mips: rename offsets.c to asm-offsets.c
[linux-2.6/verdex.git] / arch / cris / arch-v32 / kernel / time.c
blobd48e397f5fa4d515e2abd8f374f929057548835c
1 /* $Id: time.c,v 1.19 2005/04/29 05:40:09 starvik Exp $
3 * linux/arch/cris/arch-v32/kernel/time.c
5 * Copyright (C) 2003 Axis Communications AB
7 */
9 #include <linux/config.h>
10 #include <linux/timex.h>
11 #include <linux/time.h>
12 #include <linux/jiffies.h>
13 #include <linux/interrupt.h>
14 #include <linux/swap.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
17 #include <linux/threads.h>
18 #include <asm/types.h>
19 #include <asm/signal.h>
20 #include <asm/io.h>
21 #include <asm/delay.h>
22 #include <asm/rtc.h>
23 #include <asm/irq.h>
25 #include <asm/arch/hwregs/reg_map.h>
26 #include <asm/arch/hwregs/reg_rdwr.h>
27 #include <asm/arch/hwregs/timer_defs.h>
28 #include <asm/arch/hwregs/intr_vect_defs.h>
30 /* Watchdog defines */
31 #define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */
32 #define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */
33 #define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1) /* Number of 763 counts before watchdog bites */
35 unsigned long timer_regs[NR_CPUS] =
37 regi_timer,
38 #ifdef CONFIG_SMP
39 regi_timer2
40 #endif
43 extern void update_xtime_from_cmos(void);
44 extern int set_rtc_mmss(unsigned long nowtime);
45 extern int setup_irq(int, struct irqaction *);
46 extern int have_rtc;
48 unsigned long get_ns_in_jiffie(void)
50 reg_timer_r_tmr0_data data;
51 unsigned long ns;
53 data = REG_RD(timer, regi_timer, r_tmr0_data);
54 ns = (TIMER0_DIV - data) * 10;
55 return ns;
58 unsigned long do_slow_gettimeoffset(void)
60 unsigned long count;
61 unsigned long usec_count = 0;
63 static unsigned long count_p = TIMER0_DIV;/* for the first call after boot */
64 static unsigned long jiffies_p = 0;
67 * cache volatile jiffies temporarily; we have IRQs turned off.
69 unsigned long jiffies_t;
71 /* The timer interrupt comes from Etrax timer 0. In order to get
72 * better precision, we check the current value. It might have
73 * underflowed already though.
76 count = REG_RD(timer, regi_timer, r_tmr0_data);
77 jiffies_t = jiffies;
80 * avoiding timer inconsistencies (they are rare, but they happen)...
81 * there are one problem that must be avoided here:
82 * 1. the timer counter underflows
84 if( jiffies_t == jiffies_p ) {
85 if( count > count_p ) {
86 /* Timer wrapped, use new count and prescale
87 * increase the time corresponding to one jiffie
89 usec_count = 1000000/HZ;
91 } else
92 jiffies_p = jiffies_t;
93 count_p = count;
94 /* Convert timer value to usec */
95 /* 100 MHz timer, divide by 100 to get usec */
96 usec_count += (TIMER0_DIV - count) / 100;
97 return usec_count;
100 /* From timer MDS describing the hardware watchdog:
101 * 4.3.1 Watchdog Operation
102 * The watchdog timer is an 8-bit timer with a configurable start value.
103 * Once started the whatchdog counts downwards with a frequency of 763 Hz
104 * (100/131072 MHz). When the watchdog counts down to 1, it generates an
105 * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
106 * chip.
108 /* This gives us 1.3 ms to do something useful when the NMI comes */
110 /* right now, starting the watchdog is the same as resetting it */
111 #define start_watchdog reset_watchdog
113 #if defined(CONFIG_ETRAX_WATCHDOG)
114 static short int watchdog_key = 42; /* arbitrary 7 bit number */
115 #endif
117 /* number of pages to consider "out of memory". it is normal that the memory
118 * is used though, so put this really low.
121 #define WATCHDOG_MIN_FREE_PAGES 8
123 void
124 reset_watchdog(void)
126 #if defined(CONFIG_ETRAX_WATCHDOG)
127 reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
129 /* only keep watchdog happy as long as we have memory left! */
130 if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
131 /* reset the watchdog with the inverse of the old key */
132 watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
133 wd_ctrl.cnt = ETRAX_WD_CNT;
134 wd_ctrl.cmd = regk_timer_start;
135 wd_ctrl.key = watchdog_key;
136 REG_WR(timer, regi_timer, rw_wd_ctrl, wd_ctrl);
138 #endif
141 /* stop the watchdog - we still need the correct key */
143 void
144 stop_watchdog(void)
146 #if defined(CONFIG_ETRAX_WATCHDOG)
147 reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
148 watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
149 wd_ctrl.cnt = ETRAX_WD_CNT;
150 wd_ctrl.cmd = regk_timer_stop;
151 wd_ctrl.key = watchdog_key;
152 REG_WR(timer, regi_timer, rw_wd_ctrl, wd_ctrl);
153 #endif
156 extern void show_registers(struct pt_regs *regs);
158 void
159 handle_watchdog_bite(struct pt_regs* regs)
161 #if defined(CONFIG_ETRAX_WATCHDOG)
162 extern int cause_of_death;
164 raw_printk("Watchdog bite\n");
166 /* Check if forced restart or unexpected watchdog */
167 if (cause_of_death == 0xbedead) {
168 while(1);
171 /* Unexpected watchdog, stop the watchdog and dump registers*/
172 stop_watchdog();
173 raw_printk("Oops: bitten by watchdog\n");
174 show_registers(regs);
175 #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
176 reset_watchdog();
177 #endif
178 while(1) /* nothing */;
179 #endif
182 /* last time the cmos clock got updated */
183 static long last_rtc_update = 0;
186 * timer_interrupt() needs to keep up the real-time clock,
187 * as well as call the "do_timer()" routine every clocktick
190 //static unsigned short myjiff; /* used by our debug routine print_timestamp */
192 extern void cris_do_profile(struct pt_regs *regs);
194 static inline irqreturn_t
195 timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
197 int cpu = smp_processor_id();
198 reg_timer_r_masked_intr masked_intr;
199 reg_timer_rw_ack_intr ack_intr = { 0 };
201 /* Check if the timer interrupt is for us (a tmr0 int) */
202 masked_intr = REG_RD(timer, timer_regs[cpu], r_masked_intr);
203 if (!masked_intr.tmr0)
204 return IRQ_NONE;
206 /* acknowledge the timer irq */
207 ack_intr.tmr0 = 1;
208 REG_WR(timer, timer_regs[cpu], rw_ack_intr, ack_intr);
210 /* reset watchdog otherwise it resets us! */
211 reset_watchdog();
213 /* Update statistics. */
214 update_process_times(user_mode(regs));
216 cris_do_profile(regs); /* Save profiling information */
218 /* The master CPU is responsible for the time keeping. */
219 if (cpu != 0)
220 return IRQ_HANDLED;
222 /* call the real timer interrupt handler */
223 do_timer(regs);
226 * If we have an externally synchronized Linux clock, then update
227 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
228 * called as close as possible to 500 ms before the new second starts.
230 * The division here is not time critical since it will run once in
231 * 11 minutes
233 if ((time_status & STA_UNSYNC) == 0 &&
234 xtime.tv_sec > last_rtc_update + 660 &&
235 (xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 &&
236 (xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) {
237 if (set_rtc_mmss(xtime.tv_sec) == 0)
238 last_rtc_update = xtime.tv_sec;
239 else
240 last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
242 return IRQ_HANDLED;
245 /* timer is SA_SHIRQ so drivers can add stuff to the timer irq chain
246 * it needs to be SA_INTERRUPT to make the jiffies update work properly
249 static struct irqaction irq_timer = { timer_interrupt, SA_SHIRQ | SA_INTERRUPT,
250 CPU_MASK_NONE, "timer", NULL, NULL};
252 void __init
253 cris_timer_init(void)
255 int cpu = smp_processor_id();
256 reg_timer_rw_tmr0_ctrl tmr0_ctrl = { 0 };
257 reg_timer_rw_tmr0_div tmr0_div = TIMER0_DIV;
258 reg_timer_rw_intr_mask timer_intr_mask;
260 /* Setup the etrax timers
261 * Base frequency is 100MHz, divider 1000000 -> 100 HZ
262 * We use timer0, so timer1 is free.
263 * The trig timer is used by the fasttimer API if enabled.
266 tmr0_ctrl.op = regk_timer_ld;
267 tmr0_ctrl.freq = regk_timer_f100;
268 REG_WR(timer, timer_regs[cpu], rw_tmr0_div, tmr0_div);
269 REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Load */
270 tmr0_ctrl.op = regk_timer_run;
271 REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Start */
273 /* enable the timer irq */
274 timer_intr_mask = REG_RD(timer, timer_regs[cpu], rw_intr_mask);
275 timer_intr_mask.tmr0 = 1;
276 REG_WR(timer, timer_regs[cpu], rw_intr_mask, timer_intr_mask);
279 void __init
280 time_init(void)
282 reg_intr_vect_rw_mask intr_mask;
284 /* probe for the RTC and read it if it exists
285 * Before the RTC can be probed the loops_per_usec variable needs
286 * to be initialized to make usleep work. A better value for
287 * loops_per_usec is calculated by the kernel later once the
288 * clock has started.
290 loops_per_usec = 50;
292 if(RTC_INIT() < 0) {
293 /* no RTC, start at 1980 */
294 xtime.tv_sec = 0;
295 xtime.tv_nsec = 0;
296 have_rtc = 0;
297 } else {
298 /* get the current time */
299 have_rtc = 1;
300 update_xtime_from_cmos();
304 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
305 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
307 set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
309 /* Start CPU local timer */
310 cris_timer_init();
312 /* enable the timer irq in global config */
313 intr_mask = REG_RD(intr_vect, regi_irq, rw_mask);
314 intr_mask.timer = 1;
315 REG_WR(intr_vect, regi_irq, rw_mask, intr_mask);
317 /* now actually register the timer irq handler that calls timer_interrupt() */
319 setup_irq(TIMER_INTR_VECT, &irq_timer);
321 /* enable watchdog if we should use one */
323 #if defined(CONFIG_ETRAX_WATCHDOG)
324 printk("Enabling watchdog...\n");
325 start_watchdog();
327 /* If we use the hardware watchdog, we want to trap it as an NMI
328 and dump registers before it resets us. For this to happen, we
329 must set the "m" NMI enable flag (which once set, is unset only
330 when an NMI is taken).
332 The same goes for the external NMI, but that doesn't have any
333 driver or infrastructure support yet. */
335 unsigned long flags;
336 local_save_flags(flags);
337 flags |= (1<<30); /* NMI M flag is at bit 30 */
338 local_irq_restore(flags);
340 #endif