1 /* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $
2 * pci_sabre.c: Sabre specific PCI controller support.
4 * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu)
5 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/pci.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
18 #include <asm/iommu.h>
21 #include <asm/oplib.h>
24 #include "iommu_common.h"
26 /* All SABRE registers are 64-bits. The following accessor
27 * routines are how they are accessed. The REG parameter
28 * is a physical address.
30 #define sabre_read(__reg) \
32 __asm__ __volatile__("ldxa [%1] %2, %0" \
34 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
38 #define sabre_write(__reg, __val) \
39 __asm__ __volatile__("stxa %0, [%1] %2" \
41 : "r" (__val), "r" (__reg), \
42 "i" (ASI_PHYS_BYPASS_EC_E) \
45 /* SABRE PCI controller register offsets and definitions. */
46 #define SABRE_UE_AFSR 0x0030UL
47 #define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
48 #define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
49 #define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
50 #define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
51 #define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
52 #define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
53 #define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
54 #define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
55 #define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
56 #define SABRE_UECE_AFAR 0x0038UL
57 #define SABRE_CE_AFSR 0x0040UL
58 #define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
59 #define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
60 #define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
61 #define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
62 #define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
63 #define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
64 #define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
65 #define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
66 #define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
67 #define SABRE_IOMMU_CONTROL 0x0200UL
68 #define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
69 #define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
70 #define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
71 #define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
72 #define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
73 #define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
74 #define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
75 #define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
76 #define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
77 #define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
78 #define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
79 #define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
80 #define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
81 #define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
82 #define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
83 #define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
84 #define SABRE_IOMMU_TSBBASE 0x0208UL
85 #define SABRE_IOMMU_FLUSH 0x0210UL
86 #define SABRE_IMAP_A_SLOT0 0x0c00UL
87 #define SABRE_IMAP_B_SLOT0 0x0c20UL
88 #define SABRE_IMAP_SCSI 0x1000UL
89 #define SABRE_IMAP_ETH 0x1008UL
90 #define SABRE_IMAP_BPP 0x1010UL
91 #define SABRE_IMAP_AU_REC 0x1018UL
92 #define SABRE_IMAP_AU_PLAY 0x1020UL
93 #define SABRE_IMAP_PFAIL 0x1028UL
94 #define SABRE_IMAP_KMS 0x1030UL
95 #define SABRE_IMAP_FLPY 0x1038UL
96 #define SABRE_IMAP_SHW 0x1040UL
97 #define SABRE_IMAP_KBD 0x1048UL
98 #define SABRE_IMAP_MS 0x1050UL
99 #define SABRE_IMAP_SER 0x1058UL
100 #define SABRE_IMAP_UE 0x1070UL
101 #define SABRE_IMAP_CE 0x1078UL
102 #define SABRE_IMAP_PCIERR 0x1080UL
103 #define SABRE_IMAP_GFX 0x1098UL
104 #define SABRE_IMAP_EUPA 0x10a0UL
105 #define SABRE_ICLR_A_SLOT0 0x1400UL
106 #define SABRE_ICLR_B_SLOT0 0x1480UL
107 #define SABRE_ICLR_SCSI 0x1800UL
108 #define SABRE_ICLR_ETH 0x1808UL
109 #define SABRE_ICLR_BPP 0x1810UL
110 #define SABRE_ICLR_AU_REC 0x1818UL
111 #define SABRE_ICLR_AU_PLAY 0x1820UL
112 #define SABRE_ICLR_PFAIL 0x1828UL
113 #define SABRE_ICLR_KMS 0x1830UL
114 #define SABRE_ICLR_FLPY 0x1838UL
115 #define SABRE_ICLR_SHW 0x1840UL
116 #define SABRE_ICLR_KBD 0x1848UL
117 #define SABRE_ICLR_MS 0x1850UL
118 #define SABRE_ICLR_SER 0x1858UL
119 #define SABRE_ICLR_UE 0x1870UL
120 #define SABRE_ICLR_CE 0x1878UL
121 #define SABRE_ICLR_PCIERR 0x1880UL
122 #define SABRE_WRSYNC 0x1c20UL
123 #define SABRE_PCICTRL 0x2000UL
124 #define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
125 #define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
126 #define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
127 #define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
128 #define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
129 #define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
130 #define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
131 #define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
132 #define SABRE_PIOAFSR 0x2010UL
133 #define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
134 #define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
135 #define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
136 #define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
137 #define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
138 #define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
139 #define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
140 #define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
141 #define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
142 #define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
143 #define SABRE_PIOAFAR 0x2018UL
144 #define SABRE_PCIDIAG 0x2020UL
145 #define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
146 #define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
147 #define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
148 #define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
149 #define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
150 #define SABRE_PCITASR 0x2028UL
151 #define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
152 #define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
153 #define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
154 #define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
155 #define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
156 #define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
157 #define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
158 #define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
159 #define SABRE_PIOBUF_DIAG 0x5000UL
160 #define SABRE_DMABUF_DIAGLO 0x5100UL
161 #define SABRE_DMABUF_DIAGHI 0x51c0UL
162 #define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
163 #define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
164 #define SABRE_IOMMU_VADIAG 0xa400UL
165 #define SABRE_IOMMU_TCDIAG 0xa408UL
166 #define SABRE_IOMMU_TAG 0xa580UL
167 #define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
168 #define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
169 #define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
170 #define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
171 #define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
172 #define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
173 #define SABRE_IOMMU_DATA 0xa600UL
174 #define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
175 #define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
176 #define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
177 #define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
178 #define SABRE_PCI_IRQSTATE 0xa800UL
179 #define SABRE_OBIO_IRQSTATE 0xa808UL
180 #define SABRE_FFBCFG 0xf000UL
181 #define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
182 #define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
183 #define SABRE_MCCTRL0 0xf010UL
184 #define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
185 #define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
186 #define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
187 #define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
188 #define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
189 #define SABRE_MCCTRL1 0xf018UL
190 #define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
191 #define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
192 #define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
193 #define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
194 #define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
195 #define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
196 #define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
197 #define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
198 #define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
199 #define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
200 #define SABRE_RESETCTRL 0xf020UL
202 #define SABRE_CONFIGSPACE 0x001000000UL
203 #define SABRE_IOSPACE 0x002000000UL
204 #define SABRE_IOSPACE_SIZE 0x000ffffffUL
205 #define SABRE_MEMSPACE 0x100000000UL
206 #define SABRE_MEMSPACE_SIZE 0x07fffffffUL
208 /* UltraSparc-IIi Programmer's Manual, page 325, PCI
209 * configuration space address format:
211 * 32 24 23 16 15 11 10 8 7 2 1 0
212 * ---------------------------------------------------------
213 * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
214 * ---------------------------------------------------------
216 #define SABRE_CONFIG_BASE(PBM) \
217 ((PBM)->config_space | (1UL << 24))
218 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
219 (((unsigned long)(BUS) << 16) | \
220 ((unsigned long)(DEVFN) << 8) | \
221 ((unsigned long)(REG)))
223 static int hummingbird_p
;
224 static struct pci_bus
*sabre_root_bus
;
226 static void *sabre_pci_config_mkaddr(struct pci_pbm_info
*pbm
,
234 (SABRE_CONFIG_BASE(pbm
) |
235 SABRE_CONFIG_ENCODE(bus
, devfn
, where
));
238 static int sabre_out_of_range(unsigned char devfn
)
243 return (((PCI_SLOT(devfn
) == 0) && (PCI_FUNC(devfn
) > 0)) ||
244 ((PCI_SLOT(devfn
) == 1) && (PCI_FUNC(devfn
) > 1)) ||
245 (PCI_SLOT(devfn
) > 1));
248 static int __sabre_out_of_range(struct pci_pbm_info
*pbm
,
255 return ((pbm
->parent
== 0) ||
256 ((pbm
== &pbm
->parent
->pbm_B
) &&
257 (bus
== pbm
->pci_first_busno
) &&
258 PCI_SLOT(devfn
) > 8) ||
259 ((pbm
== &pbm
->parent
->pbm_A
) &&
260 (bus
== pbm
->pci_first_busno
) &&
261 PCI_SLOT(devfn
) > 8));
264 static int __sabre_read_pci_cfg(struct pci_bus
*bus_dev
, unsigned int devfn
,
265 int where
, int size
, u32
*value
)
267 struct pci_pbm_info
*pbm
= bus_dev
->sysdata
;
268 unsigned char bus
= bus_dev
->number
;
285 addr
= sabre_pci_config_mkaddr(pbm
, bus
, devfn
, where
);
287 return PCIBIOS_SUCCESSFUL
;
289 if (__sabre_out_of_range(pbm
, bus
, devfn
))
290 return PCIBIOS_SUCCESSFUL
;
294 pci_config_read8((u8
*) addr
, &tmp8
);
300 printk("pci_read_config_word: misaligned reg [%x]\n",
302 return PCIBIOS_SUCCESSFUL
;
304 pci_config_read16((u16
*) addr
, &tmp16
);
310 printk("pci_read_config_dword: misaligned reg [%x]\n",
312 return PCIBIOS_SUCCESSFUL
;
314 pci_config_read32(addr
, value
);
318 return PCIBIOS_SUCCESSFUL
;
321 static int sabre_read_pci_cfg(struct pci_bus
*bus
, unsigned int devfn
,
322 int where
, int size
, u32
*value
)
324 if (!bus
->number
&& sabre_out_of_range(devfn
)) {
336 return PCIBIOS_SUCCESSFUL
;
339 if (bus
->number
|| PCI_SLOT(devfn
))
340 return __sabre_read_pci_cfg(bus
, devfn
, where
, size
, value
);
342 /* When accessing PCI config space of the PCI controller itself (bus
343 * 0, device slot 0, function 0) there are restrictions. Each
344 * register must be accessed as it's natural size. Thus, for example
345 * the Vendor ID must be accessed as a 16-bit quantity.
354 __sabre_read_pci_cfg(bus
, devfn
, where
& ~1, 2, &tmp32
);
359 *value
= tmp16
& 0xff;
361 return __sabre_read_pci_cfg(bus
, devfn
, where
, 1, value
);
366 return __sabre_read_pci_cfg(bus
, devfn
, where
, 2, value
);
371 __sabre_read_pci_cfg(bus
, devfn
, where
, 1, &tmp32
);
374 __sabre_read_pci_cfg(bus
, devfn
, where
+ 1, 1, &tmp32
);
384 sabre_read_pci_cfg(bus
, devfn
, where
, 2, &tmp32
);
387 sabre_read_pci_cfg(bus
, devfn
, where
+ 2, 2, &tmp32
);
389 *value
|= tmp16
<< 16;
393 return PCIBIOS_SUCCESSFUL
;
396 static int __sabre_write_pci_cfg(struct pci_bus
*bus_dev
, unsigned int devfn
,
397 int where
, int size
, u32 value
)
399 struct pci_pbm_info
*pbm
= bus_dev
->sysdata
;
400 unsigned char bus
= bus_dev
->number
;
403 addr
= sabre_pci_config_mkaddr(pbm
, bus
, devfn
, where
);
405 return PCIBIOS_SUCCESSFUL
;
407 if (__sabre_out_of_range(pbm
, bus
, devfn
))
408 return PCIBIOS_SUCCESSFUL
;
412 pci_config_write8((u8
*) addr
, value
);
417 printk("pci_write_config_word: misaligned reg [%x]\n",
419 return PCIBIOS_SUCCESSFUL
;
421 pci_config_write16((u16
*) addr
, value
);
426 printk("pci_write_config_dword: misaligned reg [%x]\n",
428 return PCIBIOS_SUCCESSFUL
;
430 pci_config_write32(addr
, value
);
434 return PCIBIOS_SUCCESSFUL
;
437 static int sabre_write_pci_cfg(struct pci_bus
*bus
, unsigned int devfn
,
438 int where
, int size
, u32 value
)
441 return __sabre_write_pci_cfg(bus
, devfn
, where
, size
, value
);
443 if (sabre_out_of_range(devfn
))
444 return PCIBIOS_SUCCESSFUL
;
452 __sabre_read_pci_cfg(bus
, devfn
, where
& ~1, 2, &tmp32
);
462 return __sabre_write_pci_cfg(bus
, devfn
, where
& ~1, 2, tmp32
);
464 return __sabre_write_pci_cfg(bus
, devfn
, where
, 1, value
);
468 return __sabre_write_pci_cfg(bus
, devfn
, where
, 2, value
);
470 __sabre_write_pci_cfg(bus
, devfn
, where
, 1, value
& 0xff);
471 __sabre_write_pci_cfg(bus
, devfn
, where
+ 1, 1, value
>> 8);
475 sabre_write_pci_cfg(bus
, devfn
, where
, 2, value
& 0xffff);
476 sabre_write_pci_cfg(bus
, devfn
, where
+ 2, 2, value
>> 16);
479 return PCIBIOS_SUCCESSFUL
;
482 static struct pci_ops sabre_ops
= {
483 .read
= sabre_read_pci_cfg
,
484 .write
= sabre_write_pci_cfg
,
487 static unsigned long sabre_pcislot_imap_offset(unsigned long ino
)
489 unsigned int bus
= (ino
& 0x10) >> 4;
490 unsigned int slot
= (ino
& 0x0c) >> 2;
493 return SABRE_IMAP_A_SLOT0
+ (slot
* 8);
495 return SABRE_IMAP_B_SLOT0
+ (slot
* 8);
498 static unsigned long __onboard_imap_off
[] = {
499 /*0x20*/ SABRE_IMAP_SCSI
,
500 /*0x21*/ SABRE_IMAP_ETH
,
501 /*0x22*/ SABRE_IMAP_BPP
,
502 /*0x23*/ SABRE_IMAP_AU_REC
,
503 /*0x24*/ SABRE_IMAP_AU_PLAY
,
504 /*0x25*/ SABRE_IMAP_PFAIL
,
505 /*0x26*/ SABRE_IMAP_KMS
,
506 /*0x27*/ SABRE_IMAP_FLPY
,
507 /*0x28*/ SABRE_IMAP_SHW
,
508 /*0x29*/ SABRE_IMAP_KBD
,
509 /*0x2a*/ SABRE_IMAP_MS
,
510 /*0x2b*/ SABRE_IMAP_SER
,
511 /*0x2c*/ 0 /* reserved */,
512 /*0x2d*/ 0 /* reserved */,
513 /*0x2e*/ SABRE_IMAP_UE
,
514 /*0x2f*/ SABRE_IMAP_CE
,
515 /*0x30*/ SABRE_IMAP_PCIERR
,
517 #define SABRE_ONBOARD_IRQ_BASE 0x20
518 #define SABRE_ONBOARD_IRQ_LAST 0x30
519 #define sabre_onboard_imap_offset(__ino) \
520 __onboard_imap_off[(__ino) - SABRE_ONBOARD_IRQ_BASE]
522 #define sabre_iclr_offset(ino) \
523 ((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \
524 (SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3)))
526 /* PCI SABRE INO number to Sparc PIL level. */
527 static unsigned char sabre_pil_table
[] = {
528 /*0x00*/0, 0, 0, 0, /* PCI A slot 0 Int A, B, C, D */
529 /*0x04*/0, 0, 0, 0, /* PCI A slot 1 Int A, B, C, D */
530 /*0x08*/0, 0, 0, 0, /* PCI A slot 2 Int A, B, C, D */
531 /*0x0c*/0, 0, 0, 0, /* PCI A slot 3 Int A, B, C, D */
532 /*0x10*/0, 0, 0, 0, /* PCI B slot 0 Int A, B, C, D */
533 /*0x14*/0, 0, 0, 0, /* PCI B slot 1 Int A, B, C, D */
534 /*0x18*/0, 0, 0, 0, /* PCI B slot 2 Int A, B, C, D */
535 /*0x1c*/0, 0, 0, 0, /* PCI B slot 3 Int A, B, C, D */
536 /*0x20*/4, /* SCSI */
537 /*0x21*/5, /* Ethernet */
538 /*0x22*/8, /* Parallel Port */
539 /*0x23*/13, /* Audio Record */
540 /*0x24*/14, /* Audio Playback */
541 /*0x25*/15, /* PowerFail */
542 /*0x26*/4, /* second SCSI */
543 /*0x27*/11, /* Floppy */
544 /*0x28*/4, /* Spare Hardware */
545 /*0x29*/9, /* Keyboard */
546 /*0x2a*/4, /* Mouse */
547 /*0x2b*/12, /* Serial */
548 /*0x2c*/10, /* Timer 0 */
549 /*0x2d*/11, /* Timer 1 */
550 /*0x2e*/15, /* Uncorrectable ECC */
551 /*0x2f*/15, /* Correctable ECC */
552 /*0x30*/15, /* PCI Bus A Error */
553 /*0x31*/15, /* PCI Bus B Error */
554 /*0x32*/15, /* Power Management */
557 static int sabre_ino_to_pil(struct pci_dev
*pdev
, unsigned int ino
)
562 pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
563 pdev
->device
== PCI_DEVICE_ID_SUN_RIO_USB
)
566 ret
= sabre_pil_table
[ino
];
567 if (ret
== 0 && pdev
== NULL
) {
569 } else if (ret
== 0) {
570 switch ((pdev
->class >> 16) & 0xff) {
571 case PCI_BASE_CLASS_STORAGE
:
575 case PCI_BASE_CLASS_NETWORK
:
579 case PCI_BASE_CLASS_DISPLAY
:
583 case PCI_BASE_CLASS_MULTIMEDIA
:
584 case PCI_BASE_CLASS_MEMORY
:
585 case PCI_BASE_CLASS_BRIDGE
:
586 case PCI_BASE_CLASS_SERIAL
:
598 /* When a device lives behind a bridge deeper in the PCI bus topology
599 * than APB, a special sequence must run to make sure all pending DMA
600 * transfers at the time of IRQ delivery are visible in the coherency
601 * domain by the cpu. This sequence is to perform a read on the far
602 * side of the non-APB bridge, then perform a read of Sabre's DMA
603 * write-sync register.
605 static void sabre_wsync_handler(struct ino_bucket
*bucket
, void *_arg1
, void *_arg2
)
607 struct pci_dev
*pdev
= _arg1
;
608 unsigned long sync_reg
= (unsigned long) _arg2
;
611 pci_read_config_word(pdev
, PCI_VENDOR_ID
, &_unused
);
612 sabre_read(sync_reg
);
615 static unsigned int sabre_irq_build(struct pci_pbm_info
*pbm
,
616 struct pci_dev
*pdev
,
619 struct ino_bucket
*bucket
;
620 unsigned long imap
, iclr
;
621 unsigned long imap_off
, iclr_off
;
622 int pil
, inofixup
= 0;
625 if (ino
< SABRE_ONBOARD_IRQ_BASE
) {
627 imap_off
= sabre_pcislot_imap_offset(ino
);
630 if (ino
> SABRE_ONBOARD_IRQ_LAST
) {
631 prom_printf("sabre_irq_build: Wacky INO [%x]\n", ino
);
634 imap_off
= sabre_onboard_imap_offset(ino
);
637 /* Now build the IRQ bucket. */
638 pil
= sabre_ino_to_pil(pdev
, ino
);
640 if (PIL_RESERVED(pil
))
643 imap
= pbm
->controller_regs
+ imap_off
;
646 iclr_off
= sabre_iclr_offset(ino
);
647 iclr
= pbm
->controller_regs
+ iclr_off
;
650 if ((ino
& 0x20) == 0)
651 inofixup
= ino
& 0x03;
653 bucket
= __bucket(build_irq(pil
, inofixup
, iclr
, imap
));
654 bucket
->flags
|= IBF_PCI
;
657 struct pcidev_cookie
*pcp
= pdev
->sysdata
;
659 if (pdev
->bus
->number
!= pcp
->pbm
->pci_first_busno
) {
660 struct pci_controller_info
*p
= pcp
->pbm
->parent
;
661 struct irq_desc
*d
= bucket
->irq_info
;
663 d
->pre_handler
= sabre_wsync_handler
;
664 d
->pre_handler_arg1
= pdev
;
665 d
->pre_handler_arg2
= (void *)
666 p
->pbm_A
.controller_regs
+ SABRE_WRSYNC
;
669 return __irq(bucket
);
672 /* SABRE error handling support. */
673 static void sabre_check_iommu_error(struct pci_controller_info
*p
,
677 struct pci_iommu
*iommu
= p
->pbm_A
.iommu
;
678 unsigned long iommu_tag
[16];
679 unsigned long iommu_data
[16];
684 spin_lock_irqsave(&iommu
->lock
, flags
);
685 control
= sabre_read(iommu
->iommu_control
);
686 if (control
& SABRE_IOMMUCTRL_ERR
) {
689 /* Clear the error encountered bit.
690 * NOTE: On Sabre this is write 1 to clear,
691 * which is different from Psycho.
693 sabre_write(iommu
->iommu_control
, control
);
694 switch((control
& SABRE_IOMMUCTRL_ERRSTS
) >> 25UL) {
696 type_string
= "Invalid Error";
699 type_string
= "ECC Error";
702 type_string
= "Unknown";
705 printk("SABRE%d: IOMMU Error, type[%s]\n",
706 p
->index
, type_string
);
708 /* Enter diagnostic mode and probe for error'd
709 * entries in the IOTLB.
711 control
&= ~(SABRE_IOMMUCTRL_ERRSTS
| SABRE_IOMMUCTRL_ERR
);
712 sabre_write(iommu
->iommu_control
,
713 (control
| SABRE_IOMMUCTRL_DENAB
));
714 for (i
= 0; i
< 16; i
++) {
715 unsigned long base
= p
->pbm_A
.controller_regs
;
718 sabre_read(base
+ SABRE_IOMMU_TAG
+ (i
* 8UL));
720 sabre_read(base
+ SABRE_IOMMU_DATA
+ (i
* 8UL));
721 sabre_write(base
+ SABRE_IOMMU_TAG
+ (i
* 8UL), 0);
722 sabre_write(base
+ SABRE_IOMMU_DATA
+ (i
* 8UL), 0);
724 sabre_write(iommu
->iommu_control
, control
);
726 for (i
= 0; i
< 16; i
++) {
727 unsigned long tag
, data
;
730 if (!(tag
& SABRE_IOMMUTAG_ERR
))
733 data
= iommu_data
[i
];
734 switch((tag
& SABRE_IOMMUTAG_ERRSTS
) >> 23UL) {
736 type_string
= "Invalid Error";
739 type_string
= "ECC Error";
742 type_string
= "Unknown";
745 printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
746 p
->index
, i
, tag
, type_string
,
747 ((tag
& SABRE_IOMMUTAG_WRITE
) ? 1 : 0),
748 ((tag
& SABRE_IOMMUTAG_SIZE
) ? 64 : 8),
749 ((tag
& SABRE_IOMMUTAG_VPN
) << IOMMU_PAGE_SHIFT
));
750 printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
752 ((data
& SABRE_IOMMUDATA_VALID
) ? 1 : 0),
753 ((data
& SABRE_IOMMUDATA_USED
) ? 1 : 0),
754 ((data
& SABRE_IOMMUDATA_CACHE
) ? 1 : 0),
755 ((data
& SABRE_IOMMUDATA_PPN
) << IOMMU_PAGE_SHIFT
));
758 spin_unlock_irqrestore(&iommu
->lock
, flags
);
761 static irqreturn_t
sabre_ue_intr(int irq
, void *dev_id
, struct pt_regs
*regs
)
763 struct pci_controller_info
*p
= dev_id
;
764 unsigned long afsr_reg
= p
->pbm_A
.controller_regs
+ SABRE_UE_AFSR
;
765 unsigned long afar_reg
= p
->pbm_A
.controller_regs
+ SABRE_UECE_AFAR
;
766 unsigned long afsr
, afar
, error_bits
;
769 /* Latch uncorrectable error status. */
770 afar
= sabre_read(afar_reg
);
771 afsr
= sabre_read(afsr_reg
);
773 /* Clear the primary/secondary error status bits. */
775 (SABRE_UEAFSR_PDRD
| SABRE_UEAFSR_PDWR
|
776 SABRE_UEAFSR_SDRD
| SABRE_UEAFSR_SDWR
|
777 SABRE_UEAFSR_SDTE
| SABRE_UEAFSR_PDTE
);
780 sabre_write(afsr_reg
, error_bits
);
783 printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
785 ((error_bits
& SABRE_UEAFSR_PDRD
) ?
787 ((error_bits
& SABRE_UEAFSR_PDWR
) ?
788 "DMA Write" : "???")),
789 ((error_bits
& SABRE_UEAFSR_PDTE
) ?
790 ":Translation Error" : ""));
791 printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
793 (afsr
& SABRE_UEAFSR_BMSK
) >> 32UL,
794 (afsr
& SABRE_UEAFSR_OFF
) >> 29UL,
795 ((afsr
& SABRE_UEAFSR_BLK
) ? 1 : 0));
796 printk("SABRE%d: UE AFAR [%016lx]\n", p
->index
, afar
);
797 printk("SABRE%d: UE Secondary errors [", p
->index
);
799 if (afsr
& SABRE_UEAFSR_SDRD
) {
801 printk("(DMA Read)");
803 if (afsr
& SABRE_UEAFSR_SDWR
) {
805 printk("(DMA Write)");
807 if (afsr
& SABRE_UEAFSR_SDTE
) {
809 printk("(Translation Error)");
815 /* Interrogate IOMMU for error status. */
816 sabre_check_iommu_error(p
, afsr
, afar
);
821 static irqreturn_t
sabre_ce_intr(int irq
, void *dev_id
, struct pt_regs
*regs
)
823 struct pci_controller_info
*p
= dev_id
;
824 unsigned long afsr_reg
= p
->pbm_A
.controller_regs
+ SABRE_CE_AFSR
;
825 unsigned long afar_reg
= p
->pbm_A
.controller_regs
+ SABRE_UECE_AFAR
;
826 unsigned long afsr
, afar
, error_bits
;
829 /* Latch error status. */
830 afar
= sabre_read(afar_reg
);
831 afsr
= sabre_read(afsr_reg
);
833 /* Clear primary/secondary error status bits. */
835 (SABRE_CEAFSR_PDRD
| SABRE_CEAFSR_PDWR
|
836 SABRE_CEAFSR_SDRD
| SABRE_CEAFSR_SDWR
);
839 sabre_write(afsr_reg
, error_bits
);
842 printk("SABRE%d: Correctable Error, primary error type[%s]\n",
844 ((error_bits
& SABRE_CEAFSR_PDRD
) ?
846 ((error_bits
& SABRE_CEAFSR_PDWR
) ?
847 "DMA Write" : "???")));
849 /* XXX Use syndrome and afar to print out module string just like
850 * XXX UDB CE trap handler does... -DaveM
852 printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
855 (afsr
& SABRE_CEAFSR_ESYND
) >> 48UL,
856 (afsr
& SABRE_CEAFSR_BMSK
) >> 32UL,
857 (afsr
& SABRE_CEAFSR_OFF
) >> 29UL,
858 ((afsr
& SABRE_CEAFSR_BLK
) ? 1 : 0));
859 printk("SABRE%d: CE AFAR [%016lx]\n", p
->index
, afar
);
860 printk("SABRE%d: CE Secondary errors [", p
->index
);
862 if (afsr
& SABRE_CEAFSR_SDRD
) {
864 printk("(DMA Read)");
866 if (afsr
& SABRE_CEAFSR_SDWR
) {
868 printk("(DMA Write)");
877 static irqreturn_t
sabre_pcierr_intr_other(struct pci_controller_info
*p
)
879 unsigned long csr_reg
, csr
, csr_error_bits
;
880 irqreturn_t ret
= IRQ_NONE
;
883 csr_reg
= p
->pbm_A
.controller_regs
+ SABRE_PCICTRL
;
884 csr
= sabre_read(csr_reg
);
886 csr
& SABRE_PCICTRL_SERR
;
887 if (csr_error_bits
) {
888 /* Clear the errors. */
889 sabre_write(csr_reg
, csr
);
892 if (csr_error_bits
& SABRE_PCICTRL_SERR
)
893 printk("SABRE%d: PCI SERR signal asserted.\n",
897 pci_read_config_word(sabre_root_bus
->self
,
899 if (stat
& (PCI_STATUS_PARITY
|
900 PCI_STATUS_SIG_TARGET_ABORT
|
901 PCI_STATUS_REC_TARGET_ABORT
|
902 PCI_STATUS_REC_MASTER_ABORT
|
903 PCI_STATUS_SIG_SYSTEM_ERROR
)) {
904 printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n",
906 pci_write_config_word(sabre_root_bus
->self
,
913 static irqreturn_t
sabre_pcierr_intr(int irq
, void *dev_id
, struct pt_regs
*regs
)
915 struct pci_controller_info
*p
= dev_id
;
916 unsigned long afsr_reg
, afar_reg
;
917 unsigned long afsr
, afar
, error_bits
;
920 afsr_reg
= p
->pbm_A
.controller_regs
+ SABRE_PIOAFSR
;
921 afar_reg
= p
->pbm_A
.controller_regs
+ SABRE_PIOAFAR
;
923 /* Latch error status. */
924 afar
= sabre_read(afar_reg
);
925 afsr
= sabre_read(afsr_reg
);
927 /* Clear primary/secondary error status bits. */
929 (SABRE_PIOAFSR_PMA
| SABRE_PIOAFSR_PTA
|
930 SABRE_PIOAFSR_PRTRY
| SABRE_PIOAFSR_PPERR
|
931 SABRE_PIOAFSR_SMA
| SABRE_PIOAFSR_STA
|
932 SABRE_PIOAFSR_SRTRY
| SABRE_PIOAFSR_SPERR
);
934 return sabre_pcierr_intr_other(p
);
935 sabre_write(afsr_reg
, error_bits
);
938 printk("SABRE%d: PCI Error, primary error type[%s]\n",
940 (((error_bits
& SABRE_PIOAFSR_PMA
) ?
942 ((error_bits
& SABRE_PIOAFSR_PTA
) ?
944 ((error_bits
& SABRE_PIOAFSR_PRTRY
) ?
945 "Excessive Retries" :
946 ((error_bits
& SABRE_PIOAFSR_PPERR
) ?
947 "Parity Error" : "???"))))));
948 printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
950 (afsr
& SABRE_PIOAFSR_BMSK
) >> 32UL,
951 (afsr
& SABRE_PIOAFSR_BLK
) ? 1 : 0);
952 printk("SABRE%d: PCI AFAR [%016lx]\n", p
->index
, afar
);
953 printk("SABRE%d: PCI Secondary errors [", p
->index
);
955 if (afsr
& SABRE_PIOAFSR_SMA
) {
957 printk("(Master Abort)");
959 if (afsr
& SABRE_PIOAFSR_STA
) {
961 printk("(Target Abort)");
963 if (afsr
& SABRE_PIOAFSR_SRTRY
) {
965 printk("(Excessive Retries)");
967 if (afsr
& SABRE_PIOAFSR_SPERR
) {
969 printk("(Parity Error)");
975 /* For the error types shown, scan both PCI buses for devices
976 * which have logged that error type.
979 /* If we see a Target Abort, this could be the result of an
980 * IOMMU translation error of some sort. It is extremely
981 * useful to log this information as usually it indicates
982 * a bug in the IOMMU support code or a PCI device driver.
984 if (error_bits
& (SABRE_PIOAFSR_PTA
| SABRE_PIOAFSR_STA
)) {
985 sabre_check_iommu_error(p
, afsr
, afar
);
986 pci_scan_for_target_abort(p
, &p
->pbm_A
, p
->pbm_A
.pci_bus
);
987 pci_scan_for_target_abort(p
, &p
->pbm_B
, p
->pbm_B
.pci_bus
);
989 if (error_bits
& (SABRE_PIOAFSR_PMA
| SABRE_PIOAFSR_SMA
)) {
990 pci_scan_for_master_abort(p
, &p
->pbm_A
, p
->pbm_A
.pci_bus
);
991 pci_scan_for_master_abort(p
, &p
->pbm_B
, p
->pbm_B
.pci_bus
);
993 /* For excessive retries, SABRE/PBM will abort the device
994 * and there is no way to specifically check for excessive
995 * retries in the config space status registers. So what
996 * we hope is that we'll catch it via the master/target
1000 if (error_bits
& (SABRE_PIOAFSR_PPERR
| SABRE_PIOAFSR_SPERR
)) {
1001 pci_scan_for_parity_error(p
, &p
->pbm_A
, p
->pbm_A
.pci_bus
);
1002 pci_scan_for_parity_error(p
, &p
->pbm_B
, p
->pbm_B
.pci_bus
);
1008 /* XXX What about PowerFail/PowerManagement??? -DaveM */
1009 #define SABRE_UE_INO 0x2e
1010 #define SABRE_CE_INO 0x2f
1011 #define SABRE_PCIERR_INO 0x30
1012 static void sabre_register_error_handlers(struct pci_controller_info
*p
)
1014 struct pci_pbm_info
*pbm
= &p
->pbm_A
; /* arbitrary */
1015 unsigned long base
= pbm
->controller_regs
;
1016 unsigned long irq
, portid
= pbm
->portid
;
1019 /* We clear the error bits in the appropriate AFSR before
1020 * registering the handler so that we don't get spurious
1023 sabre_write(base
+ SABRE_UE_AFSR
,
1024 (SABRE_UEAFSR_PDRD
| SABRE_UEAFSR_PDWR
|
1025 SABRE_UEAFSR_SDRD
| SABRE_UEAFSR_SDWR
|
1026 SABRE_UEAFSR_SDTE
| SABRE_UEAFSR_PDTE
));
1027 irq
= sabre_irq_build(pbm
, NULL
, (portid
<< 6) | SABRE_UE_INO
);
1028 if (request_irq(irq
, sabre_ue_intr
,
1029 SA_SHIRQ
, "SABRE UE", p
) < 0) {
1030 prom_printf("SABRE%d: Cannot register UE interrupt.\n",
1035 sabre_write(base
+ SABRE_CE_AFSR
,
1036 (SABRE_CEAFSR_PDRD
| SABRE_CEAFSR_PDWR
|
1037 SABRE_CEAFSR_SDRD
| SABRE_CEAFSR_SDWR
));
1038 irq
= sabre_irq_build(pbm
, NULL
, (portid
<< 6) | SABRE_CE_INO
);
1039 if (request_irq(irq
, sabre_ce_intr
,
1040 SA_SHIRQ
, "SABRE CE", p
) < 0) {
1041 prom_printf("SABRE%d: Cannot register CE interrupt.\n",
1046 irq
= sabre_irq_build(pbm
, NULL
, (portid
<< 6) | SABRE_PCIERR_INO
);
1047 if (request_irq(irq
, sabre_pcierr_intr
,
1048 SA_SHIRQ
, "SABRE PCIERR", p
) < 0) {
1049 prom_printf("SABRE%d: Cannot register PciERR interrupt.\n",
1054 tmp
= sabre_read(base
+ SABRE_PCICTRL
);
1055 tmp
|= SABRE_PCICTRL_ERREN
;
1056 sabre_write(base
+ SABRE_PCICTRL
, tmp
);
1059 static void sabre_resource_adjust(struct pci_dev
*pdev
,
1060 struct resource
*res
,
1061 struct resource
*root
)
1063 struct pci_pbm_info
*pbm
= pdev
->bus
->sysdata
;
1066 if (res
->flags
& IORESOURCE_IO
)
1067 base
= pbm
->controller_regs
+ SABRE_IOSPACE
;
1069 base
= pbm
->controller_regs
+ SABRE_MEMSPACE
;
1075 static void sabre_base_address_update(struct pci_dev
*pdev
, int resource
)
1077 struct pcidev_cookie
*pcp
= pdev
->sysdata
;
1078 struct pci_pbm_info
*pbm
= pcp
->pbm
;
1079 struct resource
*res
;
1082 int where
, size
, is_64bit
;
1084 res
= &pdev
->resource
[resource
];
1086 where
= PCI_BASE_ADDRESS_0
+ (resource
* 4);
1087 } else if (resource
== PCI_ROM_RESOURCE
) {
1088 where
= pdev
->rom_base_reg
;
1090 /* Somebody might have asked allocation of a non-standard resource */
1095 if (res
->flags
& IORESOURCE_IO
)
1096 base
= pbm
->controller_regs
+ SABRE_IOSPACE
;
1098 base
= pbm
->controller_regs
+ SABRE_MEMSPACE
;
1099 if ((res
->flags
& PCI_BASE_ADDRESS_MEM_TYPE_MASK
)
1100 == PCI_BASE_ADDRESS_MEM_TYPE_64
)
1104 size
= res
->end
- res
->start
;
1105 pci_read_config_dword(pdev
, where
, ®
);
1106 reg
= ((reg
& size
) |
1107 (((u32
)(res
->start
- base
)) & ~size
));
1108 if (resource
== PCI_ROM_RESOURCE
) {
1109 reg
|= PCI_ROM_ADDRESS_ENABLE
;
1110 res
->flags
|= IORESOURCE_ROM_ENABLE
;
1112 pci_write_config_dword(pdev
, where
, reg
);
1114 /* This knows that the upper 32-bits of the address
1115 * must be zero. Our PCI common layer enforces this.
1118 pci_write_config_dword(pdev
, where
+ 4, 0);
1121 static void apb_init(struct pci_controller_info
*p
, struct pci_bus
*sabre_bus
)
1123 struct pci_dev
*pdev
;
1125 list_for_each_entry(pdev
, &sabre_bus
->devices
, bus_list
) {
1127 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1128 pdev
->device
== PCI_DEVICE_ID_SUN_SIMBA
) {
1132 sabre_read_pci_cfg(pdev
->bus
, pdev
->devfn
,
1133 PCI_COMMAND
, 2, &word32
);
1134 word16
= (u16
) word32
;
1135 word16
|= PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
|
1136 PCI_COMMAND_MASTER
| PCI_COMMAND_MEMORY
|
1138 word32
= (u32
) word16
;
1139 sabre_write_pci_cfg(pdev
->bus
, pdev
->devfn
,
1140 PCI_COMMAND
, 2, word32
);
1142 /* Status register bits are "write 1 to clear". */
1143 sabre_write_pci_cfg(pdev
->bus
, pdev
->devfn
,
1144 PCI_STATUS
, 2, 0xffff);
1145 sabre_write_pci_cfg(pdev
->bus
, pdev
->devfn
,
1146 PCI_SEC_STATUS
, 2, 0xffff);
1148 /* Use a primary/seconday latency timer value
1151 sabre_write_pci_cfg(pdev
->bus
, pdev
->devfn
,
1152 PCI_LATENCY_TIMER
, 1, 64);
1153 sabre_write_pci_cfg(pdev
->bus
, pdev
->devfn
,
1154 PCI_SEC_LATENCY_TIMER
, 1, 64);
1156 /* Enable reporting/forwarding of master aborts,
1159 sabre_write_pci_cfg(pdev
->bus
, pdev
->devfn
,
1160 PCI_BRIDGE_CONTROL
, 1,
1161 (PCI_BRIDGE_CTL_PARITY
|
1162 PCI_BRIDGE_CTL_SERR
|
1163 PCI_BRIDGE_CTL_MASTER_ABORT
));
1168 static struct pcidev_cookie
*alloc_bridge_cookie(struct pci_pbm_info
*pbm
)
1170 struct pcidev_cookie
*cookie
= kmalloc(sizeof(*cookie
), GFP_KERNEL
);
1173 prom_printf("SABRE: Critical allocation failure.\n");
1177 /* All we care about is the PBM. */
1178 memset(cookie
, 0, sizeof(*cookie
));
1184 static void sabre_scan_bus(struct pci_controller_info
*p
)
1187 struct pci_bus
*sabre_bus
, *pbus
;
1188 struct pci_pbm_info
*pbm
;
1189 struct pcidev_cookie
*cookie
;
1192 /* The APB bridge speaks to the Sabre host PCI bridge
1193 * at 66Mhz, but the front side of APB runs at 33Mhz
1194 * for both segments.
1196 p
->pbm_A
.is_66mhz_capable
= 0;
1197 p
->pbm_B
.is_66mhz_capable
= 0;
1199 /* This driver has not been verified to handle
1200 * multiple SABREs yet, so trap this.
1202 * Also note that the SABRE host bridge is hardwired
1206 prom_printf("SABRE: Multiple controllers unsupported.\n");
1211 cookie
= alloc_bridge_cookie(&p
->pbm_A
);
1213 sabre_bus
= pci_scan_bus(p
->pci_first_busno
,
1216 pci_fixup_host_bridge_self(sabre_bus
);
1217 sabre_bus
->self
->sysdata
= cookie
;
1219 sabre_root_bus
= sabre_bus
;
1221 apb_init(p
, sabre_bus
);
1225 list_for_each_entry(pbus
, &sabre_bus
->children
, node
) {
1227 if (pbus
->number
== p
->pbm_A
.pci_first_busno
) {
1229 } else if (pbus
->number
== p
->pbm_B
.pci_first_busno
) {
1234 cookie
= alloc_bridge_cookie(pbm
);
1235 pbus
->self
->sysdata
= cookie
;
1239 pbus
->sysdata
= pbm
;
1240 pbm
->pci_bus
= pbus
;
1241 pci_fill_in_pbm_cookies(pbus
, pbm
, pbm
->prom_node
);
1242 pci_record_assignments(pbm
, pbus
);
1243 pci_assign_unassigned(pbm
, pbus
);
1244 pci_fixup_irq(pbm
, pbus
);
1245 pci_determine_66mhz_disposition(pbm
, pbus
);
1246 pci_setup_busmastering(pbm
, pbus
);
1249 if (!sabres_scanned
) {
1250 /* Hummingbird, no APBs. */
1252 sabre_bus
->sysdata
= pbm
;
1253 pbm
->pci_bus
= sabre_bus
;
1254 pci_fill_in_pbm_cookies(sabre_bus
, pbm
, pbm
->prom_node
);
1255 pci_record_assignments(pbm
, sabre_bus
);
1256 pci_assign_unassigned(pbm
, sabre_bus
);
1257 pci_fixup_irq(pbm
, sabre_bus
);
1258 pci_determine_66mhz_disposition(pbm
, sabre_bus
);
1259 pci_setup_busmastering(pbm
, sabre_bus
);
1262 sabre_register_error_handlers(p
);
1265 static void sabre_iommu_init(struct pci_controller_info
*p
,
1266 int tsbsize
, unsigned long dvma_offset
,
1269 struct pci_iommu
*iommu
= p
->pbm_A
.iommu
;
1270 unsigned long tsbbase
, i
, order
;
1273 /* Setup initial software IOMMU state. */
1274 spin_lock_init(&iommu
->lock
);
1275 iommu
->ctx_lowest_free
= 1;
1277 /* Register addresses. */
1278 iommu
->iommu_control
= p
->pbm_A
.controller_regs
+ SABRE_IOMMU_CONTROL
;
1279 iommu
->iommu_tsbbase
= p
->pbm_A
.controller_regs
+ SABRE_IOMMU_TSBBASE
;
1280 iommu
->iommu_flush
= p
->pbm_A
.controller_regs
+ SABRE_IOMMU_FLUSH
;
1281 iommu
->write_complete_reg
= p
->pbm_A
.controller_regs
+ SABRE_WRSYNC
;
1282 /* Sabre's IOMMU lacks ctx flushing. */
1283 iommu
->iommu_ctxflush
= 0;
1285 /* Invalidate TLB Entries. */
1286 control
= sabre_read(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_CONTROL
);
1287 control
|= SABRE_IOMMUCTRL_DENAB
;
1288 sabre_write(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_CONTROL
, control
);
1290 for(i
= 0; i
< 16; i
++) {
1291 sabre_write(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_TAG
+ (i
* 8UL), 0);
1292 sabre_write(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_DATA
+ (i
* 8UL), 0);
1295 /* Leave diag mode enabled for full-flushing done
1299 iommu
->dummy_page
= __get_free_pages(GFP_KERNEL
, 0);
1300 if (!iommu
->dummy_page
) {
1301 prom_printf("PSYCHO_IOMMU: Error, gfp(dummy_page) failed.\n");
1304 memset((void *)iommu
->dummy_page
, 0, PAGE_SIZE
);
1305 iommu
->dummy_page_pa
= (unsigned long) __pa(iommu
->dummy_page
);
1307 tsbbase
= __get_free_pages(GFP_KERNEL
, order
= get_order(tsbsize
* 1024 * 8));
1309 prom_printf("SABRE_IOMMU: Error, gfp(tsb) failed.\n");
1312 iommu
->page_table
= (iopte_t
*)tsbbase
;
1313 iommu
->page_table_map_base
= dvma_offset
;
1314 iommu
->dma_addr_mask
= dma_mask
;
1315 pci_iommu_table_init(iommu
, PAGE_SIZE
<< order
);
1317 sabre_write(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_TSBBASE
, __pa(tsbbase
));
1319 control
= sabre_read(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_CONTROL
);
1320 control
&= ~(SABRE_IOMMUCTRL_TSBSZ
| SABRE_IOMMUCTRL_TBWSZ
);
1321 control
|= SABRE_IOMMUCTRL_ENAB
;
1324 control
|= SABRE_IOMMU_TSBSZ_64K
;
1325 iommu
->page_table_sz_bits
= 16;
1328 control
|= SABRE_IOMMU_TSBSZ_128K
;
1329 iommu
->page_table_sz_bits
= 17;
1332 prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize
);
1336 sabre_write(p
->pbm_A
.controller_regs
+ SABRE_IOMMU_CONTROL
, control
);
1338 /* We start with no consistent mappings. */
1339 iommu
->lowest_consistent_map
=
1340 1 << (iommu
->page_table_sz_bits
- PBM_LOGCLUSTERS
);
1342 for (i
= 0; i
< PBM_NCLUSTERS
; i
++) {
1343 iommu
->alloc_info
[i
].flush
= 0;
1344 iommu
->alloc_info
[i
].next
= 0;
1348 static void pbm_register_toplevel_resources(struct pci_controller_info
*p
,
1349 struct pci_pbm_info
*pbm
)
1351 char *name
= pbm
->name
;
1352 unsigned long ibase
= p
->pbm_A
.controller_regs
+ SABRE_IOSPACE
;
1353 unsigned long mbase
= p
->pbm_A
.controller_regs
+ SABRE_MEMSPACE
;
1355 unsigned long first
, last
, i
;
1358 sprintf(name
, "SABRE%d PBM%c",
1360 (pbm
== &p
->pbm_A
? 'A' : 'B'));
1361 pbm
->io_space
.name
= pbm
->mem_space
.name
= name
;
1363 devfn
= PCI_DEVFN(1, (pbm
== &p
->pbm_A
) ? 0 : 1);
1364 addr
= sabre_pci_config_mkaddr(pbm
, 0, devfn
, APB_IO_ADDRESS_MAP
);
1366 pci_config_read8(addr
, &map
);
1370 for (i
= 0; i
< 8; i
++) {
1371 if ((map
& (1 << i
)) != 0) {
1378 pbm
->io_space
.start
= ibase
+ (first
<< 21UL);
1379 pbm
->io_space
.end
= ibase
+ (last
<< 21UL) + ((1 << 21UL) - 1);
1380 pbm
->io_space
.flags
= IORESOURCE_IO
;
1382 addr
= sabre_pci_config_mkaddr(pbm
, 0, devfn
, APB_MEM_ADDRESS_MAP
);
1384 pci_config_read8(addr
, &map
);
1388 for (i
= 0; i
< 8; i
++) {
1389 if ((map
& (1 << i
)) != 0) {
1396 pbm
->mem_space
.start
= mbase
+ (first
<< 29UL);
1397 pbm
->mem_space
.end
= mbase
+ (last
<< 29UL) + ((1 << 29UL) - 1);
1398 pbm
->mem_space
.flags
= IORESOURCE_MEM
;
1400 if (request_resource(&ioport_resource
, &pbm
->io_space
) < 0) {
1401 prom_printf("Cannot register PBM-%c's IO space.\n",
1402 (pbm
== &p
->pbm_A
? 'A' : 'B'));
1405 if (request_resource(&iomem_resource
, &pbm
->mem_space
) < 0) {
1406 prom_printf("Cannot register PBM-%c's MEM space.\n",
1407 (pbm
== &p
->pbm_A
? 'A' : 'B'));
1411 /* Register legacy regions if this PBM covers that area. */
1412 if (pbm
->io_space
.start
== ibase
&&
1413 pbm
->mem_space
.start
== mbase
)
1414 pci_register_legacy_regions(&pbm
->io_space
,
1418 static void sabre_pbm_init(struct pci_controller_info
*p
, int sabre_node
, u32 dma_begin
)
1420 struct pci_pbm_info
*pbm
;
1423 int node
, simbas_found
;
1426 node
= prom_getchild(sabre_node
);
1427 while ((node
= prom_searchsiblings(node
, "pci")) != 0) {
1430 err
= prom_getproperty(node
, "model", namebuf
, sizeof(namebuf
));
1431 if ((err
<= 0) || strncmp(namebuf
, "SUNW,simba", err
))
1434 err
= prom_getproperty(node
, "bus-range",
1435 (char *)&busrange
[0], sizeof(busrange
));
1436 if (err
== 0 || err
== -1) {
1437 prom_printf("APB: Error, cannot get PCI bus-range.\n");
1442 if (busrange
[0] == 1)
1446 pbm
->chip_type
= PBM_CHIP_TYPE_SABRE
;
1448 pbm
->prom_node
= node
;
1449 pbm
->pci_first_slot
= 1;
1450 pbm
->pci_first_busno
= busrange
[0];
1451 pbm
->pci_last_busno
= busrange
[1];
1453 prom_getstring(node
, "name", pbm
->prom_name
, sizeof(pbm
->prom_name
));
1454 err
= prom_getproperty(node
, "ranges",
1455 (char *)pbm
->pbm_ranges
,
1456 sizeof(pbm
->pbm_ranges
));
1458 pbm
->num_pbm_ranges
=
1459 (err
/ sizeof(struct linux_prom_pci_ranges
));
1461 pbm
->num_pbm_ranges
= 0;
1463 err
= prom_getproperty(node
, "interrupt-map",
1464 (char *)pbm
->pbm_intmap
,
1465 sizeof(pbm
->pbm_intmap
));
1467 pbm
->num_pbm_intmap
= (err
/ sizeof(struct linux_prom_pci_intmap
));
1468 err
= prom_getproperty(node
, "interrupt-map-mask",
1469 (char *)&pbm
->pbm_intmask
,
1470 sizeof(pbm
->pbm_intmask
));
1472 prom_printf("APB: Fatal error, no interrupt-map-mask.\n");
1476 pbm
->num_pbm_intmap
= 0;
1477 memset(&pbm
->pbm_intmask
, 0, sizeof(pbm
->pbm_intmask
));
1480 pbm_register_toplevel_resources(p
, pbm
);
1483 node
= prom_getsibling(node
);
1487 if (simbas_found
== 0) {
1490 /* No APBs underneath, probably this is a hummingbird
1495 pbm
->prom_node
= sabre_node
;
1496 pbm
->pci_first_busno
= p
->pci_first_busno
;
1497 pbm
->pci_last_busno
= p
->pci_last_busno
;
1499 prom_getstring(sabre_node
, "name", pbm
->prom_name
, sizeof(pbm
->prom_name
));
1500 err
= prom_getproperty(sabre_node
, "ranges",
1501 (char *) pbm
->pbm_ranges
,
1502 sizeof(pbm
->pbm_ranges
));
1504 pbm
->num_pbm_ranges
=
1505 (err
/ sizeof(struct linux_prom_pci_ranges
));
1507 pbm
->num_pbm_ranges
= 0;
1509 err
= prom_getproperty(sabre_node
, "interrupt-map",
1510 (char *) pbm
->pbm_intmap
,
1511 sizeof(pbm
->pbm_intmap
));
1514 pbm
->num_pbm_intmap
= (err
/ sizeof(struct linux_prom_pci_intmap
));
1515 err
= prom_getproperty(sabre_node
, "interrupt-map-mask",
1516 (char *)&pbm
->pbm_intmask
,
1517 sizeof(pbm
->pbm_intmask
));
1519 prom_printf("Hummingbird: Fatal error, no interrupt-map-mask.\n");
1523 pbm
->num_pbm_intmap
= 0;
1524 memset(&pbm
->pbm_intmask
, 0, sizeof(pbm
->pbm_intmask
));
1528 sprintf(pbm
->name
, "SABRE%d PBM%c", p
->index
,
1529 (pbm
== &p
->pbm_A
? 'A' : 'B'));
1530 pbm
->io_space
.name
= pbm
->mem_space
.name
= pbm
->name
;
1532 /* Hack up top-level resources. */
1533 pbm
->io_space
.start
= p
->pbm_A
.controller_regs
+ SABRE_IOSPACE
;
1534 pbm
->io_space
.end
= pbm
->io_space
.start
+ (1UL << 24) - 1UL;
1535 pbm
->io_space
.flags
= IORESOURCE_IO
;
1537 pbm
->mem_space
.start
= p
->pbm_A
.controller_regs
+ SABRE_MEMSPACE
;
1538 pbm
->mem_space
.end
= pbm
->mem_space
.start
+ (unsigned long)dma_begin
- 1UL;
1539 pbm
->mem_space
.flags
= IORESOURCE_MEM
;
1541 if (request_resource(&ioport_resource
, &pbm
->io_space
) < 0) {
1542 prom_printf("Cannot register Hummingbird's IO space.\n");
1545 if (request_resource(&iomem_resource
, &pbm
->mem_space
) < 0) {
1546 prom_printf("Cannot register Hummingbird's MEM space.\n");
1550 pci_register_legacy_regions(&pbm
->io_space
,
1555 void sabre_init(int pnode
, char *model_name
)
1557 struct linux_prom64_registers pr_regs
[2];
1558 struct pci_controller_info
*p
;
1559 struct pci_iommu
*iommu
;
1563 u32 upa_portid
, dma_mask
;
1567 if (!strcmp(model_name
, "pci108e,a001"))
1569 else if (!strcmp(model_name
, "SUNW,sabre")) {
1572 if (prom_getproperty(pnode
, "compatible",
1573 compat
, sizeof(compat
)) > 0 &&
1574 !strcmp(compat
, "pci108e,a001")) {
1579 /* Of course, Sun has to encode things a thousand
1580 * different ways, inconsistently.
1582 cpu_find_by_instance(0, &cpu_node
, NULL
);
1583 if (prom_getproperty(cpu_node
, "name",
1584 compat
, sizeof(compat
)) > 0 &&
1585 !strcmp(compat
, "SUNW,UltraSPARC-IIe"))
1590 p
= kmalloc(sizeof(*p
), GFP_ATOMIC
);
1592 prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
1595 memset(p
, 0, sizeof(*p
));
1597 iommu
= kmalloc(sizeof(*iommu
), GFP_ATOMIC
);
1599 prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
1602 memset(iommu
, 0, sizeof(*iommu
));
1603 p
->pbm_A
.iommu
= p
->pbm_B
.iommu
= iommu
;
1605 upa_portid
= prom_getintdefault(pnode
, "upa-portid", 0xff);
1607 p
->next
= pci_controller_root
;
1608 pci_controller_root
= p
;
1610 p
->pbm_A
.portid
= upa_portid
;
1611 p
->pbm_B
.portid
= upa_portid
;
1612 p
->index
= pci_num_controllers
++;
1613 p
->pbms_same_domain
= 1;
1614 p
->scan_bus
= sabre_scan_bus
;
1615 p
->irq_build
= sabre_irq_build
;
1616 p
->base_address_update
= sabre_base_address_update
;
1617 p
->resource_adjust
= sabre_resource_adjust
;
1618 p
->pci_ops
= &sabre_ops
;
1621 * Map in SABRE register set and report the presence of this SABRE.
1623 err
= prom_getproperty(pnode
, "reg",
1624 (char *)&pr_regs
[0], sizeof(pr_regs
));
1625 if(err
== 0 || err
== -1) {
1626 prom_printf("SABRE: Error, cannot get U2P registers "
1632 * First REG in property is base of entire SABRE register space.
1634 p
->pbm_A
.controller_regs
= pr_regs
[0].phys_addr
;
1635 p
->pbm_B
.controller_regs
= pr_regs
[0].phys_addr
;
1637 printk("PCI: Found SABRE, main regs at %016lx\n",
1638 p
->pbm_A
.controller_regs
);
1640 /* Clear interrupts */
1643 for (clear_irq
= SABRE_ICLR_A_SLOT0
; clear_irq
< SABRE_ICLR_B_SLOT0
+ 0x80; clear_irq
+= 8)
1644 sabre_write(p
->pbm_A
.controller_regs
+ clear_irq
, 0x0UL
);
1647 for (clear_irq
= SABRE_ICLR_SCSI
; clear_irq
< SABRE_ICLR_SCSI
+ 0x80; clear_irq
+= 8)
1648 sabre_write(p
->pbm_A
.controller_regs
+ clear_irq
, 0x0UL
);
1650 /* Error interrupts are enabled later after the bus scan. */
1651 sabre_write(p
->pbm_A
.controller_regs
+ SABRE_PCICTRL
,
1652 (SABRE_PCICTRL_MRLEN
| SABRE_PCICTRL_SERR
|
1653 SABRE_PCICTRL_ARBPARK
| SABRE_PCICTRL_AEN
));
1655 /* Now map in PCI config space for entire SABRE. */
1656 p
->pbm_A
.config_space
= p
->pbm_B
.config_space
=
1657 (p
->pbm_A
.controller_regs
+ SABRE_CONFIGSPACE
);
1658 printk("SABRE: Shared PCI config space at %016lx\n",
1659 p
->pbm_A
.config_space
);
1661 err
= prom_getproperty(pnode
, "virtual-dma",
1662 (char *)&vdma
[0], sizeof(vdma
));
1663 if(err
== 0 || err
== -1) {
1664 prom_printf("SABRE: Error, cannot get virtual-dma property "
1672 dma_mask
|= 0x1fffffff;
1676 dma_mask
|= 0x3fffffff;
1681 dma_mask
|= 0x7fffffff;
1685 prom_printf("SABRE: strange virtual-dma size.\n");
1689 sabre_iommu_init(p
, tsbsize
, vdma
[0], dma_mask
);
1691 printk("SABRE: DVMA at %08x [%08x]\n", vdma
[0], vdma
[1]);
1693 err
= prom_getproperty(pnode
, "bus-range",
1694 (char *)&busrange
[0], sizeof(busrange
));
1695 if(err
== 0 || err
== -1) {
1696 prom_printf("SABRE: Error, cannot get PCI bus-range "
1701 p
->pci_first_busno
= busrange
[0];
1702 p
->pci_last_busno
= busrange
[1];
1705 * Look for APB underneath.
1707 sabre_pbm_init(p
, pnode
, vdma
[0]);