mips: rename offsets.c to asm-offsets.c
[linux-2.6/verdex.git] / arch / ia64 / kernel / kprobes.c
blob471086b808a4b942781aa19abe940fb08dc8533b
1 /*
2 * Kernel Probes (KProbes)
3 * arch/ia64/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
20 * Copyright (C) Intel Corporation, 2005
22 * 2005-Apr Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23 * <anil.s.keshavamurthy@intel.com> adapted from i386
26 #include <linux/config.h>
27 #include <linux/kprobes.h>
28 #include <linux/ptrace.h>
29 #include <linux/spinlock.h>
30 #include <linux/string.h>
31 #include <linux/slab.h>
32 #include <linux/preempt.h>
33 #include <linux/moduleloader.h>
35 #include <asm/pgtable.h>
36 #include <asm/kdebug.h>
37 #include <asm/sections.h>
39 extern void jprobe_inst_return(void);
41 /* kprobe_status settings */
42 #define KPROBE_HIT_ACTIVE 0x00000001
43 #define KPROBE_HIT_SS 0x00000002
45 static struct kprobe *current_kprobe, *kprobe_prev;
46 static unsigned long kprobe_status, kprobe_status_prev;
47 static struct pt_regs jprobe_saved_regs;
49 enum instruction_type {A, I, M, F, B, L, X, u};
50 static enum instruction_type bundle_encoding[32][3] = {
51 { M, I, I }, /* 00 */
52 { M, I, I }, /* 01 */
53 { M, I, I }, /* 02 */
54 { M, I, I }, /* 03 */
55 { M, L, X }, /* 04 */
56 { M, L, X }, /* 05 */
57 { u, u, u }, /* 06 */
58 { u, u, u }, /* 07 */
59 { M, M, I }, /* 08 */
60 { M, M, I }, /* 09 */
61 { M, M, I }, /* 0A */
62 { M, M, I }, /* 0B */
63 { M, F, I }, /* 0C */
64 { M, F, I }, /* 0D */
65 { M, M, F }, /* 0E */
66 { M, M, F }, /* 0F */
67 { M, I, B }, /* 10 */
68 { M, I, B }, /* 11 */
69 { M, B, B }, /* 12 */
70 { M, B, B }, /* 13 */
71 { u, u, u }, /* 14 */
72 { u, u, u }, /* 15 */
73 { B, B, B }, /* 16 */
74 { B, B, B }, /* 17 */
75 { M, M, B }, /* 18 */
76 { M, M, B }, /* 19 */
77 { u, u, u }, /* 1A */
78 { u, u, u }, /* 1B */
79 { M, F, B }, /* 1C */
80 { M, F, B }, /* 1D */
81 { u, u, u }, /* 1E */
82 { u, u, u }, /* 1F */
86 * In this function we check to see if the instruction
87 * is IP relative instruction and update the kprobe
88 * inst flag accordingly
90 static void __kprobes update_kprobe_inst_flag(uint template, uint slot,
91 uint major_opcode,
92 unsigned long kprobe_inst,
93 struct kprobe *p)
95 p->ainsn.inst_flag = 0;
96 p->ainsn.target_br_reg = 0;
98 /* Check for Break instruction
99 * Bits 37:40 Major opcode to be zero
100 * Bits 27:32 X6 to be zero
101 * Bits 32:35 X3 to be zero
103 if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
104 /* is a break instruction */
105 p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
106 return;
109 if (bundle_encoding[template][slot] == B) {
110 switch (major_opcode) {
111 case INDIRECT_CALL_OPCODE:
112 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
113 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
114 break;
115 case IP_RELATIVE_PREDICT_OPCODE:
116 case IP_RELATIVE_BRANCH_OPCODE:
117 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
118 break;
119 case IP_RELATIVE_CALL_OPCODE:
120 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
121 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
122 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
123 break;
125 } else if (bundle_encoding[template][slot] == X) {
126 switch (major_opcode) {
127 case LONG_CALL_OPCODE:
128 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
129 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
130 break;
133 return;
137 * In this function we check to see if the instruction
138 * on which we are inserting kprobe is supported.
139 * Returns 0 if supported
140 * Returns -EINVAL if unsupported
142 static int __kprobes unsupported_inst(uint template, uint slot,
143 uint major_opcode,
144 unsigned long kprobe_inst,
145 struct kprobe *p)
147 unsigned long addr = (unsigned long)p->addr;
149 if (bundle_encoding[template][slot] == I) {
150 switch (major_opcode) {
151 case 0x0: //I_UNIT_MISC_OPCODE:
153 * Check for Integer speculation instruction
154 * - Bit 33-35 to be equal to 0x1
156 if (((kprobe_inst >> 33) & 0x7) == 1) {
157 printk(KERN_WARNING
158 "Kprobes on speculation inst at <0x%lx> not supported\n",
159 addr);
160 return -EINVAL;
164 * IP relative mov instruction
165 * - Bit 27-35 to be equal to 0x30
167 if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
168 printk(KERN_WARNING
169 "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
170 addr);
171 return -EINVAL;
176 return 0;
181 * In this function we check to see if the instruction
182 * (qp) cmpx.crel.ctype p1,p2=r2,r3
183 * on which we are inserting kprobe is cmp instruction
184 * with ctype as unc.
186 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
187 uint major_opcode,
188 unsigned long kprobe_inst)
190 cmp_inst_t cmp_inst;
191 uint ctype_unc = 0;
193 if (!((bundle_encoding[template][slot] == I) ||
194 (bundle_encoding[template][slot] == M)))
195 goto out;
197 if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
198 (major_opcode == 0xE)))
199 goto out;
201 cmp_inst.l = kprobe_inst;
202 if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
203 /* Integere compare - Register Register (A6 type)*/
204 if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
205 &&(cmp_inst.f.c == 1))
206 ctype_unc = 1;
207 } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
208 /* Integere compare - Immediate Register (A8 type)*/
209 if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
210 ctype_unc = 1;
212 out:
213 return ctype_unc;
217 * In this function we override the bundle with
218 * the break instruction at the given slot.
220 static void __kprobes prepare_break_inst(uint template, uint slot,
221 uint major_opcode,
222 unsigned long kprobe_inst,
223 struct kprobe *p)
225 unsigned long break_inst = BREAK_INST;
226 bundle_t *bundle = &p->ainsn.insn.bundle;
229 * Copy the original kprobe_inst qualifying predicate(qp)
230 * to the break instruction iff !is_cmp_ctype_unc_inst
231 * because for cmp instruction with ctype equal to unc,
232 * which is a special instruction always needs to be
233 * executed regradless of qp
235 if (!is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst))
236 break_inst |= (0x3f & kprobe_inst);
238 switch (slot) {
239 case 0:
240 bundle->quad0.slot0 = break_inst;
241 break;
242 case 1:
243 bundle->quad0.slot1_p0 = break_inst;
244 bundle->quad1.slot1_p1 = break_inst >> (64-46);
245 break;
246 case 2:
247 bundle->quad1.slot2 = break_inst;
248 break;
252 * Update the instruction flag, so that we can
253 * emulate the instruction properly after we
254 * single step on original instruction
256 update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
259 static inline void get_kprobe_inst(bundle_t *bundle, uint slot,
260 unsigned long *kprobe_inst, uint *major_opcode)
262 unsigned long kprobe_inst_p0, kprobe_inst_p1;
263 unsigned int template;
265 template = bundle->quad0.template;
267 switch (slot) {
268 case 0:
269 *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
270 *kprobe_inst = bundle->quad0.slot0;
271 break;
272 case 1:
273 *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
274 kprobe_inst_p0 = bundle->quad0.slot1_p0;
275 kprobe_inst_p1 = bundle->quad1.slot1_p1;
276 *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
277 break;
278 case 2:
279 *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
280 *kprobe_inst = bundle->quad1.slot2;
281 break;
285 /* Returns non-zero if the addr is in the Interrupt Vector Table */
286 static inline int in_ivt_functions(unsigned long addr)
288 return (addr >= (unsigned long)__start_ivt_text
289 && addr < (unsigned long)__end_ivt_text);
292 static int __kprobes valid_kprobe_addr(int template, int slot,
293 unsigned long addr)
295 if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
296 printk(KERN_WARNING "Attempting to insert unaligned kprobe "
297 "at 0x%lx\n", addr);
298 return -EINVAL;
301 if (in_ivt_functions(addr)) {
302 printk(KERN_WARNING "Kprobes can't be inserted inside "
303 "IVT functions at 0x%lx\n", addr);
304 return -EINVAL;
307 if (slot == 1 && bundle_encoding[template][1] != L) {
308 printk(KERN_WARNING "Inserting kprobes on slot #1 "
309 "is not supported\n");
310 return -EINVAL;
313 return 0;
316 static inline void save_previous_kprobe(void)
318 kprobe_prev = current_kprobe;
319 kprobe_status_prev = kprobe_status;
322 static inline void restore_previous_kprobe(void)
324 current_kprobe = kprobe_prev;
325 kprobe_status = kprobe_status_prev;
328 static inline void set_current_kprobe(struct kprobe *p)
330 current_kprobe = p;
333 static void kretprobe_trampoline(void)
338 * At this point the target function has been tricked into
339 * returning into our trampoline. Lookup the associated instance
340 * and then:
341 * - call the handler function
342 * - cleanup by marking the instance as unused
343 * - long jump back to the original return address
345 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
347 struct kretprobe_instance *ri = NULL;
348 struct hlist_head *head;
349 struct hlist_node *node, *tmp;
350 unsigned long orig_ret_address = 0;
351 unsigned long trampoline_address =
352 ((struct fnptr *)kretprobe_trampoline)->ip;
354 head = kretprobe_inst_table_head(current);
357 * It is possible to have multiple instances associated with a given
358 * task either because an multiple functions in the call path
359 * have a return probe installed on them, and/or more then one return
360 * return probe was registered for a target function.
362 * We can handle this because:
363 * - instances are always inserted at the head of the list
364 * - when multiple return probes are registered for the same
365 * function, the first instance's ret_addr will point to the
366 * real return address, and all the rest will point to
367 * kretprobe_trampoline
369 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
370 if (ri->task != current)
371 /* another task is sharing our hash bucket */
372 continue;
374 if (ri->rp && ri->rp->handler)
375 ri->rp->handler(ri, regs);
377 orig_ret_address = (unsigned long)ri->ret_addr;
378 recycle_rp_inst(ri);
380 if (orig_ret_address != trampoline_address)
382 * This is the real return address. Any other
383 * instances associated with this task are for
384 * other calls deeper on the call stack
386 break;
389 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
390 regs->cr_iip = orig_ret_address;
392 unlock_kprobes();
393 preempt_enable_no_resched();
396 * By returning a non-zero value, we are telling
397 * kprobe_handler() that we have handled unlocking
398 * and re-enabling preemption.
400 return 1;
403 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
404 struct pt_regs *regs)
406 struct kretprobe_instance *ri;
408 if ((ri = get_free_rp_inst(rp)) != NULL) {
409 ri->rp = rp;
410 ri->task = current;
411 ri->ret_addr = (kprobe_opcode_t *)regs->b0;
413 /* Replace the return addr with trampoline addr */
414 regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
416 add_rp_inst(ri);
417 } else {
418 rp->nmissed++;
422 int __kprobes arch_prepare_kprobe(struct kprobe *p)
424 unsigned long addr = (unsigned long) p->addr;
425 unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
426 unsigned long kprobe_inst=0;
427 unsigned int slot = addr & 0xf, template, major_opcode = 0;
428 bundle_t *bundle = &p->ainsn.insn.bundle;
430 memcpy(&p->opcode.bundle, kprobe_addr, sizeof(bundle_t));
431 memcpy(&p->ainsn.insn.bundle, kprobe_addr, sizeof(bundle_t));
433 template = bundle->quad0.template;
435 if(valid_kprobe_addr(template, slot, addr))
436 return -EINVAL;
438 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
439 if (slot == 1 && bundle_encoding[template][1] == L)
440 slot++;
442 /* Get kprobe_inst and major_opcode from the bundle */
443 get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
445 if (unsupported_inst(template, slot, major_opcode, kprobe_inst, p))
446 return -EINVAL;
448 prepare_break_inst(template, slot, major_opcode, kprobe_inst, p);
450 return 0;
453 void __kprobes arch_arm_kprobe(struct kprobe *p)
455 unsigned long addr = (unsigned long)p->addr;
456 unsigned long arm_addr = addr & ~0xFULL;
458 memcpy((char *)arm_addr, &p->ainsn.insn.bundle, sizeof(bundle_t));
459 flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
462 void __kprobes arch_disarm_kprobe(struct kprobe *p)
464 unsigned long addr = (unsigned long)p->addr;
465 unsigned long arm_addr = addr & ~0xFULL;
467 /* p->opcode contains the original unaltered bundle */
468 memcpy((char *) arm_addr, (char *) &p->opcode.bundle, sizeof(bundle_t));
469 flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
472 void __kprobes arch_remove_kprobe(struct kprobe *p)
477 * We are resuming execution after a single step fault, so the pt_regs
478 * structure reflects the register state after we executed the instruction
479 * located in the kprobe (p->ainsn.insn.bundle). We still need to adjust
480 * the ip to point back to the original stack address. To set the IP address
481 * to original stack address, handle the case where we need to fixup the
482 * relative IP address and/or fixup branch register.
484 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
486 unsigned long bundle_addr = ((unsigned long) (&p->opcode.bundle)) & ~0xFULL;
487 unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
488 unsigned long template;
489 int slot = ((unsigned long)p->addr & 0xf);
491 template = p->opcode.bundle.quad0.template;
493 if (slot == 1 && bundle_encoding[template][1] == L)
494 slot = 2;
496 if (p->ainsn.inst_flag) {
498 if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
499 /* Fix relative IP address */
500 regs->cr_iip = (regs->cr_iip - bundle_addr) + resume_addr;
503 if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
505 * Fix target branch register, software convention is
506 * to use either b0 or b6 or b7, so just checking
507 * only those registers
509 switch (p->ainsn.target_br_reg) {
510 case 0:
511 if ((regs->b0 == bundle_addr) ||
512 (regs->b0 == bundle_addr + 0x10)) {
513 regs->b0 = (regs->b0 - bundle_addr) +
514 resume_addr;
516 break;
517 case 6:
518 if ((regs->b6 == bundle_addr) ||
519 (regs->b6 == bundle_addr + 0x10)) {
520 regs->b6 = (regs->b6 - bundle_addr) +
521 resume_addr;
523 break;
524 case 7:
525 if ((regs->b7 == bundle_addr) ||
526 (regs->b7 == bundle_addr + 0x10)) {
527 regs->b7 = (regs->b7 - bundle_addr) +
528 resume_addr;
530 break;
531 } /* end switch */
533 goto turn_ss_off;
536 if (slot == 2) {
537 if (regs->cr_iip == bundle_addr + 0x10) {
538 regs->cr_iip = resume_addr + 0x10;
540 } else {
541 if (regs->cr_iip == bundle_addr) {
542 regs->cr_iip = resume_addr;
546 turn_ss_off:
547 /* Turn off Single Step bit */
548 ia64_psr(regs)->ss = 0;
551 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
553 unsigned long bundle_addr = (unsigned long) &p->opcode.bundle;
554 unsigned long slot = (unsigned long)p->addr & 0xf;
556 /* single step inline if break instruction */
557 if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
558 regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
559 else
560 regs->cr_iip = bundle_addr & ~0xFULL;
562 if (slot > 2)
563 slot = 0;
565 ia64_psr(regs)->ri = slot;
567 /* turn on single stepping */
568 ia64_psr(regs)->ss = 1;
571 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
573 unsigned int slot = ia64_psr(regs)->ri;
574 unsigned int template, major_opcode;
575 unsigned long kprobe_inst;
576 unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
577 bundle_t bundle;
579 memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
580 template = bundle.quad0.template;
582 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
583 if (slot == 1 && bundle_encoding[template][1] == L)
584 slot++;
586 /* Get Kprobe probe instruction at given slot*/
587 get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);
589 /* For break instruction,
590 * Bits 37:40 Major opcode to be zero
591 * Bits 27:32 X6 to be zero
592 * Bits 32:35 X3 to be zero
594 if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
595 /* Not a break instruction */
596 return 0;
599 /* Is a break instruction */
600 return 1;
603 static int __kprobes pre_kprobes_handler(struct die_args *args)
605 struct kprobe *p;
606 int ret = 0;
607 struct pt_regs *regs = args->regs;
608 kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
610 preempt_disable();
612 /* Handle recursion cases */
613 if (kprobe_running()) {
614 p = get_kprobe(addr);
615 if (p) {
616 if ( (kprobe_status == KPROBE_HIT_SS) &&
617 (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
618 ia64_psr(regs)->ss = 0;
619 unlock_kprobes();
620 goto no_kprobe;
622 /* We have reentered the pre_kprobe_handler(), since
623 * another probe was hit while within the handler.
624 * We here save the original kprobes variables and
625 * just single step on the instruction of the new probe
626 * without calling any user handlers.
628 save_previous_kprobe();
629 set_current_kprobe(p);
630 p->nmissed++;
631 prepare_ss(p, regs);
632 kprobe_status = KPROBE_REENTER;
633 return 1;
634 } else if (args->err == __IA64_BREAK_JPROBE) {
636 * jprobe instrumented function just completed
638 p = current_kprobe;
639 if (p->break_handler && p->break_handler(p, regs)) {
640 goto ss_probe;
642 } else {
643 /* Not our break */
644 goto no_kprobe;
648 lock_kprobes();
649 p = get_kprobe(addr);
650 if (!p) {
651 unlock_kprobes();
652 if (!is_ia64_break_inst(regs)) {
654 * The breakpoint instruction was removed right
655 * after we hit it. Another cpu has removed
656 * either a probepoint or a debugger breakpoint
657 * at this address. In either case, no further
658 * handling of this interrupt is appropriate.
660 ret = 1;
664 /* Not one of our break, let kernel handle it */
665 goto no_kprobe;
668 kprobe_status = KPROBE_HIT_ACTIVE;
669 set_current_kprobe(p);
671 if (p->pre_handler && p->pre_handler(p, regs))
673 * Our pre-handler is specifically requesting that we just
674 * do a return. This is used for both the jprobe pre-handler
675 * and the kretprobe trampoline
677 return 1;
679 ss_probe:
680 prepare_ss(p, regs);
681 kprobe_status = KPROBE_HIT_SS;
682 return 1;
684 no_kprobe:
685 preempt_enable_no_resched();
686 return ret;
689 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
691 if (!kprobe_running())
692 return 0;
694 if ((kprobe_status != KPROBE_REENTER) && current_kprobe->post_handler) {
695 kprobe_status = KPROBE_HIT_SSDONE;
696 current_kprobe->post_handler(current_kprobe, regs, 0);
699 resume_execution(current_kprobe, regs);
701 /*Restore back the original saved kprobes variables and continue. */
702 if (kprobe_status == KPROBE_REENTER) {
703 restore_previous_kprobe();
704 goto out;
707 unlock_kprobes();
709 out:
710 preempt_enable_no_resched();
711 return 1;
714 static int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
716 if (!kprobe_running())
717 return 0;
719 if (current_kprobe->fault_handler &&
720 current_kprobe->fault_handler(current_kprobe, regs, trapnr))
721 return 1;
723 if (kprobe_status & KPROBE_HIT_SS) {
724 resume_execution(current_kprobe, regs);
725 unlock_kprobes();
726 preempt_enable_no_resched();
729 return 0;
732 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
733 unsigned long val, void *data)
735 struct die_args *args = (struct die_args *)data;
736 switch(val) {
737 case DIE_BREAK:
738 if (pre_kprobes_handler(args))
739 return NOTIFY_STOP;
740 break;
741 case DIE_SS:
742 if (post_kprobes_handler(args->regs))
743 return NOTIFY_STOP;
744 break;
745 case DIE_PAGE_FAULT:
746 if (kprobes_fault_handler(args->regs, args->trapnr))
747 return NOTIFY_STOP;
748 default:
749 break;
751 return NOTIFY_DONE;
754 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
756 struct jprobe *jp = container_of(p, struct jprobe, kp);
757 unsigned long addr = ((struct fnptr *)(jp->entry))->ip;
759 /* save architectural state */
760 jprobe_saved_regs = *regs;
762 /* after rfi, execute the jprobe instrumented function */
763 regs->cr_iip = addr & ~0xFULL;
764 ia64_psr(regs)->ri = addr & 0xf;
765 regs->r1 = ((struct fnptr *)(jp->entry))->gp;
768 * fix the return address to our jprobe_inst_return() function
769 * in the jprobes.S file
771 regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
773 return 1;
776 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
778 *regs = jprobe_saved_regs;
779 return 1;
782 static struct kprobe trampoline_p = {
783 .pre_handler = trampoline_probe_handler
786 int __init arch_init_kprobes(void)
788 trampoline_p.addr =
789 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
790 return register_kprobe(&trampoline_p);