mips: rename offsets.c to asm-offsets.c
[linux-2.6/verdex.git] / arch / i386 / mach-voyager / voyager_smp.c
blob46b0cf4a31e006fc6002569ae3eac4b7a5478a6a
1 /* -*- mode: c; c-basic-offset: 8 -*- */
3 /* Copyright (C) 1999,2001
5 * Author: J.E.J.Bottomley@HansenPartnership.com
7 * linux/arch/i386/kernel/voyager_smp.c
9 * This file provides all the same external entries as smp.c but uses
10 * the voyager hal to provide the functionality
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/mc146818rtc.h>
18 #include <linux/cache.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp_lock.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/bootmem.h>
24 #include <linux/completion.h>
25 #include <asm/desc.h>
26 #include <asm/voyager.h>
27 #include <asm/vic.h>
28 #include <asm/mtrr.h>
29 #include <asm/pgalloc.h>
30 #include <asm/tlbflush.h>
31 #include <asm/arch_hooks.h>
33 #include <linux/irq.h>
35 /* TLB state -- visible externally, indexed physically */
36 DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0 };
38 /* CPU IRQ affinity -- set to all ones initially */
39 static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned = { [0 ... NR_CPUS-1] = ~0UL };
41 /* per CPU data structure (for /proc/cpuinfo et al), visible externally
42 * indexed physically */
43 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
44 EXPORT_SYMBOL(cpu_data);
46 /* physical ID of the CPU used to boot the system */
47 unsigned char boot_cpu_id;
49 /* The memory line addresses for the Quad CPIs */
50 struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
52 /* The masks for the Extended VIC processors, filled in by cat_init */
53 __u32 voyager_extended_vic_processors = 0;
55 /* Masks for the extended Quad processors which cannot be VIC booted */
56 __u32 voyager_allowed_boot_processors = 0;
58 /* The mask for the Quad Processors (both extended and non-extended) */
59 __u32 voyager_quad_processors = 0;
61 /* Total count of live CPUs, used in process.c to display
62 * the CPU information and in irq.c for the per CPU irq
63 * activity count. Finally exported by i386_ksyms.c */
64 static int voyager_extended_cpus = 1;
66 /* Have we found an SMP box - used by time.c to do the profiling
67 interrupt for timeslicing; do not set to 1 until the per CPU timer
68 interrupt is active */
69 int smp_found_config = 0;
71 /* Used for the invalidate map that's also checked in the spinlock */
72 static volatile unsigned long smp_invalidate_needed;
74 /* Bitmask of currently online CPUs - used by setup.c for
75 /proc/cpuinfo, visible externally but still physical */
76 cpumask_t cpu_online_map = CPU_MASK_NONE;
77 EXPORT_SYMBOL(cpu_online_map);
79 /* Bitmask of CPUs present in the system - exported by i386_syms.c, used
80 * by scheduler but indexed physically */
81 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
84 /* The internal functions */
85 static void send_CPI(__u32 cpuset, __u8 cpi);
86 static void ack_CPI(__u8 cpi);
87 static int ack_QIC_CPI(__u8 cpi);
88 static void ack_special_QIC_CPI(__u8 cpi);
89 static void ack_VIC_CPI(__u8 cpi);
90 static void send_CPI_allbutself(__u8 cpi);
91 static void enable_vic_irq(unsigned int irq);
92 static void disable_vic_irq(unsigned int irq);
93 static unsigned int startup_vic_irq(unsigned int irq);
94 static void enable_local_vic_irq(unsigned int irq);
95 static void disable_local_vic_irq(unsigned int irq);
96 static void before_handle_vic_irq(unsigned int irq);
97 static void after_handle_vic_irq(unsigned int irq);
98 static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
99 static void ack_vic_irq(unsigned int irq);
100 static void vic_enable_cpi(void);
101 static void do_boot_cpu(__u8 cpuid);
102 static void do_quad_bootstrap(void);
104 int hard_smp_processor_id(void);
106 /* Inline functions */
107 static inline void
108 send_one_QIC_CPI(__u8 cpu, __u8 cpi)
110 voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
111 (smp_processor_id() << 16) + cpi;
114 static inline void
115 send_QIC_CPI(__u32 cpuset, __u8 cpi)
117 int cpu;
119 for_each_online_cpu(cpu) {
120 if(cpuset & (1<<cpu)) {
121 #ifdef VOYAGER_DEBUG
122 if(!cpu_isset(cpu, cpu_online_map))
123 VDEBUG(("CPU%d sending cpi %d to CPU%d not in cpu_online_map\n", hard_smp_processor_id(), cpi, cpu));
124 #endif
125 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
130 static inline void
131 wrapper_smp_local_timer_interrupt(struct pt_regs *regs)
133 irq_enter();
134 smp_local_timer_interrupt(regs);
135 irq_exit();
138 static inline void
139 send_one_CPI(__u8 cpu, __u8 cpi)
141 if(voyager_quad_processors & (1<<cpu))
142 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
143 else
144 send_CPI(1<<cpu, cpi);
147 static inline void
148 send_CPI_allbutself(__u8 cpi)
150 __u8 cpu = smp_processor_id();
151 __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
152 send_CPI(mask, cpi);
155 static inline int
156 is_cpu_quad(void)
158 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
159 return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
162 static inline int
163 is_cpu_extended(void)
165 __u8 cpu = hard_smp_processor_id();
167 return(voyager_extended_vic_processors & (1<<cpu));
170 static inline int
171 is_cpu_vic_boot(void)
173 __u8 cpu = hard_smp_processor_id();
175 return(voyager_extended_vic_processors
176 & voyager_allowed_boot_processors & (1<<cpu));
180 static inline void
181 ack_CPI(__u8 cpi)
183 switch(cpi) {
184 case VIC_CPU_BOOT_CPI:
185 if(is_cpu_quad() && !is_cpu_vic_boot())
186 ack_QIC_CPI(cpi);
187 else
188 ack_VIC_CPI(cpi);
189 break;
190 case VIC_SYS_INT:
191 case VIC_CMN_INT:
192 /* These are slightly strange. Even on the Quad card,
193 * They are vectored as VIC CPIs */
194 if(is_cpu_quad())
195 ack_special_QIC_CPI(cpi);
196 else
197 ack_VIC_CPI(cpi);
198 break;
199 default:
200 printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
201 break;
205 /* local variables */
207 /* The VIC IRQ descriptors -- these look almost identical to the
208 * 8259 IRQs except that masks and things must be kept per processor
210 static struct hw_interrupt_type vic_irq_type = {
211 .typename = "VIC-level",
212 .startup = startup_vic_irq,
213 .shutdown = disable_vic_irq,
214 .enable = enable_vic_irq,
215 .disable = disable_vic_irq,
216 .ack = before_handle_vic_irq,
217 .end = after_handle_vic_irq,
218 .set_affinity = set_vic_irq_affinity,
221 /* used to count up as CPUs are brought on line (starts at 0) */
222 static int cpucount = 0;
224 /* steal a page from the bottom of memory for the trampoline and
225 * squirrel its address away here. This will be in kernel virtual
226 * space */
227 static __u32 trampoline_base;
229 /* The per cpu profile stuff - used in smp_local_timer_interrupt */
230 static DEFINE_PER_CPU(int, prof_multiplier) = 1;
231 static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
232 static DEFINE_PER_CPU(int, prof_counter) = 1;
234 /* the map used to check if a CPU has booted */
235 static __u32 cpu_booted_map;
237 /* the synchronize flag used to hold all secondary CPUs spinning in
238 * a tight loop until the boot sequence is ready for them */
239 static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
241 /* This is for the new dynamic CPU boot code */
242 cpumask_t cpu_callin_map = CPU_MASK_NONE;
243 cpumask_t cpu_callout_map = CPU_MASK_NONE;
244 EXPORT_SYMBOL(cpu_callout_map);
245 cpumask_t cpu_possible_map = CPU_MASK_ALL;
246 EXPORT_SYMBOL(cpu_possible_map);
248 /* The per processor IRQ masks (these are usually kept in sync) */
249 static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
251 /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
252 static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
254 /* Lock for enable/disable of VIC interrupts */
255 static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
257 /* The boot processor is correctly set up in PC mode when it
258 * comes up, but the secondaries need their master/slave 8259
259 * pairs initializing correctly */
261 /* Interrupt counters (per cpu) and total - used to try to
262 * even up the interrupt handling routines */
263 static long vic_intr_total = 0;
264 static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
265 static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
267 /* Since we can only use CPI0, we fake all the other CPIs */
268 static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
270 /* debugging routine to read the isr of the cpu's pic */
271 static inline __u16
272 vic_read_isr(void)
274 __u16 isr;
276 outb(0x0b, 0xa0);
277 isr = inb(0xa0) << 8;
278 outb(0x0b, 0x20);
279 isr |= inb(0x20);
281 return isr;
284 static __init void
285 qic_setup(void)
287 if(!is_cpu_quad()) {
288 /* not a quad, no setup */
289 return;
291 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
292 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
294 if(is_cpu_extended()) {
295 /* the QIC duplicate of the VIC base register */
296 outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
297 outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
299 /* FIXME: should set up the QIC timer and memory parity
300 * error vectors here */
304 static __init void
305 vic_setup_pic(void)
307 outb(1, VIC_REDIRECT_REGISTER_1);
308 /* clear the claim registers for dynamic routing */
309 outb(0, VIC_CLAIM_REGISTER_0);
310 outb(0, VIC_CLAIM_REGISTER_1);
312 outb(0, VIC_PRIORITY_REGISTER);
313 /* Set the Primary and Secondary Microchannel vector
314 * bases to be the same as the ordinary interrupts
316 * FIXME: This would be more efficient using separate
317 * vectors. */
318 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
319 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
320 /* Now initiallise the master PIC belonging to this CPU by
321 * sending the four ICWs */
323 /* ICW1: level triggered, ICW4 needed */
324 outb(0x19, 0x20);
326 /* ICW2: vector base */
327 outb(FIRST_EXTERNAL_VECTOR, 0x21);
329 /* ICW3: slave at line 2 */
330 outb(0x04, 0x21);
332 /* ICW4: 8086 mode */
333 outb(0x01, 0x21);
335 /* now the same for the slave PIC */
337 /* ICW1: level trigger, ICW4 needed */
338 outb(0x19, 0xA0);
340 /* ICW2: slave vector base */
341 outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
343 /* ICW3: slave ID */
344 outb(0x02, 0xA1);
346 /* ICW4: 8086 mode */
347 outb(0x01, 0xA1);
350 static void
351 do_quad_bootstrap(void)
353 if(is_cpu_quad() && is_cpu_vic_boot()) {
354 int i;
355 unsigned long flags;
356 __u8 cpuid = hard_smp_processor_id();
358 local_irq_save(flags);
360 for(i = 0; i<4; i++) {
361 /* FIXME: this would be >>3 &0x7 on the 32 way */
362 if(((cpuid >> 2) & 0x03) == i)
363 /* don't lower our own mask! */
364 continue;
366 /* masquerade as local Quad CPU */
367 outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
368 /* enable the startup CPI */
369 outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
370 /* restore cpu id */
371 outb(0, QIC_PROCESSOR_ID);
373 local_irq_restore(flags);
378 /* Set up all the basic stuff: read the SMP config and make all the
379 * SMP information reflect only the boot cpu. All others will be
380 * brought on-line later. */
381 void __init
382 find_smp_config(void)
384 int i;
386 boot_cpu_id = hard_smp_processor_id();
388 printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
390 /* initialize the CPU structures (moved from smp_boot_cpus) */
391 for(i=0; i<NR_CPUS; i++) {
392 cpu_irq_affinity[i] = ~0;
394 cpu_online_map = cpumask_of_cpu(boot_cpu_id);
396 /* The boot CPU must be extended */
397 voyager_extended_vic_processors = 1<<boot_cpu_id;
398 /* initially, all of the first 8 cpu's can boot */
399 voyager_allowed_boot_processors = 0xff;
400 /* set up everything for just this CPU, we can alter
401 * this as we start the other CPUs later */
402 /* now get the CPU disposition from the extended CMOS */
403 cpus_addr(phys_cpu_present_map)[0] = voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
404 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
405 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 2) << 16;
406 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 3) << 24;
407 printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n", cpus_addr(phys_cpu_present_map)[0]);
408 /* Here we set up the VIC to enable SMP */
409 /* enable the CPIs by writing the base vector to their register */
410 outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
411 outb(1, VIC_REDIRECT_REGISTER_1);
412 /* set the claim registers for static routing --- Boot CPU gets
413 * all interrupts untill all other CPUs started */
414 outb(0xff, VIC_CLAIM_REGISTER_0);
415 outb(0xff, VIC_CLAIM_REGISTER_1);
416 /* Set the Primary and Secondary Microchannel vector
417 * bases to be the same as the ordinary interrupts
419 * FIXME: This would be more efficient using separate
420 * vectors. */
421 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
422 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
424 /* Finally tell the firmware that we're driving */
425 outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
426 VOYAGER_SUS_IN_CONTROL_PORT);
428 current_thread_info()->cpu = boot_cpu_id;
432 * The bootstrap kernel entry code has set these up. Save them
433 * for a given CPU, id is physical */
434 void __init
435 smp_store_cpu_info(int id)
437 struct cpuinfo_x86 *c=&cpu_data[id];
439 *c = boot_cpu_data;
441 identify_cpu(c);
444 /* set up the trampoline and return the physical address of the code */
445 static __u32 __init
446 setup_trampoline(void)
448 /* these two are global symbols in trampoline.S */
449 extern __u8 trampoline_end[];
450 extern __u8 trampoline_data[];
452 memcpy((__u8 *)trampoline_base, trampoline_data,
453 trampoline_end - trampoline_data);
454 return virt_to_phys((__u8 *)trampoline_base);
457 /* Routine initially called when a non-boot CPU is brought online */
458 static void __init
459 start_secondary(void *unused)
461 __u8 cpuid = hard_smp_processor_id();
462 /* external functions not defined in the headers */
463 extern void calibrate_delay(void);
465 cpu_init();
467 /* OK, we're in the routine */
468 ack_CPI(VIC_CPU_BOOT_CPI);
470 /* setup the 8259 master slave pair belonging to this CPU ---
471 * we won't actually receive any until the boot CPU
472 * relinquishes it's static routing mask */
473 vic_setup_pic();
475 qic_setup();
477 if(is_cpu_quad() && !is_cpu_vic_boot()) {
478 /* clear the boot CPI */
479 __u8 dummy;
481 dummy = voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
482 printk("read dummy %d\n", dummy);
485 /* lower the mask to receive CPIs */
486 vic_enable_cpi();
488 VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
490 /* enable interrupts */
491 local_irq_enable();
493 /* get our bogomips */
494 calibrate_delay();
496 /* save our processor parameters */
497 smp_store_cpu_info(cpuid);
499 /* if we're a quad, we may need to bootstrap other CPUs */
500 do_quad_bootstrap();
502 /* FIXME: this is rather a poor hack to prevent the CPU
503 * activating softirqs while it's supposed to be waiting for
504 * permission to proceed. Without this, the new per CPU stuff
505 * in the softirqs will fail */
506 local_irq_disable();
507 cpu_set(cpuid, cpu_callin_map);
509 /* signal that we're done */
510 cpu_booted_map = 1;
512 while (!cpu_isset(cpuid, smp_commenced_mask))
513 rep_nop();
514 local_irq_enable();
516 local_flush_tlb();
518 cpu_set(cpuid, cpu_online_map);
519 wmb();
520 cpu_idle();
524 /* Routine to kick start the given CPU and wait for it to report ready
525 * (or timeout in startup). When this routine returns, the requested
526 * CPU is either fully running and configured or known to be dead.
528 * We call this routine sequentially 1 CPU at a time, so no need for
529 * locking */
531 static void __init
532 do_boot_cpu(__u8 cpu)
534 struct task_struct *idle;
535 int timeout;
536 unsigned long flags;
537 int quad_boot = (1<<cpu) & voyager_quad_processors
538 & ~( voyager_extended_vic_processors
539 & voyager_allowed_boot_processors);
541 /* For the 486, we can't use the 4Mb page table trick, so
542 * must map a region of memory */
543 #ifdef CONFIG_M486
544 int i;
545 unsigned long *page_table_copies = (unsigned long *)
546 __get_free_page(GFP_KERNEL);
547 #endif
548 pgd_t orig_swapper_pg_dir0;
550 /* This is an area in head.S which was used to set up the
551 * initial kernel stack. We need to alter this to give the
552 * booting CPU a new stack (taken from its idle process) */
553 extern struct {
554 __u8 *esp;
555 unsigned short ss;
556 } stack_start;
557 /* This is the format of the CPI IDT gate (in real mode) which
558 * we're hijacking to boot the CPU */
559 union IDTFormat {
560 struct seg {
561 __u16 Offset;
562 __u16 Segment;
563 } idt;
564 __u32 val;
565 } hijack_source;
567 __u32 *hijack_vector;
568 __u32 start_phys_address = setup_trampoline();
570 /* There's a clever trick to this: The linux trampoline is
571 * compiled to begin at absolute location zero, so make the
572 * address zero but have the data segment selector compensate
573 * for the actual address */
574 hijack_source.idt.Offset = start_phys_address & 0x000F;
575 hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
577 cpucount++;
578 idle = fork_idle(cpu);
579 if(IS_ERR(idle))
580 panic("failed fork for CPU%d", cpu);
581 idle->thread.eip = (unsigned long) start_secondary;
582 /* init_tasks (in sched.c) is indexed logically */
583 stack_start.esp = (void *) idle->thread.esp;
585 irq_ctx_init(cpu);
587 /* Note: Don't modify initial ss override */
588 VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
589 (unsigned long)hijack_source.val, hijack_source.idt.Segment,
590 hijack_source.idt.Offset, stack_start.esp));
591 /* set the original swapper_pg_dir[0] to map 0 to 4Mb transparently
592 * (so that the booting CPU can find start_32 */
593 orig_swapper_pg_dir0 = swapper_pg_dir[0];
594 #ifdef CONFIG_M486
595 if(page_table_copies == NULL)
596 panic("No free memory for 486 page tables\n");
597 for(i = 0; i < PAGE_SIZE/sizeof(unsigned long); i++)
598 page_table_copies[i] = (i * PAGE_SIZE)
599 | _PAGE_RW | _PAGE_USER | _PAGE_PRESENT;
601 ((unsigned long *)swapper_pg_dir)[0] =
602 ((virt_to_phys(page_table_copies)) & PAGE_MASK)
603 | _PAGE_RW | _PAGE_USER | _PAGE_PRESENT;
604 #else
605 ((unsigned long *)swapper_pg_dir)[0] =
606 (virt_to_phys(pg0) & PAGE_MASK)
607 | _PAGE_RW | _PAGE_USER | _PAGE_PRESENT;
608 #endif
610 if(quad_boot) {
611 printk("CPU %d: non extended Quad boot\n", cpu);
612 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE)*4);
613 *hijack_vector = hijack_source.val;
614 } else {
615 printk("CPU%d: extended VIC boot\n", cpu);
616 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE)*4);
617 *hijack_vector = hijack_source.val;
618 /* VIC errata, may also receive interrupt at this address */
619 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI + VIC_DEFAULT_CPI_BASE)*4);
620 *hijack_vector = hijack_source.val;
622 /* All non-boot CPUs start with interrupts fully masked. Need
623 * to lower the mask of the CPI we're about to send. We do
624 * this in the VIC by masquerading as the processor we're
625 * about to boot and lowering its interrupt mask */
626 local_irq_save(flags);
627 if(quad_boot) {
628 send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
629 } else {
630 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
631 /* here we're altering registers belonging to `cpu' */
633 outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
634 /* now go back to our original identity */
635 outb(boot_cpu_id, VIC_PROCESSOR_ID);
637 /* and boot the CPU */
639 send_CPI((1<<cpu), VIC_CPU_BOOT_CPI);
641 cpu_booted_map = 0;
642 local_irq_restore(flags);
644 /* now wait for it to become ready (or timeout) */
645 for(timeout = 0; timeout < 50000; timeout++) {
646 if(cpu_booted_map)
647 break;
648 udelay(100);
650 /* reset the page table */
651 swapper_pg_dir[0] = orig_swapper_pg_dir0;
652 local_flush_tlb();
653 #ifdef CONFIG_M486
654 free_page((unsigned long)page_table_copies);
655 #endif
657 if (cpu_booted_map) {
658 VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
659 cpu, smp_processor_id()));
661 printk("CPU%d: ", cpu);
662 print_cpu_info(&cpu_data[cpu]);
663 wmb();
664 cpu_set(cpu, cpu_callout_map);
666 else {
667 printk("CPU%d FAILED TO BOOT: ", cpu);
668 if (*((volatile unsigned char *)phys_to_virt(start_phys_address))==0xA5)
669 printk("Stuck.\n");
670 else
671 printk("Not responding.\n");
673 cpucount--;
677 void __init
678 smp_boot_cpus(void)
680 int i;
682 /* CAT BUS initialisation must be done after the memory */
683 /* FIXME: The L4 has a catbus too, it just needs to be
684 * accessed in a totally different way */
685 if(voyager_level == 5) {
686 voyager_cat_init();
688 /* now that the cat has probed the Voyager System Bus, sanity
689 * check the cpu map */
690 if( ((voyager_quad_processors | voyager_extended_vic_processors)
691 & cpus_addr(phys_cpu_present_map)[0]) != cpus_addr(phys_cpu_present_map)[0]) {
692 /* should panic */
693 printk("\n\n***WARNING*** Sanity check of CPU present map FAILED\n");
695 } else if(voyager_level == 4)
696 voyager_extended_vic_processors = cpus_addr(phys_cpu_present_map)[0];
698 /* this sets up the idle task to run on the current cpu */
699 voyager_extended_cpus = 1;
700 /* Remove the global_irq_holder setting, it triggers a BUG() on
701 * schedule at the moment */
702 //global_irq_holder = boot_cpu_id;
704 /* FIXME: Need to do something about this but currently only works
705 * on CPUs with a tsc which none of mine have.
706 smp_tune_scheduling();
708 smp_store_cpu_info(boot_cpu_id);
709 printk("CPU%d: ", boot_cpu_id);
710 print_cpu_info(&cpu_data[boot_cpu_id]);
712 if(is_cpu_quad()) {
713 /* booting on a Quad CPU */
714 printk("VOYAGER SMP: Boot CPU is Quad\n");
715 qic_setup();
716 do_quad_bootstrap();
719 /* enable our own CPIs */
720 vic_enable_cpi();
722 cpu_set(boot_cpu_id, cpu_online_map);
723 cpu_set(boot_cpu_id, cpu_callout_map);
725 /* loop over all the extended VIC CPUs and boot them. The
726 * Quad CPUs must be bootstrapped by their extended VIC cpu */
727 for(i = 0; i < NR_CPUS; i++) {
728 if(i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
729 continue;
730 do_boot_cpu(i);
731 /* This udelay seems to be needed for the Quad boots
732 * don't remove unless you know what you're doing */
733 udelay(1000);
735 /* we could compute the total bogomips here, but why bother?,
736 * Code added from smpboot.c */
738 unsigned long bogosum = 0;
739 for (i = 0; i < NR_CPUS; i++)
740 if (cpu_isset(i, cpu_online_map))
741 bogosum += cpu_data[i].loops_per_jiffy;
742 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
743 cpucount+1,
744 bogosum/(500000/HZ),
745 (bogosum/(5000/HZ))%100);
747 voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
748 printk("VOYAGER: Extended (interrupt handling CPUs): %d, non-extended: %d\n", voyager_extended_cpus, num_booting_cpus() - voyager_extended_cpus);
749 /* that's it, switch to symmetric mode */
750 outb(0, VIC_PRIORITY_REGISTER);
751 outb(0, VIC_CLAIM_REGISTER_0);
752 outb(0, VIC_CLAIM_REGISTER_1);
754 VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
757 /* Reload the secondary CPUs task structure (this function does not
758 * return ) */
759 void __init
760 initialize_secondary(void)
762 #if 0
763 // AC kernels only
764 set_current(hard_get_current());
765 #endif
768 * We don't actually need to load the full TSS,
769 * basically just the stack pointer and the eip.
772 asm volatile(
773 "movl %0,%%esp\n\t"
774 "jmp *%1"
776 :"r" (current->thread.esp),"r" (current->thread.eip));
779 /* handle a Voyager SYS_INT -- If we don't, the base board will
780 * panic the system.
782 * System interrupts occur because some problem was detected on the
783 * various busses. To find out what you have to probe all the
784 * hardware via the CAT bus. FIXME: At the moment we do nothing. */
785 fastcall void
786 smp_vic_sys_interrupt(struct pt_regs *regs)
788 ack_CPI(VIC_SYS_INT);
789 printk("Voyager SYSTEM INTERRUPT\n");
792 /* Handle a voyager CMN_INT; These interrupts occur either because of
793 * a system status change or because a single bit memory error
794 * occurred. FIXME: At the moment, ignore all this. */
795 fastcall void
796 smp_vic_cmn_interrupt(struct pt_regs *regs)
798 static __u8 in_cmn_int = 0;
799 static DEFINE_SPINLOCK(cmn_int_lock);
801 /* common ints are broadcast, so make sure we only do this once */
802 _raw_spin_lock(&cmn_int_lock);
803 if(in_cmn_int)
804 goto unlock_end;
806 in_cmn_int++;
807 _raw_spin_unlock(&cmn_int_lock);
809 VDEBUG(("Voyager COMMON INTERRUPT\n"));
811 if(voyager_level == 5)
812 voyager_cat_do_common_interrupt();
814 _raw_spin_lock(&cmn_int_lock);
815 in_cmn_int = 0;
816 unlock_end:
817 _raw_spin_unlock(&cmn_int_lock);
818 ack_CPI(VIC_CMN_INT);
822 * Reschedule call back. Nothing to do, all the work is done
823 * automatically when we return from the interrupt. */
824 static void
825 smp_reschedule_interrupt(void)
827 /* do nothing */
830 static struct mm_struct * flush_mm;
831 static unsigned long flush_va;
832 static DEFINE_SPINLOCK(tlbstate_lock);
833 #define FLUSH_ALL 0xffffffff
836 * We cannot call mmdrop() because we are in interrupt context,
837 * instead update mm->cpu_vm_mask.
839 * We need to reload %cr3 since the page tables may be going
840 * away from under us..
842 static inline void
843 leave_mm (unsigned long cpu)
845 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
846 BUG();
847 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
848 load_cr3(swapper_pg_dir);
853 * Invalidate call-back
855 static void
856 smp_invalidate_interrupt(void)
858 __u8 cpu = smp_processor_id();
860 if (!test_bit(cpu, &smp_invalidate_needed))
861 return;
862 /* This will flood messages. Don't uncomment unless you see
863 * Problems with cross cpu invalidation
864 VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
865 smp_processor_id()));
868 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
869 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
870 if (flush_va == FLUSH_ALL)
871 local_flush_tlb();
872 else
873 __flush_tlb_one(flush_va);
874 } else
875 leave_mm(cpu);
877 smp_mb__before_clear_bit();
878 clear_bit(cpu, &smp_invalidate_needed);
879 smp_mb__after_clear_bit();
882 /* All the new flush operations for 2.4 */
885 /* This routine is called with a physical cpu mask */
886 static void
887 flush_tlb_others (unsigned long cpumask, struct mm_struct *mm,
888 unsigned long va)
890 int stuck = 50000;
892 if (!cpumask)
893 BUG();
894 if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
895 BUG();
896 if (cpumask & (1 << smp_processor_id()))
897 BUG();
898 if (!mm)
899 BUG();
901 spin_lock(&tlbstate_lock);
903 flush_mm = mm;
904 flush_va = va;
905 atomic_set_mask(cpumask, &smp_invalidate_needed);
907 * We have to send the CPI only to
908 * CPUs affected.
910 send_CPI(cpumask, VIC_INVALIDATE_CPI);
912 while (smp_invalidate_needed) {
913 mb();
914 if(--stuck == 0) {
915 printk("***WARNING*** Stuck doing invalidate CPI (CPU%d)\n", smp_processor_id());
916 break;
920 /* Uncomment only to debug invalidation problems
921 VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
924 flush_mm = NULL;
925 flush_va = 0;
926 spin_unlock(&tlbstate_lock);
929 void
930 flush_tlb_current_task(void)
932 struct mm_struct *mm = current->mm;
933 unsigned long cpu_mask;
935 preempt_disable();
937 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
938 local_flush_tlb();
939 if (cpu_mask)
940 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
942 preempt_enable();
946 void
947 flush_tlb_mm (struct mm_struct * mm)
949 unsigned long cpu_mask;
951 preempt_disable();
953 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
955 if (current->active_mm == mm) {
956 if (current->mm)
957 local_flush_tlb();
958 else
959 leave_mm(smp_processor_id());
961 if (cpu_mask)
962 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
964 preempt_enable();
967 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
969 struct mm_struct *mm = vma->vm_mm;
970 unsigned long cpu_mask;
972 preempt_disable();
974 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
975 if (current->active_mm == mm) {
976 if(current->mm)
977 __flush_tlb_one(va);
978 else
979 leave_mm(smp_processor_id());
982 if (cpu_mask)
983 flush_tlb_others(cpu_mask, mm, va);
985 preempt_enable();
987 EXPORT_SYMBOL(flush_tlb_page);
989 /* enable the requested IRQs */
990 static void
991 smp_enable_irq_interrupt(void)
993 __u8 irq;
994 __u8 cpu = get_cpu();
996 VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
997 vic_irq_enable_mask[cpu]));
999 spin_lock(&vic_irq_lock);
1000 for(irq = 0; irq < 16; irq++) {
1001 if(vic_irq_enable_mask[cpu] & (1<<irq))
1002 enable_local_vic_irq(irq);
1004 vic_irq_enable_mask[cpu] = 0;
1005 spin_unlock(&vic_irq_lock);
1007 put_cpu_no_resched();
1011 * CPU halt call-back
1013 static void
1014 smp_stop_cpu_function(void *dummy)
1016 VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
1017 cpu_clear(smp_processor_id(), cpu_online_map);
1018 local_irq_disable();
1019 for(;;)
1020 halt();
1023 static DEFINE_SPINLOCK(call_lock);
1025 struct call_data_struct {
1026 void (*func) (void *info);
1027 void *info;
1028 volatile unsigned long started;
1029 volatile unsigned long finished;
1030 int wait;
1033 static struct call_data_struct * call_data;
1035 /* execute a thread on a new CPU. The function to be called must be
1036 * previously set up. This is used to schedule a function for
1037 * execution on all CPU's - set up the function then broadcast a
1038 * function_interrupt CPI to come here on each CPU */
1039 static void
1040 smp_call_function_interrupt(void)
1042 void (*func) (void *info) = call_data->func;
1043 void *info = call_data->info;
1044 /* must take copy of wait because call_data may be replaced
1045 * unless the function is waiting for us to finish */
1046 int wait = call_data->wait;
1047 __u8 cpu = smp_processor_id();
1050 * Notify initiating CPU that I've grabbed the data and am
1051 * about to execute the function
1053 mb();
1054 if(!test_and_clear_bit(cpu, &call_data->started)) {
1055 /* If the bit wasn't set, this could be a replay */
1056 printk(KERN_WARNING "VOYAGER SMP: CPU %d received call funtion with no call pending\n", cpu);
1057 return;
1060 * At this point the info structure may be out of scope unless wait==1
1062 irq_enter();
1063 (*func)(info);
1064 irq_exit();
1065 if (wait) {
1066 mb();
1067 clear_bit(cpu, &call_data->finished);
1071 /* Call this function on all CPUs using the function_interrupt above
1072 <func> The function to run. This must be fast and non-blocking.
1073 <info> An arbitrary pointer to pass to the function.
1074 <retry> If true, keep retrying until ready.
1075 <wait> If true, wait until function has completed on other CPUs.
1076 [RETURNS] 0 on success, else a negative status code. Does not return until
1077 remote CPUs are nearly ready to execute <<func>> or are or have executed.
1080 smp_call_function (void (*func) (void *info), void *info, int retry,
1081 int wait)
1083 struct call_data_struct data;
1084 __u32 mask = cpus_addr(cpu_online_map)[0];
1086 mask &= ~(1<<smp_processor_id());
1088 if (!mask)
1089 return 0;
1091 /* Can deadlock when called with interrupts disabled */
1092 WARN_ON(irqs_disabled());
1094 data.func = func;
1095 data.info = info;
1096 data.started = mask;
1097 data.wait = wait;
1098 if (wait)
1099 data.finished = mask;
1101 spin_lock(&call_lock);
1102 call_data = &data;
1103 wmb();
1104 /* Send a message to all other CPUs and wait for them to respond */
1105 send_CPI_allbutself(VIC_CALL_FUNCTION_CPI);
1107 /* Wait for response */
1108 while (data.started)
1109 barrier();
1111 if (wait)
1112 while (data.finished)
1113 barrier();
1115 spin_unlock(&call_lock);
1117 return 0;
1119 EXPORT_SYMBOL(smp_call_function);
1121 /* Sorry about the name. In an APIC based system, the APICs
1122 * themselves are programmed to send a timer interrupt. This is used
1123 * by linux to reschedule the processor. Voyager doesn't have this,
1124 * so we use the system clock to interrupt one processor, which in
1125 * turn, broadcasts a timer CPI to all the others --- we receive that
1126 * CPI here. We don't use this actually for counting so losing
1127 * ticks doesn't matter
1129 * FIXME: For those CPU's which actually have a local APIC, we could
1130 * try to use it to trigger this interrupt instead of having to
1131 * broadcast the timer tick. Unfortunately, all my pentium DYADs have
1132 * no local APIC, so I can't do this
1134 * This function is currently a placeholder and is unused in the code */
1135 fastcall void
1136 smp_apic_timer_interrupt(struct pt_regs *regs)
1138 wrapper_smp_local_timer_interrupt(regs);
1141 /* All of the QUAD interrupt GATES */
1142 fastcall void
1143 smp_qic_timer_interrupt(struct pt_regs *regs)
1145 ack_QIC_CPI(QIC_TIMER_CPI);
1146 wrapper_smp_local_timer_interrupt(regs);
1149 fastcall void
1150 smp_qic_invalidate_interrupt(struct pt_regs *regs)
1152 ack_QIC_CPI(QIC_INVALIDATE_CPI);
1153 smp_invalidate_interrupt();
1156 fastcall void
1157 smp_qic_reschedule_interrupt(struct pt_regs *regs)
1159 ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1160 smp_reschedule_interrupt();
1163 fastcall void
1164 smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1166 ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1167 smp_enable_irq_interrupt();
1170 fastcall void
1171 smp_qic_call_function_interrupt(struct pt_regs *regs)
1173 ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1174 smp_call_function_interrupt();
1177 fastcall void
1178 smp_vic_cpi_interrupt(struct pt_regs *regs)
1180 __u8 cpu = smp_processor_id();
1182 if(is_cpu_quad())
1183 ack_QIC_CPI(VIC_CPI_LEVEL0);
1184 else
1185 ack_VIC_CPI(VIC_CPI_LEVEL0);
1187 if(test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
1188 wrapper_smp_local_timer_interrupt(regs);
1189 if(test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1190 smp_invalidate_interrupt();
1191 if(test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1192 smp_reschedule_interrupt();
1193 if(test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1194 smp_enable_irq_interrupt();
1195 if(test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1196 smp_call_function_interrupt();
1199 static void
1200 do_flush_tlb_all(void* info)
1202 unsigned long cpu = smp_processor_id();
1204 __flush_tlb_all();
1205 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1206 leave_mm(cpu);
1210 /* flush the TLB of every active CPU in the system */
1211 void
1212 flush_tlb_all(void)
1214 on_each_cpu(do_flush_tlb_all, 0, 1, 1);
1217 /* used to set up the trampoline for other CPUs when the memory manager
1218 * is sorted out */
1219 void __init
1220 smp_alloc_memory(void)
1222 trampoline_base = (__u32)alloc_bootmem_low_pages(PAGE_SIZE);
1223 if(__pa(trampoline_base) >= 0x93000)
1224 BUG();
1227 /* send a reschedule CPI to one CPU by physical CPU number*/
1228 void
1229 smp_send_reschedule(int cpu)
1231 send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1236 hard_smp_processor_id(void)
1238 __u8 i;
1239 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1240 if((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1241 return cpumask & 0x1F;
1243 for(i = 0; i < 8; i++) {
1244 if(cpumask & (1<<i))
1245 return i;
1247 printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1248 return 0;
1251 /* broadcast a halt to all other CPUs */
1252 void
1253 smp_send_stop(void)
1255 smp_call_function(smp_stop_cpu_function, NULL, 1, 1);
1258 /* this function is triggered in time.c when a clock tick fires
1259 * we need to re-broadcast the tick to all CPUs */
1260 void
1261 smp_vic_timer_interrupt(struct pt_regs *regs)
1263 send_CPI_allbutself(VIC_TIMER_CPI);
1264 smp_local_timer_interrupt(regs);
1267 /* local (per CPU) timer interrupt. It does both profiling and
1268 * process statistics/rescheduling.
1270 * We do profiling in every local tick, statistics/rescheduling
1271 * happen only every 'profiling multiplier' ticks. The default
1272 * multiplier is 1 and it can be changed by writing the new multiplier
1273 * value into /proc/profile.
1275 void
1276 smp_local_timer_interrupt(struct pt_regs * regs)
1278 int cpu = smp_processor_id();
1279 long weight;
1281 profile_tick(CPU_PROFILING, regs);
1282 if (--per_cpu(prof_counter, cpu) <= 0) {
1284 * The multiplier may have changed since the last time we got
1285 * to this point as a result of the user writing to
1286 * /proc/profile. In this case we need to adjust the APIC
1287 * timer accordingly.
1289 * Interrupts are already masked off at this point.
1291 per_cpu(prof_counter,cpu) = per_cpu(prof_multiplier, cpu);
1292 if (per_cpu(prof_counter, cpu) !=
1293 per_cpu(prof_old_multiplier, cpu)) {
1294 /* FIXME: need to update the vic timer tick here */
1295 per_cpu(prof_old_multiplier, cpu) =
1296 per_cpu(prof_counter, cpu);
1299 update_process_times(user_mode_vm(regs));
1302 if( ((1<<cpu) & voyager_extended_vic_processors) == 0)
1303 /* only extended VIC processors participate in
1304 * interrupt distribution */
1305 return;
1308 * We take the 'long' return path, and there every subsystem
1309 * grabs the apropriate locks (kernel lock/ irq lock).
1311 * we might want to decouple profiling from the 'long path',
1312 * and do the profiling totally in assembly.
1314 * Currently this isn't too much of an issue (performance wise),
1315 * we can take more than 100K local irqs per second on a 100 MHz P5.
1318 if((++vic_tick[cpu] & 0x7) != 0)
1319 return;
1320 /* get here every 16 ticks (about every 1/6 of a second) */
1322 /* Change our priority to give someone else a chance at getting
1323 * the IRQ. The algorithm goes like this:
1325 * In the VIC, the dynamically routed interrupt is always
1326 * handled by the lowest priority eligible (i.e. receiving
1327 * interrupts) CPU. If >1 eligible CPUs are equal lowest, the
1328 * lowest processor number gets it.
1330 * The priority of a CPU is controlled by a special per-CPU
1331 * VIC priority register which is 3 bits wide 0 being lowest
1332 * and 7 highest priority..
1334 * Therefore we subtract the average number of interrupts from
1335 * the number we've fielded. If this number is negative, we
1336 * lower the activity count and if it is positive, we raise
1337 * it.
1339 * I'm afraid this still leads to odd looking interrupt counts:
1340 * the totals are all roughly equal, but the individual ones
1341 * look rather skewed.
1343 * FIXME: This algorithm is total crap when mixed with SMP
1344 * affinity code since we now try to even up the interrupt
1345 * counts when an affinity binding is keeping them on a
1346 * particular CPU*/
1347 weight = (vic_intr_count[cpu]*voyager_extended_cpus
1348 - vic_intr_total) >> 4;
1349 weight += 4;
1350 if(weight > 7)
1351 weight = 7;
1352 if(weight < 0)
1353 weight = 0;
1355 outb((__u8)weight, VIC_PRIORITY_REGISTER);
1357 #ifdef VOYAGER_DEBUG
1358 if((vic_tick[cpu] & 0xFFF) == 0) {
1359 /* print this message roughly every 25 secs */
1360 printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1361 cpu, vic_tick[cpu], weight);
1363 #endif
1366 /* setup the profiling timer */
1367 int
1368 setup_profiling_timer(unsigned int multiplier)
1370 int i;
1372 if ( (!multiplier))
1373 return -EINVAL;
1376 * Set the new multiplier for each CPU. CPUs don't start using the
1377 * new values until the next timer interrupt in which they do process
1378 * accounting.
1380 for (i = 0; i < NR_CPUS; ++i)
1381 per_cpu(prof_multiplier, i) = multiplier;
1383 return 0;
1387 /* The CPIs are handled in the per cpu 8259s, so they must be
1388 * enabled to be received: FIX: enabling the CPIs in the early
1389 * boot sequence interferes with bug checking; enable them later
1390 * on in smp_init */
1391 #define VIC_SET_GATE(cpi, vector) \
1392 set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1393 #define QIC_SET_GATE(cpi, vector) \
1394 set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1396 void __init
1397 smp_intr_init(void)
1399 int i;
1401 /* initialize the per cpu irq mask to all disabled */
1402 for(i = 0; i < NR_CPUS; i++)
1403 vic_irq_mask[i] = 0xFFFF;
1405 VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1407 VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1408 VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1410 QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1411 QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1412 QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1413 QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1414 QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1417 /* now put the VIC descriptor into the first 48 IRQs
1419 * This is for later: first 16 correspond to PC IRQs; next 16
1420 * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1421 for(i = 0; i < 48; i++)
1422 irq_desc[i].handler = &vic_irq_type;
1425 /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1426 * processor to receive CPI */
1427 static void
1428 send_CPI(__u32 cpuset, __u8 cpi)
1430 int cpu;
1431 __u32 quad_cpuset = (cpuset & voyager_quad_processors);
1433 if(cpi < VIC_START_FAKE_CPI) {
1434 /* fake CPI are only used for booting, so send to the
1435 * extended quads as well---Quads must be VIC booted */
1436 outb((__u8)(cpuset), VIC_CPI_Registers[cpi]);
1437 return;
1439 if(quad_cpuset)
1440 send_QIC_CPI(quad_cpuset, cpi);
1441 cpuset &= ~quad_cpuset;
1442 cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */
1443 if(cpuset == 0)
1444 return;
1445 for_each_online_cpu(cpu) {
1446 if(cpuset & (1<<cpu))
1447 set_bit(cpi, &vic_cpi_mailbox[cpu]);
1449 if(cpuset)
1450 outb((__u8)cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1453 /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1454 * set the cache line to shared by reading it.
1456 * DON'T make this inline otherwise the cache line read will be
1457 * optimised away
1458 * */
1459 static int
1460 ack_QIC_CPI(__u8 cpi) {
1461 __u8 cpu = hard_smp_processor_id();
1463 cpi &= 7;
1465 outb(1<<cpi, QIC_INTERRUPT_CLEAR1);
1466 return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1469 static void
1470 ack_special_QIC_CPI(__u8 cpi)
1472 switch(cpi) {
1473 case VIC_CMN_INT:
1474 outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1475 break;
1476 case VIC_SYS_INT:
1477 outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1478 break;
1480 /* also clear at the VIC, just in case (nop for non-extended proc) */
1481 ack_VIC_CPI(cpi);
1484 /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1485 static void
1486 ack_VIC_CPI(__u8 cpi)
1488 #ifdef VOYAGER_DEBUG
1489 unsigned long flags;
1490 __u16 isr;
1491 __u8 cpu = smp_processor_id();
1493 local_irq_save(flags);
1494 isr = vic_read_isr();
1495 if((isr & (1<<(cpi &7))) == 0) {
1496 printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1498 #endif
1499 /* send specific EOI; the two system interrupts have
1500 * bit 4 set for a separate vector but behave as the
1501 * corresponding 3 bit intr */
1502 outb_p(0x60|(cpi & 7),0x20);
1504 #ifdef VOYAGER_DEBUG
1505 if((vic_read_isr() & (1<<(cpi &7))) != 0) {
1506 printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1508 local_irq_restore(flags);
1509 #endif
1512 /* cribbed with thanks from irq.c */
1513 #define __byte(x,y) (((unsigned char *)&(y))[x])
1514 #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
1515 #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
1517 static unsigned int
1518 startup_vic_irq(unsigned int irq)
1520 enable_vic_irq(irq);
1522 return 0;
1525 /* The enable and disable routines. This is where we run into
1526 * conflicting architectural philosophy. Fundamentally, the voyager
1527 * architecture does not expect to have to disable interrupts globally
1528 * (the IRQ controllers belong to each CPU). The processor masquerade
1529 * which is used to start the system shouldn't be used in a running OS
1530 * since it will cause great confusion if two separate CPUs drive to
1531 * the same IRQ controller (I know, I've tried it).
1533 * The solution is a variant on the NCR lazy SPL design:
1535 * 1) To disable an interrupt, do nothing (other than set the
1536 * IRQ_DISABLED flag). This dares the interrupt actually to arrive.
1538 * 2) If the interrupt dares to come in, raise the local mask against
1539 * it (this will result in all the CPU masks being raised
1540 * eventually).
1542 * 3) To enable the interrupt, lower the mask on the local CPU and
1543 * broadcast an Interrupt enable CPI which causes all other CPUs to
1544 * adjust their masks accordingly. */
1546 static void
1547 enable_vic_irq(unsigned int irq)
1549 /* linux doesn't to processor-irq affinity, so enable on
1550 * all CPUs we know about */
1551 int cpu = smp_processor_id(), real_cpu;
1552 __u16 mask = (1<<irq);
1553 __u32 processorList = 0;
1554 unsigned long flags;
1556 VDEBUG(("VOYAGER: enable_vic_irq(%d) CPU%d affinity 0x%lx\n",
1557 irq, cpu, cpu_irq_affinity[cpu]));
1558 spin_lock_irqsave(&vic_irq_lock, flags);
1559 for_each_online_cpu(real_cpu) {
1560 if(!(voyager_extended_vic_processors & (1<<real_cpu)))
1561 continue;
1562 if(!(cpu_irq_affinity[real_cpu] & mask)) {
1563 /* irq has no affinity for this CPU, ignore */
1564 continue;
1566 if(real_cpu == cpu) {
1567 enable_local_vic_irq(irq);
1569 else if(vic_irq_mask[real_cpu] & mask) {
1570 vic_irq_enable_mask[real_cpu] |= mask;
1571 processorList |= (1<<real_cpu);
1574 spin_unlock_irqrestore(&vic_irq_lock, flags);
1575 if(processorList)
1576 send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1579 static void
1580 disable_vic_irq(unsigned int irq)
1582 /* lazy disable, do nothing */
1585 static void
1586 enable_local_vic_irq(unsigned int irq)
1588 __u8 cpu = smp_processor_id();
1589 __u16 mask = ~(1 << irq);
1590 __u16 old_mask = vic_irq_mask[cpu];
1592 vic_irq_mask[cpu] &= mask;
1593 if(vic_irq_mask[cpu] == old_mask)
1594 return;
1596 VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1597 irq, cpu));
1599 if (irq & 8) {
1600 outb_p(cached_A1(cpu),0xA1);
1601 (void)inb_p(0xA1);
1603 else {
1604 outb_p(cached_21(cpu),0x21);
1605 (void)inb_p(0x21);
1609 static void
1610 disable_local_vic_irq(unsigned int irq)
1612 __u8 cpu = smp_processor_id();
1613 __u16 mask = (1 << irq);
1614 __u16 old_mask = vic_irq_mask[cpu];
1616 if(irq == 7)
1617 return;
1619 vic_irq_mask[cpu] |= mask;
1620 if(old_mask == vic_irq_mask[cpu])
1621 return;
1623 VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1624 irq, cpu));
1626 if (irq & 8) {
1627 outb_p(cached_A1(cpu),0xA1);
1628 (void)inb_p(0xA1);
1630 else {
1631 outb_p(cached_21(cpu),0x21);
1632 (void)inb_p(0x21);
1636 /* The VIC is level triggered, so the ack can only be issued after the
1637 * interrupt completes. However, we do Voyager lazy interrupt
1638 * handling here: It is an extremely expensive operation to mask an
1639 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
1640 * this interrupt actually comes in, then we mask and ack here to push
1641 * the interrupt off to another CPU */
1642 static void
1643 before_handle_vic_irq(unsigned int irq)
1645 irq_desc_t *desc = irq_desc + irq;
1646 __u8 cpu = smp_processor_id();
1648 _raw_spin_lock(&vic_irq_lock);
1649 vic_intr_total++;
1650 vic_intr_count[cpu]++;
1652 if(!(cpu_irq_affinity[cpu] & (1<<irq))) {
1653 /* The irq is not in our affinity mask, push it off
1654 * onto another CPU */
1655 VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d on cpu %d\n",
1656 irq, cpu));
1657 disable_local_vic_irq(irq);
1658 /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1659 * actually calling the interrupt routine */
1660 desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1661 } else if(desc->status & IRQ_DISABLED) {
1662 /* Damn, the interrupt actually arrived, do the lazy
1663 * disable thing. The interrupt routine in irq.c will
1664 * not handle a IRQ_DISABLED interrupt, so nothing more
1665 * need be done here */
1666 VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1667 irq, cpu));
1668 disable_local_vic_irq(irq);
1669 desc->status |= IRQ_REPLAY;
1670 } else {
1671 desc->status &= ~IRQ_REPLAY;
1674 _raw_spin_unlock(&vic_irq_lock);
1677 /* Finish the VIC interrupt: basically mask */
1678 static void
1679 after_handle_vic_irq(unsigned int irq)
1681 irq_desc_t *desc = irq_desc + irq;
1683 _raw_spin_lock(&vic_irq_lock);
1685 unsigned int status = desc->status & ~IRQ_INPROGRESS;
1686 #ifdef VOYAGER_DEBUG
1687 __u16 isr;
1688 #endif
1690 desc->status = status;
1691 if ((status & IRQ_DISABLED))
1692 disable_local_vic_irq(irq);
1693 #ifdef VOYAGER_DEBUG
1694 /* DEBUG: before we ack, check what's in progress */
1695 isr = vic_read_isr();
1696 if((isr & (1<<irq) && !(status & IRQ_REPLAY)) == 0) {
1697 int i;
1698 __u8 cpu = smp_processor_id();
1699 __u8 real_cpu;
1700 int mask; /* Um... initialize me??? --RR */
1702 printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1703 cpu, irq);
1704 for_each_cpu(real_cpu, mask) {
1706 outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1707 VIC_PROCESSOR_ID);
1708 isr = vic_read_isr();
1709 if(isr & (1<<irq)) {
1710 printk("VOYAGER SMP: CPU%d ack irq %d\n",
1711 real_cpu, irq);
1712 ack_vic_irq(irq);
1714 outb(cpu, VIC_PROCESSOR_ID);
1717 #endif /* VOYAGER_DEBUG */
1718 /* as soon as we ack, the interrupt is eligible for
1719 * receipt by another CPU so everything must be in
1720 * order here */
1721 ack_vic_irq(irq);
1722 if(status & IRQ_REPLAY) {
1723 /* replay is set if we disable the interrupt
1724 * in the before_handle_vic_irq() routine, so
1725 * clear the in progress bit here to allow the
1726 * next CPU to handle this correctly */
1727 desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1729 #ifdef VOYAGER_DEBUG
1730 isr = vic_read_isr();
1731 if((isr & (1<<irq)) != 0)
1732 printk("VOYAGER SMP: after_handle_vic_irq() after ack irq=%d, isr=0x%x\n",
1733 irq, isr);
1734 #endif /* VOYAGER_DEBUG */
1736 _raw_spin_unlock(&vic_irq_lock);
1738 /* All code after this point is out of the main path - the IRQ
1739 * may be intercepted by another CPU if reasserted */
1743 /* Linux processor - interrupt affinity manipulations.
1745 * For each processor, we maintain a 32 bit irq affinity mask.
1746 * Initially it is set to all 1's so every processor accepts every
1747 * interrupt. In this call, we change the processor's affinity mask:
1749 * Change from enable to disable:
1751 * If the interrupt ever comes in to the processor, we will disable it
1752 * and ack it to push it off to another CPU, so just accept the mask here.
1754 * Change from disable to enable:
1756 * change the mask and then do an interrupt enable CPI to re-enable on
1757 * the selected processors */
1759 void
1760 set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
1762 /* Only extended processors handle interrupts */
1763 unsigned long real_mask;
1764 unsigned long irq_mask = 1 << irq;
1765 int cpu;
1767 real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
1769 if(cpus_addr(mask)[0] == 0)
1770 /* can't have no cpu's to accept the interrupt -- extremely
1771 * bad things will happen */
1772 return;
1774 if(irq == 0)
1775 /* can't change the affinity of the timer IRQ. This
1776 * is due to the constraint in the voyager
1777 * architecture that the CPI also comes in on and IRQ
1778 * line and we have chosen IRQ0 for this. If you
1779 * raise the mask on this interrupt, the processor
1780 * will no-longer be able to accept VIC CPIs */
1781 return;
1783 if(irq >= 32)
1784 /* You can only have 32 interrupts in a voyager system
1785 * (and 32 only if you have a secondary microchannel
1786 * bus) */
1787 return;
1789 for_each_online_cpu(cpu) {
1790 unsigned long cpu_mask = 1 << cpu;
1792 if(cpu_mask & real_mask) {
1793 /* enable the interrupt for this cpu */
1794 cpu_irq_affinity[cpu] |= irq_mask;
1795 } else {
1796 /* disable the interrupt for this cpu */
1797 cpu_irq_affinity[cpu] &= ~irq_mask;
1800 /* this is magic, we now have the correct affinity maps, so
1801 * enable the interrupt. This will send an enable CPI to
1802 * those cpu's who need to enable it in their local masks,
1803 * causing them to correct for the new affinity . If the
1804 * interrupt is currently globally disabled, it will simply be
1805 * disabled again as it comes in (voyager lazy disable). If
1806 * the affinity map is tightened to disable the interrupt on a
1807 * cpu, it will be pushed off when it comes in */
1808 enable_vic_irq(irq);
1811 static void
1812 ack_vic_irq(unsigned int irq)
1814 if (irq & 8) {
1815 outb(0x62,0x20); /* Specific EOI to cascade */
1816 outb(0x60|(irq & 7),0xA0);
1817 } else {
1818 outb(0x60 | (irq & 7),0x20);
1822 /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
1823 * but are not vectored by it. This means that the 8259 mask must be
1824 * lowered to receive them */
1825 static __init void
1826 vic_enable_cpi(void)
1828 __u8 cpu = smp_processor_id();
1830 /* just take a copy of the current mask (nop for boot cpu) */
1831 vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1833 enable_local_vic_irq(VIC_CPI_LEVEL0);
1834 enable_local_vic_irq(VIC_CPI_LEVEL1);
1835 /* for sys int and cmn int */
1836 enable_local_vic_irq(7);
1838 if(is_cpu_quad()) {
1839 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1840 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1841 VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1842 cpu, QIC_CPI_ENABLE));
1845 VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1846 cpu, vic_irq_mask[cpu]));
1849 void
1850 voyager_smp_dump()
1852 int old_cpu = smp_processor_id(), cpu;
1854 /* dump the interrupt masks of each processor */
1855 for_each_online_cpu(cpu) {
1856 __u16 imr, isr, irr;
1857 unsigned long flags;
1859 local_irq_save(flags);
1860 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1861 imr = (inb(0xa1) << 8) | inb(0x21);
1862 outb(0x0a, 0xa0);
1863 irr = inb(0xa0) << 8;
1864 outb(0x0a, 0x20);
1865 irr |= inb(0x20);
1866 outb(0x0b, 0xa0);
1867 isr = inb(0xa0) << 8;
1868 outb(0x0b, 0x20);
1869 isr |= inb(0x20);
1870 outb(old_cpu, VIC_PROCESSOR_ID);
1871 local_irq_restore(flags);
1872 printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1873 cpu, vic_irq_mask[cpu], imr, irr, isr);
1874 #if 0
1875 /* These lines are put in to try to unstick an un ack'd irq */
1876 if(isr != 0) {
1877 int irq;
1878 for(irq=0; irq<16; irq++) {
1879 if(isr & (1<<irq)) {
1880 printk("\tCPU%d: ack irq %d\n",
1881 cpu, irq);
1882 local_irq_save(flags);
1883 outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1884 VIC_PROCESSOR_ID);
1885 ack_vic_irq(irq);
1886 outb(old_cpu, VIC_PROCESSOR_ID);
1887 local_irq_restore(flags);
1891 #endif
1895 void
1896 smp_voyager_power_off(void *dummy)
1898 if(smp_processor_id() == boot_cpu_id)
1899 voyager_power_off();
1900 else
1901 smp_stop_cpu_function(NULL);
1904 void __init
1905 smp_prepare_cpus(unsigned int max_cpus)
1907 /* FIXME: ignore max_cpus for now */
1908 smp_boot_cpus();
1911 void __devinit smp_prepare_boot_cpu(void)
1913 cpu_set(smp_processor_id(), cpu_online_map);
1914 cpu_set(smp_processor_id(), cpu_callout_map);
1915 cpu_set(smp_processor_id(), cpu_possible_map);
1918 int __devinit
1919 __cpu_up(unsigned int cpu)
1921 /* This only works at boot for x86. See "rewrite" above. */
1922 if (cpu_isset(cpu, smp_commenced_mask))
1923 return -ENOSYS;
1925 /* In case one didn't come up */
1926 if (!cpu_isset(cpu, cpu_callin_map))
1927 return -EIO;
1928 /* Unleash the CPU! */
1929 cpu_set(cpu, smp_commenced_mask);
1930 while (!cpu_isset(cpu, cpu_online_map))
1931 mb();
1932 return 0;
1935 void __init
1936 smp_cpus_done(unsigned int max_cpus)
1938 zap_low_mappings();