3 * Purpose: Generic MCA handling layer
5 * Updated for latest kernel
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
24 * 03/04/15 D. Mosberger Added INIT backtrace support.
25 * 02/03/25 M. Domsch GUID cleanups
27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
28 * error flag, set SAL default return values, changed
29 * error record structure to linked list, added init call
30 * to sal_get_state_info_size().
32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
33 * platform errors, completed code for logging of
34 * corrected & uncorrected machine check errors, and
35 * updated for conformance with Nov. 2000 revision of the
37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38 * added min save state dump, added INIT handler.
40 * 2003-12-08 Keith Owens <kaos@sgi.com>
41 * smp_call_function() must not be called from interrupt context (can
42 * deadlock on tasklist_lock). Use keventd to call smp_call_function().
44 * 2004-02-01 Keith Owens <kaos@sgi.com>
45 * Avoid deadlock when using printk() for MCA and INIT records.
46 * Delete all record printing code, moved to salinfo_decode in user space.
47 * Mark variables and functions static where possible.
48 * Delete dead variables and functions.
49 * Reorder to remove the need for forward declarations and to consolidate
52 #include <linux/config.h>
53 #include <linux/types.h>
54 #include <linux/init.h>
55 #include <linux/sched.h>
56 #include <linux/interrupt.h>
57 #include <linux/irq.h>
58 #include <linux/kallsyms.h>
59 #include <linux/smp_lock.h>
60 #include <linux/bootmem.h>
61 #include <linux/acpi.h>
62 #include <linux/timer.h>
63 #include <linux/module.h>
64 #include <linux/kernel.h>
65 #include <linux/smp.h>
66 #include <linux/workqueue.h>
68 #include <asm/delay.h>
69 #include <asm/machvec.h>
70 #include <asm/meminit.h>
72 #include <asm/ptrace.h>
73 #include <asm/system.h>
78 #include <asm/hw_irq.h>
80 #if defined(IA64_MCA_DEBUG_INFO)
81 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
83 # define IA64_MCA_DEBUG(fmt...)
86 /* Used by mca_asm.S */
87 ia64_mca_sal_to_os_state_t ia64_sal_to_os_handoff_state
;
88 ia64_mca_os_to_sal_state_t ia64_os_to_sal_handoff_state
;
89 u64 ia64_mca_serialize
;
90 DEFINE_PER_CPU(u64
, ia64_mca_data
); /* == __per_cpu_mca[smp_processor_id()] */
91 DEFINE_PER_CPU(u64
, ia64_mca_per_cpu_pte
); /* PTE to map per-CPU area */
92 DEFINE_PER_CPU(u64
, ia64_mca_pal_pte
); /* PTE to map PAL code */
93 DEFINE_PER_CPU(u64
, ia64_mca_pal_base
); /* vaddr PAL code granule */
95 unsigned long __per_cpu_mca
[NR_CPUS
];
98 extern void ia64_monarch_init_handler (void);
99 extern void ia64_slave_init_handler (void);
101 static ia64_mc_info_t ia64_mc_info
;
103 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
104 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
105 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
106 #define CPE_HISTORY_LENGTH 5
107 #define CMC_HISTORY_LENGTH 5
109 static struct timer_list cpe_poll_timer
;
110 static struct timer_list cmc_poll_timer
;
112 * This variable tells whether we are currently in polling mode.
113 * Start with this in the wrong state so we won't play w/ timers
114 * before the system is ready.
116 static int cmc_polling_enabled
= 1;
119 * Clearing this variable prevents CPE polling from getting activated
120 * in mca_late_init. Use it if your system doesn't provide a CPEI,
121 * but encounters problems retrieving CPE logs. This should only be
122 * necessary for debugging.
124 static int cpe_poll_enabled
= 1;
126 extern void salinfo_log_wakeup(int type
, u8
*buffer
, u64 size
, int irqsafe
);
131 * IA64_MCA log support
133 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
134 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
136 typedef struct ia64_state_log_s
140 unsigned long isl_count
;
141 ia64_err_rec_t
*isl_log
[IA64_MAX_LOGS
]; /* need space to store header + error log */
144 static ia64_state_log_t ia64_state_log
[IA64_MAX_LOG_TYPES
];
146 #define IA64_LOG_ALLOCATE(it, size) \
147 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
148 (ia64_err_rec_t *)alloc_bootmem(size); \
149 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
150 (ia64_err_rec_t *)alloc_bootmem(size);}
151 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
152 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
153 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
154 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
155 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
156 #define IA64_LOG_INDEX_INC(it) \
157 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
158 ia64_state_log[it].isl_count++;}
159 #define IA64_LOG_INDEX_DEC(it) \
160 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
161 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
162 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
163 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
167 * Reset the OS ia64 log buffer
168 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
172 ia64_log_init(int sal_info_type
)
176 IA64_LOG_NEXT_INDEX(sal_info_type
) = 0;
177 IA64_LOG_LOCK_INIT(sal_info_type
);
179 // SAL will tell us the maximum size of any error record of this type
180 max_size
= ia64_sal_get_state_info_size(sal_info_type
);
182 /* alloc_bootmem() doesn't like zero-sized allocations! */
185 // set up OS data structures to hold error info
186 IA64_LOG_ALLOCATE(sal_info_type
, max_size
);
187 memset(IA64_LOG_CURR_BUFFER(sal_info_type
), 0, max_size
);
188 memset(IA64_LOG_NEXT_BUFFER(sal_info_type
), 0, max_size
);
194 * Get the current MCA log from SAL and copy it into the OS log buffer.
196 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
197 * irq_safe whether you can use printk at this point
198 * Outputs : size (total record length)
199 * *buffer (ptr to error record)
203 ia64_log_get(int sal_info_type
, u8
**buffer
, int irq_safe
)
205 sal_log_record_header_t
*log_buffer
;
209 IA64_LOG_LOCK(sal_info_type
);
211 /* Get the process state information */
212 log_buffer
= IA64_LOG_NEXT_BUFFER(sal_info_type
);
214 total_len
= ia64_sal_get_state_info(sal_info_type
, (u64
*)log_buffer
);
217 IA64_LOG_INDEX_INC(sal_info_type
);
218 IA64_LOG_UNLOCK(sal_info_type
);
220 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
221 "Record length = %ld\n", __FUNCTION__
, sal_info_type
, total_len
);
223 *buffer
= (u8
*) log_buffer
;
226 IA64_LOG_UNLOCK(sal_info_type
);
232 * ia64_mca_log_sal_error_record
234 * This function retrieves a specified error record type from SAL
235 * and wakes up any processes waiting for error records.
237 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE/INIT)
240 ia64_mca_log_sal_error_record(int sal_info_type
)
243 sal_log_record_header_t
*rh
;
245 int irq_safe
= sal_info_type
!= SAL_INFO_TYPE_MCA
&& sal_info_type
!= SAL_INFO_TYPE_INIT
;
246 #ifdef IA64_MCA_DEBUG_INFO
247 static const char * const rec_name
[] = { "MCA", "INIT", "CMC", "CPE" };
250 size
= ia64_log_get(sal_info_type
, &buffer
, irq_safe
);
254 salinfo_log_wakeup(sal_info_type
, buffer
, size
, irq_safe
);
257 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
259 sal_info_type
< ARRAY_SIZE(rec_name
) ? rec_name
[sal_info_type
] : "UNKNOWN");
261 /* Clear logs from corrected errors in case there's no user-level logger */
262 rh
= (sal_log_record_header_t
*)buffer
;
263 if (rh
->severity
== sal_log_severity_corrected
)
264 ia64_sal_clear_state_info(sal_info_type
);
268 * platform dependent error handling
270 #ifndef PLATFORM_MCA_HANDLERS
277 ia64_mca_cpe_int_handler (int cpe_irq
, void *arg
, struct pt_regs
*ptregs
)
279 static unsigned long cpe_history
[CPE_HISTORY_LENGTH
];
281 static DEFINE_SPINLOCK(cpe_history_lock
);
283 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
284 __FUNCTION__
, cpe_irq
, smp_processor_id());
286 /* SAL spec states this should run w/ interrupts enabled */
289 /* Get the CPE error record and log it */
290 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE
);
292 spin_lock(&cpe_history_lock
);
293 if (!cpe_poll_enabled
&& cpe_vector
>= 0) {
295 int i
, count
= 1; /* we know 1 happened now */
296 unsigned long now
= jiffies
;
298 for (i
= 0; i
< CPE_HISTORY_LENGTH
; i
++) {
299 if (now
- cpe_history
[i
] <= HZ
)
303 IA64_MCA_DEBUG(KERN_INFO
"CPE threshold %d/%d\n", count
, CPE_HISTORY_LENGTH
);
304 if (count
>= CPE_HISTORY_LENGTH
) {
306 cpe_poll_enabled
= 1;
307 spin_unlock(&cpe_history_lock
);
308 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR
));
311 * Corrected errors will still be corrected, but
312 * make sure there's a log somewhere that indicates
313 * something is generating more than we can handle.
315 printk(KERN_WARNING
"WARNING: Switching to polling CPE handler; error records may be lost\n");
317 mod_timer(&cpe_poll_timer
, jiffies
+ MIN_CPE_POLL_INTERVAL
);
319 /* lock already released, get out now */
322 cpe_history
[index
++] = now
;
323 if (index
== CPE_HISTORY_LENGTH
)
327 spin_unlock(&cpe_history_lock
);
331 #endif /* CONFIG_ACPI */
334 show_min_state (pal_min_state_area_t
*minstate
)
336 u64 iip
= minstate
->pmsa_iip
+ ((struct ia64_psr
*)(&minstate
->pmsa_ipsr
))->ri
;
337 u64 xip
= minstate
->pmsa_xip
+ ((struct ia64_psr
*)(&minstate
->pmsa_xpsr
))->ri
;
339 printk("NaT bits\t%016lx\n", minstate
->pmsa_nat_bits
);
340 printk("pr\t\t%016lx\n", minstate
->pmsa_pr
);
341 printk("b0\t\t%016lx ", minstate
->pmsa_br0
); print_symbol("%s\n", minstate
->pmsa_br0
);
342 printk("ar.rsc\t\t%016lx\n", minstate
->pmsa_rsc
);
343 printk("cr.iip\t\t%016lx ", iip
); print_symbol("%s\n", iip
);
344 printk("cr.ipsr\t\t%016lx\n", minstate
->pmsa_ipsr
);
345 printk("cr.ifs\t\t%016lx\n", minstate
->pmsa_ifs
);
346 printk("xip\t\t%016lx ", xip
); print_symbol("%s\n", xip
);
347 printk("xpsr\t\t%016lx\n", minstate
->pmsa_xpsr
);
348 printk("xfs\t\t%016lx\n", minstate
->pmsa_xfs
);
349 printk("b1\t\t%016lx ", minstate
->pmsa_br1
);
350 print_symbol("%s\n", minstate
->pmsa_br1
);
352 printk("\nstatic registers r0-r15:\n");
353 printk(" r0- 3 %016lx %016lx %016lx %016lx\n",
354 0UL, minstate
->pmsa_gr
[0], minstate
->pmsa_gr
[1], minstate
->pmsa_gr
[2]);
355 printk(" r4- 7 %016lx %016lx %016lx %016lx\n",
356 minstate
->pmsa_gr
[3], minstate
->pmsa_gr
[4],
357 minstate
->pmsa_gr
[5], minstate
->pmsa_gr
[6]);
358 printk(" r8-11 %016lx %016lx %016lx %016lx\n",
359 minstate
->pmsa_gr
[7], minstate
->pmsa_gr
[8],
360 minstate
->pmsa_gr
[9], minstate
->pmsa_gr
[10]);
361 printk("r12-15 %016lx %016lx %016lx %016lx\n",
362 minstate
->pmsa_gr
[11], minstate
->pmsa_gr
[12],
363 minstate
->pmsa_gr
[13], minstate
->pmsa_gr
[14]);
365 printk("\nbank 0:\n");
366 printk("r16-19 %016lx %016lx %016lx %016lx\n",
367 minstate
->pmsa_bank0_gr
[0], minstate
->pmsa_bank0_gr
[1],
368 minstate
->pmsa_bank0_gr
[2], minstate
->pmsa_bank0_gr
[3]);
369 printk("r20-23 %016lx %016lx %016lx %016lx\n",
370 minstate
->pmsa_bank0_gr
[4], minstate
->pmsa_bank0_gr
[5],
371 minstate
->pmsa_bank0_gr
[6], minstate
->pmsa_bank0_gr
[7]);
372 printk("r24-27 %016lx %016lx %016lx %016lx\n",
373 minstate
->pmsa_bank0_gr
[8], minstate
->pmsa_bank0_gr
[9],
374 minstate
->pmsa_bank0_gr
[10], minstate
->pmsa_bank0_gr
[11]);
375 printk("r28-31 %016lx %016lx %016lx %016lx\n",
376 minstate
->pmsa_bank0_gr
[12], minstate
->pmsa_bank0_gr
[13],
377 minstate
->pmsa_bank0_gr
[14], minstate
->pmsa_bank0_gr
[15]);
379 printk("\nbank 1:\n");
380 printk("r16-19 %016lx %016lx %016lx %016lx\n",
381 minstate
->pmsa_bank1_gr
[0], minstate
->pmsa_bank1_gr
[1],
382 minstate
->pmsa_bank1_gr
[2], minstate
->pmsa_bank1_gr
[3]);
383 printk("r20-23 %016lx %016lx %016lx %016lx\n",
384 minstate
->pmsa_bank1_gr
[4], minstate
->pmsa_bank1_gr
[5],
385 minstate
->pmsa_bank1_gr
[6], minstate
->pmsa_bank1_gr
[7]);
386 printk("r24-27 %016lx %016lx %016lx %016lx\n",
387 minstate
->pmsa_bank1_gr
[8], minstate
->pmsa_bank1_gr
[9],
388 minstate
->pmsa_bank1_gr
[10], minstate
->pmsa_bank1_gr
[11]);
389 printk("r28-31 %016lx %016lx %016lx %016lx\n",
390 minstate
->pmsa_bank1_gr
[12], minstate
->pmsa_bank1_gr
[13],
391 minstate
->pmsa_bank1_gr
[14], minstate
->pmsa_bank1_gr
[15]);
395 fetch_min_state (pal_min_state_area_t
*ms
, struct pt_regs
*pt
, struct switch_stack
*sw
)
397 u64
*dst_banked
, *src_banked
, bit
, shift
, nat_bits
;
401 * First, update the pt-regs and switch-stack structures with the contents stored
402 * in the min-state area:
404 if (((struct ia64_psr
*) &ms
->pmsa_ipsr
)->ic
== 0) {
405 pt
->cr_ipsr
= ms
->pmsa_xpsr
;
406 pt
->cr_iip
= ms
->pmsa_xip
;
407 pt
->cr_ifs
= ms
->pmsa_xfs
;
409 pt
->cr_ipsr
= ms
->pmsa_ipsr
;
410 pt
->cr_iip
= ms
->pmsa_iip
;
411 pt
->cr_ifs
= ms
->pmsa_ifs
;
413 pt
->ar_rsc
= ms
->pmsa_rsc
;
414 pt
->pr
= ms
->pmsa_pr
;
415 pt
->r1
= ms
->pmsa_gr
[0];
416 pt
->r2
= ms
->pmsa_gr
[1];
417 pt
->r3
= ms
->pmsa_gr
[2];
418 sw
->r4
= ms
->pmsa_gr
[3];
419 sw
->r5
= ms
->pmsa_gr
[4];
420 sw
->r6
= ms
->pmsa_gr
[5];
421 sw
->r7
= ms
->pmsa_gr
[6];
422 pt
->r8
= ms
->pmsa_gr
[7];
423 pt
->r9
= ms
->pmsa_gr
[8];
424 pt
->r10
= ms
->pmsa_gr
[9];
425 pt
->r11
= ms
->pmsa_gr
[10];
426 pt
->r12
= ms
->pmsa_gr
[11];
427 pt
->r13
= ms
->pmsa_gr
[12];
428 pt
->r14
= ms
->pmsa_gr
[13];
429 pt
->r15
= ms
->pmsa_gr
[14];
430 dst_banked
= &pt
->r16
; /* r16-r31 are contiguous in struct pt_regs */
431 src_banked
= ms
->pmsa_bank1_gr
;
432 for (i
= 0; i
< 16; ++i
)
433 dst_banked
[i
] = src_banked
[i
];
434 pt
->b0
= ms
->pmsa_br0
;
435 sw
->b1
= ms
->pmsa_br1
;
437 /* construct the NaT bits for the pt-regs structure: */
438 # define PUT_NAT_BIT(dst, addr) \
440 bit = nat_bits & 1; nat_bits >>= 1; \
441 shift = ((unsigned long) addr >> 3) & 0x3f; \
442 dst = ((dst) & ~(1UL << shift)) | (bit << shift); \
445 /* Rotate the saved NaT bits such that bit 0 corresponds to pmsa_gr[0]: */
446 shift
= ((unsigned long) &ms
->pmsa_gr
[0] >> 3) & 0x3f;
447 nat_bits
= (ms
->pmsa_nat_bits
>> shift
) | (ms
->pmsa_nat_bits
<< (64 - shift
));
449 PUT_NAT_BIT(sw
->caller_unat
, &pt
->r1
);
450 PUT_NAT_BIT(sw
->caller_unat
, &pt
->r2
);
451 PUT_NAT_BIT(sw
->caller_unat
, &pt
->r3
);
452 PUT_NAT_BIT(sw
->ar_unat
, &sw
->r4
);
453 PUT_NAT_BIT(sw
->ar_unat
, &sw
->r5
);
454 PUT_NAT_BIT(sw
->ar_unat
, &sw
->r6
);
455 PUT_NAT_BIT(sw
->ar_unat
, &sw
->r7
);
456 PUT_NAT_BIT(sw
->caller_unat
, &pt
->r8
); PUT_NAT_BIT(sw
->caller_unat
, &pt
->r9
);
457 PUT_NAT_BIT(sw
->caller_unat
, &pt
->r10
); PUT_NAT_BIT(sw
->caller_unat
, &pt
->r11
);
458 PUT_NAT_BIT(sw
->caller_unat
, &pt
->r12
); PUT_NAT_BIT(sw
->caller_unat
, &pt
->r13
);
459 PUT_NAT_BIT(sw
->caller_unat
, &pt
->r14
); PUT_NAT_BIT(sw
->caller_unat
, &pt
->r15
);
460 nat_bits
>>= 16; /* skip over bank0 NaT bits */
461 PUT_NAT_BIT(sw
->caller_unat
, &pt
->r16
); PUT_NAT_BIT(sw
->caller_unat
, &pt
->r17
);
462 PUT_NAT_BIT(sw
->caller_unat
, &pt
->r18
); PUT_NAT_BIT(sw
->caller_unat
, &pt
->r19
);
463 PUT_NAT_BIT(sw
->caller_unat
, &pt
->r20
); PUT_NAT_BIT(sw
->caller_unat
, &pt
->r21
);
464 PUT_NAT_BIT(sw
->caller_unat
, &pt
->r22
); PUT_NAT_BIT(sw
->caller_unat
, &pt
->r23
);
465 PUT_NAT_BIT(sw
->caller_unat
, &pt
->r24
); PUT_NAT_BIT(sw
->caller_unat
, &pt
->r25
);
466 PUT_NAT_BIT(sw
->caller_unat
, &pt
->r26
); PUT_NAT_BIT(sw
->caller_unat
, &pt
->r27
);
467 PUT_NAT_BIT(sw
->caller_unat
, &pt
->r28
); PUT_NAT_BIT(sw
->caller_unat
, &pt
->r29
);
468 PUT_NAT_BIT(sw
->caller_unat
, &pt
->r30
); PUT_NAT_BIT(sw
->caller_unat
, &pt
->r31
);
472 init_handler_platform (pal_min_state_area_t
*ms
,
473 struct pt_regs
*pt
, struct switch_stack
*sw
)
475 struct unw_frame_info info
;
477 /* if a kernel debugger is available call it here else just dump the registers */
480 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
481 * generated via the BMC's command-line interface, but since the console is on the
482 * same serial line, the user will need some time to switch out of the BMC before
485 printk("Delaying for 5 seconds...\n");
489 printk("Backtrace of current task (pid %d, %s)\n", current
->pid
, current
->comm
);
490 fetch_min_state(ms
, pt
, sw
);
491 unw_init_from_interruption(&info
, current
, pt
, sw
);
492 ia64_do_show_stack(&info
, NULL
);
494 if (read_trylock(&tasklist_lock
)) {
495 struct task_struct
*g
, *t
;
496 do_each_thread (g
, t
) {
500 printk("\nBacktrace of pid %d (%s)\n", t
->pid
, t
->comm
);
502 } while_each_thread (g
, t
);
505 printk("\nINIT dump complete. Please reboot now.\n");
506 while (1); /* hang city if no debugger */
511 * ia64_mca_register_cpev
513 * Register the corrected platform error vector with SAL.
516 * cpev Corrected Platform Error Vector number
522 ia64_mca_register_cpev (int cpev
)
524 /* Register the CPE interrupt vector with SAL */
525 struct ia64_sal_retval isrv
;
527 isrv
= ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT
, SAL_MC_PARAM_MECHANISM_INT
, cpev
, 0, 0);
529 printk(KERN_ERR
"Failed to register Corrected Platform "
530 "Error interrupt vector with SAL (status %ld)\n", isrv
.status
);
534 IA64_MCA_DEBUG("%s: corrected platform error "
535 "vector %#x registered\n", __FUNCTION__
, cpev
);
537 #endif /* CONFIG_ACPI */
539 #endif /* PLATFORM_MCA_HANDLERS */
542 * ia64_mca_cmc_vector_setup
544 * Setup the corrected machine check vector register in the processor.
545 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
546 * This function is invoked on a per-processor basis.
555 ia64_mca_cmc_vector_setup (void)
559 cmcv
.cmcv_regval
= 0;
560 cmcv
.cmcv_mask
= 1; /* Mask/disable interrupt at first */
561 cmcv
.cmcv_vector
= IA64_CMC_VECTOR
;
562 ia64_setreg(_IA64_REG_CR_CMCV
, cmcv
.cmcv_regval
);
564 IA64_MCA_DEBUG("%s: CPU %d corrected "
565 "machine check vector %#x registered.\n",
566 __FUNCTION__
, smp_processor_id(), IA64_CMC_VECTOR
);
568 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
569 __FUNCTION__
, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV
));
573 * ia64_mca_cmc_vector_disable
575 * Mask the corrected machine check vector register in the processor.
576 * This function is invoked on a per-processor basis.
585 ia64_mca_cmc_vector_disable (void *dummy
)
589 cmcv
.cmcv_regval
= ia64_getreg(_IA64_REG_CR_CMCV
);
591 cmcv
.cmcv_mask
= 1; /* Mask/disable interrupt */
592 ia64_setreg(_IA64_REG_CR_CMCV
, cmcv
.cmcv_regval
);
594 IA64_MCA_DEBUG("%s: CPU %d corrected "
595 "machine check vector %#x disabled.\n",
596 __FUNCTION__
, smp_processor_id(), cmcv
.cmcv_vector
);
600 * ia64_mca_cmc_vector_enable
602 * Unmask the corrected machine check vector register in the processor.
603 * This function is invoked on a per-processor basis.
612 ia64_mca_cmc_vector_enable (void *dummy
)
616 cmcv
.cmcv_regval
= ia64_getreg(_IA64_REG_CR_CMCV
);
618 cmcv
.cmcv_mask
= 0; /* Unmask/enable interrupt */
619 ia64_setreg(_IA64_REG_CR_CMCV
, cmcv
.cmcv_regval
);
621 IA64_MCA_DEBUG("%s: CPU %d corrected "
622 "machine check vector %#x enabled.\n",
623 __FUNCTION__
, smp_processor_id(), cmcv
.cmcv_vector
);
627 * ia64_mca_cmc_vector_disable_keventd
629 * Called via keventd (smp_call_function() is not safe in interrupt context) to
630 * disable the cmc interrupt vector.
633 ia64_mca_cmc_vector_disable_keventd(void *unused
)
635 on_each_cpu(ia64_mca_cmc_vector_disable
, NULL
, 1, 0);
639 * ia64_mca_cmc_vector_enable_keventd
641 * Called via keventd (smp_call_function() is not safe in interrupt context) to
642 * enable the cmc interrupt vector.
645 ia64_mca_cmc_vector_enable_keventd(void *unused
)
647 on_each_cpu(ia64_mca_cmc_vector_enable
, NULL
, 1, 0);
651 * ia64_mca_wakeup_ipi_wait
653 * Wait for the inter-cpu interrupt to be sent by the
654 * monarch processor once it is done with handling the
661 ia64_mca_wakeup_ipi_wait(void)
663 int irr_num
= (IA64_MCA_WAKEUP_VECTOR
>> 6);
664 int irr_bit
= (IA64_MCA_WAKEUP_VECTOR
& 0x3f);
670 irr
= ia64_getreg(_IA64_REG_CR_IRR0
);
673 irr
= ia64_getreg(_IA64_REG_CR_IRR1
);
676 irr
= ia64_getreg(_IA64_REG_CR_IRR2
);
679 irr
= ia64_getreg(_IA64_REG_CR_IRR3
);
683 } while (!(irr
& (1UL << irr_bit
))) ;
689 * Send an inter-cpu interrupt to wake-up a particular cpu
690 * and mark that cpu to be out of rendez.
696 ia64_mca_wakeup(int cpu
)
698 platform_send_ipi(cpu
, IA64_MCA_WAKEUP_VECTOR
, IA64_IPI_DM_INT
, 0);
699 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
704 * ia64_mca_wakeup_all
706 * Wakeup all the cpus which have rendez'ed previously.
712 ia64_mca_wakeup_all(void)
716 /* Clear the Rendez checkin flag for all cpus */
717 for(cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
718 if (!cpu_online(cpu
))
720 if (ia64_mc_info
.imi_rendez_checkin
[cpu
] == IA64_MCA_RENDEZ_CHECKIN_DONE
)
721 ia64_mca_wakeup(cpu
);
727 * ia64_mca_rendez_interrupt_handler
729 * This is handler used to put slave processors into spinloop
730 * while the monarch processor does the mca handling and later
731 * wake each slave up once the monarch is done.
737 ia64_mca_rendez_int_handler(int rendez_irq
, void *arg
, struct pt_regs
*ptregs
)
740 int cpu
= smp_processor_id();
742 /* Mask all interrupts */
743 local_irq_save(flags
);
745 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_DONE
;
746 /* Register with the SAL monarch that the slave has
749 ia64_sal_mc_rendez();
751 /* Wait for the wakeup IPI from the monarch
752 * This waiting is done by polling on the wakeup-interrupt
753 * vector bit in the processor's IRRs
755 ia64_mca_wakeup_ipi_wait();
757 /* Enable all interrupts */
758 local_irq_restore(flags
);
763 * ia64_mca_wakeup_int_handler
765 * The interrupt handler for processing the inter-cpu interrupt to the
766 * slave cpu which was spinning in the rendez loop.
767 * Since this spinning is done by turning off the interrupts and
768 * polling on the wakeup-interrupt bit in the IRR, there is
769 * nothing useful to be done in the handler.
771 * Inputs : wakeup_irq (Wakeup-interrupt bit)
772 * arg (Interrupt handler specific argument)
773 * ptregs (Exception frame at the time of the interrupt)
778 ia64_mca_wakeup_int_handler(int wakeup_irq
, void *arg
, struct pt_regs
*ptregs
)
784 * ia64_return_to_sal_check
786 * This is function called before going back from the OS_MCA handler
787 * to the OS_MCA dispatch code which finally takes the control back
789 * The main purpose of this routine is to setup the OS_MCA to SAL
790 * return state which can be used by the OS_MCA dispatch code
791 * just before going back to SAL.
798 ia64_return_to_sal_check(int recover
)
801 /* Copy over some relevant stuff from the sal_to_os_mca_handoff
802 * so that it can be used at the time of os_mca_to_sal_handoff
804 ia64_os_to_sal_handoff_state
.imots_sal_gp
=
805 ia64_sal_to_os_handoff_state
.imsto_sal_gp
;
807 ia64_os_to_sal_handoff_state
.imots_sal_check_ra
=
808 ia64_sal_to_os_handoff_state
.imsto_sal_check_ra
;
811 ia64_os_to_sal_handoff_state
.imots_os_status
= IA64_MCA_CORRECTED
;
813 ia64_os_to_sal_handoff_state
.imots_os_status
= IA64_MCA_COLD_BOOT
;
815 /* Default = tell SAL to return to same context */
816 ia64_os_to_sal_handoff_state
.imots_context
= IA64_MCA_SAME_CONTEXT
;
818 ia64_os_to_sal_handoff_state
.imots_new_min_state
=
819 (u64
*)ia64_sal_to_os_handoff_state
.pal_min_state
;
823 /* Function pointer for extra MCA recovery */
824 int (*ia64_mca_ucmc_extension
)
825 (void*,ia64_mca_sal_to_os_state_t
*,ia64_mca_os_to_sal_state_t
*)
829 ia64_reg_MCA_extension(void *fn
)
831 if (ia64_mca_ucmc_extension
)
834 ia64_mca_ucmc_extension
= fn
;
839 ia64_unreg_MCA_extension(void)
841 if (ia64_mca_ucmc_extension
)
842 ia64_mca_ucmc_extension
= NULL
;
845 EXPORT_SYMBOL(ia64_reg_MCA_extension
);
846 EXPORT_SYMBOL(ia64_unreg_MCA_extension
);
849 * ia64_mca_ucmc_handler
851 * This is uncorrectable machine check handler called from OS_MCA
852 * dispatch code which is in turn called from SAL_CHECK().
853 * This is the place where the core of OS MCA handling is done.
854 * Right now the logs are extracted and displayed in a well-defined
855 * format. This handler code is supposed to be run only on the
856 * monarch processor. Once the monarch is done with MCA handling
857 * further MCA logging is enabled by clearing logs.
858 * Monarch also has the duty of sending wakeup-IPIs to pull the
859 * slave processors out of rendezvous spinloop.
865 ia64_mca_ucmc_handler(void)
867 pal_processor_state_info_t
*psp
= (pal_processor_state_info_t
*)
868 &ia64_sal_to_os_handoff_state
.proc_state_param
;
871 /* Get the MCA error record and log it */
872 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA
);
874 /* TLB error is only exist in this SAL error record */
875 recover
= (psp
->tc
&& !(psp
->cc
|| psp
->bc
|| psp
->rc
|| psp
->uc
))
876 /* other error recovery */
877 || (ia64_mca_ucmc_extension
878 && ia64_mca_ucmc_extension(
879 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA
),
880 &ia64_sal_to_os_handoff_state
,
881 &ia64_os_to_sal_handoff_state
));
884 sal_log_record_header_t
*rh
= IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA
);
885 rh
->severity
= sal_log_severity_corrected
;
886 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA
);
889 * Wakeup all the processors which are spinning in the rendezvous
892 ia64_mca_wakeup_all();
895 ia64_return_to_sal_check(recover
);
898 static DECLARE_WORK(cmc_disable_work
, ia64_mca_cmc_vector_disable_keventd
, NULL
);
899 static DECLARE_WORK(cmc_enable_work
, ia64_mca_cmc_vector_enable_keventd
, NULL
);
902 * ia64_mca_cmc_int_handler
904 * This is corrected machine check interrupt handler.
905 * Right now the logs are extracted and displayed in a well-defined
910 * client data arg ptr
911 * saved registers ptr
917 ia64_mca_cmc_int_handler(int cmc_irq
, void *arg
, struct pt_regs
*ptregs
)
919 static unsigned long cmc_history
[CMC_HISTORY_LENGTH
];
921 static DEFINE_SPINLOCK(cmc_history_lock
);
923 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
924 __FUNCTION__
, cmc_irq
, smp_processor_id());
926 /* SAL spec states this should run w/ interrupts enabled */
929 /* Get the CMC error record and log it */
930 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC
);
932 spin_lock(&cmc_history_lock
);
933 if (!cmc_polling_enabled
) {
934 int i
, count
= 1; /* we know 1 happened now */
935 unsigned long now
= jiffies
;
937 for (i
= 0; i
< CMC_HISTORY_LENGTH
; i
++) {
938 if (now
- cmc_history
[i
] <= HZ
)
942 IA64_MCA_DEBUG(KERN_INFO
"CMC threshold %d/%d\n", count
, CMC_HISTORY_LENGTH
);
943 if (count
>= CMC_HISTORY_LENGTH
) {
945 cmc_polling_enabled
= 1;
946 spin_unlock(&cmc_history_lock
);
947 schedule_work(&cmc_disable_work
);
950 * Corrected errors will still be corrected, but
951 * make sure there's a log somewhere that indicates
952 * something is generating more than we can handle.
954 printk(KERN_WARNING
"WARNING: Switching to polling CMC handler; error records may be lost\n");
956 mod_timer(&cmc_poll_timer
, jiffies
+ CMC_POLL_INTERVAL
);
958 /* lock already released, get out now */
961 cmc_history
[index
++] = now
;
962 if (index
== CMC_HISTORY_LENGTH
)
966 spin_unlock(&cmc_history_lock
);
971 * ia64_mca_cmc_int_caller
973 * Triggered by sw interrupt from CMC polling routine. Calls
974 * real interrupt handler and either triggers a sw interrupt
975 * on the next cpu or does cleanup at the end.
979 * client data arg ptr
980 * saved registers ptr
985 ia64_mca_cmc_int_caller(int cmc_irq
, void *arg
, struct pt_regs
*ptregs
)
987 static int start_count
= -1;
990 cpuid
= smp_processor_id();
992 /* If first cpu, update count */
993 if (start_count
== -1)
994 start_count
= IA64_LOG_COUNT(SAL_INFO_TYPE_CMC
);
996 ia64_mca_cmc_int_handler(cmc_irq
, arg
, ptregs
);
998 for (++cpuid
; cpuid
< NR_CPUS
&& !cpu_online(cpuid
) ; cpuid
++);
1000 if (cpuid
< NR_CPUS
) {
1001 platform_send_ipi(cpuid
, IA64_CMCP_VECTOR
, IA64_IPI_DM_INT
, 0);
1003 /* If no log record, switch out of polling mode */
1004 if (start_count
== IA64_LOG_COUNT(SAL_INFO_TYPE_CMC
)) {
1006 printk(KERN_WARNING
"Returning to interrupt driven CMC handler\n");
1007 schedule_work(&cmc_enable_work
);
1008 cmc_polling_enabled
= 0;
1012 mod_timer(&cmc_poll_timer
, jiffies
+ CMC_POLL_INTERVAL
);
1024 * Poll for Corrected Machine Checks (CMCs)
1026 * Inputs : dummy(unused)
1031 ia64_mca_cmc_poll (unsigned long dummy
)
1033 /* Trigger a CMC interrupt cascade */
1034 platform_send_ipi(first_cpu(cpu_online_map
), IA64_CMCP_VECTOR
, IA64_IPI_DM_INT
, 0);
1038 * ia64_mca_cpe_int_caller
1040 * Triggered by sw interrupt from CPE polling routine. Calls
1041 * real interrupt handler and either triggers a sw interrupt
1042 * on the next cpu or does cleanup at the end.
1046 * client data arg ptr
1047 * saved registers ptr
1054 ia64_mca_cpe_int_caller(int cpe_irq
, void *arg
, struct pt_regs
*ptregs
)
1056 static int start_count
= -1;
1057 static int poll_time
= MIN_CPE_POLL_INTERVAL
;
1060 cpuid
= smp_processor_id();
1062 /* If first cpu, update count */
1063 if (start_count
== -1)
1064 start_count
= IA64_LOG_COUNT(SAL_INFO_TYPE_CPE
);
1066 ia64_mca_cpe_int_handler(cpe_irq
, arg
, ptregs
);
1068 for (++cpuid
; cpuid
< NR_CPUS
&& !cpu_online(cpuid
) ; cpuid
++);
1070 if (cpuid
< NR_CPUS
) {
1071 platform_send_ipi(cpuid
, IA64_CPEP_VECTOR
, IA64_IPI_DM_INT
, 0);
1074 * If a log was recorded, increase our polling frequency,
1075 * otherwise, backoff or return to interrupt mode.
1077 if (start_count
!= IA64_LOG_COUNT(SAL_INFO_TYPE_CPE
)) {
1078 poll_time
= max(MIN_CPE_POLL_INTERVAL
, poll_time
/ 2);
1079 } else if (cpe_vector
< 0) {
1080 poll_time
= min(MAX_CPE_POLL_INTERVAL
, poll_time
* 2);
1082 poll_time
= MIN_CPE_POLL_INTERVAL
;
1084 printk(KERN_WARNING
"Returning to interrupt driven CPE handler\n");
1085 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR
));
1086 cpe_poll_enabled
= 0;
1089 if (cpe_poll_enabled
)
1090 mod_timer(&cpe_poll_timer
, jiffies
+ poll_time
);
1100 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1101 * on first cpu, from there it will trickle through all the cpus.
1103 * Inputs : dummy(unused)
1108 ia64_mca_cpe_poll (unsigned long dummy
)
1110 /* Trigger a CPE interrupt cascade */
1111 platform_send_ipi(first_cpu(cpu_online_map
), IA64_CPEP_VECTOR
, IA64_IPI_DM_INT
, 0);
1114 #endif /* CONFIG_ACPI */
1117 * C portion of the OS INIT handler
1119 * Called from ia64_monarch_init_handler
1121 * Inputs: pointer to pt_regs where processor info was saved.
1124 * 0 if SAL must warm boot the System
1125 * 1 if SAL must return to interrupted context using PAL_MC_RESUME
1129 ia64_init_handler (struct pt_regs
*pt
, struct switch_stack
*sw
)
1131 pal_min_state_area_t
*ms
;
1133 oops_in_progress
= 1; /* avoid deadlock in printk, but it makes recovery dodgy */
1134 console_loglevel
= 15; /* make sure printks make it to console */
1136 printk(KERN_INFO
"Entered OS INIT handler. PSP=%lx\n",
1137 ia64_sal_to_os_handoff_state
.proc_state_param
);
1140 * Address of minstate area provided by PAL is physical,
1141 * uncacheable (bit 63 set). Convert to Linux virtual
1142 * address in region 6.
1144 ms
= (pal_min_state_area_t
*)(ia64_sal_to_os_handoff_state
.pal_min_state
| (6ul<<61));
1146 init_handler_platform(ms
, pt
, sw
); /* call platform specific routines */
1150 ia64_mca_disable_cpe_polling(char *str
)
1152 cpe_poll_enabled
= 0;
1156 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling
);
1158 static struct irqaction cmci_irqaction
= {
1159 .handler
= ia64_mca_cmc_int_handler
,
1160 .flags
= SA_INTERRUPT
,
1164 static struct irqaction cmcp_irqaction
= {
1165 .handler
= ia64_mca_cmc_int_caller
,
1166 .flags
= SA_INTERRUPT
,
1170 static struct irqaction mca_rdzv_irqaction
= {
1171 .handler
= ia64_mca_rendez_int_handler
,
1172 .flags
= SA_INTERRUPT
,
1176 static struct irqaction mca_wkup_irqaction
= {
1177 .handler
= ia64_mca_wakeup_int_handler
,
1178 .flags
= SA_INTERRUPT
,
1183 static struct irqaction mca_cpe_irqaction
= {
1184 .handler
= ia64_mca_cpe_int_handler
,
1185 .flags
= SA_INTERRUPT
,
1189 static struct irqaction mca_cpep_irqaction
= {
1190 .handler
= ia64_mca_cpe_int_caller
,
1191 .flags
= SA_INTERRUPT
,
1194 #endif /* CONFIG_ACPI */
1196 /* Do per-CPU MCA-related initialization. */
1199 ia64_mca_cpu_init(void *cpu_data
)
1203 if (smp_processor_id() == 0) {
1207 mca_data
= alloc_bootmem(sizeof(struct ia64_mca_cpu
)
1209 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
1210 __per_cpu_mca
[cpu
] = __pa(mca_data
);
1211 mca_data
+= sizeof(struct ia64_mca_cpu
);
1216 * The MCA info structure was allocated earlier and its
1217 * physical address saved in __per_cpu_mca[cpu]. Copy that
1218 * address * to ia64_mca_data so we can access it as a per-CPU
1221 __get_cpu_var(ia64_mca_data
) = __per_cpu_mca
[smp_processor_id()];
1224 * Stash away a copy of the PTE needed to map the per-CPU page.
1225 * We may need it during MCA recovery.
1227 __get_cpu_var(ia64_mca_per_cpu_pte
) =
1228 pte_val(mk_pte_phys(__pa(cpu_data
), PAGE_KERNEL
));
1231 * Also, stash away a copy of the PAL address and the PTE
1234 pal_vaddr
= efi_get_pal_addr();
1237 __get_cpu_var(ia64_mca_pal_base
) =
1238 GRANULEROUNDDOWN((unsigned long) pal_vaddr
);
1239 __get_cpu_var(ia64_mca_pal_pte
) = pte_val(mk_pte_phys(__pa(pal_vaddr
),
1246 * Do all the system level mca specific initialization.
1248 * 1. Register spinloop and wakeup request interrupt vectors
1250 * 2. Register OS_MCA handler entry point
1252 * 3. Register OS_INIT handler entry point
1254 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1256 * Note that this initialization is done very early before some kernel
1257 * services are available.
1266 ia64_fptr_t
*mon_init_ptr
= (ia64_fptr_t
*)ia64_monarch_init_handler
;
1267 ia64_fptr_t
*slave_init_ptr
= (ia64_fptr_t
*)ia64_slave_init_handler
;
1268 ia64_fptr_t
*mca_hldlr_ptr
= (ia64_fptr_t
*)ia64_os_mca_dispatch
;
1271 struct ia64_sal_retval isrv
;
1272 u64 timeout
= IA64_MCA_RENDEZ_TIMEOUT
; /* platform specific */
1274 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__
);
1276 /* Clear the Rendez checkin flag for all cpus */
1277 for(i
= 0 ; i
< NR_CPUS
; i
++)
1278 ia64_mc_info
.imi_rendez_checkin
[i
] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
1281 * Register the rendezvous spinloop and wakeup mechanism with SAL
1284 /* Register the rendezvous interrupt vector with SAL */
1286 isrv
= ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT
,
1287 SAL_MC_PARAM_MECHANISM_INT
,
1288 IA64_MCA_RENDEZ_VECTOR
,
1290 SAL_MC_PARAM_RZ_ALWAYS
);
1295 printk(KERN_INFO
"Increasing MCA rendezvous timeout from "
1296 "%ld to %ld milliseconds\n", timeout
, isrv
.v0
);
1300 printk(KERN_ERR
"Failed to register rendezvous interrupt "
1301 "with SAL (status %ld)\n", rc
);
1305 /* Register the wakeup interrupt vector with SAL */
1306 isrv
= ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP
,
1307 SAL_MC_PARAM_MECHANISM_INT
,
1308 IA64_MCA_WAKEUP_VECTOR
,
1312 printk(KERN_ERR
"Failed to register wakeup interrupt with SAL "
1313 "(status %ld)\n", rc
);
1317 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__
);
1319 ia64_mc_info
.imi_mca_handler
= ia64_tpa(mca_hldlr_ptr
->fp
);
1321 * XXX - disable SAL checksum by setting size to 0; should be
1322 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1324 ia64_mc_info
.imi_mca_handler_size
= 0;
1326 /* Register the os mca handler with SAL */
1327 if ((rc
= ia64_sal_set_vectors(SAL_VECTOR_OS_MCA
,
1328 ia64_mc_info
.imi_mca_handler
,
1329 ia64_tpa(mca_hldlr_ptr
->gp
),
1330 ia64_mc_info
.imi_mca_handler_size
,
1333 printk(KERN_ERR
"Failed to register OS MCA handler with SAL "
1334 "(status %ld)\n", rc
);
1338 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__
,
1339 ia64_mc_info
.imi_mca_handler
, ia64_tpa(mca_hldlr_ptr
->gp
));
1342 * XXX - disable SAL checksum by setting size to 0, should be
1343 * size of the actual init handler in mca_asm.S.
1345 ia64_mc_info
.imi_monarch_init_handler
= ia64_tpa(mon_init_ptr
->fp
);
1346 ia64_mc_info
.imi_monarch_init_handler_size
= 0;
1347 ia64_mc_info
.imi_slave_init_handler
= ia64_tpa(slave_init_ptr
->fp
);
1348 ia64_mc_info
.imi_slave_init_handler_size
= 0;
1350 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__
,
1351 ia64_mc_info
.imi_monarch_init_handler
);
1353 /* Register the os init handler with SAL */
1354 if ((rc
= ia64_sal_set_vectors(SAL_VECTOR_OS_INIT
,
1355 ia64_mc_info
.imi_monarch_init_handler
,
1356 ia64_tpa(ia64_getreg(_IA64_REG_GP
)),
1357 ia64_mc_info
.imi_monarch_init_handler_size
,
1358 ia64_mc_info
.imi_slave_init_handler
,
1359 ia64_tpa(ia64_getreg(_IA64_REG_GP
)),
1360 ia64_mc_info
.imi_slave_init_handler_size
)))
1362 printk(KERN_ERR
"Failed to register m/s INIT handlers with SAL "
1363 "(status %ld)\n", rc
);
1367 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__
);
1370 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1371 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1373 register_percpu_irq(IA64_CMC_VECTOR
, &cmci_irqaction
);
1374 register_percpu_irq(IA64_CMCP_VECTOR
, &cmcp_irqaction
);
1375 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1377 /* Setup the MCA rendezvous interrupt vector */
1378 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR
, &mca_rdzv_irqaction
);
1380 /* Setup the MCA wakeup interrupt vector */
1381 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR
, &mca_wkup_irqaction
);
1384 /* Setup the CPEI/P handler */
1385 register_percpu_irq(IA64_CPEP_VECTOR
, &mca_cpep_irqaction
);
1388 /* Initialize the areas set aside by the OS to buffer the
1389 * platform/processor error states for MCA/INIT/CMC
1392 ia64_log_init(SAL_INFO_TYPE_MCA
);
1393 ia64_log_init(SAL_INFO_TYPE_INIT
);
1394 ia64_log_init(SAL_INFO_TYPE_CMC
);
1395 ia64_log_init(SAL_INFO_TYPE_CPE
);
1398 printk(KERN_INFO
"MCA related initialization done\n");
1402 * ia64_mca_late_init
1404 * Opportunity to setup things that require initialization later
1405 * than ia64_mca_init. Setup a timer to poll for CPEs if the
1406 * platform doesn't support an interrupt driven mechanism.
1412 ia64_mca_late_init(void)
1417 /* Setup the CMCI/P vector and handler */
1418 init_timer(&cmc_poll_timer
);
1419 cmc_poll_timer
.function
= ia64_mca_cmc_poll
;
1421 /* Unmask/enable the vector */
1422 cmc_polling_enabled
= 0;
1423 schedule_work(&cmc_enable_work
);
1425 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__
);
1428 /* Setup the CPEI/P vector and handler */
1429 cpe_vector
= acpi_request_vector(ACPI_INTERRUPT_CPEI
);
1430 init_timer(&cpe_poll_timer
);
1431 cpe_poll_timer
.function
= ia64_mca_cpe_poll
;
1437 if (cpe_vector
>= 0) {
1438 /* If platform supports CPEI, enable the irq. */
1439 cpe_poll_enabled
= 0;
1440 for (irq
= 0; irq
< NR_IRQS
; ++irq
)
1441 if (irq_to_vector(irq
) == cpe_vector
) {
1442 desc
= irq_descp(irq
);
1443 desc
->status
|= IRQ_PER_CPU
;
1444 setup_irq(irq
, &mca_cpe_irqaction
);
1446 ia64_mca_register_cpev(cpe_vector
);
1447 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__
);
1449 /* If platform doesn't support CPEI, get the timer going. */
1450 if (cpe_poll_enabled
) {
1451 ia64_mca_cpe_poll(0UL);
1452 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__
);
1461 device_initcall(ia64_mca_late_init
);