mips: rename offsets.c to asm-offsets.c
[linux-2.6/verdex.git] / arch / sh64 / kernel / time.c
blobf4a62a10053c60e6921d00b280d050a90eae8735
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * arch/sh64/kernel/time.c
8 * Copyright (C) 2000, 2001 Paolo Alberelli
9 * Copyright (C) 2003, 2004 Paul Mundt
10 * Copyright (C) 2003 Richard Curnow
12 * Original TMU/RTC code taken from sh version.
13 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
14 * Some code taken from i386 version.
15 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
18 #include <linux/config.h>
19 #include <linux/errno.h>
20 #include <linux/rwsem.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/param.h>
24 #include <linux/string.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/time.h>
28 #include <linux/delay.h>
29 #include <linux/init.h>
30 #include <linux/profile.h>
31 #include <linux/smp.h>
33 #include <asm/registers.h> /* required by inline __asm__ stmt. */
35 #include <asm/processor.h>
36 #include <asm/uaccess.h>
37 #include <asm/io.h>
38 #include <asm/irq.h>
39 #include <asm/delay.h>
41 #include <linux/timex.h>
42 #include <linux/irq.h>
43 #include <asm/hardware.h>
45 #define TMU_TOCR_INIT 0x00
46 #define TMU0_TCR_INIT 0x0020
47 #define TMU_TSTR_INIT 1
48 #define TMU_TSTR_OFF 0
50 /* RCR1 Bits */
51 #define RCR1_CF 0x80 /* Carry Flag */
52 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
53 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
54 #define RCR1_AF 0x01 /* Alarm Flag */
56 /* RCR2 Bits */
57 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
58 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
59 #define RCR2_RTCEN 0x08 /* ENable RTC */
60 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
61 #define RCR2_RESET 0x02 /* Reset bit */
62 #define RCR2_START 0x01 /* Start bit */
64 /* Clock, Power and Reset Controller */
65 #define CPRC_BLOCK_OFF 0x01010000
66 #define CPRC_BASE PHYS_PERIPHERAL_BLOCK + CPRC_BLOCK_OFF
68 #define FRQCR (cprc_base+0x0)
69 #define WTCSR (cprc_base+0x0018)
70 #define STBCR (cprc_base+0x0030)
72 /* Time Management Unit */
73 #define TMU_BLOCK_OFF 0x01020000
74 #define TMU_BASE PHYS_PERIPHERAL_BLOCK + TMU_BLOCK_OFF
75 #define TMU0_BASE tmu_base + 0x8 + (0xc * 0x0)
76 #define TMU1_BASE tmu_base + 0x8 + (0xc * 0x1)
77 #define TMU2_BASE tmu_base + 0x8 + (0xc * 0x2)
79 #define TMU_TOCR tmu_base+0x0 /* Byte access */
80 #define TMU_TSTR tmu_base+0x4 /* Byte access */
82 #define TMU0_TCOR TMU0_BASE+0x0 /* Long access */
83 #define TMU0_TCNT TMU0_BASE+0x4 /* Long access */
84 #define TMU0_TCR TMU0_BASE+0x8 /* Word access */
86 /* Real Time Clock */
87 #define RTC_BLOCK_OFF 0x01040000
88 #define RTC_BASE PHYS_PERIPHERAL_BLOCK + RTC_BLOCK_OFF
90 #define R64CNT rtc_base+0x00
91 #define RSECCNT rtc_base+0x04
92 #define RMINCNT rtc_base+0x08
93 #define RHRCNT rtc_base+0x0c
94 #define RWKCNT rtc_base+0x10
95 #define RDAYCNT rtc_base+0x14
96 #define RMONCNT rtc_base+0x18
97 #define RYRCNT rtc_base+0x1c /* 16bit */
98 #define RSECAR rtc_base+0x20
99 #define RMINAR rtc_base+0x24
100 #define RHRAR rtc_base+0x28
101 #define RWKAR rtc_base+0x2c
102 #define RDAYAR rtc_base+0x30
103 #define RMONAR rtc_base+0x34
104 #define RCR1 rtc_base+0x38
105 #define RCR2 rtc_base+0x3c
107 #ifndef BCD_TO_BIN
108 #define BCD_TO_BIN(val) ((val)=((val)&15) + ((val)>>4)*10)
109 #endif
111 #ifndef BIN_TO_BCD
112 #define BIN_TO_BCD(val) ((val)=(((val)/10)<<4) + (val)%10)
113 #endif
115 #define TICK_SIZE (tick_nsec / 1000)
117 extern unsigned long wall_jiffies;
119 u64 jiffies_64 = INITIAL_JIFFIES;
121 static unsigned long tmu_base, rtc_base;
122 unsigned long cprc_base;
124 /* Variables to allow interpolation of time of day to resolution better than a
125 * jiffy. */
127 /* This is effectively protected by xtime_lock */
128 static unsigned long ctc_last_interrupt;
129 static unsigned long long usecs_per_jiffy = 1000000/HZ; /* Approximation */
131 #define CTC_JIFFY_SCALE_SHIFT 40
133 /* 2**CTC_JIFFY_SCALE_SHIFT / ctc_ticks_per_jiffy */
134 static unsigned long long scaled_recip_ctc_ticks_per_jiffy;
136 /* Estimate number of microseconds that have elapsed since the last timer tick,
137 by scaling the delta that has occured in the CTC register.
139 WARNING WARNING WARNING : This algorithm relies on the CTC decrementing at
140 the CPU clock rate. If the CPU sleeps, the CTC stops counting. Bear this
141 in mind if enabling SLEEP_WORKS in process.c. In that case, this algorithm
142 probably needs to use TMU.TCNT0 instead. This will work even if the CPU is
143 sleeping, though will be coarser.
145 FIXME : What if usecs_per_tick is moving around too much, e.g. if an adjtime
146 is running or if the freq or tick arguments of adjtimex are modified after
147 we have calibrated the scaling factor? This will result in either a jump at
148 the end of a tick period, or a wrap backwards at the start of the next one,
149 if the application is reading the time of day often enough. I think we
150 ought to do better than this. For this reason, usecs_per_jiffy is left
151 separated out in the calculation below. This allows some future hook into
152 the adjtime-related stuff in kernel/timer.c to remove this hazard.
156 static unsigned long usecs_since_tick(void)
158 unsigned long long current_ctc;
159 long ctc_ticks_since_interrupt;
160 unsigned long long ull_ctc_ticks_since_interrupt;
161 unsigned long result;
163 unsigned long long mul1_out;
164 unsigned long long mul1_out_high;
165 unsigned long long mul2_out_low, mul2_out_high;
167 /* Read CTC register */
168 asm ("getcon cr62, %0" : "=r" (current_ctc));
169 /* Note, the CTC counts down on each CPU clock, not up.
170 Note(2), use long type to get correct wraparound arithmetic when
171 the counter crosses zero. */
172 ctc_ticks_since_interrupt = (long) ctc_last_interrupt - (long) current_ctc;
173 ull_ctc_ticks_since_interrupt = (unsigned long long) ctc_ticks_since_interrupt;
175 /* Inline assembly to do 32x32x32->64 multiplier */
176 asm volatile ("mulu.l %1, %2, %0" :
177 "=r" (mul1_out) :
178 "r" (ull_ctc_ticks_since_interrupt), "r" (usecs_per_jiffy));
180 mul1_out_high = mul1_out >> 32;
182 asm volatile ("mulu.l %1, %2, %0" :
183 "=r" (mul2_out_low) :
184 "r" (mul1_out), "r" (scaled_recip_ctc_ticks_per_jiffy));
186 #if 1
187 asm volatile ("mulu.l %1, %2, %0" :
188 "=r" (mul2_out_high) :
189 "r" (mul1_out_high), "r" (scaled_recip_ctc_ticks_per_jiffy));
190 #endif
192 result = (unsigned long) (((mul2_out_high << 32) + mul2_out_low) >> CTC_JIFFY_SCALE_SHIFT);
194 return result;
197 void do_gettimeofday(struct timeval *tv)
199 unsigned long flags;
200 unsigned long seq;
201 unsigned long usec, sec;
203 do {
204 seq = read_seqbegin_irqsave(&xtime_lock, flags);
205 usec = usecs_since_tick();
207 unsigned long lost = jiffies - wall_jiffies;
209 if (lost)
210 usec += lost * (1000000 / HZ);
213 sec = xtime.tv_sec;
214 usec += xtime.tv_nsec / 1000;
215 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
217 while (usec >= 1000000) {
218 usec -= 1000000;
219 sec++;
222 tv->tv_sec = sec;
223 tv->tv_usec = usec;
226 int do_settimeofday(struct timespec *tv)
228 time_t wtm_sec, sec = tv->tv_sec;
229 long wtm_nsec, nsec = tv->tv_nsec;
231 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
232 return -EINVAL;
234 write_seqlock_irq(&xtime_lock);
236 * This is revolting. We need to set "xtime" correctly. However, the
237 * value in this location is the value at the most recent update of
238 * wall time. Discover what correction gettimeofday() would have
239 * made, and then undo it!
241 nsec -= 1000 * (usecs_since_tick() +
242 (jiffies - wall_jiffies) * (1000000 / HZ));
244 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
245 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
247 set_normalized_timespec(&xtime, sec, nsec);
248 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
250 ntp_clear();
251 write_sequnlock_irq(&xtime_lock);
252 clock_was_set();
254 return 0;
257 static int set_rtc_time(unsigned long nowtime)
259 int retval = 0;
260 int real_seconds, real_minutes, cmos_minutes;
262 ctrl_outb(RCR2_RESET, RCR2); /* Reset pre-scaler & stop RTC */
264 cmos_minutes = ctrl_inb(RMINCNT);
265 BCD_TO_BIN(cmos_minutes);
268 * since we're only adjusting minutes and seconds,
269 * don't interfere with hour overflow. This avoids
270 * messing with unknown time zones but requires your
271 * RTC not to be off by more than 15 minutes
273 real_seconds = nowtime % 60;
274 real_minutes = nowtime / 60;
275 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
276 real_minutes += 30; /* correct for half hour time zone */
277 real_minutes %= 60;
279 if (abs(real_minutes - cmos_minutes) < 30) {
280 BIN_TO_BCD(real_seconds);
281 BIN_TO_BCD(real_minutes);
282 ctrl_outb(real_seconds, RSECCNT);
283 ctrl_outb(real_minutes, RMINCNT);
284 } else {
285 printk(KERN_WARNING
286 "set_rtc_time: can't update from %d to %d\n",
287 cmos_minutes, real_minutes);
288 retval = -1;
291 ctrl_outb(RCR2_RTCEN|RCR2_START, RCR2); /* Start RTC */
293 return retval;
296 /* last time the RTC clock got updated */
297 static long last_rtc_update = 0;
300 * timer_interrupt() needs to keep up the real-time clock,
301 * as well as call the "do_timer()" routine every clocktick
303 static inline void do_timer_interrupt(int irq, struct pt_regs *regs)
305 unsigned long long current_ctc;
306 asm ("getcon cr62, %0" : "=r" (current_ctc));
307 ctc_last_interrupt = (unsigned long) current_ctc;
309 do_timer(regs);
310 #ifndef CONFIG_SMP
311 update_process_times(user_mode(regs));
312 #endif
313 profile_tick(CPU_PROFILING, regs);
315 #ifdef CONFIG_HEARTBEAT
317 extern void heartbeat(void);
319 heartbeat();
321 #endif
324 * If we have an externally synchronized Linux clock, then update
325 * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
326 * called as close as possible to 500 ms before the new second starts.
328 if (ntp_synced() &&
329 xtime.tv_sec > last_rtc_update + 660 &&
330 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
331 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
332 if (set_rtc_time(xtime.tv_sec) == 0)
333 last_rtc_update = xtime.tv_sec;
334 else
335 last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
340 * This is the same as the above, except we _also_ save the current
341 * Time Stamp Counter value at the time of the timer interrupt, so that
342 * we later on can estimate the time of day more exactly.
344 static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
346 unsigned long timer_status;
348 /* Clear UNF bit */
349 timer_status = ctrl_inw(TMU0_TCR);
350 timer_status &= ~0x100;
351 ctrl_outw(timer_status, TMU0_TCR);
354 * Here we are in the timer irq handler. We just have irqs locally
355 * disabled but we don't know if the timer_bh is running on the other
356 * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
357 * the irq version of write_lock because as just said we have irq
358 * locally disabled. -arca
360 write_lock(&xtime_lock);
361 do_timer_interrupt(irq, regs);
362 write_unlock(&xtime_lock);
364 return IRQ_HANDLED;
367 static unsigned long get_rtc_time(void)
369 unsigned int sec, min, hr, wk, day, mon, yr, yr100;
371 again:
372 do {
373 ctrl_outb(0, RCR1); /* Clear CF-bit */
374 sec = ctrl_inb(RSECCNT);
375 min = ctrl_inb(RMINCNT);
376 hr = ctrl_inb(RHRCNT);
377 wk = ctrl_inb(RWKCNT);
378 day = ctrl_inb(RDAYCNT);
379 mon = ctrl_inb(RMONCNT);
380 yr = ctrl_inw(RYRCNT);
381 yr100 = (yr >> 8);
382 yr &= 0xff;
383 } while ((ctrl_inb(RCR1) & RCR1_CF) != 0);
385 BCD_TO_BIN(yr100);
386 BCD_TO_BIN(yr);
387 BCD_TO_BIN(mon);
388 BCD_TO_BIN(day);
389 BCD_TO_BIN(hr);
390 BCD_TO_BIN(min);
391 BCD_TO_BIN(sec);
393 if (yr > 99 || mon < 1 || mon > 12 || day > 31 || day < 1 ||
394 hr > 23 || min > 59 || sec > 59) {
395 printk(KERN_ERR
396 "SH RTC: invalid value, resetting to 1 Jan 2000\n");
397 ctrl_outb(RCR2_RESET, RCR2); /* Reset & Stop */
398 ctrl_outb(0, RSECCNT);
399 ctrl_outb(0, RMINCNT);
400 ctrl_outb(0, RHRCNT);
401 ctrl_outb(6, RWKCNT);
402 ctrl_outb(1, RDAYCNT);
403 ctrl_outb(1, RMONCNT);
404 ctrl_outw(0x2000, RYRCNT);
405 ctrl_outb(RCR2_RTCEN|RCR2_START, RCR2); /* Start */
406 goto again;
409 return mktime(yr100 * 100 + yr, mon, day, hr, min, sec);
412 static __init unsigned int get_cpu_hz(void)
414 unsigned int count;
415 unsigned long __dummy;
416 unsigned long ctc_val_init, ctc_val;
419 ** Regardless the toolchain, force the compiler to use the
420 ** arbitrary register r3 as a clock tick counter.
421 ** NOTE: r3 must be in accordance with rtc_interrupt()
423 register unsigned long long __rtc_irq_flag __asm__ ("r3");
425 local_irq_enable();
426 do {} while (ctrl_inb(R64CNT) != 0);
427 ctrl_outb(RCR1_CIE, RCR1); /* Enable carry interrupt */
430 * r3 is arbitrary. CDC does not support "=z".
432 ctc_val_init = 0xffffffff;
433 ctc_val = ctc_val_init;
435 asm volatile("gettr tr0, %1\n\t"
436 "putcon %0, " __CTC "\n\t"
437 "and %2, r63, %2\n\t"
438 "pta $+4, tr0\n\t"
439 "beq/l %2, r63, tr0\n\t"
440 "ptabs %1, tr0\n\t"
441 "getcon " __CTC ", %0\n\t"
442 : "=r"(ctc_val), "=r" (__dummy), "=r" (__rtc_irq_flag)
443 : "0" (0));
444 local_irq_disable();
446 * SH-3:
447 * CPU clock = 4 stages * loop
448 * tst rm,rm if id ex
449 * bt/s 1b if id ex
450 * add #1,rd if id ex
451 * (if) pipe line stole
452 * tst rm,rm if id ex
453 * ....
456 * SH-4:
457 * CPU clock = 6 stages * loop
458 * I don't know why.
459 * ....
461 * SH-5:
462 * Use CTC register to count. This approach returns the right value
463 * even if the I-cache is disabled (e.g. whilst debugging.)
467 count = ctc_val_init - ctc_val; /* CTC counts down */
469 #if defined (CONFIG_SH_SIMULATOR)
471 * Let's pretend we are a 5MHz SH-5 to avoid a too
472 * little timer interval. Also to keep delay
473 * calibration within a reasonable time.
475 return 5000000;
476 #else
478 * This really is count by the number of clock cycles
479 * by the ratio between a complete R64CNT
480 * wrap-around (128) and CUI interrupt being raised (64).
482 return count*2;
483 #endif
486 static irqreturn_t rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
488 ctrl_outb(0, RCR1); /* Disable Carry Interrupts */
489 regs->regs[3] = 1; /* Using r3 */
491 return IRQ_HANDLED;
494 static struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL};
495 static struct irqaction irq1 = { rtc_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "rtc", NULL, NULL};
497 void __init time_init(void)
499 unsigned int cpu_clock, master_clock, bus_clock, module_clock;
500 unsigned long interval;
501 unsigned long frqcr, ifc, pfc;
502 static int ifc_table[] = { 2, 4, 6, 8, 10, 12, 16, 24 };
503 #define bfc_table ifc_table /* Same */
504 #define pfc_table ifc_table /* Same */
506 tmu_base = onchip_remap(TMU_BASE, 1024, "TMU");
507 if (!tmu_base) {
508 panic("Unable to remap TMU\n");
511 rtc_base = onchip_remap(RTC_BASE, 1024, "RTC");
512 if (!rtc_base) {
513 panic("Unable to remap RTC\n");
516 cprc_base = onchip_remap(CPRC_BASE, 1024, "CPRC");
517 if (!cprc_base) {
518 panic("Unable to remap CPRC\n");
521 xtime.tv_sec = get_rtc_time();
522 xtime.tv_nsec = 0;
524 setup_irq(TIMER_IRQ, &irq0);
525 setup_irq(RTC_IRQ, &irq1);
527 /* Check how fast it is.. */
528 cpu_clock = get_cpu_hz();
530 /* Note careful order of operations to maintain reasonable precision and avoid overflow. */
531 scaled_recip_ctc_ticks_per_jiffy = ((1ULL << CTC_JIFFY_SCALE_SHIFT) / (unsigned long long)(cpu_clock / HZ));
533 disable_irq(RTC_IRQ);
535 printk("CPU clock: %d.%02dMHz\n",
536 (cpu_clock / 1000000), (cpu_clock % 1000000)/10000);
538 unsigned short bfc;
539 frqcr = ctrl_inl(FRQCR);
540 ifc = ifc_table[(frqcr>> 6) & 0x0007];
541 bfc = bfc_table[(frqcr>> 3) & 0x0007];
542 pfc = pfc_table[(frqcr>> 12) & 0x0007];
543 master_clock = cpu_clock * ifc;
544 bus_clock = master_clock/bfc;
547 printk("Bus clock: %d.%02dMHz\n",
548 (bus_clock/1000000), (bus_clock % 1000000)/10000);
549 module_clock = master_clock/pfc;
550 printk("Module clock: %d.%02dMHz\n",
551 (module_clock/1000000), (module_clock % 1000000)/10000);
552 interval = (module_clock/(HZ*4));
554 printk("Interval = %ld\n", interval);
556 current_cpu_data.cpu_clock = cpu_clock;
557 current_cpu_data.master_clock = master_clock;
558 current_cpu_data.bus_clock = bus_clock;
559 current_cpu_data.module_clock = module_clock;
561 /* Start TMU0 */
562 ctrl_outb(TMU_TSTR_OFF, TMU_TSTR);
563 ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
564 ctrl_outw(TMU0_TCR_INIT, TMU0_TCR);
565 ctrl_outl(interval, TMU0_TCOR);
566 ctrl_outl(interval, TMU0_TCNT);
567 ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);
570 void enter_deep_standby(void)
572 /* Disable watchdog timer */
573 ctrl_outl(0xa5000000, WTCSR);
574 /* Configure deep standby on sleep */
575 ctrl_outl(0x03, STBCR);
577 #ifdef CONFIG_SH_ALPHANUMERIC
579 extern void mach_alphanum(int position, unsigned char value);
580 extern void mach_alphanum_brightness(int setting);
581 char halted[] = "Halted. ";
582 int i;
583 mach_alphanum_brightness(6); /* dimmest setting above off */
584 for (i=0; i<8; i++) {
585 mach_alphanum(i, halted[i]);
587 asm __volatile__ ("synco");
589 #endif
591 asm __volatile__ ("sleep");
592 asm __volatile__ ("synci");
593 asm __volatile__ ("nop");
594 asm __volatile__ ("nop");
595 asm __volatile__ ("nop");
596 asm __volatile__ ("nop");
597 panic("Unexpected wakeup!\n");
601 * Scheduler clock - returns current time in nanosec units.
603 unsigned long long sched_clock(void)
605 return (unsigned long long)jiffies * (1000000000 / HZ);