mips: rename offsets.c to asm-offsets.c
[linux-2.6/verdex.git] / arch / sparc64 / kernel / pci.c
blob2ff7c32ab0ce155efd70e6a75e0f15cf2ecf62b6
1 /* $Id: pci.c,v 1.39 2002/01/05 01:13:43 davem Exp $
2 * pci.c: UltraSparc PCI controller support.
4 * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com)
5 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1999 Jakub Jelinek (jj@ultra.linux.cz)
7 */
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/sched.h>
14 #include <linux/capability.h>
15 #include <linux/errno.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
19 #include <asm/uaccess.h>
20 #include <asm/pbm.h>
21 #include <asm/pgtable.h>
22 #include <asm/irq.h>
23 #include <asm/ebus.h>
24 #include <asm/isa.h>
26 unsigned long pci_memspace_mask = 0xffffffffUL;
28 #ifndef CONFIG_PCI
29 /* A "nop" PCI implementation. */
30 asmlinkage int sys_pciconfig_read(unsigned long bus, unsigned long dfn,
31 unsigned long off, unsigned long len,
32 unsigned char *buf)
34 return 0;
36 asmlinkage int sys_pciconfig_write(unsigned long bus, unsigned long dfn,
37 unsigned long off, unsigned long len,
38 unsigned char *buf)
40 return 0;
42 #else
44 /* List of all PCI controllers found in the system. */
45 struct pci_controller_info *pci_controller_root = NULL;
47 /* Each PCI controller found gets a unique index. */
48 int pci_num_controllers = 0;
50 /* At boot time the user can give the kernel a command
51 * line option which controls if and how PCI devices
52 * are reordered at PCI bus probing time.
54 int pci_device_reorder = 0;
56 volatile int pci_poke_in_progress;
57 volatile int pci_poke_cpu = -1;
58 volatile int pci_poke_faulted;
60 static DEFINE_SPINLOCK(pci_poke_lock);
62 void pci_config_read8(u8 *addr, u8 *ret)
64 unsigned long flags;
65 u8 byte;
67 spin_lock_irqsave(&pci_poke_lock, flags);
68 pci_poke_cpu = smp_processor_id();
69 pci_poke_in_progress = 1;
70 pci_poke_faulted = 0;
71 __asm__ __volatile__("membar #Sync\n\t"
72 "lduba [%1] %2, %0\n\t"
73 "membar #Sync"
74 : "=r" (byte)
75 : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
76 : "memory");
77 pci_poke_in_progress = 0;
78 pci_poke_cpu = -1;
79 if (!pci_poke_faulted)
80 *ret = byte;
81 spin_unlock_irqrestore(&pci_poke_lock, flags);
84 void pci_config_read16(u16 *addr, u16 *ret)
86 unsigned long flags;
87 u16 word;
89 spin_lock_irqsave(&pci_poke_lock, flags);
90 pci_poke_cpu = smp_processor_id();
91 pci_poke_in_progress = 1;
92 pci_poke_faulted = 0;
93 __asm__ __volatile__("membar #Sync\n\t"
94 "lduha [%1] %2, %0\n\t"
95 "membar #Sync"
96 : "=r" (word)
97 : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
98 : "memory");
99 pci_poke_in_progress = 0;
100 pci_poke_cpu = -1;
101 if (!pci_poke_faulted)
102 *ret = word;
103 spin_unlock_irqrestore(&pci_poke_lock, flags);
106 void pci_config_read32(u32 *addr, u32 *ret)
108 unsigned long flags;
109 u32 dword;
111 spin_lock_irqsave(&pci_poke_lock, flags);
112 pci_poke_cpu = smp_processor_id();
113 pci_poke_in_progress = 1;
114 pci_poke_faulted = 0;
115 __asm__ __volatile__("membar #Sync\n\t"
116 "lduwa [%1] %2, %0\n\t"
117 "membar #Sync"
118 : "=r" (dword)
119 : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
120 : "memory");
121 pci_poke_in_progress = 0;
122 pci_poke_cpu = -1;
123 if (!pci_poke_faulted)
124 *ret = dword;
125 spin_unlock_irqrestore(&pci_poke_lock, flags);
128 void pci_config_write8(u8 *addr, u8 val)
130 unsigned long flags;
132 spin_lock_irqsave(&pci_poke_lock, flags);
133 pci_poke_cpu = smp_processor_id();
134 pci_poke_in_progress = 1;
135 pci_poke_faulted = 0;
136 __asm__ __volatile__("membar #Sync\n\t"
137 "stba %0, [%1] %2\n\t"
138 "membar #Sync"
139 : /* no outputs */
140 : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
141 : "memory");
142 pci_poke_in_progress = 0;
143 pci_poke_cpu = -1;
144 spin_unlock_irqrestore(&pci_poke_lock, flags);
147 void pci_config_write16(u16 *addr, u16 val)
149 unsigned long flags;
151 spin_lock_irqsave(&pci_poke_lock, flags);
152 pci_poke_cpu = smp_processor_id();
153 pci_poke_in_progress = 1;
154 pci_poke_faulted = 0;
155 __asm__ __volatile__("membar #Sync\n\t"
156 "stha %0, [%1] %2\n\t"
157 "membar #Sync"
158 : /* no outputs */
159 : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
160 : "memory");
161 pci_poke_in_progress = 0;
162 pci_poke_cpu = -1;
163 spin_unlock_irqrestore(&pci_poke_lock, flags);
166 void pci_config_write32(u32 *addr, u32 val)
168 unsigned long flags;
170 spin_lock_irqsave(&pci_poke_lock, flags);
171 pci_poke_cpu = smp_processor_id();
172 pci_poke_in_progress = 1;
173 pci_poke_faulted = 0;
174 __asm__ __volatile__("membar #Sync\n\t"
175 "stwa %0, [%1] %2\n\t"
176 "membar #Sync"
177 : /* no outputs */
178 : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
179 : "memory");
180 pci_poke_in_progress = 0;
181 pci_poke_cpu = -1;
182 spin_unlock_irqrestore(&pci_poke_lock, flags);
185 /* Probe for all PCI controllers in the system. */
186 extern void sabre_init(int, char *);
187 extern void psycho_init(int, char *);
188 extern void schizo_init(int, char *);
189 extern void schizo_plus_init(int, char *);
190 extern void tomatillo_init(int, char *);
192 static struct {
193 char *model_name;
194 void (*init)(int, char *);
195 } pci_controller_table[] __initdata = {
196 { "SUNW,sabre", sabre_init },
197 { "pci108e,a000", sabre_init },
198 { "pci108e,a001", sabre_init },
199 { "SUNW,psycho", psycho_init },
200 { "pci108e,8000", psycho_init },
201 { "SUNW,schizo", schizo_init },
202 { "pci108e,8001", schizo_init },
203 { "SUNW,schizo+", schizo_plus_init },
204 { "pci108e,8002", schizo_plus_init },
205 { "SUNW,tomatillo", tomatillo_init },
206 { "pci108e,a801", tomatillo_init },
208 #define PCI_NUM_CONTROLLER_TYPES (sizeof(pci_controller_table) / \
209 sizeof(pci_controller_table[0]))
211 static int __init pci_controller_init(char *model_name, int namelen, int node)
213 int i;
215 for (i = 0; i < PCI_NUM_CONTROLLER_TYPES; i++) {
216 if (!strncmp(model_name,
217 pci_controller_table[i].model_name,
218 namelen)) {
219 pci_controller_table[i].init(node, model_name);
220 return 1;
223 printk("PCI: Warning unknown controller, model name [%s]\n",
224 model_name);
225 printk("PCI: Ignoring controller...\n");
227 return 0;
230 static int __init pci_is_controller(char *model_name, int namelen, int node)
232 int i;
234 for (i = 0; i < PCI_NUM_CONTROLLER_TYPES; i++) {
235 if (!strncmp(model_name,
236 pci_controller_table[i].model_name,
237 namelen)) {
238 return 1;
241 return 0;
244 static int __init pci_controller_scan(int (*handler)(char *, int, int))
246 char namebuf[64];
247 int node;
248 int count = 0;
250 node = prom_getchild(prom_root_node);
251 while ((node = prom_searchsiblings(node, "pci")) != 0) {
252 int len;
254 if ((len = prom_getproperty(node, "model", namebuf, sizeof(namebuf))) > 0 ||
255 (len = prom_getproperty(node, "compatible", namebuf, sizeof(namebuf))) > 0) {
256 int item_len = 0;
258 /* Our value may be a multi-valued string in the
259 * case of some compatible properties. For sanity,
260 * only try the first one. */
262 while (namebuf[item_len] && len) {
263 len--;
264 item_len++;
267 if (handler(namebuf, item_len, node))
268 count++;
271 node = prom_getsibling(node);
272 if (!node)
273 break;
276 return count;
280 /* Is there some PCI controller in the system? */
281 int __init pcic_present(void)
283 return pci_controller_scan(pci_is_controller);
286 /* Find each controller in the system, attach and initialize
287 * software state structure for each and link into the
288 * pci_controller_root. Setup the controller enough such
289 * that bus scanning can be done.
291 static void __init pci_controller_probe(void)
293 printk("PCI: Probing for controllers.\n");
295 pci_controller_scan(pci_controller_init);
298 static void __init pci_scan_each_controller_bus(void)
300 struct pci_controller_info *p;
302 for (p = pci_controller_root; p; p = p->next)
303 p->scan_bus(p);
306 /* Reorder the pci_dev chain, so that onboard devices come first
307 * and then come the pluggable cards.
309 static void __init pci_reorder_devs(void)
311 struct list_head *pci_onboard = &pci_devices;
312 struct list_head *walk = pci_onboard->next;
314 while (walk != pci_onboard) {
315 struct pci_dev *pdev = pci_dev_g(walk);
316 struct list_head *walk_next = walk->next;
318 if (pdev->irq && (__irq_ino(pdev->irq) & 0x20)) {
319 list_del(walk);
320 list_add(walk, pci_onboard);
323 walk = walk_next;
327 extern void clock_probe(void);
328 extern void power_init(void);
330 static int __init pcibios_init(void)
332 pci_controller_probe();
333 if (pci_controller_root == NULL)
334 return 0;
336 pci_scan_each_controller_bus();
338 if (pci_device_reorder)
339 pci_reorder_devs();
341 isa_init();
342 ebus_init();
343 clock_probe();
344 power_init();
346 return 0;
349 subsys_initcall(pcibios_init);
351 void pcibios_fixup_bus(struct pci_bus *pbus)
353 struct pci_pbm_info *pbm = pbus->sysdata;
355 /* Generic PCI bus probing sets these to point at
356 * &io{port,mem}_resouce which is wrong for us.
358 pbus->resource[0] = &pbm->io_space;
359 pbus->resource[1] = &pbm->mem_space;
362 struct resource *pcibios_select_root(struct pci_dev *pdev, struct resource *r)
364 struct pci_pbm_info *pbm = pdev->bus->sysdata;
365 struct resource *root = NULL;
367 if (r->flags & IORESOURCE_IO)
368 root = &pbm->io_space;
369 if (r->flags & IORESOURCE_MEM)
370 root = &pbm->mem_space;
372 return root;
375 void pcibios_update_irq(struct pci_dev *pdev, int irq)
379 void pcibios_align_resource(void *data, struct resource *res,
380 unsigned long size, unsigned long align)
384 int pcibios_enable_device(struct pci_dev *pdev, int mask)
386 return 0;
389 void pcibios_resource_to_bus(struct pci_dev *pdev, struct pci_bus_region *region,
390 struct resource *res)
392 struct pci_pbm_info *pbm = pdev->bus->sysdata;
393 struct resource zero_res, *root;
395 zero_res.start = 0;
396 zero_res.end = 0;
397 zero_res.flags = res->flags;
399 if (res->flags & IORESOURCE_IO)
400 root = &pbm->io_space;
401 else
402 root = &pbm->mem_space;
404 pbm->parent->resource_adjust(pdev, &zero_res, root);
406 region->start = res->start - zero_res.start;
407 region->end = res->end - zero_res.start;
410 void pcibios_bus_to_resource(struct pci_dev *pdev, struct resource *res,
411 struct pci_bus_region *region)
413 struct pci_pbm_info *pbm = pdev->bus->sysdata;
414 struct resource *root;
416 res->start = region->start;
417 res->end = region->end;
419 if (res->flags & IORESOURCE_IO)
420 root = &pbm->io_space;
421 else
422 root = &pbm->mem_space;
424 pbm->parent->resource_adjust(pdev, res, root);
426 EXPORT_SYMBOL(pcibios_bus_to_resource);
428 char * __init pcibios_setup(char *str)
430 if (!strcmp(str, "onboardfirst")) {
431 pci_device_reorder = 1;
432 return NULL;
434 if (!strcmp(str, "noreorder")) {
435 pci_device_reorder = 0;
436 return NULL;
438 return str;
441 /* Platform support for /proc/bus/pci/X/Y mmap()s. */
443 /* If the user uses a host-bridge as the PCI device, he may use
444 * this to perform a raw mmap() of the I/O or MEM space behind
445 * that controller.
447 * This can be useful for execution of x86 PCI bios initialization code
448 * on a PCI card, like the xfree86 int10 stuff does.
450 static int __pci_mmap_make_offset_bus(struct pci_dev *pdev, struct vm_area_struct *vma,
451 enum pci_mmap_state mmap_state)
453 struct pcidev_cookie *pcp = pdev->sysdata;
454 struct pci_pbm_info *pbm;
455 struct pci_controller_info *p;
456 unsigned long space_size, user_offset, user_size;
458 if (!pcp)
459 return -ENXIO;
460 pbm = pcp->pbm;
461 if (!pbm)
462 return -ENXIO;
464 p = pbm->parent;
465 if (p->pbms_same_domain) {
466 unsigned long lowest, highest;
468 lowest = ~0UL; highest = 0UL;
469 if (mmap_state == pci_mmap_io) {
470 if (p->pbm_A.io_space.flags) {
471 lowest = p->pbm_A.io_space.start;
472 highest = p->pbm_A.io_space.end + 1;
474 if (p->pbm_B.io_space.flags) {
475 if (lowest > p->pbm_B.io_space.start)
476 lowest = p->pbm_B.io_space.start;
477 if (highest < p->pbm_B.io_space.end + 1)
478 highest = p->pbm_B.io_space.end + 1;
480 space_size = highest - lowest;
481 } else {
482 if (p->pbm_A.mem_space.flags) {
483 lowest = p->pbm_A.mem_space.start;
484 highest = p->pbm_A.mem_space.end + 1;
486 if (p->pbm_B.mem_space.flags) {
487 if (lowest > p->pbm_B.mem_space.start)
488 lowest = p->pbm_B.mem_space.start;
489 if (highest < p->pbm_B.mem_space.end + 1)
490 highest = p->pbm_B.mem_space.end + 1;
492 space_size = highest - lowest;
494 } else {
495 if (mmap_state == pci_mmap_io) {
496 space_size = (pbm->io_space.end -
497 pbm->io_space.start) + 1;
498 } else {
499 space_size = (pbm->mem_space.end -
500 pbm->mem_space.start) + 1;
504 /* Make sure the request is in range. */
505 user_offset = vma->vm_pgoff << PAGE_SHIFT;
506 user_size = vma->vm_end - vma->vm_start;
508 if (user_offset >= space_size ||
509 (user_offset + user_size) > space_size)
510 return -EINVAL;
512 if (p->pbms_same_domain) {
513 unsigned long lowest = ~0UL;
515 if (mmap_state == pci_mmap_io) {
516 if (p->pbm_A.io_space.flags)
517 lowest = p->pbm_A.io_space.start;
518 if (p->pbm_B.io_space.flags &&
519 lowest > p->pbm_B.io_space.start)
520 lowest = p->pbm_B.io_space.start;
521 } else {
522 if (p->pbm_A.mem_space.flags)
523 lowest = p->pbm_A.mem_space.start;
524 if (p->pbm_B.mem_space.flags &&
525 lowest > p->pbm_B.mem_space.start)
526 lowest = p->pbm_B.mem_space.start;
528 vma->vm_pgoff = (lowest + user_offset) >> PAGE_SHIFT;
529 } else {
530 if (mmap_state == pci_mmap_io) {
531 vma->vm_pgoff = (pbm->io_space.start +
532 user_offset) >> PAGE_SHIFT;
533 } else {
534 vma->vm_pgoff = (pbm->mem_space.start +
535 user_offset) >> PAGE_SHIFT;
539 return 0;
542 /* Adjust vm_pgoff of VMA such that it is the physical page offset corresponding
543 * to the 32-bit pci bus offset for DEV requested by the user.
545 * Basically, the user finds the base address for his device which he wishes
546 * to mmap. They read the 32-bit value from the config space base register,
547 * add whatever PAGE_SIZE multiple offset they wish, and feed this into the
548 * offset parameter of mmap on /proc/bus/pci/XXX for that device.
550 * Returns negative error code on failure, zero on success.
552 static int __pci_mmap_make_offset(struct pci_dev *dev, struct vm_area_struct *vma,
553 enum pci_mmap_state mmap_state)
555 unsigned long user_offset = vma->vm_pgoff << PAGE_SHIFT;
556 unsigned long user32 = user_offset & pci_memspace_mask;
557 unsigned long largest_base, this_base, addr32;
558 int i;
560 if ((dev->class >> 8) == PCI_CLASS_BRIDGE_HOST)
561 return __pci_mmap_make_offset_bus(dev, vma, mmap_state);
563 /* Figure out which base address this is for. */
564 largest_base = 0UL;
565 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
566 struct resource *rp = &dev->resource[i];
568 /* Active? */
569 if (!rp->flags)
570 continue;
572 /* Same type? */
573 if (i == PCI_ROM_RESOURCE) {
574 if (mmap_state != pci_mmap_mem)
575 continue;
576 } else {
577 if ((mmap_state == pci_mmap_io &&
578 (rp->flags & IORESOURCE_IO) == 0) ||
579 (mmap_state == pci_mmap_mem &&
580 (rp->flags & IORESOURCE_MEM) == 0))
581 continue;
584 this_base = rp->start;
586 addr32 = (this_base & PAGE_MASK) & pci_memspace_mask;
588 if (mmap_state == pci_mmap_io)
589 addr32 &= 0xffffff;
591 if (addr32 <= user32 && this_base > largest_base)
592 largest_base = this_base;
595 if (largest_base == 0UL)
596 return -EINVAL;
598 /* Now construct the final physical address. */
599 if (mmap_state == pci_mmap_io)
600 vma->vm_pgoff = (((largest_base & ~0xffffffUL) | user32) >> PAGE_SHIFT);
601 else
602 vma->vm_pgoff = (((largest_base & ~(pci_memspace_mask)) | user32) >> PAGE_SHIFT);
604 return 0;
607 /* Set vm_flags of VMA, as appropriate for this architecture, for a pci device
608 * mapping.
610 static void __pci_mmap_set_flags(struct pci_dev *dev, struct vm_area_struct *vma,
611 enum pci_mmap_state mmap_state)
613 vma->vm_flags |= (VM_IO | VM_RESERVED);
616 /* Set vm_page_prot of VMA, as appropriate for this architecture, for a pci
617 * device mapping.
619 static void __pci_mmap_set_pgprot(struct pci_dev *dev, struct vm_area_struct *vma,
620 enum pci_mmap_state mmap_state)
622 /* Our io_remap_pfn_range takes care of this, do nothing. */
625 /* Perform the actual remap of the pages for a PCI device mapping, as appropriate
626 * for this architecture. The region in the process to map is described by vm_start
627 * and vm_end members of VMA, the base physical address is found in vm_pgoff.
628 * The pci device structure is provided so that architectures may make mapping
629 * decisions on a per-device or per-bus basis.
631 * Returns a negative error code on failure, zero on success.
633 int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
634 enum pci_mmap_state mmap_state,
635 int write_combine)
637 int ret;
639 ret = __pci_mmap_make_offset(dev, vma, mmap_state);
640 if (ret < 0)
641 return ret;
643 __pci_mmap_set_flags(dev, vma, mmap_state);
644 __pci_mmap_set_pgprot(dev, vma, mmap_state);
646 ret = io_remap_pfn_range(vma, vma->vm_start,
647 vma->vm_pgoff,
648 vma->vm_end - vma->vm_start,
649 vma->vm_page_prot);
650 if (ret)
651 return ret;
653 vma->vm_flags |= VM_IO;
654 return 0;
657 /* Return the domain nuber for this pci bus */
659 int pci_domain_nr(struct pci_bus *pbus)
661 struct pci_pbm_info *pbm = pbus->sysdata;
662 int ret;
664 if (pbm == NULL || pbm->parent == NULL) {
665 ret = -ENXIO;
666 } else {
667 struct pci_controller_info *p = pbm->parent;
669 ret = p->index;
670 if (p->pbms_same_domain == 0)
671 ret = ((ret << 1) +
672 ((pbm == &pbm->parent->pbm_B) ? 1 : 0));
675 return ret;
677 EXPORT_SYMBOL(pci_domain_nr);
679 int pcibios_prep_mwi(struct pci_dev *dev)
681 /* We set correct PCI_CACHE_LINE_SIZE register values for every
682 * device probed on this platform. So there is nothing to check
683 * and this always succeeds.
685 return 0;
688 #endif /* !(CONFIG_PCI) */