2 * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
3 * August 2002: added remote node KVA remap - Martin J. Bligh
5 * Copyright (C) 2002, IBM Corp.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
17 * NON INFRINGEMENT. See the GNU General Public License for more
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/config.h>
27 #include <linux/bootmem.h>
28 #include <linux/mmzone.h>
29 #include <linux/highmem.h>
30 #include <linux/initrd.h>
31 #include <linux/nodemask.h>
32 #include <linux/module.h>
33 #include <linux/kexec.h>
36 #include <asm/setup.h>
37 #include <asm/mmzone.h>
38 #include <bios_ebda.h>
40 struct pglist_data
*node_data
[MAX_NUMNODES
] __read_mostly
;
41 EXPORT_SYMBOL(node_data
);
42 bootmem_data_t node0_bdata
;
45 * numa interface - we expect the numa architecture specfic code to have
46 * populated the following initialisation.
48 * 1) node_online_map - the map of all nodes configured (online) in the system
49 * 2) node_start_pfn - the starting page frame number for a node
50 * 3) node_end_pfn - the ending page fram number for a node
52 unsigned long node_start_pfn
[MAX_NUMNODES
] __read_mostly
;
53 unsigned long node_end_pfn
[MAX_NUMNODES
] __read_mostly
;
56 #ifdef CONFIG_DISCONTIGMEM
58 * 4) physnode_map - the mapping between a pfn and owning node
59 * physnode_map keeps track of the physical memory layout of a generic
60 * numa node on a 256Mb break (each element of the array will
61 * represent 256Mb of memory and will be marked by the node id. so,
62 * if the first gig is on node 0, and the second gig is on node 1
63 * physnode_map will contain:
65 * physnode_map[0-3] = 0;
66 * physnode_map[4-7] = 1;
67 * physnode_map[8- ] = -1;
69 s8 physnode_map
[MAX_ELEMENTS
] __read_mostly
= { [0 ... (MAX_ELEMENTS
- 1)] = -1};
70 EXPORT_SYMBOL(physnode_map
);
72 void memory_present(int nid
, unsigned long start
, unsigned long end
)
76 printk(KERN_INFO
"Node: %d, start_pfn: %ld, end_pfn: %ld\n",
78 printk(KERN_DEBUG
" Setting physnode_map array to node %d for pfns:\n", nid
);
79 printk(KERN_DEBUG
" ");
80 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_ELEMENT
) {
81 physnode_map
[pfn
/ PAGES_PER_ELEMENT
] = nid
;
87 unsigned long node_memmap_size_bytes(int nid
, unsigned long start_pfn
,
88 unsigned long end_pfn
)
90 unsigned long nr_pages
= end_pfn
- start_pfn
;
95 return (nr_pages
+ 1) * sizeof(struct page
);
99 extern unsigned long find_max_low_pfn(void);
100 extern void find_max_pfn(void);
101 extern void one_highpage_init(struct page
*, int, int);
103 extern struct e820map e820
;
104 extern unsigned long init_pg_tables_end
;
105 extern unsigned long highend_pfn
, highstart_pfn
;
106 extern unsigned long max_low_pfn
;
107 extern unsigned long totalram_pages
;
108 extern unsigned long totalhigh_pages
;
110 #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
112 unsigned long node_remap_start_pfn
[MAX_NUMNODES
];
113 unsigned long node_remap_size
[MAX_NUMNODES
];
114 unsigned long node_remap_offset
[MAX_NUMNODES
];
115 void *node_remap_start_vaddr
[MAX_NUMNODES
];
116 void set_pmd_pfn(unsigned long vaddr
, unsigned long pfn
, pgprot_t flags
);
118 void *node_remap_end_vaddr
[MAX_NUMNODES
];
119 void *node_remap_alloc_vaddr
[MAX_NUMNODES
];
122 * FLAT - support for basic PC memory model with discontig enabled, essentially
123 * a single node with all available processors in it with a flat
126 int __init
get_memcfg_numa_flat(void)
128 printk("NUMA - single node, flat memory mode\n");
130 /* Run the memory configuration and find the top of memory. */
132 node_start_pfn
[0] = 0;
133 node_end_pfn
[0] = max_pfn
;
134 memory_present(0, 0, max_pfn
);
136 /* Indicate there is one node available. */
137 nodes_clear(node_online_map
);
143 * Find the highest page frame number we have available for the node
145 static void __init
find_max_pfn_node(int nid
)
147 if (node_end_pfn
[nid
] > max_pfn
)
148 node_end_pfn
[nid
] = max_pfn
;
150 * if a user has given mem=XXXX, then we need to make sure
151 * that the node _starts_ before that, too, not just ends
153 if (node_start_pfn
[nid
] > max_pfn
)
154 node_start_pfn
[nid
] = max_pfn
;
155 if (node_start_pfn
[nid
] > node_end_pfn
[nid
])
159 /* Find the owning node for a pfn. */
160 int early_pfn_to_nid(unsigned long pfn
)
165 if (node_end_pfn
[nid
] == 0)
167 if (node_start_pfn
[nid
] <= pfn
&& node_end_pfn
[nid
] >= pfn
)
175 * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
176 * method. For node zero take this from the bottom of memory, for
177 * subsequent nodes place them at node_remap_start_vaddr which contains
178 * node local data in physically node local memory. See setup_memory()
181 static void __init
allocate_pgdat(int nid
)
183 if (nid
&& node_has_online_mem(nid
))
184 NODE_DATA(nid
) = (pg_data_t
*)node_remap_start_vaddr
[nid
];
186 NODE_DATA(nid
) = (pg_data_t
*)(__va(min_low_pfn
<< PAGE_SHIFT
));
187 min_low_pfn
+= PFN_UP(sizeof(pg_data_t
));
191 void *alloc_remap(int nid
, unsigned long size
)
193 void *allocation
= node_remap_alloc_vaddr
[nid
];
195 size
= ALIGN(size
, L1_CACHE_BYTES
);
197 if (!allocation
|| (allocation
+ size
) >= node_remap_end_vaddr
[nid
])
200 node_remap_alloc_vaddr
[nid
] += size
;
201 memset(allocation
, 0, size
);
206 void __init
remap_numa_kva(void)
212 for_each_online_node(node
) {
213 for (pfn
=0; pfn
< node_remap_size
[node
]; pfn
+= PTRS_PER_PTE
) {
214 vaddr
= node_remap_start_vaddr
[node
]+(pfn
<<PAGE_SHIFT
);
215 set_pmd_pfn((ulong
) vaddr
,
216 node_remap_start_pfn
[node
] + pfn
,
222 static unsigned long calculate_numa_remap_pages(void)
225 unsigned long size
, reserve_pages
= 0;
228 for_each_online_node(nid
) {
230 * The acpi/srat node info can show hot-add memroy zones
231 * where memory could be added but not currently present.
233 if (node_start_pfn
[nid
] > max_pfn
)
235 if (node_end_pfn
[nid
] > max_pfn
)
236 node_end_pfn
[nid
] = max_pfn
;
238 /* ensure the remap includes space for the pgdat. */
239 size
= node_remap_size
[nid
] + sizeof(pg_data_t
);
241 /* convert size to large (pmd size) pages, rounding up */
242 size
= (size
+ LARGE_PAGE_BYTES
- 1) / LARGE_PAGE_BYTES
;
243 /* now the roundup is correct, convert to PAGE_SIZE pages */
244 size
= size
* PTRS_PER_PTE
;
247 * Validate the region we are allocating only contains valid
250 for (pfn
= node_end_pfn
[nid
] - size
;
251 pfn
< node_end_pfn
[nid
]; pfn
++)
252 if (!page_is_ram(pfn
))
255 if (pfn
!= node_end_pfn
[nid
])
258 printk("Reserving %ld pages of KVA for lmem_map of node %d\n",
260 node_remap_size
[nid
] = size
;
261 node_remap_offset
[nid
] = reserve_pages
;
262 reserve_pages
+= size
;
263 printk("Shrinking node %d from %ld pages to %ld pages\n",
264 nid
, node_end_pfn
[nid
], node_end_pfn
[nid
] - size
);
266 if (node_end_pfn
[nid
] & (PTRS_PER_PTE
-1)) {
268 * Align node_end_pfn[] and node_remap_start_pfn[] to
269 * pmd boundary. remap_numa_kva will barf otherwise.
271 printk("Shrinking node %d further by %ld pages for proper alignment\n",
272 nid
, node_end_pfn
[nid
] & (PTRS_PER_PTE
-1));
273 size
+= node_end_pfn
[nid
] & (PTRS_PER_PTE
-1);
276 node_end_pfn
[nid
] -= size
;
277 node_remap_start_pfn
[nid
] = node_end_pfn
[nid
];
279 printk("Reserving total of %ld pages for numa KVA remap\n",
281 return reserve_pages
;
284 extern void setup_bootmem_allocator(void);
285 unsigned long __init
setup_memory(void)
288 unsigned long system_start_pfn
, system_max_low_pfn
;
289 unsigned long reserve_pages
;
292 * When mapping a NUMA machine we allocate the node_mem_map arrays
293 * from node local memory. They are then mapped directly into KVA
294 * between zone normal and vmalloc space. Calculate the size of
295 * this space and use it to adjust the boundry between ZONE_NORMAL
301 reserve_pages
= calculate_numa_remap_pages();
303 /* partially used pages are not usable - thus round upwards */
304 system_start_pfn
= min_low_pfn
= PFN_UP(init_pg_tables_end
);
306 system_max_low_pfn
= max_low_pfn
= find_max_low_pfn() - reserve_pages
;
307 printk("reserve_pages = %ld find_max_low_pfn() ~ %ld\n",
308 reserve_pages
, max_low_pfn
+ reserve_pages
);
309 printk("max_pfn = %ld\n", max_pfn
);
310 #ifdef CONFIG_HIGHMEM
311 highstart_pfn
= highend_pfn
= max_pfn
;
312 if (max_pfn
> system_max_low_pfn
)
313 highstart_pfn
= system_max_low_pfn
;
314 printk(KERN_NOTICE
"%ldMB HIGHMEM available.\n",
315 pages_to_mb(highend_pfn
- highstart_pfn
));
317 printk(KERN_NOTICE
"%ldMB LOWMEM available.\n",
318 pages_to_mb(system_max_low_pfn
));
319 printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n",
320 min_low_pfn
, max_low_pfn
, highstart_pfn
);
322 printk("Low memory ends at vaddr %08lx\n",
323 (ulong
) pfn_to_kaddr(max_low_pfn
));
324 for_each_online_node(nid
) {
325 node_remap_start_vaddr
[nid
] = pfn_to_kaddr(
326 highstart_pfn
+ node_remap_offset
[nid
]);
327 /* Init the node remap allocator */
328 node_remap_end_vaddr
[nid
] = node_remap_start_vaddr
[nid
] +
329 (node_remap_size
[nid
] * PAGE_SIZE
);
330 node_remap_alloc_vaddr
[nid
] = node_remap_start_vaddr
[nid
] +
331 ALIGN(sizeof(pg_data_t
), PAGE_SIZE
);
334 printk ("node %d will remap to vaddr %08lx - %08lx\n", nid
,
335 (ulong
) node_remap_start_vaddr
[nid
],
336 (ulong
) pfn_to_kaddr(highstart_pfn
337 + node_remap_offset
[nid
] + node_remap_size
[nid
]));
339 printk("High memory starts at vaddr %08lx\n",
340 (ulong
) pfn_to_kaddr(highstart_pfn
));
341 vmalloc_earlyreserve
= reserve_pages
* PAGE_SIZE
;
342 for_each_online_node(nid
)
343 find_max_pfn_node(nid
);
345 memset(NODE_DATA(0), 0, sizeof(struct pglist_data
));
346 NODE_DATA(0)->bdata
= &node0_bdata
;
347 setup_bootmem_allocator();
351 void __init
zone_sizes_init(void)
356 * Insert nodes into pgdat_list backward so they appear in order.
357 * Clobber node 0's links and NULL out pgdat_list before starting.
360 for (nid
= MAX_NUMNODES
- 1; nid
>= 0; nid
--) {
361 if (!node_online(nid
))
363 NODE_DATA(nid
)->pgdat_next
= pgdat_list
;
364 pgdat_list
= NODE_DATA(nid
);
367 for_each_online_node(nid
) {
368 unsigned long zones_size
[MAX_NR_ZONES
] = {0, 0, 0};
369 unsigned long *zholes_size
;
370 unsigned int max_dma
;
372 unsigned long low
= max_low_pfn
;
373 unsigned long start
= node_start_pfn
[nid
];
374 unsigned long high
= node_end_pfn
[nid
];
376 max_dma
= virt_to_phys((char *)MAX_DMA_ADDRESS
) >> PAGE_SHIFT
;
378 if (node_has_online_mem(nid
)){
380 #ifdef CONFIG_HIGHMEM
381 BUG_ON(start
> high
);
382 zones_size
[ZONE_HIGHMEM
] = high
- start
;
386 zones_size
[ZONE_DMA
] = low
;
388 BUG_ON(max_dma
> low
);
390 zones_size
[ZONE_DMA
] = max_dma
;
391 zones_size
[ZONE_NORMAL
] = low
- max_dma
;
392 #ifdef CONFIG_HIGHMEM
393 zones_size
[ZONE_HIGHMEM
] = high
- low
;
399 zholes_size
= get_zholes_size(nid
);
401 free_area_init_node(nid
, NODE_DATA(nid
), zones_size
, start
,
407 void __init
set_highmem_pages_init(int bad_ppro
)
409 #ifdef CONFIG_HIGHMEM
413 for_each_zone(zone
) {
414 unsigned long node_pfn
, zone_start_pfn
, zone_end_pfn
;
416 if (!is_highmem(zone
))
419 zone_start_pfn
= zone
->zone_start_pfn
;
420 zone_end_pfn
= zone_start_pfn
+ zone
->spanned_pages
;
422 printk("Initializing %s for node %d (%08lx:%08lx)\n",
423 zone
->name
, zone
->zone_pgdat
->node_id
,
424 zone_start_pfn
, zone_end_pfn
);
426 for (node_pfn
= zone_start_pfn
; node_pfn
< zone_end_pfn
; node_pfn
++) {
427 if (!pfn_valid(node_pfn
))
429 page
= pfn_to_page(node_pfn
);
430 one_highpage_init(page
, node_pfn
, bad_ppro
);
433 totalram_pages
+= totalhigh_pages
;