mips: rename offsets.c to asm-offsets.c
[linux-2.6/verdex.git] / arch / cris / arch-v32 / kernel / arbiter.c
blob3870d2fd516066ca3354ef129240a955942148b3
1 /*
2 * Memory arbiter functions. Allocates bandwith through the
3 * arbiter and sets up arbiter breakpoints.
5 * The algorithm first assigns slots to the clients that has specified
6 * bandwith (e.g. ethernet) and then the remaining slots are divided
7 * on all the active clients.
9 * Copyright (c) 2004, 2005 Axis Communications AB.
12 #include <linux/config.h>
13 #include <asm/arch/hwregs/reg_map.h>
14 #include <asm/arch/hwregs/reg_rdwr.h>
15 #include <asm/arch/hwregs/marb_defs.h>
16 #include <asm/arch/arbiter.h>
17 #include <asm/arch/hwregs/intr_vect.h>
18 #include <linux/interrupt.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/spinlock.h>
22 #include <asm/io.h>
24 struct crisv32_watch_entry
26 unsigned long instance;
27 watch_callback* cb;
28 unsigned long start;
29 unsigned long end;
30 int used;
33 #define NUMBER_OF_BP 4
34 #define NBR_OF_CLIENTS 14
35 #define NBR_OF_SLOTS 64
36 #define SDRAM_BANDWIDTH 100000000 /* Some kind of expected value */
37 #define INTMEM_BANDWIDTH 400000000
38 #define NBR_OF_REGIONS 2
40 static struct crisv32_watch_entry watches[NUMBER_OF_BP] =
42 {regi_marb_bp0},
43 {regi_marb_bp1},
44 {regi_marb_bp2},
45 {regi_marb_bp3}
48 static int requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS];
49 static int active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS];
50 static int max_bandwidth[NBR_OF_REGIONS] = {SDRAM_BANDWIDTH, INTMEM_BANDWIDTH};
52 DEFINE_SPINLOCK(arbiter_lock);
54 static irqreturn_t
55 crisv32_arbiter_irq(int irq, void* dev_id, struct pt_regs* regs);
57 static void crisv32_arbiter_config(int region)
59 int slot;
60 int client;
61 int interval = 0;
62 int val[NBR_OF_SLOTS];
64 for (slot = 0; slot < NBR_OF_SLOTS; slot++)
65 val[slot] = NBR_OF_CLIENTS + 1;
67 for (client = 0; client < NBR_OF_CLIENTS; client++)
69 int pos;
70 if (!requested_slots[region][client])
71 continue;
72 interval = NBR_OF_SLOTS / requested_slots[region][client];
73 pos = 0;
74 while (pos < NBR_OF_SLOTS)
76 if (val[pos] != NBR_OF_CLIENTS + 1)
77 pos++;
78 else
80 val[pos] = client;
81 pos += interval;
86 client = 0;
87 for (slot = 0; slot < NBR_OF_SLOTS; slot++)
89 if (val[slot] == NBR_OF_CLIENTS + 1)
91 int first = client;
92 while(!active_clients[region][client]) {
93 client = (client + 1) % NBR_OF_CLIENTS;
94 if (client == first)
95 break;
97 val[slot] = client;
98 client = (client + 1) % NBR_OF_CLIENTS;
100 if (region == EXT_REGION)
101 REG_WR_INT_VECT(marb, regi_marb, rw_ext_slots, slot, val[slot]);
102 else if (region == INT_REGION)
103 REG_WR_INT_VECT(marb, regi_marb, rw_int_slots, slot, val[slot]);
107 extern char _stext, _etext;
109 static void crisv32_arbiter_init(void)
111 static int initialized = 0;
113 if (initialized)
114 return;
116 initialized = 1;
118 /* CPU caches are active. */
119 active_clients[EXT_REGION][10] = active_clients[EXT_REGION][11] = 1;
120 crisv32_arbiter_config(EXT_REGION);
121 crisv32_arbiter_config(INT_REGION);
123 if (request_irq(MEMARB_INTR_VECT, crisv32_arbiter_irq, SA_INTERRUPT,
124 "arbiter", NULL))
125 printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
127 #ifndef CONFIG_ETRAX_KGDB
128 /* Global watch for writes to kernel text segment. */
129 crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext,
130 arbiter_all_clients, arbiter_all_write, NULL);
131 #endif
136 int crisv32_arbiter_allocate_bandwith(int client, int region,
137 unsigned long bandwidth)
139 int i;
140 int total_assigned = 0;
141 int total_clients = 0;
142 int req;
144 crisv32_arbiter_init();
146 for (i = 0; i < NBR_OF_CLIENTS; i++)
148 total_assigned += requested_slots[region][i];
149 total_clients += active_clients[region][i];
151 req = NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth);
153 if (total_assigned + total_clients + req + 1 > NBR_OF_SLOTS)
154 return -ENOMEM;
156 active_clients[region][client] = 1;
157 requested_slots[region][client] = req;
158 crisv32_arbiter_config(region);
160 return 0;
163 int crisv32_arbiter_watch(unsigned long start, unsigned long size,
164 unsigned long clients, unsigned long accesses,
165 watch_callback* cb)
167 int i;
169 crisv32_arbiter_init();
171 if (start > 0x80000000) {
172 printk("Arbiter: %lX doesn't look like a physical address", start);
173 return -EFAULT;
176 spin_lock(&arbiter_lock);
178 for (i = 0; i < NUMBER_OF_BP; i++) {
179 if (!watches[i].used) {
180 reg_marb_rw_intr_mask intr_mask = REG_RD(marb, regi_marb, rw_intr_mask);
182 watches[i].used = 1;
183 watches[i].start = start;
184 watches[i].end = start + size;
185 watches[i].cb = cb;
187 REG_WR_INT(marb_bp, watches[i].instance, rw_first_addr, watches[i].start);
188 REG_WR_INT(marb_bp, watches[i].instance, rw_last_addr, watches[i].end);
189 REG_WR_INT(marb_bp, watches[i].instance, rw_op, accesses);
190 REG_WR_INT(marb_bp, watches[i].instance, rw_clients, clients);
192 if (i == 0)
193 intr_mask.bp0 = regk_marb_yes;
194 else if (i == 1)
195 intr_mask.bp1 = regk_marb_yes;
196 else if (i == 2)
197 intr_mask.bp2 = regk_marb_yes;
198 else if (i == 3)
199 intr_mask.bp3 = regk_marb_yes;
201 REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
202 spin_unlock(&arbiter_lock);
204 return i;
207 spin_unlock(&arbiter_lock);
208 return -ENOMEM;
211 int crisv32_arbiter_unwatch(int id)
213 reg_marb_rw_intr_mask intr_mask = REG_RD(marb, regi_marb, rw_intr_mask);
215 crisv32_arbiter_init();
217 spin_lock(&arbiter_lock);
219 if ((id < 0) || (id >= NUMBER_OF_BP) || (!watches[id].used)) {
220 spin_unlock(&arbiter_lock);
221 return -EINVAL;
224 memset(&watches[id], 0, sizeof(struct crisv32_watch_entry));
226 if (id == 0)
227 intr_mask.bp0 = regk_marb_no;
228 else if (id == 1)
229 intr_mask.bp2 = regk_marb_no;
230 else if (id == 2)
231 intr_mask.bp2 = regk_marb_no;
232 else if (id == 3)
233 intr_mask.bp3 = regk_marb_no;
235 REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
237 spin_unlock(&arbiter_lock);
238 return 0;
241 extern void show_registers(struct pt_regs *regs);
243 static irqreturn_t
244 crisv32_arbiter_irq(int irq, void* dev_id, struct pt_regs* regs)
246 reg_marb_r_masked_intr masked_intr = REG_RD(marb, regi_marb, r_masked_intr);
247 reg_marb_bp_r_brk_clients r_clients;
248 reg_marb_bp_r_brk_addr r_addr;
249 reg_marb_bp_r_brk_op r_op;
250 reg_marb_bp_r_brk_first_client r_first;
251 reg_marb_bp_r_brk_size r_size;
252 reg_marb_bp_rw_ack ack = {0};
253 reg_marb_rw_ack_intr ack_intr = {.bp0=1,.bp1=1,.bp2=1,.bp3=1};
254 struct crisv32_watch_entry* watch;
256 if (masked_intr.bp0) {
257 watch = &watches[0];
258 ack_intr.bp0 = regk_marb_yes;
259 } else if (masked_intr.bp1) {
260 watch = &watches[1];
261 ack_intr.bp1 = regk_marb_yes;
262 } else if (masked_intr.bp2) {
263 watch = &watches[2];
264 ack_intr.bp2 = regk_marb_yes;
265 } else if (masked_intr.bp3) {
266 watch = &watches[3];
267 ack_intr.bp3 = regk_marb_yes;
268 } else {
269 return IRQ_NONE;
272 /* Retrieve all useful information and print it. */
273 r_clients = REG_RD(marb_bp, watch->instance, r_brk_clients);
274 r_addr = REG_RD(marb_bp, watch->instance, r_brk_addr);
275 r_op = REG_RD(marb_bp, watch->instance, r_brk_op);
276 r_first = REG_RD(marb_bp, watch->instance, r_brk_first_client);
277 r_size = REG_RD(marb_bp, watch->instance, r_brk_size);
279 printk("Arbiter IRQ\n");
280 printk("Clients %X addr %X op %X first %X size %X\n",
281 REG_TYPE_CONV(int, reg_marb_bp_r_brk_clients, r_clients),
282 REG_TYPE_CONV(int, reg_marb_bp_r_brk_addr, r_addr),
283 REG_TYPE_CONV(int, reg_marb_bp_r_brk_op, r_op),
284 REG_TYPE_CONV(int, reg_marb_bp_r_brk_first_client, r_first),
285 REG_TYPE_CONV(int, reg_marb_bp_r_brk_size, r_size));
287 REG_WR(marb_bp, watch->instance, rw_ack, ack);
288 REG_WR(marb, regi_marb, rw_ack_intr, ack_intr);
290 printk("IRQ occured at %lX\n", regs->erp);
292 if (watch->cb)
293 watch->cb();
296 return IRQ_HANDLED;