2 * arch/ia64/kernel/cpufreq/acpi-cpufreq.c
3 * This file provides the ACPI based P-state support. This
4 * module works with generic cpufreq infrastructure. Most of
5 * the code is based on i386 version
6 * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c)
8 * Copyright (C) 2005 Intel Corp
9 * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
12 #include <linux/config.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
20 #include <asm/uaccess.h>
23 #include <linux/acpi.h>
24 #include <acpi/processor.h>
26 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
28 MODULE_AUTHOR("Venkatesh Pallipadi");
29 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
30 MODULE_LICENSE("GPL");
33 struct cpufreq_acpi_io
{
34 struct acpi_processor_performance acpi_data
;
35 struct cpufreq_frequency_table
*freq_table
;
39 static struct cpufreq_acpi_io
*acpi_io_data
[NR_CPUS
];
41 static struct cpufreq_driver acpi_cpufreq_driver
;
45 processor_set_pstate (
50 dprintk("processor_set_pstate\n");
52 retval
= ia64_pal_set_pstate((u64
)value
);
55 dprintk("Failed to set freq to 0x%x, with error 0x%x\n",
64 processor_get_pstate (
70 dprintk("processor_get_pstate\n");
72 retval
= ia64_pal_get_pstate(&pstate_index
);
73 *value
= (u32
) pstate_index
;
76 dprintk("Failed to get current freq with "
77 "error 0x%x, idx 0x%x\n", retval
, *value
);
83 /* To be used only after data->acpi_data is initialized */
86 struct cpufreq_acpi_io
*data
,
92 dprintk("extract_clock\n");
94 for (i
= 0; i
< data
->acpi_data
.state_count
; i
++) {
95 if (value
>= data
->acpi_data
.states
[i
].control
)
96 return data
->acpi_data
.states
[i
].core_frequency
;
98 return data
->acpi_data
.states
[i
-1].core_frequency
;
104 struct cpufreq_acpi_io
*data
,
109 cpumask_t saved_mask
;
110 unsigned long clock_freq
;
112 dprintk("processor_get_freq\n");
114 saved_mask
= current
->cpus_allowed
;
115 set_cpus_allowed(current
, cpumask_of_cpu(cpu
));
116 if (smp_processor_id() != cpu
) {
122 * processor_get_pstate gets the average frequency since the
123 * last get. So, do two PAL_get_freq()...
125 ret
= processor_get_pstate(&value
);
126 ret
= processor_get_pstate(&value
);
129 set_cpus_allowed(current
, saved_mask
);
130 printk(KERN_WARNING
"get performance failed with error %d\n",
135 clock_freq
= extract_clock(data
, value
, cpu
);
136 ret
= (clock_freq
*1000);
139 set_cpus_allowed(current
, saved_mask
);
146 struct cpufreq_acpi_io
*data
,
152 struct cpufreq_freqs cpufreq_freqs
;
153 cpumask_t saved_mask
;
156 dprintk("processor_set_freq\n");
158 saved_mask
= current
->cpus_allowed
;
159 set_cpus_allowed(current
, cpumask_of_cpu(cpu
));
160 if (smp_processor_id() != cpu
) {
165 if (state
== data
->acpi_data
.state
) {
166 if (unlikely(data
->resume
)) {
167 dprintk("Called after resume, resetting to P%d\n", state
);
170 dprintk("Already at target state (P%d)\n", state
);
176 dprintk("Transitioning from P%d to P%d\n",
177 data
->acpi_data
.state
, state
);
179 /* cpufreq frequency struct */
180 cpufreq_freqs
.cpu
= cpu
;
181 cpufreq_freqs
.old
= data
->freq_table
[data
->acpi_data
.state
].frequency
;
182 cpufreq_freqs
.new = data
->freq_table
[state
].frequency
;
185 cpufreq_notify_transition(&cpufreq_freqs
, CPUFREQ_PRECHANGE
);
188 * First we write the target state's 'control' value to the
192 value
= (u32
) data
->acpi_data
.states
[state
].control
;
194 dprintk("Transitioning to state: 0x%08x\n", value
);
196 ret
= processor_set_pstate(value
);
198 unsigned int tmp
= cpufreq_freqs
.new;
199 cpufreq_notify_transition(&cpufreq_freqs
, CPUFREQ_POSTCHANGE
);
200 cpufreq_freqs
.new = cpufreq_freqs
.old
;
201 cpufreq_freqs
.old
= tmp
;
202 cpufreq_notify_transition(&cpufreq_freqs
, CPUFREQ_PRECHANGE
);
203 cpufreq_notify_transition(&cpufreq_freqs
, CPUFREQ_POSTCHANGE
);
204 printk(KERN_WARNING
"Transition failed with error %d\n", ret
);
209 cpufreq_notify_transition(&cpufreq_freqs
, CPUFREQ_POSTCHANGE
);
211 data
->acpi_data
.state
= state
;
216 set_cpus_allowed(current
, saved_mask
);
225 struct cpufreq_acpi_io
*data
= acpi_io_data
[cpu
];
227 dprintk("acpi_cpufreq_get\n");
229 return processor_get_freq(data
, cpu
);
234 acpi_cpufreq_target (
235 struct cpufreq_policy
*policy
,
236 unsigned int target_freq
,
237 unsigned int relation
)
239 struct cpufreq_acpi_io
*data
= acpi_io_data
[policy
->cpu
];
240 unsigned int next_state
= 0;
241 unsigned int result
= 0;
243 dprintk("acpi_cpufreq_setpolicy\n");
245 result
= cpufreq_frequency_table_target(policy
,
246 data
->freq_table
, target_freq
, relation
, &next_state
);
250 result
= processor_set_freq(data
, policy
->cpu
, next_state
);
257 acpi_cpufreq_verify (
258 struct cpufreq_policy
*policy
)
260 unsigned int result
= 0;
261 struct cpufreq_acpi_io
*data
= acpi_io_data
[policy
->cpu
];
263 dprintk("acpi_cpufreq_verify\n");
265 result
= cpufreq_frequency_table_verify(policy
,
273 * processor_init_pdc - let BIOS know about the SMP capabilities
275 * @perf: processor-specific acpi_io_data struct
276 * @cpu: CPU being initialized
278 * To avoid issues with legacy OSes, some BIOSes require to be informed of
279 * the SMP capabilities of OS P-state driver. Here we set the bits in _PDC
280 * accordingly. Actual call to _PDC is done in driver/acpi/processor.c
284 struct acpi_processor_performance
*perf
,
286 struct acpi_object_list
*obj_list
289 union acpi_object
*obj
;
292 dprintk("processor_init_pdc\n");
295 /* Initialize pdc. It will be used later. */
299 if (!(obj_list
->count
&& obj_list
->pointer
))
302 obj
= obj_list
->pointer
;
303 if ((obj
->buffer
.length
== 12) && obj
->buffer
.pointer
) {
304 buf
= (u32
*)obj
->buffer
.pointer
;
305 buf
[0] = ACPI_PDC_REVISION_ID
;
307 buf
[2] = ACPI_PDC_EST_CAPABILITY_SMP
;
308 perf
->pdc
= obj_list
;
315 acpi_cpufreq_cpu_init (
316 struct cpufreq_policy
*policy
)
319 unsigned int cpu
= policy
->cpu
;
320 struct cpufreq_acpi_io
*data
;
321 unsigned int result
= 0;
323 union acpi_object arg0
= {ACPI_TYPE_BUFFER
};
325 struct acpi_object_list arg_list
= {1, &arg0
};
327 dprintk("acpi_cpufreq_cpu_init\n");
328 /* setup arg_list for _PDC settings */
329 arg0
.buffer
.length
= 12;
330 arg0
.buffer
.pointer
= (u8
*) arg0_buf
;
332 data
= kmalloc(sizeof(struct cpufreq_acpi_io
), GFP_KERNEL
);
336 memset(data
, 0, sizeof(struct cpufreq_acpi_io
));
338 acpi_io_data
[cpu
] = data
;
340 processor_init_pdc(&data
->acpi_data
, cpu
, &arg_list
);
341 result
= acpi_processor_register_performance(&data
->acpi_data
, cpu
);
342 data
->acpi_data
.pdc
= NULL
;
347 /* capability check */
348 if (data
->acpi_data
.state_count
<= 1) {
349 dprintk("No P-States\n");
354 if ((data
->acpi_data
.control_register
.space_id
!=
355 ACPI_ADR_SPACE_FIXED_HARDWARE
) ||
356 (data
->acpi_data
.status_register
.space_id
!=
357 ACPI_ADR_SPACE_FIXED_HARDWARE
)) {
358 dprintk("Unsupported address space [%d, %d]\n",
359 (u32
) (data
->acpi_data
.control_register
.space_id
),
360 (u32
) (data
->acpi_data
.status_register
.space_id
));
365 /* alloc freq_table */
366 data
->freq_table
= kmalloc(sizeof(struct cpufreq_frequency_table
) *
367 (data
->acpi_data
.state_count
+ 1),
369 if (!data
->freq_table
) {
374 /* detect transition latency */
375 policy
->cpuinfo
.transition_latency
= 0;
376 for (i
=0; i
<data
->acpi_data
.state_count
; i
++) {
377 if ((data
->acpi_data
.states
[i
].transition_latency
* 1000) >
378 policy
->cpuinfo
.transition_latency
) {
379 policy
->cpuinfo
.transition_latency
=
380 data
->acpi_data
.states
[i
].transition_latency
* 1000;
383 policy
->governor
= CPUFREQ_DEFAULT_GOVERNOR
;
385 policy
->cur
= processor_get_freq(data
, policy
->cpu
);
388 for (i
= 0; i
<= data
->acpi_data
.state_count
; i
++)
390 data
->freq_table
[i
].index
= i
;
391 if (i
< data
->acpi_data
.state_count
) {
392 data
->freq_table
[i
].frequency
=
393 data
->acpi_data
.states
[i
].core_frequency
* 1000;
395 data
->freq_table
[i
].frequency
= CPUFREQ_TABLE_END
;
399 result
= cpufreq_frequency_table_cpuinfo(policy
, data
->freq_table
);
404 /* notify BIOS that we exist */
405 acpi_processor_notify_smm(THIS_MODULE
);
407 printk(KERN_INFO
"acpi-cpufreq: CPU%u - ACPI performance management "
408 "activated.\n", cpu
);
410 for (i
= 0; i
< data
->acpi_data
.state_count
; i
++)
411 dprintk(" %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",
412 (i
== data
->acpi_data
.state
?'*':' '), i
,
413 (u32
) data
->acpi_data
.states
[i
].core_frequency
,
414 (u32
) data
->acpi_data
.states
[i
].power
,
415 (u32
) data
->acpi_data
.states
[i
].transition_latency
,
416 (u32
) data
->acpi_data
.states
[i
].bus_master_latency
,
417 (u32
) data
->acpi_data
.states
[i
].status
,
418 (u32
) data
->acpi_data
.states
[i
].control
);
420 cpufreq_frequency_table_get_attr(data
->freq_table
, policy
->cpu
);
422 /* the first call to ->target() should result in us actually
423 * writing something to the appropriate registers. */
429 kfree(data
->freq_table
);
431 acpi_processor_unregister_performance(&data
->acpi_data
, cpu
);
434 acpi_io_data
[cpu
] = NULL
;
441 acpi_cpufreq_cpu_exit (
442 struct cpufreq_policy
*policy
)
444 struct cpufreq_acpi_io
*data
= acpi_io_data
[policy
->cpu
];
446 dprintk("acpi_cpufreq_cpu_exit\n");
449 cpufreq_frequency_table_put_attr(policy
->cpu
);
450 acpi_io_data
[policy
->cpu
] = NULL
;
451 acpi_processor_unregister_performance(&data
->acpi_data
,
460 static struct freq_attr
* acpi_cpufreq_attr
[] = {
461 &cpufreq_freq_attr_scaling_available_freqs
,
466 static struct cpufreq_driver acpi_cpufreq_driver
= {
467 .verify
= acpi_cpufreq_verify
,
468 .target
= acpi_cpufreq_target
,
469 .get
= acpi_cpufreq_get
,
470 .init
= acpi_cpufreq_cpu_init
,
471 .exit
= acpi_cpufreq_cpu_exit
,
472 .name
= "acpi-cpufreq",
473 .owner
= THIS_MODULE
,
474 .attr
= acpi_cpufreq_attr
,
479 acpi_cpufreq_init (void)
481 dprintk("acpi_cpufreq_init\n");
483 return cpufreq_register_driver(&acpi_cpufreq_driver
);
488 acpi_cpufreq_exit (void)
490 dprintk("acpi_cpufreq_exit\n");
492 cpufreq_unregister_driver(&acpi_cpufreq_driver
);
497 late_initcall(acpi_cpufreq_init
);
498 module_exit(acpi_cpufreq_exit
);