated than strictly necessary, but it
841 * keeps the signal state that winds up in the core dump
842 * unchanged from the death state, e.g. which thread had
843 * the core-dump signal unblocked.
845 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
846 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
847 p->signal->group_stop_count = 0;
848 p->signal->group_exit_task = t;
849 t = p;
850 do {
851 p->signal->group_stop_count++;
852 signal_wake_up(t, 0);
853 t = next_thread(t);
854 } while (t != p);
855 wake_up_process(p->signal->group_exit_task);
856 return;
860 * The signal is already in the shared-pending queue.
861 * Tell the chosen thread to wake up and dequeue it.
863 signal_wake_up(t, sig == SIGKILL);
864 return;
868 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
870 int ret = 0;
872 assert_spin_locked(&p->sighand->siglock);
873 handle_stop_signal(sig, p);
875 /* Short-circuit ignored signals. */
876 if (sig_ignored(p, sig))
877 return ret;
879 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
880 /* This is a non-RT signal and we already have one queued. */
881 return ret;
884 * Put this signal on the shared-pending queue, or fail with EAGAIN.
885 * We always use the shared queue for process-wide signals,
886 * to avoid several races.
888 ret = send_signal(sig, info, p, &p->signal->shared_pending);
889 if (unlikely(ret))
890 return ret;
892 __group_complete_signal(sig, p);
893 return 0;
897 * Nuke all other threads in the group.
899 void zap_other_threads(struct task_struct *p)
901 struct task_struct *t;
903 p->signal->flags = SIGNAL_GROUP_EXIT;
904 p->signal->group_stop_count = 0;
906 if (thread_group_empty(p))
907 return;
909 for (t = next_thread(p); t != p; t = next_thread(t)) {
911 * Don't bother with already dead threads
913 if (t->exit_state)
914 continue;
917 * We don't want to notify the parent, since we are
918 * killed as part of a thread group due to another
919 * thread doing an execve() or similar. So set the
920 * exit signal to -1 to allow immediate reaping of
921 * the process. But don't detach the thread group
922 * leader.
924 if (t != p->group_leader)
925 t->exit_signal = -1;
927 /* SIGKILL will be handled before any pending SIGSTOP */
928 sigaddset(&t->pending.signal, SIGKILL);
929 signal_wake_up(t, 1);
934 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
936 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
938 struct sighand_struct *sighand;
940 for (;;) {
941 sighand = rcu_dereference(tsk->sighand);
942 if (unlikely(sighand == NULL))
943 break;
945 spin_lock_irqsave(&sighand->siglock, *flags);
946 if (likely(sighand == tsk->sighand))
947 break;
948 spin_unlock_irqrestore(&sighand->siglock, *flags);
951 return sighand;
954 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
956 unsigned long flags;
957 int ret;
959 ret = check_kill_permission(sig, info, p);
961 if (!ret && sig) {
962 ret = -ESRCH;
963 if (lock_task_sighand(p, &flags)) {
964 ret = __group_send_sig_info(sig, info, p);
965 unlock_task_sighand(p, &flags);
969 return ret;
973 * kill_pgrp_info() sends a signal to a process group: this is what the tty
974 * control characters do (^C, ^Z etc)
977 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
979 struct task_struct *p = NULL;
980 int retval, success;
982 success = 0;
983 retval = -ESRCH;
984 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
985 int err = group_send_sig_info(sig, info, p);
986 success |= !err;
987 retval = err;
988 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
989 return success ? 0 : retval;
992 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
994 int retval;
996 read_lock(&tasklist_lock);
997 retval = __kill_pgrp_info(sig, info, pgrp);
998 read_unlock(&tasklist_lock);
1000 return retval;
1003 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1005 int error;
1006 struct task_struct *p;
1008 rcu_read_lock();
1009 if (unlikely(sig_needs_tasklist(sig)))
1010 read_lock(&tasklist_lock);
1012 p = pid_task(pid, PIDTYPE_PID);
1013 error = -ESRCH;
1014 if (p)
1015 error = group_send_sig_info(sig, info, p);
1017 if (unlikely(sig_needs_tasklist(sig)))
1018 read_unlock(&tasklist_lock);
1019 rcu_read_unlock();
1020 return error;
1024 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1026 int error;
1027 rcu_read_lock();
1028 error = kill_pid_info(sig, info, find_pid(pid));
1029 rcu_read_unlock();
1030 return error;
1033 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1034 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1035 uid_t uid, uid_t euid, u32 secid)
1037 int ret = -EINVAL;
1038 struct task_struct *p;
1040 if (!valid_signal(sig))
1041 return ret;
1043 read_lock(&tasklist_lock);
1044 p = pid_task(pid, PIDTYPE_PID);
1045 if (!p) {
1046 ret = -ESRCH;
1047 goto out_unlock;
1049 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1050 && (euid != p->suid) && (euid != p->uid)
1051 && (uid != p->suid) && (uid != p->uid)) {
1052 ret = -EPERM;
1053 goto out_unlock;
1055 ret = security_task_kill(p, info, sig, secid);
1056 if (ret)
1057 goto out_unlock;
1058 if (sig && p->sighand) {
1059 unsigned long flags;
1060 spin_lock_irqsave(&p->sighand->siglock, flags);
1061 ret = __group_send_sig_info(sig, info, p);
1062 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1064 out_unlock:
1065 read_unlock(&tasklist_lock);
1066 return ret;
1068 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1071 * kill_something_info() interprets pid in interesting ways just like kill(2).
1073 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1074 * is probably wrong. Should make it like BSD or SYSV.
1077 static int kill_something_info(int sig, struct siginfo *info, int pid)
1079 int ret;
1080 rcu_read_lock();
1081 if (!pid) {
1082 ret = kill_pgrp_info(sig, info, task_pgrp(current));
1083 } else if (pid == -1) {
1084 int retval = 0, count = 0;
1085 struct task_struct * p;
1087 read_lock(&tasklist_lock);
1088 for_each_process(p) {
1089 if (p->pid > 1 && p->tgid != current->tgid) {
1090 int err = group_send_sig_info(sig, info, p);
1091 ++count;
1092 if (err != -EPERM)
1093 retval = err;
1096 read_unlock(&tasklist_lock);
1097 ret = count ? retval : -ESRCH;
1098 } else if (pid < 0) {
1099 ret = kill_pgrp_info(sig, info, find_pid(-pid));
1100 } else {
1101 ret = kill_pid_info(sig, info, find_pid(pid));
1103 rcu_read_unlock();
1104 return ret;
1108 * These are for backward compatibility with the rest of the kernel source.
1112 * These two are the most common entry points. They send a signal
1113 * just to the specific thread.
1116 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1118 int ret;
1119 unsigned long flags;
1122 * Make sure legacy kernel users don't send in bad values
1123 * (normal paths check this in check_kill_permission).
1125 if (!valid_signal(sig))
1126 return -EINVAL;
1129 * We need the tasklist lock even for the specific
1130 * thread case (when we don't need to follow the group
1131 * lists) in order to avoid races with "p->sighand"
1132 * going away or changing from under us.
1134 read_lock(&tasklist_lock);
1135 spin_lock_irqsave(&p->sighand->siglock, flags);
1136 ret = specific_send_sig_info(sig, info, p);
1137 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1138 read_unlock(&tasklist_lock);
1139 return ret;
1142 #define __si_special(priv) \
1143 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1146 send_sig(int sig, struct task_struct *p, int priv)
1148 return send_sig_info(sig, __si_special(priv), p);
1152 * This is the entry point for "process-wide" signals.
1153 * They will go to an appropriate thread in the thread group.
1156 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1158 int ret;
1159 read_lock(&tasklist_lock);
1160 ret = group_send_sig_info(sig, info, p);
1161 read_unlock(&tasklist_lock);
1162 return ret;
1165 void
1166 force_sig(int sig, struct task_struct *p)
1168 force_sig_info(sig, SEND_SIG_PRIV, p);
1172 * When things go south during signal handling, we
1173 * will force a SIGSEGV. And if the signal that caused
1174 * the problem was already a SIGSEGV, we'll want to
1175 * make sure we don't even try to deliver the signal..
1178 force_sigsegv(int sig, struct task_struct *p)
1180 if (sig == SIGSEGV) {
1181 unsigned long flags;
1182 spin_lock_irqsave(&p->sighand->siglock, flags);
1183 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1184 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1186 force_sig(SIGSEGV, p);
1187 return 0;
1190 int kill_pgrp(struct pid *pid, int sig, int priv)
1192 return kill_pgrp_info(sig, __si_special(priv), pid);
1194 EXPORT_SYMBOL(kill_pgrp);
1196 int kill_pid(struct pid *pid, int sig, int priv)
1198 return kill_pid_info(sig, __si_special(priv), pid);
1200 EXPORT_SYMBOL(kill_pid);
1203 kill_proc(pid_t pid, int sig, int priv)
1205 return kill_proc_info(sig, __si_special(priv), pid);
1209 * These functions support sending signals using preallocated sigqueue
1210 * structures. This is needed "because realtime applications cannot
1211 * afford to lose notifications of asynchronous events, like timer
1212 * expirations or I/O completions". In the case of Posix Timers
1213 * we allocate the sigqueue structure from the timer_create. If this
1214 * allocation fails we are able to report the failure to the application
1215 * with an EAGAIN error.
1218 struct sigqueue *sigqueue_alloc(void)
1220 struct sigqueue *q;
1222 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1223 q->flags |= SIGQUEUE_PREALLOC;
1224 return(q);
1227 void sigqueue_free(struct sigqueue *q)
1229 unsigned long flags;
1230 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1232 * If the signal is still pending remove it from the
1233 * pending queue.
1235 if (unlikely(!list_empty(&q->list))) {
1236 spinlock_t *lock = &current->sighand->siglock;
1237 read_lock(&tasklist_lock);
1238 spin_lock_irqsave(lock, flags);
1239 if (!list_empty(&q->list))
1240 list_del_init(&q->list);
1241 spin_unlock_irqrestore(lock, flags);
1242 read_unlock(&tasklist_lock);
1244 q->flags &= ~SIGQUEUE_PREALLOC;
1245 __sigqueue_free(q);
1248 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1250 unsigned long flags;
1251 int ret = 0;
1253 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1256 * The rcu based delayed sighand destroy makes it possible to
1257 * run this without tasklist lock held. The task struct itself
1258 * cannot go away as create_timer did get_task_struct().
1260 * We return -1, when the task is marked exiting, so
1261 * posix_timer_event can redirect it to the group leader
1263 rcu_read_lock();
1265 if (!likely(lock_task_sighand(p, &flags))) {
1266 ret = -1;
1267 goto out_err;
1270 if (unlikely(!list_empty(&q->list))) {
1272 * If an SI_TIMER entry is already queue just increment
1273 * the overrun count.
1275 BUG_ON(q->info.si_code != SI_TIMER);
1276 q->info.si_overrun++;
1277 goto out;
1279 /* Short-circuit ignored signals. */
1280 if (sig_ignored(p, sig)) {
1281 ret = 1;
1282 goto out;
1285 list_add_tail(&q->list, &p->pending.list);
1286 sigaddset(&p->pending.signal, sig);
1287 if (!sigismember(&p->blocked, sig))
1288 signal_wake_up(p, sig == SIGKILL);
1290 out:
1291 unlock_task_sighand(p, &flags);
1292 out_err:
1293 rcu_read_unlock();
1295 return ret;
1299 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1301 unsigned long flags;
1302 int ret = 0;
1304 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1306 read_lock(&tasklist_lock);
1307 /* Since it_lock is held, p->sighand cannot be NULL. */
1308 spin_lock_irqsave(&p->sighand->siglock, flags);
1309 handle_stop_signal(sig, p);
1311 /* Short-circuit ignored signals. */
1312 if (sig_ignored(p, sig)) {
1313 ret = 1;
1314 goto out;
1317 if (unlikely(!list_empty(&q->list))) {
1319 * If an SI_TIMER entry is already queue just increment
1320 * the overrun count. Other uses should not try to
1321 * send the signal multiple times.
1323 BUG_ON(q->info.si_code != SI_TIMER);
1324 q->info.si_overrun++;
1325 goto out;
1329 * Put this signal on the shared-pending queue.
1330 * We always use the shared queue for process-wide signals,
1331 * to avoid several races.
1333 list_add_tail(&q->list, &p->signal->shared_pending.list);
1334 sigaddset(&p->signal->shared_pending.signal, sig);
1336 __group_complete_signal(sig, p);
1337 out:
1338 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1339 read_unlock(&tasklist_lock);
1340 return ret;
1344 * Wake up any threads in the parent blocked in wait* syscalls.
1346 static inline void __wake_up_parent(struct task_struct *p,
1347 struct task_struct *parent)
1349 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1353 * Let a parent know about the death of a child.
1354 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1357 void do_notify_parent(struct task_struct *tsk, int sig)
1359 struct siginfo info;
1360 unsigned long flags;
1361 struct sighand_struct *psig;
1363 BUG_ON(sig == -1);
1365 /* do_notify_parent_cldstop should have been called instead. */
1366 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1368 BUG_ON(!tsk->ptrace &&
1369 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1371 info.si_signo = sig;
1372 info.si_errno = 0;
1373 info.si_pid = tsk->pid;
1374 info.si_uid = tsk->uid;
1376 /* FIXME: find out whether or not this is supposed to be c*time. */
1377 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1378 tsk->signal->utime));
1379 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1380 tsk->signal->stime));
1382 info.si_status = tsk->exit_code & 0x7f;
1383 if (tsk->exit_code & 0x80)
1384 info.si_code = CLD_DUMPED;
1385 else if (tsk->exit_code & 0x7f)
1386 info.si_code = CLD_KILLED;
1387 else {
1388 info.si_code = CLD_EXITED;
1389 info.si_status = tsk->exit_code >> 8;
1392 psig = tsk->parent->sighand;
1393 spin_lock_irqsave(&psig->siglock, flags);
1394 if (!tsk->ptrace && sig == SIGCHLD &&
1395 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1396 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1398 * We are exiting and our parent doesn't care. POSIX.1
1399 * defines special semantics for setting SIGCHLD to SIG_IGN
1400 * or setting the SA_NOCLDWAIT flag: we should be reaped
1401 * automatically and not left for our parent's wait4 call.
1402 * Rather than having the parent do it as a magic kind of
1403 * signal handler, we just set this to tell do_exit that we
1404 * can be cleaned up without becoming a zombie. Note that
1405 * we still call __wake_up_parent in this case, because a
1406 * blocked sys_wait4 might now return -ECHILD.
1408 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1409 * is implementation-defined: we do (if you don't want
1410 * it, just use SIG_IGN instead).
1412 tsk->exit_signal = -1;
1413 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1414 sig = 0;
1416 if (valid_signal(sig) && sig > 0)
1417 __group_send_sig_info(sig, &info, tsk->parent);
1418 __wake_up_parent(tsk, tsk->parent);
1419 spin_unlock_irqrestore(&psig->siglock, flags);
1422 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1424 struct siginfo info;
1425 unsigned long flags;
1426 struct task_struct *parent;
1427 struct sighand_struct *sighand;
1429 if (tsk->ptrace & PT_PTRACED)
1430 parent = tsk->parent;
1431 else {
1432 tsk = tsk->group_leader;
1433 parent = tsk->real_parent;
1436 info.si_signo = SIGCHLD;
1437 info.si_errno = 0;
1438 info.si_pid = tsk->pid;
1439 info.si_uid = tsk->uid;
1441 /* FIXME: find out whether or not this is supposed to be c*time. */
1442 info.si_utime = cputime_to_jiffies(tsk->utime);
1443 info.si_stime = cputime_to_jiffies(tsk->stime);
1445 info.si_code = why;
1446 switch (why) {
1447 case CLD_CONTINUED:
1448 info.si_status = SIGCONT;
1449 break;
1450 case CLD_STOPPED:
1451 info.si_status = tsk->signal->group_exit_code & 0x7f;
1452 break;
1453 case CLD_TRAPPED:
1454 info.si_status = tsk->exit_code & 0x7f;
1455 break;
1456 default:
1457 BUG();
1460 sighand = parent->sighand;
1461 spin_lock_irqsave(&sighand->siglock, flags);
1462 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1463 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1464 __group_send_sig_info(SIGCHLD, &info, parent);
1466 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1468 __wake_up_parent(tsk, parent);
1469 spin_unlock_irqrestore(&sighand->siglock, flags);
1472 static inline int may_ptrace_stop(void)
1474 if (!likely(current->ptrace & PT_PTRACED))
1475 return 0;
1477 if (unlikely(current->parent == current->real_parent &&
1478 (current->ptrace & PT_ATTACHED)))
1479 return 0;
1481 if (unlikely(current->signal == current->parent->signal) &&
1482 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1483 return 0;
1486 * Are we in the middle of do_coredump?
1487 * If so and our tracer is also part of the coredump stopping
1488 * is a deadlock situation, and pointless because our tracer
1489 * is dead so don't allow us to stop.
1490 * If SIGKILL was already sent before the caller unlocked
1491 * ->siglock we must see ->core_waiters != 0. Otherwise it
1492 * is safe to enter schedule().
1494 if (unlikely(current->mm->core_waiters) &&
1495 unlikely(current->mm == current->parent->mm))
1496 return 0;
1498 return 1;
1502 * This must be called with current->sighand->siglock held.
1504 * This should be the path for all ptrace stops.
1505 * We always set current->last_siginfo while stopped here.
1506 * That makes it a way to test a stopped process for
1507 * being ptrace-stopped vs being job-control-stopped.
1509 * If we actually decide not to stop at all because the tracer is gone,
1510 * we leave nostop_code in current->exit_code.
1512 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1515 * If there is a group stop in progress,
1516 * we must participate in the bookkeeping.
1518 if (current->signal->group_stop_count > 0)
1519 --current->signal->group_stop_count;
1521 current->last_siginfo = info;
1522 current->exit_code = exit_code;
1524 /* Let the debugger run. */
1525 set_current_state(TASK_TRACED);
1526 spin_unlock_irq(&current->sighand->siglock);
1527 try_to_freeze();
1528 read_lock(&tasklist_lock);
1529 if (may_ptrace_stop()) {
1530 do_notify_parent_cldstop(current, CLD_TRAPPED);
1531 read_unlock(&tasklist_lock);
1532 schedule();
1533 } else {
1535 * By the time we got the lock, our tracer went away.
1536 * Don't stop here.
1538 read_unlock(&tasklist_lock);
1539 set_current_state(TASK_RUNNING);
1540 current->exit_code = nostop_code;
1544 * We are back. Now reacquire the siglock before touching
1545 * last_siginfo, so that we are sure to have synchronized with
1546 * any signal-sending on another CPU that wants to examine it.
1548 spin_lock_irq(&current->sighand->siglock);
1549 current->last_siginfo = NULL;
1552 * Queued signals ignored us while we were stopped for tracing.
1553 * So check for any that we should take before resuming user mode.
1555 recalc_sigpending();
1558 void ptrace_notify(int exit_code)
1560 siginfo_t info;
1562 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1564 memset(&info, 0, sizeof info);
1565 info.si_signo = SIGTRAP;
1566 info.si_code = exit_code;
1567 info.si_pid = current->pid;
1568 info.si_uid = current->uid;
1570 /* Let the debugger run. */
1571 spin_lock_irq(&current->sighand->siglock);
1572 ptrace_stop(exit_code, 0, &info);
1573 spin_unlock_irq(&current->sighand->siglock);
1576 static void
1577 finish_stop(int stop_count)
1580 * If there are no other threads in the group, or if there is
1581 * a group stop in progress and we are the last to stop,
1582 * report to the parent. When ptraced, every thread reports itself.
1584 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1585 read_lock(&tasklist_lock);
1586 do_notify_parent_cldstop(current, CLD_STOPPED);
1587 read_unlock(&tasklist_lock);
1590 do {
1591 schedule();
1592 } while (try_to_freeze());
1594 * Now we don't run again until continued.
1596 current->exit_code = 0;
1600 * This performs the stopping for SIGSTOP and other stop signals.
1601 * We have to stop all threads in the thread group.
1602 * Returns nonzero if we've actually stopped and released the siglock.
1603 * Returns zero if we didn't stop and still hold the siglock.
1605 static int do_signal_stop(int signr)
1607 struct signal_struct *sig = current->signal;
1608 int stop_count;
1610 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1611 return 0;
1613 if (sig->group_stop_count > 0) {
1615 * There is a group stop in progress. We don't need to
1616 * start another one.
1618 stop_count = --sig->group_stop_count;
1619 } else {
1621 * There is no group stop already in progress.
1622 * We must initiate one now.
1624 struct task_struct *t;
1626 sig->group_exit_code = signr;
1628 stop_count = 0;
1629 for (t = next_thread(current); t != current; t = next_thread(t))
1631 * Setting state to TASK_STOPPED for a group
1632 * stop is always done with the siglock held,
1633 * so this check has no races.
1635 if (!t->exit_state &&
1636 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1637 stop_count++;
1638 signal_wake_up(t, 0);
1640 sig->group_stop_count = stop_count;
1643 if (stop_count == 0)
1644 sig->flags = SIGNAL_STOP_STOPPED;
1645 current->exit_code = sig->group_exit_code;
1646 __set_current_state(TASK_STOPPED);
1648 spin_unlock_irq(&current->sighand->siglock);
1649 finish_stop(stop_count);
1650 return 1;
1654 * Do appropriate magic when group_stop_count > 0.
1655 * We return nonzero if we stopped, after releasing the siglock.
1656 * We return zero if we still hold the siglock and should look
1657 * for another signal without checking group_stop_count again.
1659 static int handle_group_stop(void)
1661 int stop_count;
1663 if (current->signal->group_exit_task == current) {
1665 * Group stop is so we can do a core dump,
1666 * We are the initiating thread, so get on with it.
1668 current->signal->group_exit_task = NULL;
1669 return 0;
1672 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1674 * Group stop is so another thread can do a core dump,
1675 * or else we are racing against a death signal.
1676 * Just punt the stop so we can get the next signal.
1678 return 0;
1681 * There is a group stop in progress. We stop
1682 * without any associated signal being in our queue.
1684 stop_count = --current->signal->group_stop_count;
1685 if (stop_count == 0)
1686 current->signal->flags = SIGNAL_STOP_STOPPED;
1687 current->exit_code = current->signal->group_exit_code;
1688 set_current_state(TASK_STOPPED);
1689 spin_unlock_irq(&current->sighand->siglock);
1690 finish_stop(stop_count);
1691 return 1;
1694 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1695 struct pt_regs *regs, void *cookie)
1697 sigset_t *mask = &current->blocked;
1698 int signr = 0;
1700 try_to_freeze();
1702 relock:
1703 spin_lock_irq(&current->sighand->siglock);
1704 for (;;) {
1705 struct k_sigaction *ka;
1707 if (unlikely(current->signal->group_stop_count > 0) &&
1708 handle_group_stop())
1709 goto relock;
1711 signr = dequeue_signal(current, mask, info);
1713 if (!signr)
1714 break; /* will return 0 */
1716 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1717 ptrace_signal_deliver(regs, cookie);
1719 /* Let the debugger run. */
1720 ptrace_stop(signr, signr, info);
1722 /* We're back. Did the debugger cancel the sig? */
1723 signr = current->exit_code;
1724 if (signr == 0)
1725 continue;
1727 current->exit_code = 0;
1729 /* Update the siginfo structure if the signal has
1730 changed. If the debugger wanted something
1731 specific in the siginfo structure then it should
1732 have updated *info via PTRACE_SETSIGINFO. */
1733 if (signr != info->si_signo) {
1734 info->si_signo = signr;
1735 info->si_errno = 0;
1736 info->si_code = SI_USER;
1737 info->si_pid = current->parent->pid;
1738 info->si_uid = current->parent->uid;
1741 /* If the (new) signal is now blocked, requeue it. */
1742 if (sigismember(&current->blocked, signr)) {
1743 specific_send_sig_info(signr, info, current);
1744 continue;
1748 ka = &current->sighand->action[signr-1];
1749 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1750 continue;
1751 if (ka->sa.sa_handler != SIG_DFL) {
1752 /* Run the handler. */
1753 *return_ka = *ka;
1755 if (ka->sa.sa_flags & SA_ONESHOT)
1756 ka->sa.sa_handler = SIG_DFL;
1758 break; /* will return non-zero "signr" value */
1762 * Now we are doing the default action for this signal.
1764 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1765 continue;
1768 * Init of a pid space gets no signals it doesn't want from
1769 * within that pid space. It can of course get signals from
1770 * its parent pid space.
1772 if (current == child_reaper(current))
1773 continue;
1775 if (sig_kernel_stop(signr)) {
1777 * The default action is to stop all threads in
1778 * the thread group. The job control signals
1779 * do nothing in an orphaned pgrp, but SIGSTOP
1780 * always works. Note that siglock needs to be
1781 * dropped during the call to is_orphaned_pgrp()
1782 * because of lock ordering with tasklist_lock.
1783 * This allows an intervening SIGCONT to be posted.
1784 * We need to check for that and bail out if necessary.
1786 if (signr != SIGSTOP) {
1787 spin_unlock_irq(&current->sighand->siglock);
1789 /* signals can be posted during this window */
1791 if (is_current_pgrp_orphaned())
1792 goto relock;
1794 spin_lock_irq(&current->sighand->siglock);
1797 if (likely(do_signal_stop(signr))) {
1798 /* It released the siglock. */
1799 goto relock;
1803 * We didn't actually stop, due to a race
1804 * with SIGCONT or something like that.
1806 continue;
1809 spin_unlock_irq(&current->sighand->siglock);
1812 * Anything else is fatal, maybe with a core dump.
1814 current->flags |= PF_SIGNALED;
1815 if (sig_kernel_coredump(signr)) {
1817 * If it was able to dump core, this kills all
1818 * other threads in the group and synchronizes with
1819 * their demise. If we lost the race with another
1820 * thread getting here, it set group_exit_code
1821 * first and our do_group_exit call below will use
1822 * that value and ignore the one we pass it.
1824 do_coredump((long)signr, signr, regs);
1828 * Death signals, no core dump.
1830 do_group_exit(signr);
1831 /* NOTREACHED */
1833 spin_unlock_irq(&current->sighand->siglock);
1834 return signr;
1837 EXPORT_SYMBOL(recalc_sigpending);
1838 EXPORT_SYMBOL_GPL(dequeue_signal);
1839 EXPORT_SYMBOL(flush_signals);
1840 EXPORT_SYMBOL(force_sig);
1841 EXPORT_SYMBOL(kill_proc);
1842 EXPORT_SYMBOL(ptrace_notify);
1843 EXPORT_SYMBOL(send_sig);
1844 EXPORT_SYMBOL(send_sig_info);
1845 EXPORT_SYMBOL(sigprocmask);
1846 EXPORT_SYMBOL(block_all_signals);
1847 EXPORT_SYMBOL(unblock_all_signals);
1851 * System call entry points.
1854 asmlinkage long sys_restart_syscall(void)
1856 struct restart_block *restart = &current_thread_info()->restart_block;
1857 return restart->fn(restart);
1860 long do_no_restart_syscall(struct restart_block *param)
1862 return -EINTR;
1866 * We don't need to get the kernel lock - this is all local to this
1867 * particular thread.. (and that's good, because this is _heavily_
1868 * used by various programs)
1872 * This is also useful for kernel threads that want to temporarily
1873 * (or permanently) block certain signals.
1875 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1876 * interface happily blocks "unblockable" signals like SIGKILL
1877 * and friends.
1879 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1881 int error;
1883 spin_lock_irq(&current->sighand->siglock);
1884 if (oldset)
1885 *oldset = current->blocked;
1887 error = 0;
1888 switch (how) {
1889 case SIG_BLOCK:
1890 sigorsets(&current->blocked, &current->blocked, set);
1891 break;
1892 case SIG_UNBLOCK:
1893 signandsets(&current->blocked, &current->blocked, set);
1894 break;
1895 case SIG_SETMASK:
1896 current->blocked = *set;
1897 break;
1898 default:
1899 error = -EINVAL;
1901 recalc_sigpending();
1902 spin_unlock_irq(&current->sighand->siglock);
1904 return error;
1907 asmlinkage long
1908 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1910 int error = -EINVAL;
1911 sigset_t old_set, new_set;
1913 /* XXX: Don't preclude handling different sized sigset_t's. */
1914 if (sigsetsize != sizeof(sigset_t))
1915 goto out;
1917 if (set) {
1918 error = -EFAULT;
1919 if (copy_from_user(&new_set, set, sizeof(*set)))
1920 goto out;
1921 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1923 error = sigprocmask(how, &new_set, &old_set);
1924 if (error)
1925 goto out;
1926 if (oset)
1927 goto set_old;
1928 } else if (oset) {
1929 spin_lock_irq(&current->sighand->siglock);
1930 old_set = current->blocked;
1931 spin_unlock_irq(&current->sighand->siglock);
1933 set_old:
1934 error = -EFAULT;
1935 if (copy_to_user(oset, &old_set, sizeof(*oset)))
1936 goto out;
1938 error = 0;
1939 out:
1940 return error;
1943 long do_sigpending(void __user *set, unsigned long sigsetsize)
1945 long error = -EINVAL;
1946 sigset_t pending;
1948 if (sigsetsize > sizeof(sigset_t))
1949 goto out;
1951 spin_lock_irq(&current->sighand->siglock);
1952 sigorsets(&pending, &current->pending.signal,
1953 &current->signal->shared_pending.signal);
1954 spin_unlock_irq(&current->sighand->siglock);
1956 /* Outside the lock because only this thread touches it. */
1957 sigandsets(&pending, &current->blocked, &pending);
1959 error = -EFAULT;
1960 if (!copy_to_user(set, &pending, sigsetsize))
1961 error = 0;
1963 out:
1964 return error;
1967 asmlinkage long
1968 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
1970 return do_sigpending(set, sigsetsize);
1973 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
1975 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
1977 int err;
1979 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
1980 return -EFAULT;
1981 if (from->si_code < 0)
1982 return __copy_to_user(to, from, sizeof(siginfo_t))
1983 ? -EFAULT : 0;
1985 * If you change siginfo_t structure, please be sure
1986 * this code is fixed accordingly.
1987 * It should never copy any pad contained in the structure
1988 * to avoid security leaks, but must copy the generic
1989 * 3 ints plus the relevant union member.
1991 err = __put_user(from->si_signo, &to->si_signo);
1992 err |= __put_user(from->si_errno, &to->si_errno);
1993 err |= __put_user((short)from->si_code, &to->si_code);
1994 switch (from->si_code & __SI_MASK) {
1995 case __SI_KILL:
1996 err |= __put_user(from->si_pid, &to->si_pid);
1997 err |= __put_user(from->si_uid, &to->si_uid);
1998 break;
1999 case __SI_TIMER:
2000 err |= __put_user(from->si_tid, &to->si_tid);
2001 err |= __put_user(from->si_overrun, &to->si_overrun);
2002 err |= __put_user(from->si_ptr, &to->si_ptr);
2003 break;
2004 case __SI_POLL:
2005 err |= __put_user(from->si_band, &to->si_band);
2006 err |= __put_user(from->si_fd, &to->si_fd);
2007 break;
2008 case __SI_FAULT:
2009 err |= __put_user(from->si_addr, &to->si_addr);
2010 #ifdef __ARCH_SI_TRAPNO
2011 err |= __put_user(from->si_trapno, &to->si_trapno);
2012 #endif
2013 break;
2014 case __SI_CHLD:
2015 err |= __put_user(from->si_pid, &to->si_pid);
2016 err |= __put_user(from->si_uid, &to->si_uid);
2017 err |= __put_user(from->si_status, &to->si_status);
2018 err |= __put_user(from->si_utime, &to->si_utime);
2019 err |= __put_user(from->si_stime, &to->si_stime);
2020 break;
2021 case __SI_RT: /* This is not generated by the kernel as of now. */
2022 case __SI_MESGQ: /* But this is */
2023 err |= __put_user(from->si_pid, &to->si_pid);
2024 err |= __put_user(from->si_uid, &to->si_uid);
2025 err |= __put_user(from->si_ptr, &to->si_ptr);
2026 break;
2027 default: /* this is just in case for now ... */
2028 err |= __put_user(from->si_pid, &to->si_pid);
2029 err |= __put_user(from->si_uid, &to->si_uid);
2030 break;
2032 return err;
2035 #endif
2037 asmlinkage long
2038 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2039 siginfo_t __user *uinfo,
2040 const struct timespec __user *uts,
2041 size_t sigsetsize)
2043 int ret, sig;
2044 sigset_t these;
2045 struct timespec ts;
2046 siginfo_t info;
2047 long timeout = 0;
2049 /* XXX: Don't preclude handling different sized sigset_t's. */
2050 if (sigsetsize != sizeof(sigset_t))
2051 return -EINVAL;
2053 if (copy_from_user(&these, uthese, sizeof(these)))
2054 return -EFAULT;
2057 * Invert the set of allowed signals to get those we
2058 * want to block.
2060 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2061 signotset(&these);
2063 if (uts) {
2064 if (copy_from_user(&ts, uts, sizeof(ts)))
2065 return -EFAULT;
2066 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2067 || ts.tv_sec < 0)
2068 return -EINVAL;
2071 spin_lock_irq(&current->sighand->siglock);
2072 sig = dequeue_signal(current, &these, &info);
2073 if (!sig) {
2074 timeout = MAX_SCHEDULE_TIMEOUT;
2075 if (uts)
2076 timeout = (timespec_to_jiffies(&ts)
2077 + (ts.tv_sec || ts.tv_nsec));
2079 if (timeout) {
2080 /* None ready -- temporarily unblock those we're
2081 * interested while we are sleeping in so that we'll
2082 * be awakened when they arrive. */
2083 current->real_blocked = current->blocked;
2084 sigandsets(&current->blocked, &current->blocked, &these);
2085 recalc_sigpending();
2086 spin_unlock_irq(&current->sighand->siglock);
2088 timeout = schedule_timeout_interruptible(timeout);
2090 spin_lock_irq(&current->sighand->siglock);
2091 sig = dequeue_signal(current, &these, &info);
2092 current->blocked = current->real_blocked;
2093 siginitset(&current->real_blocked, 0);
2094 recalc_sigpending();
2097 spin_unlock_irq(&current->sighand->siglock);
2099 if (sig) {
2100 ret = sig;
2101 if (uinfo) {
2102 if (copy_siginfo_to_user(uinfo, &info))
2103 ret = -EFAULT;
2105 } else {
2106 ret = -EAGAIN;
2107 if (timeout)
2108 ret = -EINTR;
2111 return ret;
2114 asmlinkage long
2115 sys_kill(int pid, int sig)
2117 struct siginfo info;
2119 info.si_signo = sig;
2120 info.si_errno = 0;
2121 info.si_code = SI_USER;
2122 info.si_pid = current->tgid;
2123 info.si_uid = current->uid;
2125 return kill_something_info(sig, &info, pid);
2128 static int do_tkill(int tgid, int pid, int sig)
2130 int error;
2131 struct siginfo info;
2132 struct task_struct *p;
2134 error = -ESRCH;
2135 info.si_signo = sig;
2136 info.si_errno = 0;
2137 info.si_code = SI_TKILL;
2138 info.si_pid = current->tgid;
2139 info.si_uid = current->uid;
2141 read_lock(&tasklist_lock);
2142 p = find_task_by_pid(pid);
2143 if (p && (tgid <= 0 || p->tgid == tgid)) {
2144 error = check_kill_permission(sig, &info, p);
2146 * The null signal is a permissions and process existence
2147 * probe. No signal is actually delivered.
2149 if (!error && sig && p->sighand) {
2150 spin_lock_irq(&p->sighand->siglock);
2151 handle_stop_signal(sig, p);
2152 error = specific_send_sig_info(sig, &info, p);
2153 spin_unlock_irq(&p->sighand->siglock);
2156 read_unlock(&tasklist_lock);
2158 return error;
2162 * sys_tgkill - send signal to one specific thread
2163 * @tgid: the thread group ID of the thread
2164 * @pid: the PID of the thread
2165 * @sig: signal to be sent
2167 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2168 * exists but it's not belonging to the target process anymore. This
2169 * method solves the problem of threads exiting and PIDs getting reused.
2171 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2173 /* This is only valid for single tasks */
2174 if (pid <= 0 || tgid <= 0)
2175 return -EINVAL;
2177 return do_tkill(tgid, pid, sig);
2181 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2183 asmlinkage long
2184 sys_tkill(int pid, int sig)
2186 /* This is only valid for single tasks */
2187 if (pid <= 0)
2188 return -EINVAL;
2190 return do_tkill(0, pid, sig);
2193 asmlinkage long
2194 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2196 siginfo_t info;
2198 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2199 return -EFAULT;
2201 /* Not even root can pretend to send signals from the kernel.
2202 Nor can they impersonate a kill(), which adds source info. */
2203 if (info.si_code >= 0)
2204 return -EPERM;
2205 info.si_signo = sig;
2207 /* POSIX.1b doesn't mention process groups. */
2208 return kill_proc_info(sig, &info, pid);
2211 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2213 struct k_sigaction *k;
2214 sigset_t mask;
2216 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2217 return -EINVAL;
2219 k = &current->sighand->action[sig-1];
2221 spin_lock_irq(&current->sighand->siglock);
2222 if (signal_pending(current)) {
2224 * If there might be a fatal signal pending on multiple
2225 * threads, make sure we take it before changing the action.
2227 spin_unlock_irq(&current->sighand->siglock);
2228 return -ERESTARTNOINTR;
2231 if (oact)
2232 *oact = *k;
2234 if (act) {
2235 sigdelsetmask(&act->sa.sa_mask,
2236 sigmask(SIGKILL) | sigmask(SIGSTOP));
2237 *k = *act;
2239 * POSIX 3.3.1.3:
2240 * "Setting a signal action to SIG_IGN for a signal that is
2241 * pending shall cause the pending signal to be discarded,
2242 * whether or not it is blocked."
2244 * "Setting a signal action to SIG_DFL for a signal that is
2245 * pending and whose default action is to ignore the signal
2246 * (for example, SIGCHLD), shall cause the pending signal to
2247 * be discarded, whether or not it is blocked"
2249 if (act->sa.sa_handler == SIG_IGN ||
2250 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2251 struct task_struct *t = current;
2252 sigemptyset(&mask);
2253 sigaddset(&mask, sig);
2254 rm_from_queue_full(&mask, &t->signal->shared_pending);
2255 do {
2256 rm_from_queue_full(&mask, &t->pending);
2257 recalc_sigpending_tsk(t);
2258 t = next_thread(t);
2259 } while (t != current);
2263 spin_unlock_irq(&current->sighand->siglock);
2264 return 0;
2267 int
2268 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2270 stack_t oss;
2271 int error;
2273 if (uoss) {
2274 oss.ss_sp = (void __user *) current->sas_ss_sp;
2275 oss.ss_size = current->sas_ss_size;
2276 oss.ss_flags = sas_ss_flags(sp);
2279 if (uss) {
2280 void __user *ss_sp;
2281 size_t ss_size;
2282 int ss_flags;
2284 error = -EFAULT;
2285 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2286 || __get_user(ss_sp, &uss->ss_sp)
2287 || __get_user(ss_flags, &uss->ss_flags)
2288 || __get_user(ss_size, &uss->ss_size))
2289 goto out;
2291 error = -EPERM;
2292 if (on_sig_stack(sp))
2293 goto out;
2295 error = -EINVAL;
2298 * Note - this code used to test ss_flags incorrectly
2299 * old code may have been written using ss_flags==0
2300 * to mean ss_flags==SS_ONSTACK (as this was the only
2301 * way that worked) - this fix preserves that older
2302 * mechanism
2304 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2305 goto out;
2307 if (ss_flags == SS_DISABLE) {
2308 ss_size = 0;
2309 ss_sp = NULL;
2310 } else {
2311 error = -ENOMEM;
2312 if (ss_size < MINSIGSTKSZ)
2313 goto out;
2316 current->sas_ss_sp = (unsigned long) ss_sp;
2317 current->sas_ss_size = ss_size;
2320 if (uoss) {
2321 error = -EFAULT;
2322 if (copy_to_user(uoss, &oss, sizeof(oss)))
2323 goto out;
2326 error = 0;
2327 out:
2328 return error;
2331 #ifdef __ARCH_WANT_SYS_SIGPENDING
2333 asmlinkage long
2334 sys_sigpending(old_sigset_t __user *set)
2336 return do_sigpending(set, sizeof(*set));
2339 #endif
2341 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2342 /* Some platforms have their own version with special arguments others
2343 support only sys_rt_sigprocmask. */
2345 asmlinkage long
2346 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2348 int error;
2349 old_sigset_t old_set, new_set;
2351 if (set) {
2352 error = -EFAULT;
2353 if (copy_from_user(&new_set, set, sizeof(*set)))
2354 goto out;
2355 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2357 spin_lock_irq(&current->sighand->siglock);
2358 old_set = current->blocked.sig[0];
2360 error = 0;
2361 switch (how) {
2362 default:
2363 error = -EINVAL;
2364 break;
2365 case SIG_BLOCK:
2366 sigaddsetmask(&current->blocked, new_set);
2367 break;
2368 case SIG_UNBLOCK:
2369 sigdelsetmask(&current->blocked, new_set);
2370 break;
2371 case SIG_SETMASK:
2372 current->blocked.sig[0] = new_set;
2373 break;
2376 recalc_sigpending();
2377 spin_unlock_irq(&current->sighand->siglock);
2378 if (error)
2379 goto out;
2380 if (oset)
2381 goto set_old;
2382 } else if (oset) {
2383 old_set = current->blocked.sig[0];
2384 set_old:
2385 error = -EFAULT;
2386 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2387 goto out;
2389 error = 0;
2390 out:
2391 return error;
2393 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2395 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2396 asmlinkage long
2397 sys_rt_sigaction(int sig,
2398 const struct sigaction __user *act,
2399 struct sigaction __user *oact,
2400 size_t sigsetsize)
2402 struct k_sigaction new_sa, old_sa;
2403 int ret = -EINVAL;
2405 /* XXX: Don't preclude handling different sized sigset_t's. */
2406 if (sigsetsize != sizeof(sigset_t))
2407 goto out;
2409 if (act) {
2410 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2411 return -EFAULT;
2414 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2416 if (!ret && oact) {
2417 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2418 return -EFAULT;
2420 out:
2421 return ret;
2423 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2425 #ifdef __ARCH_WANT_SYS_SGETMASK
2428 * For backwards compatibility. Functionality superseded by sigprocmask.
2430 asmlinkage long
2431 sys_sgetmask(void)
2433 /* SMP safe */
2434 return current->blocked.sig[0];
2437 asmlinkage long
2438 sys_ssetmask(int newmask)
2440 int old;
2442 spin_lock_irq(&current->sighand->siglock);
2443 old = current->blocked.sig[0];
2445 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2446 sigmask(SIGSTOP)));
2447 recalc_sigpending();
2448 spin_unlock_irq(&current->sighand->siglock);
2450 return old;
2452 #endif /* __ARCH_WANT_SGETMASK */
2454 #ifdef __ARCH_WANT_SYS_SIGNAL
2456 * For backwards compatibility. Functionality superseded by sigaction.
2458 asmlinkage unsigned long
2459 sys_signal(int sig, __sighandler_t handler)
2461 struct k_sigaction new_sa, old_sa;
2462 int ret;
2464 new_sa.sa.sa_handler = handler;
2465 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2466 sigemptyset(&new_sa.sa.sa_mask);
2468 ret = do_sigaction(sig, &new_sa, &old_sa);
2470 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2472 #endif /* __ARCH_WANT_SYS_SIGNAL */
2474 #ifdef __ARCH_WANT_SYS_PAUSE
2476 asmlinkage long
2477 sys_pause(void)
2479 current->state = TASK_INTERRUPTIBLE;
2480 schedule();
2481 return -ERESTARTNOHAND;
2484 #endif
2486 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2487 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2489 sigset_t newset;
2491 /* XXX: Don't preclude handling different sized sigset_t's. */
2492 if (sigsetsize != sizeof(sigset_t))
2493 return -EINVAL;
2495 if (copy_from_user(&newset, unewset, sizeof(newset)))
2496 return -EFAULT;
2497 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2499 spin_lock_irq(&current->sighand->siglock);
2500 current->saved_sigmask = current->blocked;
2501 current->blocked = newset;
2502 recalc_sigpending();
2503 spin_unlock_irq(&current->sighand->siglock);
2505 current->state = TASK_INTERRUPTIBLE;
2506 schedule();
2507 set_thread_flag(TIF_RESTORE_SIGMASK);
2508 return -ERESTARTNOHAND;
2510 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2512 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2514 return NULL;
2517 void __init signals_init(void)
2519 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);