mips: rename offsets.c to asm-offsets.c
[linux-2.6/verdex.git] / arch / x86_64 / kernel / smpboot.c
blob4fb34b5cb1f964e8093bc73bfd5219649a952efa
1 /*
2 * x86 SMP booting functions
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
15 * This code is released under the GNU General Public License version 2
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
37 * Ashok Raj : CPU hotplug support
41 #include <linux/config.h>
42 #include <linux/init.h>
44 #include <linux/mm.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/smp_lock.h>
47 #include <linux/irq.h>
48 #include <linux/bootmem.h>
49 #include <linux/thread_info.h>
50 #include <linux/module.h>
52 #include <linux/delay.h>
53 #include <linux/mc146818rtc.h>
54 #include <asm/mtrr.h>
55 #include <asm/pgalloc.h>
56 #include <asm/desc.h>
57 #include <asm/kdebug.h>
58 #include <asm/tlbflush.h>
59 #include <asm/proto.h>
60 #include <asm/nmi.h>
62 /* Number of siblings per CPU package */
63 int smp_num_siblings = 1;
64 /* Package ID of each logical CPU */
65 u8 phys_proc_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
66 u8 cpu_core_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
67 EXPORT_SYMBOL(phys_proc_id);
68 EXPORT_SYMBOL(cpu_core_id);
70 /* Bitmask of currently online CPUs */
71 cpumask_t cpu_online_map __read_mostly;
73 EXPORT_SYMBOL(cpu_online_map);
76 * Private maps to synchronize booting between AP and BP.
77 * Probably not needed anymore, but it makes for easier debugging. -AK
79 cpumask_t cpu_callin_map;
80 cpumask_t cpu_callout_map;
82 cpumask_t cpu_possible_map;
83 EXPORT_SYMBOL(cpu_possible_map);
85 /* Per CPU bogomips and other parameters */
86 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
88 /* Set when the idlers are all forked */
89 int smp_threads_ready;
91 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
92 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
93 EXPORT_SYMBOL(cpu_core_map);
96 * Trampoline 80x86 program as an array.
99 extern unsigned char trampoline_data[];
100 extern unsigned char trampoline_end[];
102 /* State of each CPU */
103 DEFINE_PER_CPU(int, cpu_state) = { 0 };
106 * Store all idle threads, this can be reused instead of creating
107 * a new thread. Also avoids complicated thread destroy functionality
108 * for idle threads.
110 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
112 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
113 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
116 * Currently trivial. Write the real->protected mode
117 * bootstrap into the page concerned. The caller
118 * has made sure it's suitably aligned.
121 static unsigned long __cpuinit setup_trampoline(void)
123 void *tramp = __va(SMP_TRAMPOLINE_BASE);
124 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
125 return virt_to_phys(tramp);
129 * The bootstrap kernel entry code has set these up. Save them for
130 * a given CPU
133 static void __cpuinit smp_store_cpu_info(int id)
135 struct cpuinfo_x86 *c = cpu_data + id;
137 *c = boot_cpu_data;
138 identify_cpu(c);
139 print_cpu_info(c);
143 * New Funky TSC sync algorithm borrowed from IA64.
144 * Main advantage is that it doesn't reset the TSCs fully and
145 * in general looks more robust and it works better than my earlier
146 * attempts. I believe it was written by David Mosberger. Some minor
147 * adjustments for x86-64 by me -AK
149 * Original comment reproduced below.
151 * Synchronize TSC of the current (slave) CPU with the TSC of the
152 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
153 * eliminate the possibility of unaccounted-for errors (such as
154 * getting a machine check in the middle of a calibration step). The
155 * basic idea is for the slave to ask the master what itc value it has
156 * and to read its own itc before and after the master responds. Each
157 * iteration gives us three timestamps:
159 * slave master
161 * t0 ---\
162 * ---\
163 * --->
164 * tm
165 * /---
166 * /---
167 * t1 <---
170 * The goal is to adjust the slave's TSC such that tm falls exactly
171 * half-way between t0 and t1. If we achieve this, the clocks are
172 * synchronized provided the interconnect between the slave and the
173 * master is symmetric. Even if the interconnect were asymmetric, we
174 * would still know that the synchronization error is smaller than the
175 * roundtrip latency (t0 - t1).
177 * When the interconnect is quiet and symmetric, this lets us
178 * synchronize the TSC to within one or two cycles. However, we can
179 * only *guarantee* that the synchronization is accurate to within a
180 * round-trip time, which is typically in the range of several hundred
181 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
182 * are usually almost perfectly synchronized, but we shouldn't assume
183 * that the accuracy is much better than half a micro second or so.
185 * [there are other errors like the latency of RDTSC and of the
186 * WRMSR. These can also account to hundreds of cycles. So it's
187 * probably worse. It claims 153 cycles error on a dual Opteron,
188 * but I suspect the numbers are actually somewhat worse -AK]
191 #define MASTER 0
192 #define SLAVE (SMP_CACHE_BYTES/8)
194 /* Intentionally don't use cpu_relax() while TSC synchronization
195 because we don't want to go into funky power save modi or cause
196 hypervisors to schedule us away. Going to sleep would likely affect
197 latency and low latency is the primary objective here. -AK */
198 #define no_cpu_relax() barrier()
200 static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
201 static volatile __cpuinitdata unsigned long go[SLAVE + 1];
202 static int notscsync __cpuinitdata;
204 #undef DEBUG_TSC_SYNC
206 #define NUM_ROUNDS 64 /* magic value */
207 #define NUM_ITERS 5 /* likewise */
209 /* Callback on boot CPU */
210 static __cpuinit void sync_master(void *arg)
212 unsigned long flags, i;
214 go[MASTER] = 0;
216 local_irq_save(flags);
218 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
219 while (!go[MASTER])
220 no_cpu_relax();
221 go[MASTER] = 0;
222 rdtscll(go[SLAVE]);
225 local_irq_restore(flags);
229 * Return the number of cycles by which our tsc differs from the tsc
230 * on the master (time-keeper) CPU. A positive number indicates our
231 * tsc is ahead of the master, negative that it is behind.
233 static inline long
234 get_delta(long *rt, long *master)
236 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
237 unsigned long tcenter, t0, t1, tm;
238 int i;
240 for (i = 0; i < NUM_ITERS; ++i) {
241 rdtscll(t0);
242 go[MASTER] = 1;
243 while (!(tm = go[SLAVE]))
244 no_cpu_relax();
245 go[SLAVE] = 0;
246 rdtscll(t1);
248 if (t1 - t0 < best_t1 - best_t0)
249 best_t0 = t0, best_t1 = t1, best_tm = tm;
252 *rt = best_t1 - best_t0;
253 *master = best_tm - best_t0;
255 /* average best_t0 and best_t1 without overflow: */
256 tcenter = (best_t0/2 + best_t1/2);
257 if (best_t0 % 2 + best_t1 % 2 == 2)
258 ++tcenter;
259 return tcenter - best_tm;
262 static __cpuinit void sync_tsc(unsigned int master)
264 int i, done = 0;
265 long delta, adj, adjust_latency = 0;
266 unsigned long flags, rt, master_time_stamp, bound;
267 #ifdef DEBUG_TSC_SYNC
268 static struct syncdebug {
269 long rt; /* roundtrip time */
270 long master; /* master's timestamp */
271 long diff; /* difference between midpoint and master's timestamp */
272 long lat; /* estimate of tsc adjustment latency */
273 } t[NUM_ROUNDS] __cpuinitdata;
274 #endif
276 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
277 smp_processor_id(), master);
279 go[MASTER] = 1;
281 /* It is dangerous to broadcast IPI as cpus are coming up,
282 * as they may not be ready to accept them. So since
283 * we only need to send the ipi to the boot cpu direct
284 * the message, and avoid the race.
286 smp_call_function_single(master, sync_master, NULL, 1, 0);
288 while (go[MASTER]) /* wait for master to be ready */
289 no_cpu_relax();
291 spin_lock_irqsave(&tsc_sync_lock, flags);
293 for (i = 0; i < NUM_ROUNDS; ++i) {
294 delta = get_delta(&rt, &master_time_stamp);
295 if (delta == 0) {
296 done = 1; /* let's lock on to this... */
297 bound = rt;
300 if (!done) {
301 unsigned long t;
302 if (i > 0) {
303 adjust_latency += -delta;
304 adj = -delta + adjust_latency/4;
305 } else
306 adj = -delta;
308 rdtscll(t);
309 wrmsrl(MSR_IA32_TSC, t + adj);
311 #ifdef DEBUG_TSC_SYNC
312 t[i].rt = rt;
313 t[i].master = master_time_stamp;
314 t[i].diff = delta;
315 t[i].lat = adjust_latency/4;
316 #endif
319 spin_unlock_irqrestore(&tsc_sync_lock, flags);
321 #ifdef DEBUG_TSC_SYNC
322 for (i = 0; i < NUM_ROUNDS; ++i)
323 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
324 t[i].rt, t[i].master, t[i].diff, t[i].lat);
325 #endif
327 printk(KERN_INFO
328 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
329 "maxerr %lu cycles)\n",
330 smp_processor_id(), master, delta, rt);
333 static void __cpuinit tsc_sync_wait(void)
335 if (notscsync || !cpu_has_tsc)
336 return;
337 sync_tsc(0);
340 static __init int notscsync_setup(char *s)
342 notscsync = 1;
343 return 0;
345 __setup("notscsync", notscsync_setup);
347 static atomic_t init_deasserted __cpuinitdata;
350 * Report back to the Boot Processor.
351 * Running on AP.
353 void __cpuinit smp_callin(void)
355 int cpuid, phys_id;
356 unsigned long timeout;
359 * If waken up by an INIT in an 82489DX configuration
360 * we may get here before an INIT-deassert IPI reaches
361 * our local APIC. We have to wait for the IPI or we'll
362 * lock up on an APIC access.
364 while (!atomic_read(&init_deasserted))
365 cpu_relax();
368 * (This works even if the APIC is not enabled.)
370 phys_id = GET_APIC_ID(apic_read(APIC_ID));
371 cpuid = smp_processor_id();
372 if (cpu_isset(cpuid, cpu_callin_map)) {
373 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
374 phys_id, cpuid);
376 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
379 * STARTUP IPIs are fragile beasts as they might sometimes
380 * trigger some glue motherboard logic. Complete APIC bus
381 * silence for 1 second, this overestimates the time the
382 * boot CPU is spending to send the up to 2 STARTUP IPIs
383 * by a factor of two. This should be enough.
387 * Waiting 2s total for startup (udelay is not yet working)
389 timeout = jiffies + 2*HZ;
390 while (time_before(jiffies, timeout)) {
392 * Has the boot CPU finished it's STARTUP sequence?
394 if (cpu_isset(cpuid, cpu_callout_map))
395 break;
396 cpu_relax();
399 if (!time_before(jiffies, timeout)) {
400 panic("smp_callin: CPU%d started up but did not get a callout!\n",
401 cpuid);
405 * the boot CPU has finished the init stage and is spinning
406 * on callin_map until we finish. We are free to set up this
407 * CPU, first the APIC. (this is probably redundant on most
408 * boards)
411 Dprintk("CALLIN, before setup_local_APIC().\n");
412 setup_local_APIC();
415 * Get our bogomips.
417 calibrate_delay();
418 Dprintk("Stack at about %p\n",&cpuid);
420 disable_APIC_timer();
423 * Save our processor parameters
425 smp_store_cpu_info(cpuid);
428 * Allow the master to continue.
430 cpu_set(cpuid, cpu_callin_map);
433 static inline void set_cpu_sibling_map(int cpu)
435 int i;
437 if (smp_num_siblings > 1) {
438 for_each_cpu(i) {
439 if (cpu_core_id[cpu] == cpu_core_id[i]) {
440 cpu_set(i, cpu_sibling_map[cpu]);
441 cpu_set(cpu, cpu_sibling_map[i]);
444 } else {
445 cpu_set(cpu, cpu_sibling_map[cpu]);
448 if (current_cpu_data.x86_num_cores > 1) {
449 for_each_cpu(i) {
450 if (phys_proc_id[cpu] == phys_proc_id[i]) {
451 cpu_set(i, cpu_core_map[cpu]);
452 cpu_set(cpu, cpu_core_map[i]);
455 } else {
456 cpu_core_map[cpu] = cpu_sibling_map[cpu];
461 * Setup code on secondary processor (after comming out of the trampoline)
463 void __cpuinit start_secondary(void)
466 * Dont put anything before smp_callin(), SMP
467 * booting is too fragile that we want to limit the
468 * things done here to the most necessary things.
470 cpu_init();
471 smp_callin();
473 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
474 barrier();
476 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
477 setup_secondary_APIC_clock();
479 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
481 if (nmi_watchdog == NMI_IO_APIC) {
482 disable_8259A_irq(0);
483 enable_NMI_through_LVT0(NULL);
484 enable_8259A_irq(0);
487 enable_APIC_timer();
490 * The sibling maps must be set before turing the online map on for
491 * this cpu
493 set_cpu_sibling_map(smp_processor_id());
496 * Wait for TSC sync to not schedule things before.
497 * We still process interrupts, which could see an inconsistent
498 * time in that window unfortunately.
499 * Do this here because TSC sync has global unprotected state.
501 tsc_sync_wait();
504 * We need to hold call_lock, so there is no inconsistency
505 * between the time smp_call_function() determines number of
506 * IPI receipients, and the time when the determination is made
507 * for which cpus receive the IPI in genapic_flat.c. Holding this
508 * lock helps us to not include this cpu in a currently in progress
509 * smp_call_function().
511 lock_ipi_call_lock();
514 * Allow the master to continue.
516 cpu_set(smp_processor_id(), cpu_online_map);
517 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
518 unlock_ipi_call_lock();
520 cpu_idle();
523 extern volatile unsigned long init_rsp;
524 extern void (*initial_code)(void);
526 #ifdef APIC_DEBUG
527 static void inquire_remote_apic(int apicid)
529 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
530 char *names[] = { "ID", "VERSION", "SPIV" };
531 int timeout, status;
533 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
535 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
536 printk("... APIC #%d %s: ", apicid, names[i]);
539 * Wait for idle.
541 apic_wait_icr_idle();
543 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
544 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
546 timeout = 0;
547 do {
548 udelay(100);
549 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
550 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
552 switch (status) {
553 case APIC_ICR_RR_VALID:
554 status = apic_read(APIC_RRR);
555 printk("%08x\n", status);
556 break;
557 default:
558 printk("failed\n");
562 #endif
565 * Kick the secondary to wake up.
567 static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
569 unsigned long send_status = 0, accept_status = 0;
570 int maxlvt, timeout, num_starts, j;
572 Dprintk("Asserting INIT.\n");
575 * Turn INIT on target chip
577 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
580 * Send IPI
582 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
583 | APIC_DM_INIT);
585 Dprintk("Waiting for send to finish...\n");
586 timeout = 0;
587 do {
588 Dprintk("+");
589 udelay(100);
590 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
591 } while (send_status && (timeout++ < 1000));
593 mdelay(10);
595 Dprintk("Deasserting INIT.\n");
597 /* Target chip */
598 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
600 /* Send IPI */
601 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
603 Dprintk("Waiting for send to finish...\n");
604 timeout = 0;
605 do {
606 Dprintk("+");
607 udelay(100);
608 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
609 } while (send_status && (timeout++ < 1000));
611 atomic_set(&init_deasserted, 1);
614 * Should we send STARTUP IPIs ?
616 * Determine this based on the APIC version.
617 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
619 if (APIC_INTEGRATED(apic_version[phys_apicid]))
620 num_starts = 2;
621 else
622 num_starts = 0;
625 * Run STARTUP IPI loop.
627 Dprintk("#startup loops: %d.\n", num_starts);
629 maxlvt = get_maxlvt();
631 for (j = 1; j <= num_starts; j++) {
632 Dprintk("Sending STARTUP #%d.\n",j);
633 apic_read_around(APIC_SPIV);
634 apic_write(APIC_ESR, 0);
635 apic_read(APIC_ESR);
636 Dprintk("After apic_write.\n");
639 * STARTUP IPI
642 /* Target chip */
643 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
645 /* Boot on the stack */
646 /* Kick the second */
647 apic_write_around(APIC_ICR, APIC_DM_STARTUP
648 | (start_rip >> 12));
651 * Give the other CPU some time to accept the IPI.
653 udelay(300);
655 Dprintk("Startup point 1.\n");
657 Dprintk("Waiting for send to finish...\n");
658 timeout = 0;
659 do {
660 Dprintk("+");
661 udelay(100);
662 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
663 } while (send_status && (timeout++ < 1000));
666 * Give the other CPU some time to accept the IPI.
668 udelay(200);
670 * Due to the Pentium erratum 3AP.
672 if (maxlvt > 3) {
673 apic_read_around(APIC_SPIV);
674 apic_write(APIC_ESR, 0);
676 accept_status = (apic_read(APIC_ESR) & 0xEF);
677 if (send_status || accept_status)
678 break;
680 Dprintk("After Startup.\n");
682 if (send_status)
683 printk(KERN_ERR "APIC never delivered???\n");
684 if (accept_status)
685 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
687 return (send_status | accept_status);
690 struct create_idle {
691 struct task_struct *idle;
692 struct completion done;
693 int cpu;
696 void do_fork_idle(void *_c_idle)
698 struct create_idle *c_idle = _c_idle;
700 c_idle->idle = fork_idle(c_idle->cpu);
701 complete(&c_idle->done);
705 * Boot one CPU.
707 static int __cpuinit do_boot_cpu(int cpu, int apicid)
709 unsigned long boot_error;
710 int timeout;
711 unsigned long start_rip;
712 struct create_idle c_idle = {
713 .cpu = cpu,
714 .done = COMPLETION_INITIALIZER(c_idle.done),
716 DECLARE_WORK(work, do_fork_idle, &c_idle);
718 c_idle.idle = get_idle_for_cpu(cpu);
720 if (c_idle.idle) {
721 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
722 (THREAD_SIZE + (unsigned long) c_idle.idle->thread_info)) - 1);
723 init_idle(c_idle.idle, cpu);
724 goto do_rest;
728 * During cold boot process, keventd thread is not spun up yet.
729 * When we do cpu hot-add, we create idle threads on the fly, we should
730 * not acquire any attributes from the calling context. Hence the clean
731 * way to create kernel_threads() is to do that from keventd().
732 * We do the current_is_keventd() due to the fact that ACPI notifier
733 * was also queuing to keventd() and when the caller is already running
734 * in context of keventd(), we would end up with locking up the keventd
735 * thread.
737 if (!keventd_up() || current_is_keventd())
738 work.func(work.data);
739 else {
740 schedule_work(&work);
741 wait_for_completion(&c_idle.done);
744 if (IS_ERR(c_idle.idle)) {
745 printk("failed fork for CPU %d\n", cpu);
746 return PTR_ERR(c_idle.idle);
749 set_idle_for_cpu(cpu, c_idle.idle);
751 do_rest:
753 cpu_pda[cpu].pcurrent = c_idle.idle;
755 start_rip = setup_trampoline();
757 init_rsp = c_idle.idle->thread.rsp;
758 per_cpu(init_tss,cpu).rsp0 = init_rsp;
759 initial_code = start_secondary;
760 clear_ti_thread_flag(c_idle.idle->thread_info, TIF_FORK);
762 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
763 cpus_weight(cpu_present_map),
764 apicid);
767 * This grunge runs the startup process for
768 * the targeted processor.
771 atomic_set(&init_deasserted, 0);
773 Dprintk("Setting warm reset code and vector.\n");
775 CMOS_WRITE(0xa, 0xf);
776 local_flush_tlb();
777 Dprintk("1.\n");
778 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
779 Dprintk("2.\n");
780 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
781 Dprintk("3.\n");
784 * Be paranoid about clearing APIC errors.
786 if (APIC_INTEGRATED(apic_version[apicid])) {
787 apic_read_around(APIC_SPIV);
788 apic_write(APIC_ESR, 0);
789 apic_read(APIC_ESR);
793 * Status is now clean
795 boot_error = 0;
798 * Starting actual IPI sequence...
800 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
802 if (!boot_error) {
804 * allow APs to start initializing.
806 Dprintk("Before Callout %d.\n", cpu);
807 cpu_set(cpu, cpu_callout_map);
808 Dprintk("After Callout %d.\n", cpu);
811 * Wait 5s total for a response
813 for (timeout = 0; timeout < 50000; timeout++) {
814 if (cpu_isset(cpu, cpu_callin_map))
815 break; /* It has booted */
816 udelay(100);
819 if (cpu_isset(cpu, cpu_callin_map)) {
820 /* number CPUs logically, starting from 1 (BSP is 0) */
821 Dprintk("CPU has booted.\n");
822 } else {
823 boot_error = 1;
824 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
825 == 0xA5)
826 /* trampoline started but...? */
827 printk("Stuck ??\n");
828 else
829 /* trampoline code not run */
830 printk("Not responding.\n");
831 #ifdef APIC_DEBUG
832 inquire_remote_apic(apicid);
833 #endif
836 if (boot_error) {
837 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
838 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
839 cpu_clear(cpu, cpu_present_map);
840 cpu_clear(cpu, cpu_possible_map);
841 x86_cpu_to_apicid[cpu] = BAD_APICID;
842 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
843 return -EIO;
846 return 0;
849 cycles_t cacheflush_time;
850 unsigned long cache_decay_ticks;
853 * Cleanup possible dangling ends...
855 static __cpuinit void smp_cleanup_boot(void)
858 * Paranoid: Set warm reset code and vector here back
859 * to default values.
861 CMOS_WRITE(0, 0xf);
864 * Reset trampoline flag
866 *((volatile int *) phys_to_virt(0x467)) = 0;
868 #ifndef CONFIG_HOTPLUG_CPU
870 * Free pages reserved for SMP bootup.
871 * When you add hotplug CPU support later remove this
872 * Note there is more work to be done for later CPU bootup.
875 free_page((unsigned long) __va(PAGE_SIZE));
876 free_page((unsigned long) __va(SMP_TRAMPOLINE_BASE));
877 #endif
881 * Fall back to non SMP mode after errors.
883 * RED-PEN audit/test this more. I bet there is more state messed up here.
885 static __init void disable_smp(void)
887 cpu_present_map = cpumask_of_cpu(0);
888 cpu_possible_map = cpumask_of_cpu(0);
889 if (smp_found_config)
890 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
891 else
892 phys_cpu_present_map = physid_mask_of_physid(0);
893 cpu_set(0, cpu_sibling_map[0]);
894 cpu_set(0, cpu_core_map[0]);
897 #ifdef CONFIG_HOTPLUG_CPU
899 * cpu_possible_map should be static, it cannot change as cpu's
900 * are onlined, or offlined. The reason is per-cpu data-structures
901 * are allocated by some modules at init time, and dont expect to
902 * do this dynamically on cpu arrival/departure.
903 * cpu_present_map on the other hand can change dynamically.
904 * In case when cpu_hotplug is not compiled, then we resort to current
905 * behaviour, which is cpu_possible == cpu_present.
906 * If cpu-hotplug is supported, then we need to preallocate for all
907 * those NR_CPUS, hence cpu_possible_map represents entire NR_CPUS range.
908 * - Ashok Raj
910 static void prefill_possible_map(void)
912 int i;
913 for (i = 0; i < NR_CPUS; i++)
914 cpu_set(i, cpu_possible_map);
916 #endif
919 * Various sanity checks.
921 static int __init smp_sanity_check(unsigned max_cpus)
923 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
924 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
925 hard_smp_processor_id());
926 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
930 * If we couldn't find an SMP configuration at boot time,
931 * get out of here now!
933 if (!smp_found_config) {
934 printk(KERN_NOTICE "SMP motherboard not detected.\n");
935 disable_smp();
936 if (APIC_init_uniprocessor())
937 printk(KERN_NOTICE "Local APIC not detected."
938 " Using dummy APIC emulation.\n");
939 return -1;
943 * Should not be necessary because the MP table should list the boot
944 * CPU too, but we do it for the sake of robustness anyway.
946 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
947 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
948 boot_cpu_id);
949 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
953 * If we couldn't find a local APIC, then get out of here now!
955 if (APIC_INTEGRATED(apic_version[boot_cpu_id]) && !cpu_has_apic) {
956 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
957 boot_cpu_id);
958 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
959 nr_ioapics = 0;
960 return -1;
964 * If SMP should be disabled, then really disable it!
966 if (!max_cpus) {
967 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
968 nr_ioapics = 0;
969 return -1;
972 return 0;
976 * Prepare for SMP bootup. The MP table or ACPI has been read
977 * earlier. Just do some sanity checking here and enable APIC mode.
979 void __init smp_prepare_cpus(unsigned int max_cpus)
981 nmi_watchdog_default();
982 current_cpu_data = boot_cpu_data;
983 current_thread_info()->cpu = 0; /* needed? */
985 #ifdef CONFIG_HOTPLUG_CPU
986 prefill_possible_map();
987 #endif
989 if (smp_sanity_check(max_cpus) < 0) {
990 printk(KERN_INFO "SMP disabled\n");
991 disable_smp();
992 return;
997 * Switch from PIC to APIC mode.
999 connect_bsp_APIC();
1000 setup_local_APIC();
1002 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
1003 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1004 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
1005 /* Or can we switch back to PIC here? */
1009 * Now start the IO-APICs
1011 if (!skip_ioapic_setup && nr_ioapics)
1012 setup_IO_APIC();
1013 else
1014 nr_ioapics = 0;
1017 * Set up local APIC timer on boot CPU.
1020 setup_boot_APIC_clock();
1024 * Early setup to make printk work.
1026 void __init smp_prepare_boot_cpu(void)
1028 int me = smp_processor_id();
1029 cpu_set(me, cpu_online_map);
1030 cpu_set(me, cpu_callout_map);
1031 cpu_set(0, cpu_sibling_map[0]);
1032 cpu_set(0, cpu_core_map[0]);
1033 per_cpu(cpu_state, me) = CPU_ONLINE;
1037 * Entry point to boot a CPU.
1039 int __cpuinit __cpu_up(unsigned int cpu)
1041 int err;
1042 int apicid = cpu_present_to_apicid(cpu);
1044 WARN_ON(irqs_disabled());
1046 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1048 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1049 !physid_isset(apicid, phys_cpu_present_map)) {
1050 printk("__cpu_up: bad cpu %d\n", cpu);
1051 return -EINVAL;
1055 * Already booted CPU?
1057 if (cpu_isset(cpu, cpu_callin_map)) {
1058 Dprintk("do_boot_cpu %d Already started\n", cpu);
1059 return -ENOSYS;
1062 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1063 /* Boot it! */
1064 err = do_boot_cpu(cpu, apicid);
1065 if (err < 0) {
1066 Dprintk("do_boot_cpu failed %d\n", err);
1067 return err;
1070 /* Unleash the CPU! */
1071 Dprintk("waiting for cpu %d\n", cpu);
1073 while (!cpu_isset(cpu, cpu_online_map))
1074 cpu_relax();
1075 err = 0;
1077 return err;
1081 * Finish the SMP boot.
1083 void __init smp_cpus_done(unsigned int max_cpus)
1085 #ifndef CONFIG_HOTPLUG_CPU
1086 zap_low_mappings();
1087 #endif
1088 smp_cleanup_boot();
1090 #ifdef CONFIG_X86_IO_APIC
1091 setup_ioapic_dest();
1092 #endif
1094 time_init_gtod();
1096 check_nmi_watchdog();
1099 #ifdef CONFIG_HOTPLUG_CPU
1101 static void remove_siblinginfo(int cpu)
1103 int sibling;
1105 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1106 cpu_clear(cpu, cpu_sibling_map[sibling]);
1107 for_each_cpu_mask(sibling, cpu_core_map[cpu])
1108 cpu_clear(cpu, cpu_core_map[sibling]);
1109 cpus_clear(cpu_sibling_map[cpu]);
1110 cpus_clear(cpu_core_map[cpu]);
1111 phys_proc_id[cpu] = BAD_APICID;
1112 cpu_core_id[cpu] = BAD_APICID;
1115 void remove_cpu_from_maps(void)
1117 int cpu = smp_processor_id();
1119 cpu_clear(cpu, cpu_callout_map);
1120 cpu_clear(cpu, cpu_callin_map);
1121 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1124 int __cpu_disable(void)
1126 int cpu = smp_processor_id();
1129 * Perhaps use cpufreq to drop frequency, but that could go
1130 * into generic code.
1132 * We won't take down the boot processor on i386 due to some
1133 * interrupts only being able to be serviced by the BSP.
1134 * Especially so if we're not using an IOAPIC -zwane
1136 if (cpu == 0)
1137 return -EBUSY;
1139 disable_APIC_timer();
1142 * HACK:
1143 * Allow any queued timer interrupts to get serviced
1144 * This is only a temporary solution until we cleanup
1145 * fixup_irqs as we do for IA64.
1147 local_irq_enable();
1148 mdelay(1);
1150 local_irq_disable();
1151 remove_siblinginfo(cpu);
1153 /* It's now safe to remove this processor from the online map */
1154 cpu_clear(cpu, cpu_online_map);
1155 remove_cpu_from_maps();
1156 fixup_irqs(cpu_online_map);
1157 return 0;
1160 void __cpu_die(unsigned int cpu)
1162 /* We don't do anything here: idle task is faking death itself. */
1163 unsigned int i;
1165 for (i = 0; i < 10; i++) {
1166 /* They ack this in play_dead by setting CPU_DEAD */
1167 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1168 printk ("CPU %d is now offline\n", cpu);
1169 return;
1171 msleep(100);
1173 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1176 #else /* ... !CONFIG_HOTPLUG_CPU */
1178 int __cpu_disable(void)
1180 return -ENOSYS;
1183 void __cpu_die(unsigned int cpu)
1185 /* We said "no" in __cpu_disable */
1186 BUG();
1188 #endif /* CONFIG_HOTPLUG_CPU */