Base Au1200 2.6 support.
[linux-2.6/verdex.git] / arch / mips / mm / tlbex.c
blob248537cebc899b90f97f7bdbc18d9c20aef27ec9
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004,2005 by Thiemo Seufer
9 */
11 #include <stdarg.h>
13 #include <linux/config.h>
14 #include <linux/mm.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/string.h>
18 #include <linux/init.h>
20 #include <asm/pgtable.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/inst.h>
24 #include <asm/elf.h>
25 #include <asm/smp.h>
26 #include <asm/war.h>
28 /* #define DEBUG_TLB */
30 static __init int __attribute__((unused)) r45k_bvahwbug(void)
32 /* XXX: We should probe for the presence of this bug, but we don't. */
33 return 0;
36 static __init int __attribute__((unused)) r4k_250MHZhwbug(void)
38 /* XXX: We should probe for the presence of this bug, but we don't. */
39 return 0;
42 static __init int __attribute__((unused)) bcm1250_m3_war(void)
44 return BCM1250_M3_WAR;
47 static __init int __attribute__((unused)) r10000_llsc_war(void)
49 return R10000_LLSC_WAR;
53 * A little micro-assembler, intended for TLB refill handler
54 * synthesizing. It is intentionally kept simple, does only support
55 * a subset of instructions, and does not try to hide pipeline effects
56 * like branch delay slots.
59 enum fields
61 RS = 0x001,
62 RT = 0x002,
63 RD = 0x004,
64 RE = 0x008,
65 SIMM = 0x010,
66 UIMM = 0x020,
67 BIMM = 0x040,
68 JIMM = 0x080,
69 FUNC = 0x100,
72 #define OP_MASK 0x2f
73 #define OP_SH 26
74 #define RS_MASK 0x1f
75 #define RS_SH 21
76 #define RT_MASK 0x1f
77 #define RT_SH 16
78 #define RD_MASK 0x1f
79 #define RD_SH 11
80 #define RE_MASK 0x1f
81 #define RE_SH 6
82 #define IMM_MASK 0xffff
83 #define IMM_SH 0
84 #define JIMM_MASK 0x3ffffff
85 #define JIMM_SH 0
86 #define FUNC_MASK 0x2f
87 #define FUNC_SH 0
89 enum opcode {
90 insn_invalid,
91 insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
92 insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
93 insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
94 insn_dsll, insn_dsll32, insn_dsra, insn_dsrl, insn_dsrl32,
95 insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
96 insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
97 insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
98 insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
99 insn_tlbwr, insn_xor, insn_xori
102 struct insn {
103 enum opcode opcode;
104 u32 match;
105 enum fields fields;
108 /* This macro sets the non-variable bits of an instruction. */
109 #define M(a, b, c, d, e, f) \
110 ((a) << OP_SH \
111 | (b) << RS_SH \
112 | (c) << RT_SH \
113 | (d) << RD_SH \
114 | (e) << RE_SH \
115 | (f) << FUNC_SH)
117 static __initdata struct insn insn_table[] = {
118 { insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM },
119 { insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD },
120 { insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD },
121 { insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM },
122 { insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM },
123 { insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM },
124 { insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM },
125 { insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM },
126 { insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM },
127 { insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM },
128 { insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM },
129 { insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM },
130 { insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD },
131 { insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD },
132 { insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD },
133 { insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE },
134 { insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE },
135 { insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE },
136 { insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE },
137 { insn_dsrl32, M(spec_op,0,0,0,0,dsrl32_op), RT | RD | RE },
138 { insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD },
139 { insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 },
140 { insn_j, M(j_op,0,0,0,0,0), JIMM },
141 { insn_jal, M(jal_op,0,0,0,0,0), JIMM },
142 { insn_jr, M(spec_op,0,0,0,0,jr_op), RS },
143 { insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM },
144 { insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM },
145 { insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM },
146 { insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM },
147 { insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM },
148 { insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD },
149 { insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD },
150 { insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM },
151 { insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 },
152 { insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM },
153 { insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM },
154 { insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM },
155 { insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE },
156 { insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE },
157 { insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE },
158 { insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD },
159 { insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM },
160 { insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 },
161 { insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 },
162 { insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 },
163 { insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD },
164 { insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM },
165 { insn_invalid, 0, 0 }
168 #undef M
170 static __init u32 build_rs(u32 arg)
172 if (arg & ~RS_MASK)
173 printk(KERN_WARNING "TLB synthesizer field overflow\n");
175 return (arg & RS_MASK) << RS_SH;
178 static __init u32 build_rt(u32 arg)
180 if (arg & ~RT_MASK)
181 printk(KERN_WARNING "TLB synthesizer field overflow\n");
183 return (arg & RT_MASK) << RT_SH;
186 static __init u32 build_rd(u32 arg)
188 if (arg & ~RD_MASK)
189 printk(KERN_WARNING "TLB synthesizer field overflow\n");
191 return (arg & RD_MASK) << RD_SH;
194 static __init u32 build_re(u32 arg)
196 if (arg & ~RE_MASK)
197 printk(KERN_WARNING "TLB synthesizer field overflow\n");
199 return (arg & RE_MASK) << RE_SH;
202 static __init u32 build_simm(s32 arg)
204 if (arg > 0x7fff || arg < -0x8000)
205 printk(KERN_WARNING "TLB synthesizer field overflow\n");
207 return arg & 0xffff;
210 static __init u32 build_uimm(u32 arg)
212 if (arg & ~IMM_MASK)
213 printk(KERN_WARNING "TLB synthesizer field overflow\n");
215 return arg & IMM_MASK;
218 static __init u32 build_bimm(s32 arg)
220 if (arg > 0x1ffff || arg < -0x20000)
221 printk(KERN_WARNING "TLB synthesizer field overflow\n");
223 if (arg & 0x3)
224 printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
226 return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
229 static __init u32 build_jimm(u32 arg)
231 if (arg & ~((JIMM_MASK) << 2))
232 printk(KERN_WARNING "TLB synthesizer field overflow\n");
234 return (arg >> 2) & JIMM_MASK;
237 static __init u32 build_func(u32 arg)
239 if (arg & ~FUNC_MASK)
240 printk(KERN_WARNING "TLB synthesizer field overflow\n");
242 return arg & FUNC_MASK;
246 * The order of opcode arguments is implicitly left to right,
247 * starting with RS and ending with FUNC or IMM.
249 static void __init build_insn(u32 **buf, enum opcode opc, ...)
251 struct insn *ip = NULL;
252 unsigned int i;
253 va_list ap;
254 u32 op;
256 for (i = 0; insn_table[i].opcode != insn_invalid; i++)
257 if (insn_table[i].opcode == opc) {
258 ip = &insn_table[i];
259 break;
262 if (!ip)
263 panic("Unsupported TLB synthesizer instruction %d", opc);
265 op = ip->match;
266 va_start(ap, opc);
267 if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
268 if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
269 if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
270 if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
271 if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
272 if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
273 if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
274 if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
275 if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
276 va_end(ap);
278 **buf = op;
279 (*buf)++;
282 #define I_u1u2u3(op) \
283 static inline void i##op(u32 **buf, unsigned int a, \
284 unsigned int b, unsigned int c) \
286 build_insn(buf, insn##op, a, b, c); \
289 #define I_u2u1u3(op) \
290 static inline void i##op(u32 **buf, unsigned int a, \
291 unsigned int b, unsigned int c) \
293 build_insn(buf, insn##op, b, a, c); \
296 #define I_u3u1u2(op) \
297 static inline void i##op(u32 **buf, unsigned int a, \
298 unsigned int b, unsigned int c) \
300 build_insn(buf, insn##op, b, c, a); \
303 #define I_u1u2s3(op) \
304 static inline void i##op(u32 **buf, unsigned int a, \
305 unsigned int b, signed int c) \
307 build_insn(buf, insn##op, a, b, c); \
310 #define I_u2s3u1(op) \
311 static inline void i##op(u32 **buf, unsigned int a, \
312 signed int b, unsigned int c) \
314 build_insn(buf, insn##op, c, a, b); \
317 #define I_u2u1s3(op) \
318 static inline void i##op(u32 **buf, unsigned int a, \
319 unsigned int b, signed int c) \
321 build_insn(buf, insn##op, b, a, c); \
324 #define I_u1u2(op) \
325 static inline void i##op(u32 **buf, unsigned int a, \
326 unsigned int b) \
328 build_insn(buf, insn##op, a, b); \
331 #define I_u1s2(op) \
332 static inline void i##op(u32 **buf, unsigned int a, \
333 signed int b) \
335 build_insn(buf, insn##op, a, b); \
338 #define I_u1(op) \
339 static inline void i##op(u32 **buf, unsigned int a) \
341 build_insn(buf, insn##op, a); \
344 #define I_0(op) \
345 static inline void i##op(u32 **buf) \
347 build_insn(buf, insn##op); \
350 I_u2u1s3(_addiu);
351 I_u3u1u2(_addu);
352 I_u2u1u3(_andi);
353 I_u3u1u2(_and);
354 I_u1u2s3(_beq);
355 I_u1u2s3(_beql);
356 I_u1s2(_bgez);
357 I_u1s2(_bgezl);
358 I_u1s2(_bltz);
359 I_u1s2(_bltzl);
360 I_u1u2s3(_bne);
361 I_u1u2(_dmfc0);
362 I_u1u2(_dmtc0);
363 I_u2u1s3(_daddiu);
364 I_u3u1u2(_daddu);
365 I_u2u1u3(_dsll);
366 I_u2u1u3(_dsll32);
367 I_u2u1u3(_dsra);
368 I_u2u1u3(_dsrl);
369 I_u2u1u3(_dsrl32);
370 I_u3u1u2(_dsubu);
371 I_0(_eret);
372 I_u1(_j);
373 I_u1(_jal);
374 I_u1(_jr);
375 I_u2s3u1(_ld);
376 I_u2s3u1(_ll);
377 I_u2s3u1(_lld);
378 I_u1s2(_lui);
379 I_u2s3u1(_lw);
380 I_u1u2(_mfc0);
381 I_u1u2(_mtc0);
382 I_u2u1u3(_ori);
383 I_0(_rfe);
384 I_u2s3u1(_sc);
385 I_u2s3u1(_scd);
386 I_u2s3u1(_sd);
387 I_u2u1u3(_sll);
388 I_u2u1u3(_sra);
389 I_u2u1u3(_srl);
390 I_u3u1u2(_subu);
391 I_u2s3u1(_sw);
392 I_0(_tlbp);
393 I_0(_tlbwi);
394 I_0(_tlbwr);
395 I_u3u1u2(_xor)
396 I_u2u1u3(_xori);
399 * handling labels
402 enum label_id {
403 label_invalid,
404 label_second_part,
405 label_leave,
406 label_vmalloc,
407 label_vmalloc_done,
408 label_tlbw_hazard,
409 label_split,
410 label_nopage_tlbl,
411 label_nopage_tlbs,
412 label_nopage_tlbm,
413 label_smp_pgtable_change,
414 label_r3000_write_probe_fail,
415 label_r3000_write_probe_ok
418 struct label {
419 u32 *addr;
420 enum label_id lab;
423 static __init void build_label(struct label **lab, u32 *addr,
424 enum label_id l)
426 (*lab)->addr = addr;
427 (*lab)->lab = l;
428 (*lab)++;
431 #define L_LA(lb) \
432 static inline void l##lb(struct label **lab, u32 *addr) \
434 build_label(lab, addr, label##lb); \
437 L_LA(_second_part)
438 L_LA(_leave)
439 L_LA(_vmalloc)
440 L_LA(_vmalloc_done)
441 L_LA(_tlbw_hazard)
442 L_LA(_split)
443 L_LA(_nopage_tlbl)
444 L_LA(_nopage_tlbs)
445 L_LA(_nopage_tlbm)
446 L_LA(_smp_pgtable_change)
447 L_LA(_r3000_write_probe_fail)
448 L_LA(_r3000_write_probe_ok)
450 /* convenience macros for instructions */
451 #ifdef CONFIG_64BIT
452 # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
453 # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
454 # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
455 # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
456 # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
457 # define i_MFC0(buf, rt, rd) i_dmfc0(buf, rt, rd)
458 # define i_MTC0(buf, rt, rd) i_dmtc0(buf, rt, rd)
459 # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
460 # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
461 # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
462 # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
463 # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
464 #else
465 # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
466 # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
467 # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
468 # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
469 # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
470 # define i_MFC0(buf, rt, rd) i_mfc0(buf, rt, rd)
471 # define i_MTC0(buf, rt, rd) i_mtc0(buf, rt, rd)
472 # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
473 # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
474 # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
475 # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
476 # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
477 #endif
479 #define i_b(buf, off) i_beq(buf, 0, 0, off)
480 #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
481 #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
482 #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
483 #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
484 #define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
485 #define i_nop(buf) i_sll(buf, 0, 0, 0)
486 #define i_ssnop(buf) i_sll(buf, 0, 0, 1)
487 #define i_ehb(buf) i_sll(buf, 0, 0, 3)
489 #ifdef CONFIG_64BIT
490 static __init int __attribute__((unused)) in_compat_space_p(long addr)
492 /* Is this address in 32bit compat space? */
493 return (((addr) & 0xffffffff00000000) == 0xffffffff00000000);
496 static __init int __attribute__((unused)) rel_highest(long val)
498 return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
501 static __init int __attribute__((unused)) rel_higher(long val)
503 return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
505 #endif
507 static __init int rel_hi(long val)
509 return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
512 static __init int rel_lo(long val)
514 return ((val & 0xffff) ^ 0x8000) - 0x8000;
517 static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
519 #ifdef CONFIG_64BIT
520 if (!in_compat_space_p(addr)) {
521 i_lui(buf, rs, rel_highest(addr));
522 if (rel_higher(addr))
523 i_daddiu(buf, rs, rs, rel_higher(addr));
524 if (rel_hi(addr)) {
525 i_dsll(buf, rs, rs, 16);
526 i_daddiu(buf, rs, rs, rel_hi(addr));
527 i_dsll(buf, rs, rs, 16);
528 } else
529 i_dsll32(buf, rs, rs, 0);
530 } else
531 #endif
532 i_lui(buf, rs, rel_hi(addr));
535 static __init void __attribute__((unused)) i_LA(u32 **buf, unsigned int rs,
536 long addr)
538 i_LA_mostly(buf, rs, addr);
539 if (rel_lo(addr))
540 i_ADDIU(buf, rs, rs, rel_lo(addr));
544 * handle relocations
547 struct reloc {
548 u32 *addr;
549 unsigned int type;
550 enum label_id lab;
553 static __init void r_mips_pc16(struct reloc **rel, u32 *addr,
554 enum label_id l)
556 (*rel)->addr = addr;
557 (*rel)->type = R_MIPS_PC16;
558 (*rel)->lab = l;
559 (*rel)++;
562 static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
564 long laddr = (long)lab->addr;
565 long raddr = (long)rel->addr;
567 switch (rel->type) {
568 case R_MIPS_PC16:
569 *rel->addr |= build_bimm(laddr - (raddr + 4));
570 break;
572 default:
573 panic("Unsupported TLB synthesizer relocation %d",
574 rel->type);
578 static __init void resolve_relocs(struct reloc *rel, struct label *lab)
580 struct label *l;
582 for (; rel->lab != label_invalid; rel++)
583 for (l = lab; l->lab != label_invalid; l++)
584 if (rel->lab == l->lab)
585 __resolve_relocs(rel, l);
588 static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end,
589 long off)
591 for (; rel->lab != label_invalid; rel++)
592 if (rel->addr >= first && rel->addr < end)
593 rel->addr += off;
596 static __init void move_labels(struct label *lab, u32 *first, u32 *end,
597 long off)
599 for (; lab->lab != label_invalid; lab++)
600 if (lab->addr >= first && lab->addr < end)
601 lab->addr += off;
604 static __init void copy_handler(struct reloc *rel, struct label *lab,
605 u32 *first, u32 *end, u32 *target)
607 long off = (long)(target - first);
609 memcpy(target, first, (end - first) * sizeof(u32));
611 move_relocs(rel, first, end, off);
612 move_labels(lab, first, end, off);
615 static __init int __attribute__((unused)) insn_has_bdelay(struct reloc *rel,
616 u32 *addr)
618 for (; rel->lab != label_invalid; rel++) {
619 if (rel->addr == addr
620 && (rel->type == R_MIPS_PC16
621 || rel->type == R_MIPS_26))
622 return 1;
625 return 0;
628 /* convenience functions for labeled branches */
629 static void __attribute__((unused)) il_bltz(u32 **p, struct reloc **r,
630 unsigned int reg, enum label_id l)
632 r_mips_pc16(r, *p, l);
633 i_bltz(p, reg, 0);
636 static void __attribute__((unused)) il_b(u32 **p, struct reloc **r,
637 enum label_id l)
639 r_mips_pc16(r, *p, l);
640 i_b(p, 0);
643 static void il_beqz(u32 **p, struct reloc **r, unsigned int reg,
644 enum label_id l)
646 r_mips_pc16(r, *p, l);
647 i_beqz(p, reg, 0);
650 static void __attribute__((unused))
651 il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
653 r_mips_pc16(r, *p, l);
654 i_beqzl(p, reg, 0);
657 static void il_bnez(u32 **p, struct reloc **r, unsigned int reg,
658 enum label_id l)
660 r_mips_pc16(r, *p, l);
661 i_bnez(p, reg, 0);
664 static void il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
665 enum label_id l)
667 r_mips_pc16(r, *p, l);
668 i_bgezl(p, reg, 0);
671 /* The only general purpose registers allowed in TLB handlers. */
672 #define K0 26
673 #define K1 27
675 /* Some CP0 registers */
676 #define C0_INDEX 0
677 #define C0_ENTRYLO0 2
678 #define C0_ENTRYLO1 3
679 #define C0_CONTEXT 4
680 #define C0_BADVADDR 8
681 #define C0_ENTRYHI 10
682 #define C0_EPC 14
683 #define C0_XCONTEXT 20
685 #ifdef CONFIG_64BIT
686 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
687 #else
688 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
689 #endif
691 /* The worst case length of the handler is around 18 instructions for
692 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
693 * Maximum space available is 32 instructions for R3000 and 64
694 * instructions for R4000.
696 * We deliberately chose a buffer size of 128, so we won't scribble
697 * over anything important on overflow before we panic.
699 static __initdata u32 tlb_handler[128];
701 /* simply assume worst case size for labels and relocs */
702 static __initdata struct label labels[128];
703 static __initdata struct reloc relocs[128];
706 * The R3000 TLB handler is simple.
708 static void __init build_r3000_tlb_refill_handler(void)
710 long pgdc = (long)pgd_current;
711 u32 *p;
713 memset(tlb_handler, 0, sizeof(tlb_handler));
714 p = tlb_handler;
716 i_mfc0(&p, K0, C0_BADVADDR);
717 i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
718 i_lw(&p, K1, rel_lo(pgdc), K1);
719 i_srl(&p, K0, K0, 22); /* load delay */
720 i_sll(&p, K0, K0, 2);
721 i_addu(&p, K1, K1, K0);
722 i_mfc0(&p, K0, C0_CONTEXT);
723 i_lw(&p, K1, 0, K1); /* cp0 delay */
724 i_andi(&p, K0, K0, 0xffc); /* load delay */
725 i_addu(&p, K1, K1, K0);
726 i_lw(&p, K0, 0, K1);
727 i_nop(&p); /* load delay */
728 i_mtc0(&p, K0, C0_ENTRYLO0);
729 i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
730 i_tlbwr(&p); /* cp0 delay */
731 i_jr(&p, K1);
732 i_rfe(&p); /* branch delay */
734 if (p > tlb_handler + 32)
735 panic("TLB refill handler space exceeded");
737 printk("Synthesized TLB handler (%u instructions).\n",
738 (unsigned int)(p - tlb_handler));
739 #ifdef DEBUG_TLB
741 int i;
743 for (i = 0; i < (p - tlb_handler); i++)
744 printk("%08x\n", tlb_handler[i]);
746 #endif
748 memcpy((void *)CAC_BASE, tlb_handler, 0x80);
749 flush_icache_range(CAC_BASE, CAC_BASE + 0x80);
753 * The R4000 TLB handler is much more complicated. We have two
754 * consecutive handler areas with 32 instructions space each.
755 * Since they aren't used at the same time, we can overflow in the
756 * other one.To keep things simple, we first assume linear space,
757 * then we relocate it to the final handler layout as needed.
759 static __initdata u32 final_handler[64];
762 * Hazards
764 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
765 * 2. A timing hazard exists for the TLBP instruction.
767 * stalling_instruction
768 * TLBP
770 * The JTLB is being read for the TLBP throughout the stall generated by the
771 * previous instruction. This is not really correct as the stalling instruction
772 * can modify the address used to access the JTLB. The failure symptom is that
773 * the TLBP instruction will use an address created for the stalling instruction
774 * and not the address held in C0_ENHI and thus report the wrong results.
776 * The software work-around is to not allow the instruction preceding the TLBP
777 * to stall - make it an NOP or some other instruction guaranteed not to stall.
779 * Errata 2 will not be fixed. This errata is also on the R5000.
781 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
783 static __init void __attribute__((unused)) build_tlb_probe_entry(u32 **p)
785 switch (current_cpu_data.cputype) {
786 case CPU_R5000:
787 case CPU_R5000A:
788 case CPU_NEVADA:
789 i_nop(p);
790 i_tlbp(p);
791 break;
793 default:
794 i_tlbp(p);
795 break;
800 * Write random or indexed TLB entry, and care about the hazards from
801 * the preceeding mtc0 and for the following eret.
803 enum tlb_write_entry { tlb_random, tlb_indexed };
805 static __init void build_tlb_write_entry(u32 **p, struct label **l,
806 struct reloc **r,
807 enum tlb_write_entry wmode)
809 void(*tlbw)(u32 **) = NULL;
811 switch (wmode) {
812 case tlb_random: tlbw = i_tlbwr; break;
813 case tlb_indexed: tlbw = i_tlbwi; break;
816 switch (current_cpu_data.cputype) {
817 case CPU_R4000PC:
818 case CPU_R4000SC:
819 case CPU_R4000MC:
820 case CPU_R4400PC:
821 case CPU_R4400SC:
822 case CPU_R4400MC:
824 * This branch uses up a mtc0 hazard nop slot and saves
825 * two nops after the tlbw instruction.
827 il_bgezl(p, r, 0, label_tlbw_hazard);
828 tlbw(p);
829 l_tlbw_hazard(l, *p);
830 i_nop(p);
831 break;
833 case CPU_R4600:
834 case CPU_R4700:
835 case CPU_R5000:
836 case CPU_R5000A:
837 case CPU_5KC:
838 case CPU_TX49XX:
839 case CPU_AU1000:
840 case CPU_AU1100:
841 case CPU_AU1500:
842 case CPU_AU1550:
843 case CPU_AU1200:
844 i_nop(p);
845 tlbw(p);
846 break;
848 case CPU_R10000:
849 case CPU_R12000:
850 case CPU_4KC:
851 case CPU_SB1:
852 case CPU_4KSC:
853 case CPU_20KC:
854 case CPU_25KF:
855 tlbw(p);
856 break;
858 case CPU_NEVADA:
859 i_nop(p); /* QED specifies 2 nops hazard */
861 * This branch uses up a mtc0 hazard nop slot and saves
862 * a nop after the tlbw instruction.
864 il_bgezl(p, r, 0, label_tlbw_hazard);
865 tlbw(p);
866 l_tlbw_hazard(l, *p);
867 break;
869 case CPU_RM7000:
870 i_nop(p);
871 i_nop(p);
872 i_nop(p);
873 i_nop(p);
874 tlbw(p);
875 break;
877 case CPU_4KEC:
878 case CPU_24K:
879 i_ehb(p);
880 tlbw(p);
881 break;
883 case CPU_RM9000:
885 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
886 * use of the JTLB for instructions should not occur for 4
887 * cpu cycles and use for data translations should not occur
888 * for 3 cpu cycles.
890 i_ssnop(p);
891 i_ssnop(p);
892 i_ssnop(p);
893 i_ssnop(p);
894 tlbw(p);
895 i_ssnop(p);
896 i_ssnop(p);
897 i_ssnop(p);
898 i_ssnop(p);
899 break;
901 case CPU_VR4111:
902 case CPU_VR4121:
903 case CPU_VR4122:
904 case CPU_VR4181:
905 case CPU_VR4181A:
906 i_nop(p);
907 i_nop(p);
908 tlbw(p);
909 i_nop(p);
910 i_nop(p);
911 break;
913 case CPU_VR4131:
914 case CPU_VR4133:
915 i_nop(p);
916 i_nop(p);
917 tlbw(p);
918 break;
920 default:
921 panic("No TLB refill handler yet (CPU type: %d)",
922 current_cpu_data.cputype);
923 break;
927 #ifdef CONFIG_64BIT
929 * TMP and PTR are scratch.
930 * TMP will be clobbered, PTR will hold the pmd entry.
932 static __init void
933 build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
934 unsigned int tmp, unsigned int ptr)
936 long pgdc = (long)pgd_current;
939 * The vmalloc handling is not in the hotpath.
941 i_dmfc0(p, tmp, C0_BADVADDR);
942 il_bltz(p, r, tmp, label_vmalloc);
943 /* No i_nop needed here, since the next insn doesn't touch TMP. */
945 #ifdef CONFIG_SMP
947 * 64 bit SMP has the lower part of &pgd_current[smp_processor_id()]
948 * stored in CONTEXT.
950 if (in_compat_space_p(pgdc)) {
951 i_dmfc0(p, ptr, C0_CONTEXT);
952 i_dsra(p, ptr, ptr, 23);
953 i_ld(p, ptr, 0, ptr);
954 } else {
955 #ifdef CONFIG_BUILD_ELF64
956 i_dmfc0(p, ptr, C0_CONTEXT);
957 i_dsrl(p, ptr, ptr, 23);
958 i_dsll(p, ptr, ptr, 3);
959 i_LA_mostly(p, tmp, pgdc);
960 i_daddu(p, ptr, ptr, tmp);
961 i_dmfc0(p, tmp, C0_BADVADDR);
962 i_ld(p, ptr, rel_lo(pgdc), ptr);
963 #else
964 i_dmfc0(p, ptr, C0_CONTEXT);
965 i_lui(p, tmp, rel_highest(pgdc));
966 i_dsll(p, ptr, ptr, 9);
967 i_daddiu(p, tmp, tmp, rel_higher(pgdc));
968 i_dsrl32(p, ptr, ptr, 0);
969 i_and(p, ptr, ptr, tmp);
970 i_dmfc0(p, tmp, C0_BADVADDR);
971 i_ld(p, ptr, 0, ptr);
972 #endif
974 #else
975 i_LA_mostly(p, ptr, pgdc);
976 i_ld(p, ptr, rel_lo(pgdc), ptr);
977 #endif
979 l_vmalloc_done(l, *p);
980 i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3); /* get pgd offset in bytes */
981 i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
982 i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
983 i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
984 i_ld(p, ptr, 0, ptr); /* get pmd pointer */
985 i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
986 i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
987 i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
991 * BVADDR is the faulting address, PTR is scratch.
992 * PTR will hold the pgd for vmalloc.
994 static __init void
995 build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
996 unsigned int bvaddr, unsigned int ptr)
998 long swpd = (long)swapper_pg_dir;
1000 l_vmalloc(l, *p);
1001 i_LA(p, ptr, VMALLOC_START);
1002 i_dsubu(p, bvaddr, bvaddr, ptr);
1004 if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
1005 il_b(p, r, label_vmalloc_done);
1006 i_lui(p, ptr, rel_hi(swpd));
1007 } else {
1008 i_LA_mostly(p, ptr, swpd);
1009 il_b(p, r, label_vmalloc_done);
1010 i_daddiu(p, ptr, ptr, rel_lo(swpd));
1014 #else /* !CONFIG_64BIT */
1017 * TMP and PTR are scratch.
1018 * TMP will be clobbered, PTR will hold the pgd entry.
1020 static __init void __attribute__((unused))
1021 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
1023 long pgdc = (long)pgd_current;
1025 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
1026 #ifdef CONFIG_SMP
1027 i_mfc0(p, ptr, C0_CONTEXT);
1028 i_LA_mostly(p, tmp, pgdc);
1029 i_srl(p, ptr, ptr, 23);
1030 i_sll(p, ptr, ptr, 2);
1031 i_addu(p, ptr, tmp, ptr);
1032 #else
1033 i_LA_mostly(p, ptr, pgdc);
1034 #endif
1035 i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1036 i_lw(p, ptr, rel_lo(pgdc), ptr);
1037 i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
1038 i_sll(p, tmp, tmp, PGD_T_LOG2);
1039 i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
1042 #endif /* !CONFIG_64BIT */
1044 static __init void build_adjust_context(u32 **p, unsigned int ctx)
1046 unsigned int shift = 4 - (PTE_T_LOG2 + 1);
1047 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1049 switch (current_cpu_data.cputype) {
1050 case CPU_VR41XX:
1051 case CPU_VR4111:
1052 case CPU_VR4121:
1053 case CPU_VR4122:
1054 case CPU_VR4131:
1055 case CPU_VR4181:
1056 case CPU_VR4181A:
1057 case CPU_VR4133:
1058 shift += 2;
1059 break;
1061 default:
1062 break;
1065 if (shift)
1066 i_SRL(p, ctx, ctx, shift);
1067 i_andi(p, ctx, ctx, mask);
1070 static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1073 * Bug workaround for the Nevada. It seems as if under certain
1074 * circumstances the move from cp0_context might produce a
1075 * bogus result when the mfc0 instruction and its consumer are
1076 * in a different cacheline or a load instruction, probably any
1077 * memory reference, is between them.
1079 switch (current_cpu_data.cputype) {
1080 case CPU_NEVADA:
1081 i_LW(p, ptr, 0, ptr);
1082 GET_CONTEXT(p, tmp); /* get context reg */
1083 break;
1085 default:
1086 GET_CONTEXT(p, tmp); /* get context reg */
1087 i_LW(p, ptr, 0, ptr);
1088 break;
1091 build_adjust_context(p, tmp);
1092 i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1095 static __init void build_update_entries(u32 **p, unsigned int tmp,
1096 unsigned int ptep)
1099 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1100 * Kernel is a special case. Only a few CPUs use it.
1102 #ifdef CONFIG_64BIT_PHYS_ADDR
1103 if (cpu_has_64bits) {
1104 i_ld(p, tmp, 0, ptep); /* get even pte */
1105 i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1106 i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
1107 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1108 i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
1109 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1110 } else {
1111 int pte_off_even = sizeof(pte_t) / 2;
1112 int pte_off_odd = pte_off_even + sizeof(pte_t);
1114 /* The pte entries are pre-shifted */
1115 i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1116 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1117 i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1118 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1120 #else
1121 i_LW(p, tmp, 0, ptep); /* get even pte */
1122 i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1123 if (r45k_bvahwbug())
1124 build_tlb_probe_entry(p);
1125 i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
1126 if (r4k_250MHZhwbug())
1127 i_mtc0(p, 0, C0_ENTRYLO0);
1128 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1129 i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
1130 if (r45k_bvahwbug())
1131 i_mfc0(p, tmp, C0_INDEX);
1132 if (r4k_250MHZhwbug())
1133 i_mtc0(p, 0, C0_ENTRYLO1);
1134 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1135 #endif
1138 static void __init build_r4000_tlb_refill_handler(void)
1140 u32 *p = tlb_handler;
1141 struct label *l = labels;
1142 struct reloc *r = relocs;
1143 u32 *f;
1144 unsigned int final_len;
1146 memset(tlb_handler, 0, sizeof(tlb_handler));
1147 memset(labels, 0, sizeof(labels));
1148 memset(relocs, 0, sizeof(relocs));
1149 memset(final_handler, 0, sizeof(final_handler));
1152 * create the plain linear handler
1154 if (bcm1250_m3_war()) {
1155 i_MFC0(&p, K0, C0_BADVADDR);
1156 i_MFC0(&p, K1, C0_ENTRYHI);
1157 i_xor(&p, K0, K0, K1);
1158 i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1159 il_bnez(&p, &r, K0, label_leave);
1160 /* No need for i_nop */
1163 #ifdef CONFIG_64BIT
1164 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1165 #else
1166 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1167 #endif
1169 build_get_ptep(&p, K0, K1);
1170 build_update_entries(&p, K0, K1);
1171 build_tlb_write_entry(&p, &l, &r, tlb_random);
1172 l_leave(&l, p);
1173 i_eret(&p); /* return from trap */
1175 #ifdef CONFIG_64BIT
1176 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
1177 #endif
1180 * Overflow check: For the 64bit handler, we need at least one
1181 * free instruction slot for the wrap-around branch. In worst
1182 * case, if the intended insertion point is a delay slot, we
1183 * need three, with the the second nop'ed and the third being
1184 * unused.
1186 #ifdef CONFIG_32BIT
1187 if ((p - tlb_handler) > 64)
1188 panic("TLB refill handler space exceeded");
1189 #else
1190 if (((p - tlb_handler) > 63)
1191 || (((p - tlb_handler) > 61)
1192 && insn_has_bdelay(relocs, tlb_handler + 29)))
1193 panic("TLB refill handler space exceeded");
1194 #endif
1197 * Now fold the handler in the TLB refill handler space.
1199 #ifdef CONFIG_32BIT
1200 f = final_handler;
1201 /* Simplest case, just copy the handler. */
1202 copy_handler(relocs, labels, tlb_handler, p, f);
1203 final_len = p - tlb_handler;
1204 #else /* CONFIG_64BIT */
1205 f = final_handler + 32;
1206 if ((p - tlb_handler) <= 32) {
1207 /* Just copy the handler. */
1208 copy_handler(relocs, labels, tlb_handler, p, f);
1209 final_len = p - tlb_handler;
1210 } else {
1211 u32 *split = tlb_handler + 30;
1214 * Find the split point.
1216 if (insn_has_bdelay(relocs, split - 1))
1217 split--;
1219 /* Copy first part of the handler. */
1220 copy_handler(relocs, labels, tlb_handler, split, f);
1221 f += split - tlb_handler;
1223 /* Insert branch. */
1224 l_split(&l, final_handler);
1225 il_b(&f, &r, label_split);
1226 if (insn_has_bdelay(relocs, split))
1227 i_nop(&f);
1228 else {
1229 copy_handler(relocs, labels, split, split + 1, f);
1230 move_labels(labels, f, f + 1, -1);
1231 f++;
1232 split++;
1235 /* Copy the rest of the handler. */
1236 copy_handler(relocs, labels, split, p, final_handler);
1237 final_len = (f - (final_handler + 32)) + (p - split);
1239 #endif /* CONFIG_64BIT */
1241 resolve_relocs(relocs, labels);
1242 printk("Synthesized TLB refill handler (%u instructions).\n",
1243 final_len);
1245 #ifdef DEBUG_TLB
1247 int i;
1249 for (i = 0; i < 64; i++)
1250 printk("%08x\n", final_handler[i]);
1252 #endif
1254 memcpy((void *)CAC_BASE, final_handler, 0x100);
1255 flush_icache_range(CAC_BASE, CAC_BASE + 0x100);
1259 * TLB load/store/modify handlers.
1261 * Only the fastpath gets synthesized at runtime, the slowpath for
1262 * do_page_fault remains normal asm.
1264 extern void tlb_do_page_fault_0(void);
1265 extern void tlb_do_page_fault_1(void);
1267 #define __tlb_handler_align \
1268 __attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
1271 * 128 instructions for the fastpath handler is generous and should
1272 * never be exceeded.
1274 #define FASTPATH_SIZE 128
1276 u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE];
1277 u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE];
1278 u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE];
1280 static void __init
1281 iPTE_LW(u32 **p, struct label **l, unsigned int pte, int offset,
1282 unsigned int ptr)
1284 #ifdef CONFIG_SMP
1285 # ifdef CONFIG_64BIT_PHYS_ADDR
1286 if (cpu_has_64bits)
1287 i_lld(p, pte, offset, ptr);
1288 else
1289 # endif
1290 i_LL(p, pte, offset, ptr);
1291 #else
1292 # ifdef CONFIG_64BIT_PHYS_ADDR
1293 if (cpu_has_64bits)
1294 i_ld(p, pte, offset, ptr);
1295 else
1296 # endif
1297 i_LW(p, pte, offset, ptr);
1298 #endif
1301 static void __init
1302 iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, int offset,
1303 unsigned int ptr)
1305 #ifdef CONFIG_SMP
1306 # ifdef CONFIG_64BIT_PHYS_ADDR
1307 if (cpu_has_64bits)
1308 i_scd(p, pte, offset, ptr);
1309 else
1310 # endif
1311 i_SC(p, pte, offset, ptr);
1313 if (r10000_llsc_war())
1314 il_beqzl(p, r, pte, label_smp_pgtable_change);
1315 else
1316 il_beqz(p, r, pte, label_smp_pgtable_change);
1318 # ifdef CONFIG_64BIT_PHYS_ADDR
1319 if (!cpu_has_64bits) {
1320 /* no i_nop needed */
1321 i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1322 i_ori(p, pte, pte, _PAGE_VALID);
1323 i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1324 il_beqz(p, r, pte, label_smp_pgtable_change);
1325 /* no i_nop needed */
1326 i_lw(p, pte, 0, ptr);
1327 } else
1328 i_nop(p);
1329 # else
1330 i_nop(p);
1331 # endif
1332 #else
1333 # ifdef CONFIG_64BIT_PHYS_ADDR
1334 if (cpu_has_64bits)
1335 i_sd(p, pte, offset, ptr);
1336 else
1337 # endif
1338 i_SW(p, pte, offset, ptr);
1340 # ifdef CONFIG_64BIT_PHYS_ADDR
1341 if (!cpu_has_64bits) {
1342 i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1343 i_ori(p, pte, pte, _PAGE_VALID);
1344 i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1345 i_lw(p, pte, 0, ptr);
1347 # endif
1348 #endif
1352 * Check if PTE is present, if not then jump to LABEL. PTR points to
1353 * the page table where this PTE is located, PTE will be re-loaded
1354 * with it's original value.
1356 static void __init
1357 build_pte_present(u32 **p, struct label **l, struct reloc **r,
1358 unsigned int pte, unsigned int ptr, enum label_id lid)
1360 i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1361 i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1362 il_bnez(p, r, pte, lid);
1363 iPTE_LW(p, l, pte, 0, ptr);
1366 /* Make PTE valid, store result in PTR. */
1367 static void __init
1368 build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
1369 unsigned int ptr)
1371 i_ori(p, pte, pte, _PAGE_VALID | _PAGE_ACCESSED);
1372 iPTE_SW(p, r, pte, 0, ptr);
1376 * Check if PTE can be written to, if not branch to LABEL. Regardless
1377 * restore PTE with value from PTR when done.
1379 static void __init
1380 build_pte_writable(u32 **p, struct label **l, struct reloc **r,
1381 unsigned int pte, unsigned int ptr, enum label_id lid)
1383 i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1384 i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1385 il_bnez(p, r, pte, lid);
1386 iPTE_LW(p, l, pte, 0, ptr);
1389 /* Make PTE writable, update software status bits as well, then store
1390 * at PTR.
1392 static void __init
1393 build_make_write(u32 **p, struct reloc **r, unsigned int pte,
1394 unsigned int ptr)
1396 i_ori(p, pte, pte,
1397 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
1398 iPTE_SW(p, r, pte, 0, ptr);
1402 * Check if PTE can be modified, if not branch to LABEL. Regardless
1403 * restore PTE with value from PTR when done.
1405 static void __init
1406 build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
1407 unsigned int pte, unsigned int ptr, enum label_id lid)
1409 i_andi(p, pte, pte, _PAGE_WRITE);
1410 il_beqz(p, r, pte, lid);
1411 iPTE_LW(p, l, pte, 0, ptr);
1415 * R3000 style TLB load/store/modify handlers.
1418 /* This places the pte in the page table at PTR into ENTRYLO0. */
1419 static void __init
1420 build_r3000_pte_reload(u32 **p, unsigned int ptr)
1422 i_lw(p, ptr, 0, ptr);
1423 i_nop(p); /* load delay */
1424 i_mtc0(p, ptr, C0_ENTRYLO0);
1425 i_nop(p); /* cp0 delay */
1429 * The index register may have the probe fail bit set,
1430 * because we would trap on access kseg2, i.e. without refill.
1432 static void __init
1433 build_r3000_tlb_write(u32 **p, struct label **l, struct reloc **r,
1434 unsigned int tmp)
1436 i_mfc0(p, tmp, C0_INDEX);
1437 i_nop(p); /* cp0 delay */
1438 il_bltz(p, r, tmp, label_r3000_write_probe_fail);
1439 i_nop(p); /* branch delay */
1440 i_tlbwi(p);
1441 il_b(p, r, label_r3000_write_probe_ok);
1442 i_nop(p); /* branch delay */
1443 l_r3000_write_probe_fail(l, *p);
1444 i_tlbwr(p);
1445 l_r3000_write_probe_ok(l, *p);
1448 static void __init
1449 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1450 unsigned int ptr)
1452 long pgdc = (long)pgd_current;
1454 i_mfc0(p, pte, C0_BADVADDR);
1455 i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
1456 i_lw(p, ptr, rel_lo(pgdc), ptr);
1457 i_srl(p, pte, pte, 22); /* load delay */
1458 i_sll(p, pte, pte, 2);
1459 i_addu(p, ptr, ptr, pte);
1460 i_mfc0(p, pte, C0_CONTEXT);
1461 i_lw(p, ptr, 0, ptr); /* cp0 delay */
1462 i_andi(p, pte, pte, 0xffc); /* load delay */
1463 i_addu(p, ptr, ptr, pte);
1464 i_lw(p, pte, 0, ptr);
1465 i_nop(p); /* load delay */
1466 i_tlbp(p);
1469 static void __init
1470 build_r3000_tlbchange_handler_tail(u32 **p, unsigned int tmp)
1472 i_mfc0(p, tmp, C0_EPC);
1473 i_nop(p); /* cp0 delay */
1474 i_jr(p, tmp);
1475 i_rfe(p); /* branch delay */
1478 static void __init build_r3000_tlb_load_handler(void)
1480 u32 *p = handle_tlbl;
1481 struct label *l = labels;
1482 struct reloc *r = relocs;
1484 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1485 memset(labels, 0, sizeof(labels));
1486 memset(relocs, 0, sizeof(relocs));
1488 build_r3000_tlbchange_handler_head(&p, K0, K1);
1489 build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1490 build_make_valid(&p, &r, K0, K1);
1491 build_r3000_pte_reload(&p, K1);
1492 build_r3000_tlb_write(&p, &l, &r, K0);
1493 build_r3000_tlbchange_handler_tail(&p, K0);
1495 l_nopage_tlbl(&l, p);
1496 i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1497 i_nop(&p);
1499 if ((p - handle_tlbl) > FASTPATH_SIZE)
1500 panic("TLB load handler fastpath space exceeded");
1502 resolve_relocs(relocs, labels);
1503 printk("Synthesized TLB load handler fastpath (%u instructions).\n",
1504 (unsigned int)(p - handle_tlbl));
1506 #ifdef DEBUG_TLB
1508 int i;
1510 for (i = 0; i < FASTPATH_SIZE; i++)
1511 printk("%08x\n", handle_tlbl[i]);
1513 #endif
1515 flush_icache_range((unsigned long)handle_tlbl,
1516 (unsigned long)handle_tlbl + FASTPATH_SIZE * sizeof(u32));
1519 static void __init build_r3000_tlb_store_handler(void)
1521 u32 *p = handle_tlbs;
1522 struct label *l = labels;
1523 struct reloc *r = relocs;
1525 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1526 memset(labels, 0, sizeof(labels));
1527 memset(relocs, 0, sizeof(relocs));
1529 build_r3000_tlbchange_handler_head(&p, K0, K1);
1530 build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1531 build_make_write(&p, &r, K0, K1);
1532 build_r3000_pte_reload(&p, K1);
1533 build_r3000_tlb_write(&p, &l, &r, K0);
1534 build_r3000_tlbchange_handler_tail(&p, K0);
1536 l_nopage_tlbs(&l, p);
1537 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1538 i_nop(&p);
1540 if ((p - handle_tlbs) > FASTPATH_SIZE)
1541 panic("TLB store handler fastpath space exceeded");
1543 resolve_relocs(relocs, labels);
1544 printk("Synthesized TLB store handler fastpath (%u instructions).\n",
1545 (unsigned int)(p - handle_tlbs));
1547 #ifdef DEBUG_TLB
1549 int i;
1551 for (i = 0; i < FASTPATH_SIZE; i++)
1552 printk("%08x\n", handle_tlbs[i]);
1554 #endif
1556 flush_icache_range((unsigned long)handle_tlbs,
1557 (unsigned long)handle_tlbs + FASTPATH_SIZE * sizeof(u32));
1560 static void __init build_r3000_tlb_modify_handler(void)
1562 u32 *p = handle_tlbm;
1563 struct label *l = labels;
1564 struct reloc *r = relocs;
1566 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1567 memset(labels, 0, sizeof(labels));
1568 memset(relocs, 0, sizeof(relocs));
1570 build_r3000_tlbchange_handler_head(&p, K0, K1);
1571 build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1572 build_make_write(&p, &r, K0, K1);
1573 build_r3000_pte_reload(&p, K1);
1574 i_tlbwi(&p);
1575 build_r3000_tlbchange_handler_tail(&p, K0);
1577 l_nopage_tlbm(&l, p);
1578 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1579 i_nop(&p);
1581 if ((p - handle_tlbm) > FASTPATH_SIZE)
1582 panic("TLB modify handler fastpath space exceeded");
1584 resolve_relocs(relocs, labels);
1585 printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
1586 (unsigned int)(p - handle_tlbm));
1588 #ifdef DEBUG_TLB
1590 int i;
1592 for (i = 0; i < FASTPATH_SIZE; i++)
1593 printk("%08x\n", handle_tlbm[i]);
1595 #endif
1597 flush_icache_range((unsigned long)handle_tlbm,
1598 (unsigned long)handle_tlbm + FASTPATH_SIZE * sizeof(u32));
1602 * R4000 style TLB load/store/modify handlers.
1604 static void __init
1605 build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
1606 struct reloc **r, unsigned int pte,
1607 unsigned int ptr)
1609 #ifdef CONFIG_64BIT
1610 build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
1611 #else
1612 build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
1613 #endif
1615 i_MFC0(p, pte, C0_BADVADDR);
1616 i_LW(p, ptr, 0, ptr);
1617 i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1618 i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1619 i_ADDU(p, ptr, ptr, pte);
1621 #ifdef CONFIG_SMP
1622 l_smp_pgtable_change(l, *p);
1623 # endif
1624 iPTE_LW(p, l, pte, 0, ptr); /* get even pte */
1625 build_tlb_probe_entry(p);
1628 static void __init
1629 build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
1630 struct reloc **r, unsigned int tmp,
1631 unsigned int ptr)
1633 i_ori(p, ptr, ptr, sizeof(pte_t));
1634 i_xori(p, ptr, ptr, sizeof(pte_t));
1635 build_update_entries(p, tmp, ptr);
1636 build_tlb_write_entry(p, l, r, tlb_indexed);
1637 l_leave(l, *p);
1638 i_eret(p); /* return from trap */
1640 #ifdef CONFIG_64BIT
1641 build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
1642 #endif
1645 static void __init build_r4000_tlb_load_handler(void)
1647 u32 *p = handle_tlbl;
1648 struct label *l = labels;
1649 struct reloc *r = relocs;
1651 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1652 memset(labels, 0, sizeof(labels));
1653 memset(relocs, 0, sizeof(relocs));
1655 if (bcm1250_m3_war()) {
1656 i_MFC0(&p, K0, C0_BADVADDR);
1657 i_MFC0(&p, K1, C0_ENTRYHI);
1658 i_xor(&p, K0, K0, K1);
1659 i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1660 il_bnez(&p, &r, K0, label_leave);
1661 /* No need for i_nop */
1664 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1665 build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1666 build_make_valid(&p, &r, K0, K1);
1667 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1669 l_nopage_tlbl(&l, p);
1670 i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1671 i_nop(&p);
1673 if ((p - handle_tlbl) > FASTPATH_SIZE)
1674 panic("TLB load handler fastpath space exceeded");
1676 resolve_relocs(relocs, labels);
1677 printk("Synthesized TLB load handler fastpath (%u instructions).\n",
1678 (unsigned int)(p - handle_tlbl));
1680 #ifdef DEBUG_TLB
1682 int i;
1684 for (i = 0; i < FASTPATH_SIZE; i++)
1685 printk("%08x\n", handle_tlbl[i]);
1687 #endif
1689 flush_icache_range((unsigned long)handle_tlbl,
1690 (unsigned long)handle_tlbl + FASTPATH_SIZE * sizeof(u32));
1693 static void __init build_r4000_tlb_store_handler(void)
1695 u32 *p = handle_tlbs;
1696 struct label *l = labels;
1697 struct reloc *r = relocs;
1699 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1700 memset(labels, 0, sizeof(labels));
1701 memset(relocs, 0, sizeof(relocs));
1703 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1704 build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1705 build_make_write(&p, &r, K0, K1);
1706 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1708 l_nopage_tlbs(&l, p);
1709 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1710 i_nop(&p);
1712 if ((p - handle_tlbs) > FASTPATH_SIZE)
1713 panic("TLB store handler fastpath space exceeded");
1715 resolve_relocs(relocs, labels);
1716 printk("Synthesized TLB store handler fastpath (%u instructions).\n",
1717 (unsigned int)(p - handle_tlbs));
1719 #ifdef DEBUG_TLB
1721 int i;
1723 for (i = 0; i < FASTPATH_SIZE; i++)
1724 printk("%08x\n", handle_tlbs[i]);
1726 #endif
1728 flush_icache_range((unsigned long)handle_tlbs,
1729 (unsigned long)handle_tlbs + FASTPATH_SIZE * sizeof(u32));
1732 static void __init build_r4000_tlb_modify_handler(void)
1734 u32 *p = handle_tlbm;
1735 struct label *l = labels;
1736 struct reloc *r = relocs;
1738 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1739 memset(labels, 0, sizeof(labels));
1740 memset(relocs, 0, sizeof(relocs));
1742 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1743 build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1744 /* Present and writable bits set, set accessed and dirty bits. */
1745 build_make_write(&p, &r, K0, K1);
1746 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1748 l_nopage_tlbm(&l, p);
1749 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1750 i_nop(&p);
1752 if ((p - handle_tlbm) > FASTPATH_SIZE)
1753 panic("TLB modify handler fastpath space exceeded");
1755 resolve_relocs(relocs, labels);
1756 printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
1757 (unsigned int)(p - handle_tlbm));
1759 #ifdef DEBUG_TLB
1761 int i;
1763 for (i = 0; i < FASTPATH_SIZE; i++)
1764 printk("%08x\n", handle_tlbm[i]);
1766 #endif
1768 flush_icache_range((unsigned long)handle_tlbm,
1769 (unsigned long)handle_tlbm + FASTPATH_SIZE * sizeof(u32));
1772 void __init build_tlb_refill_handler(void)
1775 * The refill handler is generated per-CPU, multi-node systems
1776 * may have local storage for it. The other handlers are only
1777 * needed once.
1779 static int run_once = 0;
1781 switch (current_cpu_data.cputype) {
1782 case CPU_R2000:
1783 case CPU_R3000:
1784 case CPU_R3000A:
1785 case CPU_R3081E:
1786 case CPU_TX3912:
1787 case CPU_TX3922:
1788 case CPU_TX3927:
1789 build_r3000_tlb_refill_handler();
1790 if (!run_once) {
1791 build_r3000_tlb_load_handler();
1792 build_r3000_tlb_store_handler();
1793 build_r3000_tlb_modify_handler();
1794 run_once++;
1796 break;
1798 case CPU_R6000:
1799 case CPU_R6000A:
1800 panic("No R6000 TLB refill handler yet");
1801 break;
1803 case CPU_R8000:
1804 panic("No R8000 TLB refill handler yet");
1805 break;
1807 default:
1808 build_r4000_tlb_refill_handler();
1809 if (!run_once) {
1810 build_r4000_tlb_load_handler();
1811 build_r4000_tlb_store_handler();
1812 build_r4000_tlb_modify_handler();
1813 run_once++;