2 * Kernel Probes (KProbes)
3 * arch/i386/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
27 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
28 * <prasanna@in.ibm.com> added function-return probes.
31 #include <linux/config.h>
32 #include <linux/kprobes.h>
33 #include <linux/ptrace.h>
34 #include <linux/spinlock.h>
35 #include <linux/preempt.h>
36 #include <asm/cacheflush.h>
37 #include <asm/kdebug.h>
40 static struct kprobe
*current_kprobe
;
41 static unsigned long kprobe_status
, kprobe_old_eflags
, kprobe_saved_eflags
;
42 static struct kprobe
*kprobe_prev
;
43 static unsigned long kprobe_status_prev
, kprobe_old_eflags_prev
, kprobe_saved_eflags_prev
;
44 static struct pt_regs jprobe_saved_regs
;
45 static long *jprobe_saved_esp
;
46 /* copy of the kernel stack at the probe fire time */
47 static kprobe_opcode_t jprobes_stack
[MAX_STACK_SIZE
];
48 void jprobe_return_end(void);
51 * returns non-zero if opcode modifies the interrupt flag.
53 static inline int is_IF_modifier(kprobe_opcode_t opcode
)
58 case 0xcf: /* iret/iretd */
59 case 0x9d: /* popf/popfd */
65 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
70 void __kprobes
arch_copy_kprobe(struct kprobe
*p
)
72 memcpy(p
->ainsn
.insn
, p
->addr
, MAX_INSN_SIZE
* sizeof(kprobe_opcode_t
));
76 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
78 *p
->addr
= BREAKPOINT_INSTRUCTION
;
79 flush_icache_range((unsigned long) p
->addr
,
80 (unsigned long) p
->addr
+ sizeof(kprobe_opcode_t
));
83 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
86 flush_icache_range((unsigned long) p
->addr
,
87 (unsigned long) p
->addr
+ sizeof(kprobe_opcode_t
));
90 void __kprobes
arch_remove_kprobe(struct kprobe
*p
)
94 static inline void save_previous_kprobe(void)
96 kprobe_prev
= current_kprobe
;
97 kprobe_status_prev
= kprobe_status
;
98 kprobe_old_eflags_prev
= kprobe_old_eflags
;
99 kprobe_saved_eflags_prev
= kprobe_saved_eflags
;
102 static inline void restore_previous_kprobe(void)
104 current_kprobe
= kprobe_prev
;
105 kprobe_status
= kprobe_status_prev
;
106 kprobe_old_eflags
= kprobe_old_eflags_prev
;
107 kprobe_saved_eflags
= kprobe_saved_eflags_prev
;
110 static inline void set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
)
113 kprobe_saved_eflags
= kprobe_old_eflags
114 = (regs
->eflags
& (TF_MASK
| IF_MASK
));
115 if (is_IF_modifier(p
->opcode
))
116 kprobe_saved_eflags
&= ~IF_MASK
;
119 static inline void prepare_singlestep(struct kprobe
*p
, struct pt_regs
*regs
)
121 regs
->eflags
|= TF_MASK
;
122 regs
->eflags
&= ~IF_MASK
;
123 /*single step inline if the instruction is an int3*/
124 if (p
->opcode
== BREAKPOINT_INSTRUCTION
)
125 regs
->eip
= (unsigned long)p
->addr
;
127 regs
->eip
= (unsigned long)&p
->ainsn
.insn
;
130 void __kprobes
arch_prepare_kretprobe(struct kretprobe
*rp
,
131 struct pt_regs
*regs
)
133 unsigned long *sara
= (unsigned long *)®s
->esp
;
134 struct kretprobe_instance
*ri
;
136 if ((ri
= get_free_rp_inst(rp
)) != NULL
) {
139 ri
->ret_addr
= (kprobe_opcode_t
*) *sara
;
141 /* Replace the return addr with trampoline addr */
142 *sara
= (unsigned long) &kretprobe_trampoline
;
151 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
152 * remain disabled thorough out this function.
154 static int __kprobes
kprobe_handler(struct pt_regs
*regs
)
158 kprobe_opcode_t
*addr
= NULL
;
161 /* We're in an interrupt, but this is clear and BUG()-safe. */
163 /* Check if the application is using LDT entry for its code segment and
164 * calculate the address by reading the base address from the LDT entry.
166 if ((regs
->xcs
& 4) && (current
->mm
)) {
167 lp
= (unsigned long *) ((unsigned long)((regs
->xcs
>> 3) * 8)
168 + (char *) current
->mm
->context
.ldt
);
169 addr
= (kprobe_opcode_t
*) (get_desc_base(lp
) + regs
->eip
-
170 sizeof(kprobe_opcode_t
));
172 addr
= (kprobe_opcode_t
*)(regs
->eip
- sizeof(kprobe_opcode_t
));
174 /* Check we're not actually recursing */
175 if (kprobe_running()) {
176 /* We *are* holding lock here, so this is safe.
177 Disarm the probe we just hit, and ignore it. */
178 p
= get_kprobe(addr
);
180 if (kprobe_status
== KPROBE_HIT_SS
&&
181 *p
->ainsn
.insn
== BREAKPOINT_INSTRUCTION
) {
182 regs
->eflags
&= ~TF_MASK
;
183 regs
->eflags
|= kprobe_saved_eflags
;
187 /* We have reentered the kprobe_handler(), since
188 * another probe was hit while within the handler.
189 * We here save the original kprobes variables and
190 * just single step on the instruction of the new probe
191 * without calling any user handlers.
193 save_previous_kprobe();
194 set_current_kprobe(p
, regs
);
196 prepare_singlestep(p
, regs
);
197 kprobe_status
= KPROBE_REENTER
;
201 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
205 /* If it's not ours, can't be delete race, (we hold lock). */
210 p
= get_kprobe(addr
);
213 if (regs
->eflags
& VM_MASK
) {
214 /* We are in virtual-8086 mode. Return 0 */
218 if (*addr
!= BREAKPOINT_INSTRUCTION
) {
220 * The breakpoint instruction was removed right
221 * after we hit it. Another cpu has removed
222 * either a probepoint or a debugger breakpoint
223 * at this address. In either case, no further
224 * handling of this interrupt is appropriate.
225 * Back up over the (now missing) int3 and run
226 * the original instruction.
228 regs
->eip
-= sizeof(kprobe_opcode_t
);
231 /* Not one of ours: let kernel handle it */
235 kprobe_status
= KPROBE_HIT_ACTIVE
;
236 set_current_kprobe(p
, regs
);
238 if (p
->pre_handler
&& p
->pre_handler(p
, regs
))
239 /* handler has already set things up, so skip ss setup */
243 prepare_singlestep(p
, regs
);
244 kprobe_status
= KPROBE_HIT_SS
;
248 preempt_enable_no_resched();
253 * For function-return probes, init_kprobes() establishes a probepoint
254 * here. When a retprobed function returns, this probe is hit and
255 * trampoline_probe_handler() runs, calling the kretprobe's handler.
257 void kretprobe_trampoline_holder(void)
259 asm volatile ( ".global kretprobe_trampoline\n"
260 "kretprobe_trampoline: \n"
265 * Called when we hit the probe point at kretprobe_trampoline
267 int __kprobes
trampoline_probe_handler(struct kprobe
*p
, struct pt_regs
*regs
)
269 struct kretprobe_instance
*ri
= NULL
;
270 struct hlist_head
*head
;
271 struct hlist_node
*node
, *tmp
;
272 unsigned long orig_ret_address
= 0;
273 unsigned long trampoline_address
=(unsigned long)&kretprobe_trampoline
;
275 head
= kretprobe_inst_table_head(current
);
278 * It is possible to have multiple instances associated with a given
279 * task either because an multiple functions in the call path
280 * have a return probe installed on them, and/or more then one return
281 * return probe was registered for a target function.
283 * We can handle this because:
284 * - instances are always inserted at the head of the list
285 * - when multiple return probes are registered for the same
286 * function, the first instance's ret_addr will point to the
287 * real return address, and all the rest will point to
288 * kretprobe_trampoline
290 hlist_for_each_entry_safe(ri
, node
, tmp
, head
, hlist
) {
291 if (ri
->task
!= current
)
292 /* another task is sharing our hash bucket */
295 if (ri
->rp
&& ri
->rp
->handler
)
296 ri
->rp
->handler(ri
, regs
);
298 orig_ret_address
= (unsigned long)ri
->ret_addr
;
301 if (orig_ret_address
!= trampoline_address
)
303 * This is the real return address. Any other
304 * instances associated with this task are for
305 * other calls deeper on the call stack
310 BUG_ON(!orig_ret_address
|| (orig_ret_address
== trampoline_address
));
311 regs
->eip
= orig_ret_address
;
314 preempt_enable_no_resched();
317 * By returning a non-zero value, we are telling
318 * kprobe_handler() that we have handled unlocking
319 * and re-enabling preemption.
325 * Called after single-stepping. p->addr is the address of the
326 * instruction whose first byte has been replaced by the "int 3"
327 * instruction. To avoid the SMP problems that can occur when we
328 * temporarily put back the original opcode to single-step, we
329 * single-stepped a copy of the instruction. The address of this
330 * copy is p->ainsn.insn.
332 * This function prepares to return from the post-single-step
333 * interrupt. We have to fix up the stack as follows:
335 * 0) Except in the case of absolute or indirect jump or call instructions,
336 * the new eip is relative to the copied instruction. We need to make
337 * it relative to the original instruction.
339 * 1) If the single-stepped instruction was pushfl, then the TF and IF
340 * flags are set in the just-pushed eflags, and may need to be cleared.
342 * 2) If the single-stepped instruction was a call, the return address
343 * that is atop the stack is the address following the copied instruction.
344 * We need to make it the address following the original instruction.
346 static void __kprobes
resume_execution(struct kprobe
*p
, struct pt_regs
*regs
)
348 unsigned long *tos
= (unsigned long *)®s
->esp
;
349 unsigned long next_eip
= 0;
350 unsigned long copy_eip
= (unsigned long)&p
->ainsn
.insn
;
351 unsigned long orig_eip
= (unsigned long)p
->addr
;
353 switch (p
->ainsn
.insn
[0]) {
354 case 0x9c: /* pushfl */
355 *tos
&= ~(TF_MASK
| IF_MASK
);
356 *tos
|= kprobe_old_eflags
;
358 case 0xc3: /* ret/lret */
362 regs
->eflags
&= ~TF_MASK
;
363 /* eip is already adjusted, no more changes required*/
365 case 0xe8: /* call relative - Fix return addr */
366 *tos
= orig_eip
+ (*tos
- copy_eip
);
369 if ((p
->ainsn
.insn
[1] & 0x30) == 0x10) {
370 /* call absolute, indirect */
371 /* Fix return addr; eip is correct. */
372 next_eip
= regs
->eip
;
373 *tos
= orig_eip
+ (*tos
- copy_eip
);
374 } else if (((p
->ainsn
.insn
[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
375 ((p
->ainsn
.insn
[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
376 /* eip is correct. */
377 next_eip
= regs
->eip
;
380 case 0xea: /* jmp absolute -- eip is correct */
381 next_eip
= regs
->eip
;
387 regs
->eflags
&= ~TF_MASK
;
389 regs
->eip
= next_eip
;
391 regs
->eip
= orig_eip
+ (regs
->eip
- copy_eip
);
396 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
397 * remain disabled thoroughout this function. And we hold kprobe lock.
399 static inline int post_kprobe_handler(struct pt_regs
*regs
)
401 if (!kprobe_running())
404 if ((kprobe_status
!= KPROBE_REENTER
) && current_kprobe
->post_handler
) {
405 kprobe_status
= KPROBE_HIT_SSDONE
;
406 current_kprobe
->post_handler(current_kprobe
, regs
, 0);
409 resume_execution(current_kprobe
, regs
);
410 regs
->eflags
|= kprobe_saved_eflags
;
412 /*Restore back the original saved kprobes variables and continue. */
413 if (kprobe_status
== KPROBE_REENTER
) {
414 restore_previous_kprobe();
419 preempt_enable_no_resched();
422 * if somebody else is singlestepping across a probe point, eflags
423 * will have TF set, in which case, continue the remaining processing
424 * of do_debug, as if this is not a probe hit.
426 if (regs
->eflags
& TF_MASK
)
432 /* Interrupts disabled, kprobe_lock held. */
433 static inline int kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
435 if (current_kprobe
->fault_handler
436 && current_kprobe
->fault_handler(current_kprobe
, regs
, trapnr
))
439 if (kprobe_status
& KPROBE_HIT_SS
) {
440 resume_execution(current_kprobe
, regs
);
441 regs
->eflags
|= kprobe_old_eflags
;
444 preempt_enable_no_resched();
450 * Wrapper routine to for handling exceptions.
452 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
453 unsigned long val
, void *data
)
455 struct die_args
*args
= (struct die_args
*)data
;
458 if (kprobe_handler(args
->regs
))
462 if (post_kprobe_handler(args
->regs
))
466 if (kprobe_running() &&
467 kprobe_fault_handler(args
->regs
, args
->trapnr
))
471 if (kprobe_running() &&
472 kprobe_fault_handler(args
->regs
, args
->trapnr
))
481 int __kprobes
setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
483 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
486 jprobe_saved_regs
= *regs
;
487 jprobe_saved_esp
= ®s
->esp
;
488 addr
= (unsigned long)jprobe_saved_esp
;
491 * TBD: As Linus pointed out, gcc assumes that the callee
492 * owns the argument space and could overwrite it, e.g.
493 * tailcall optimization. So, to be absolutely safe
494 * we also save and restore enough stack bytes to cover
497 memcpy(jprobes_stack
, (kprobe_opcode_t
*) addr
, MIN_STACK_SIZE(addr
));
498 regs
->eflags
&= ~IF_MASK
;
499 regs
->eip
= (unsigned long)(jp
->entry
);
503 void __kprobes
jprobe_return(void)
505 preempt_enable_no_resched();
506 asm volatile (" xchgl %%ebx,%%esp \n"
508 " .globl jprobe_return_end \n"
509 " jprobe_return_end: \n"
511 (jprobe_saved_esp
):"memory");
514 int __kprobes
longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
516 u8
*addr
= (u8
*) (regs
->eip
- 1);
517 unsigned long stack_addr
= (unsigned long)jprobe_saved_esp
;
518 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
520 if ((addr
> (u8
*) jprobe_return
) && (addr
< (u8
*) jprobe_return_end
)) {
521 if (®s
->esp
!= jprobe_saved_esp
) {
522 struct pt_regs
*saved_regs
=
523 container_of(jprobe_saved_esp
, struct pt_regs
, esp
);
524 printk("current esp %p does not match saved esp %p\n",
525 ®s
->esp
, jprobe_saved_esp
);
526 printk("Saved registers for jprobe %p\n", jp
);
527 show_registers(saved_regs
);
528 printk("Current registers\n");
529 show_registers(regs
);
532 *regs
= jprobe_saved_regs
;
533 memcpy((kprobe_opcode_t
*) stack_addr
, jprobes_stack
,
534 MIN_STACK_SIZE(stack_addr
));
540 static struct kprobe trampoline_p
= {
541 .addr
= (kprobe_opcode_t
*) &kretprobe_trampoline
,
542 .pre_handler
= trampoline_probe_handler
545 int __init
arch_init_kprobes(void)
547 return register_kprobe(&trampoline_p
);