2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
21 #include <linux/sched.h>
23 #include <linux/file.h>
25 #include <linux/mman.h>
26 #include <linux/slab.h>
27 #include <linux/timer.h>
28 #include <linux/aio.h>
29 #include <linux/highmem.h>
30 #include <linux/workqueue.h>
31 #include <linux/security.h>
33 #include <asm/kmap_types.h>
34 #include <asm/uaccess.h>
35 #include <asm/mmu_context.h>
38 #define dprintk printk
40 #define dprintk(x...) do { ; } while (0)
43 /*------ sysctl variables----*/
44 atomic_t aio_nr
= ATOMIC_INIT(0); /* current system wide number of aio requests */
45 unsigned aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
46 /*----end sysctl variables---*/
48 static kmem_cache_t
*kiocb_cachep
;
49 static kmem_cache_t
*kioctx_cachep
;
51 static struct workqueue_struct
*aio_wq
;
53 /* Used for rare fput completion. */
54 static void aio_fput_routine(void *);
55 static DECLARE_WORK(fput_work
, aio_fput_routine
, NULL
);
57 static DEFINE_SPINLOCK(fput_lock
);
58 static LIST_HEAD(fput_head
);
60 static void aio_kick_handler(void *);
61 static void aio_queue_work(struct kioctx
*);
64 * Creates the slab caches used by the aio routines, panic on
65 * failure as this is done early during the boot sequence.
67 static int __init
aio_setup(void)
69 kiocb_cachep
= kmem_cache_create("kiocb", sizeof(struct kiocb
),
70 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
71 kioctx_cachep
= kmem_cache_create("kioctx", sizeof(struct kioctx
),
72 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
74 aio_wq
= create_workqueue("aio");
76 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
81 static void aio_free_ring(struct kioctx
*ctx
)
83 struct aio_ring_info
*info
= &ctx
->ring_info
;
86 for (i
=0; i
<info
->nr_pages
; i
++)
87 put_page(info
->ring_pages
[i
]);
89 if (info
->mmap_size
) {
90 down_write(&ctx
->mm
->mmap_sem
);
91 do_munmap(ctx
->mm
, info
->mmap_base
, info
->mmap_size
);
92 up_write(&ctx
->mm
->mmap_sem
);
95 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
96 kfree(info
->ring_pages
);
97 info
->ring_pages
= NULL
;
101 static int aio_setup_ring(struct kioctx
*ctx
)
103 struct aio_ring
*ring
;
104 struct aio_ring_info
*info
= &ctx
->ring_info
;
105 unsigned nr_events
= ctx
->max_reqs
;
109 /* Compensate for the ring buffer's head/tail overlap entry */
110 nr_events
+= 2; /* 1 is required, 2 for good luck */
112 size
= sizeof(struct aio_ring
);
113 size
+= sizeof(struct io_event
) * nr_events
;
114 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
119 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
122 info
->ring_pages
= info
->internal_pages
;
123 if (nr_pages
> AIO_RING_PAGES
) {
124 info
->ring_pages
= kmalloc(sizeof(struct page
*) * nr_pages
, GFP_KERNEL
);
125 if (!info
->ring_pages
)
127 memset(info
->ring_pages
, 0, sizeof(struct page
*) * nr_pages
);
130 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
131 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
132 down_write(&ctx
->mm
->mmap_sem
);
133 info
->mmap_base
= do_mmap(NULL
, 0, info
->mmap_size
,
134 PROT_READ
|PROT_WRITE
, MAP_ANON
|MAP_PRIVATE
,
136 if (IS_ERR((void *)info
->mmap_base
)) {
137 up_write(&ctx
->mm
->mmap_sem
);
138 printk("mmap err: %ld\n", -info
->mmap_base
);
144 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
145 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
146 info
->mmap_base
, nr_pages
,
147 1, 0, info
->ring_pages
, NULL
);
148 up_write(&ctx
->mm
->mmap_sem
);
150 if (unlikely(info
->nr_pages
!= nr_pages
)) {
155 ctx
->user_id
= info
->mmap_base
;
157 info
->nr
= nr_events
; /* trusted copy */
159 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
160 ring
->nr
= nr_events
; /* user copy */
161 ring
->id
= ctx
->user_id
;
162 ring
->head
= ring
->tail
= 0;
163 ring
->magic
= AIO_RING_MAGIC
;
164 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
165 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
166 ring
->header_length
= sizeof(struct aio_ring
);
167 kunmap_atomic(ring
, KM_USER0
);
173 /* aio_ring_event: returns a pointer to the event at the given index from
174 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
176 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
177 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
178 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
180 #define aio_ring_event(info, nr, km) ({ \
181 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
182 struct io_event *__event; \
183 __event = kmap_atomic( \
184 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
185 __event += pos % AIO_EVENTS_PER_PAGE; \
189 #define put_aio_ring_event(event, km) do { \
190 struct io_event *__event = (event); \
192 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
196 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
198 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
200 struct mm_struct
*mm
;
203 /* Prevent overflows */
204 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
205 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
206 pr_debug("ENOMEM: nr_events too high\n");
207 return ERR_PTR(-EINVAL
);
210 if (nr_events
> aio_max_nr
)
211 return ERR_PTR(-EAGAIN
);
213 ctx
= kmem_cache_alloc(kioctx_cachep
, GFP_KERNEL
);
215 return ERR_PTR(-ENOMEM
);
217 memset(ctx
, 0, sizeof(*ctx
));
218 ctx
->max_reqs
= nr_events
;
219 mm
= ctx
->mm
= current
->mm
;
220 atomic_inc(&mm
->mm_count
);
222 atomic_set(&ctx
->users
, 1);
223 spin_lock_init(&ctx
->ctx_lock
);
224 spin_lock_init(&ctx
->ring_info
.ring_lock
);
225 init_waitqueue_head(&ctx
->wait
);
227 INIT_LIST_HEAD(&ctx
->active_reqs
);
228 INIT_LIST_HEAD(&ctx
->run_list
);
229 INIT_WORK(&ctx
->wq
, aio_kick_handler
, ctx
);
231 if (aio_setup_ring(ctx
) < 0)
234 /* limit the number of system wide aios */
235 atomic_add(ctx
->max_reqs
, &aio_nr
); /* undone by __put_ioctx */
236 if (unlikely(atomic_read(&aio_nr
) > aio_max_nr
))
239 /* now link into global list. kludge. FIXME */
240 write_lock(&mm
->ioctx_list_lock
);
241 ctx
->next
= mm
->ioctx_list
;
242 mm
->ioctx_list
= ctx
;
243 write_unlock(&mm
->ioctx_list_lock
);
245 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
246 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
250 atomic_sub(ctx
->max_reqs
, &aio_nr
);
251 ctx
->max_reqs
= 0; /* prevent __put_ioctx from sub'ing aio_nr */
253 return ERR_PTR(-EAGAIN
);
257 kmem_cache_free(kioctx_cachep
, ctx
);
258 ctx
= ERR_PTR(-ENOMEM
);
260 dprintk("aio: error allocating ioctx %p\n", ctx
);
265 * Cancels all outstanding aio requests on an aio context. Used
266 * when the processes owning a context have all exited to encourage
267 * the rapid destruction of the kioctx.
269 static void aio_cancel_all(struct kioctx
*ctx
)
271 int (*cancel
)(struct kiocb
*, struct io_event
*);
273 spin_lock_irq(&ctx
->ctx_lock
);
275 while (!list_empty(&ctx
->active_reqs
)) {
276 struct list_head
*pos
= ctx
->active_reqs
.next
;
277 struct kiocb
*iocb
= list_kiocb(pos
);
278 list_del_init(&iocb
->ki_list
);
279 cancel
= iocb
->ki_cancel
;
280 kiocbSetCancelled(iocb
);
283 spin_unlock_irq(&ctx
->ctx_lock
);
285 spin_lock_irq(&ctx
->ctx_lock
);
288 spin_unlock_irq(&ctx
->ctx_lock
);
291 static void wait_for_all_aios(struct kioctx
*ctx
)
293 struct task_struct
*tsk
= current
;
294 DECLARE_WAITQUEUE(wait
, tsk
);
296 if (!ctx
->reqs_active
)
299 add_wait_queue(&ctx
->wait
, &wait
);
300 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
301 while (ctx
->reqs_active
) {
303 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
305 __set_task_state(tsk
, TASK_RUNNING
);
306 remove_wait_queue(&ctx
->wait
, &wait
);
309 /* wait_on_sync_kiocb:
310 * Waits on the given sync kiocb to complete.
312 ssize_t fastcall
wait_on_sync_kiocb(struct kiocb
*iocb
)
314 while (iocb
->ki_users
) {
315 set_current_state(TASK_UNINTERRUPTIBLE
);
320 __set_current_state(TASK_RUNNING
);
321 return iocb
->ki_user_data
;
324 /* exit_aio: called when the last user of mm goes away. At this point,
325 * there is no way for any new requests to be submited or any of the
326 * io_* syscalls to be called on the context. However, there may be
327 * outstanding requests which hold references to the context; as they
328 * go away, they will call put_ioctx and release any pinned memory
329 * associated with the request (held via struct page * references).
331 void fastcall
exit_aio(struct mm_struct
*mm
)
333 struct kioctx
*ctx
= mm
->ioctx_list
;
334 mm
->ioctx_list
= NULL
;
336 struct kioctx
*next
= ctx
->next
;
340 wait_for_all_aios(ctx
);
342 * this is an overkill, but ensures we don't leave
343 * the ctx on the aio_wq
345 flush_workqueue(aio_wq
);
347 if (1 != atomic_read(&ctx
->users
))
349 "exit_aio:ioctx still alive: %d %d %d\n",
350 atomic_read(&ctx
->users
), ctx
->dead
,
358 * Called when the last user of an aio context has gone away,
359 * and the struct needs to be freed.
361 void fastcall
__put_ioctx(struct kioctx
*ctx
)
363 unsigned nr_events
= ctx
->max_reqs
;
365 if (unlikely(ctx
->reqs_active
))
368 cancel_delayed_work(&ctx
->wq
);
369 flush_workqueue(aio_wq
);
373 pr_debug("__put_ioctx: freeing %p\n", ctx
);
374 kmem_cache_free(kioctx_cachep
, ctx
);
376 atomic_sub(nr_events
, &aio_nr
);
380 * Allocate a slot for an aio request. Increments the users count
381 * of the kioctx so that the kioctx stays around until all requests are
382 * complete. Returns NULL if no requests are free.
384 * Returns with kiocb->users set to 2. The io submit code path holds
385 * an extra reference while submitting the i/o.
386 * This prevents races between the aio code path referencing the
387 * req (after submitting it) and aio_complete() freeing the req.
389 static struct kiocb
*FASTCALL(__aio_get_req(struct kioctx
*ctx
));
390 static struct kiocb fastcall
*__aio_get_req(struct kioctx
*ctx
)
392 struct kiocb
*req
= NULL
;
393 struct aio_ring
*ring
;
396 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
400 req
->ki_flags
= 1 << KIF_LOCKED
;
404 req
->ki_cancel
= NULL
;
405 req
->ki_retry
= NULL
;
408 INIT_LIST_HEAD(&req
->ki_run_list
);
410 /* Check if the completion queue has enough free space to
411 * accept an event from this io.
413 spin_lock_irq(&ctx
->ctx_lock
);
414 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0], KM_USER0
);
415 if (ctx
->reqs_active
< aio_ring_avail(&ctx
->ring_info
, ring
)) {
416 list_add(&req
->ki_list
, &ctx
->active_reqs
);
421 kunmap_atomic(ring
, KM_USER0
);
422 spin_unlock_irq(&ctx
->ctx_lock
);
425 kmem_cache_free(kiocb_cachep
, req
);
432 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
435 /* Handle a potential starvation case -- should be exceedingly rare as
436 * requests will be stuck on fput_head only if the aio_fput_routine is
437 * delayed and the requests were the last user of the struct file.
439 req
= __aio_get_req(ctx
);
440 if (unlikely(NULL
== req
)) {
441 aio_fput_routine(NULL
);
442 req
= __aio_get_req(ctx
);
447 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
451 kmem_cache_free(kiocb_cachep
, req
);
454 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
458 static void aio_fput_routine(void *data
)
460 spin_lock_irq(&fput_lock
);
461 while (likely(!list_empty(&fput_head
))) {
462 struct kiocb
*req
= list_kiocb(fput_head
.next
);
463 struct kioctx
*ctx
= req
->ki_ctx
;
465 list_del(&req
->ki_list
);
466 spin_unlock_irq(&fput_lock
);
468 /* Complete the fput */
469 __fput(req
->ki_filp
);
471 /* Link the iocb into the context's free list */
472 spin_lock_irq(&ctx
->ctx_lock
);
473 really_put_req(ctx
, req
);
474 spin_unlock_irq(&ctx
->ctx_lock
);
477 spin_lock_irq(&fput_lock
);
479 spin_unlock_irq(&fput_lock
);
483 * Returns true if this put was the last user of the request.
485 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
487 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%d\n",
488 req
, atomic_read(&req
->ki_filp
->f_count
));
491 if (unlikely(req
->ki_users
< 0))
493 if (likely(req
->ki_users
))
495 list_del(&req
->ki_list
); /* remove from active_reqs */
496 req
->ki_cancel
= NULL
;
497 req
->ki_retry
= NULL
;
499 /* Must be done under the lock to serialise against cancellation.
500 * Call this aio_fput as it duplicates fput via the fput_work.
502 if (unlikely(atomic_dec_and_test(&req
->ki_filp
->f_count
))) {
504 spin_lock(&fput_lock
);
505 list_add(&req
->ki_list
, &fput_head
);
506 spin_unlock(&fput_lock
);
507 queue_work(aio_wq
, &fput_work
);
509 really_put_req(ctx
, req
);
514 * Returns true if this put was the last user of the kiocb,
515 * false if the request is still in use.
517 int fastcall
aio_put_req(struct kiocb
*req
)
519 struct kioctx
*ctx
= req
->ki_ctx
;
521 spin_lock_irq(&ctx
->ctx_lock
);
522 ret
= __aio_put_req(ctx
, req
);
523 spin_unlock_irq(&ctx
->ctx_lock
);
529 /* Lookup an ioctx id. ioctx_list is lockless for reads.
530 * FIXME: this is O(n) and is only suitable for development.
532 struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
534 struct kioctx
*ioctx
;
535 struct mm_struct
*mm
;
538 read_lock(&mm
->ioctx_list_lock
);
539 for (ioctx
= mm
->ioctx_list
; ioctx
; ioctx
= ioctx
->next
)
540 if (likely(ioctx
->user_id
== ctx_id
&& !ioctx
->dead
)) {
544 read_unlock(&mm
->ioctx_list_lock
);
551 * Makes the calling kernel thread take on the specified
553 * Called by the retry thread execute retries within the
554 * iocb issuer's mm context, so that copy_from/to_user
555 * operations work seamlessly for aio.
556 * (Note: this routine is intended to be called only
557 * from a kernel thread context)
559 static void use_mm(struct mm_struct
*mm
)
561 struct mm_struct
*active_mm
;
562 struct task_struct
*tsk
= current
;
565 tsk
->flags
|= PF_BORROWED_MM
;
566 active_mm
= tsk
->active_mm
;
567 atomic_inc(&mm
->mm_count
);
571 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
572 * it won't work. Update it accordingly if you change it here
574 activate_mm(active_mm
, mm
);
582 * Reverses the effect of use_mm, i.e. releases the
583 * specified mm context which was earlier taken on
584 * by the calling kernel thread
585 * (Note: this routine is intended to be called only
586 * from a kernel thread context)
588 * Comments: Called with ctx->ctx_lock held. This nests
589 * task_lock instead ctx_lock.
591 static void unuse_mm(struct mm_struct
*mm
)
593 struct task_struct
*tsk
= current
;
596 tsk
->flags
&= ~PF_BORROWED_MM
;
598 /* active_mm is still 'mm' */
599 enter_lazy_tlb(mm
, tsk
);
604 * Queue up a kiocb to be retried. Assumes that the kiocb
605 * has already been marked as kicked, and places it on
606 * the retry run list for the corresponding ioctx, if it
607 * isn't already queued. Returns 1 if it actually queued
608 * the kiocb (to tell the caller to activate the work
609 * queue to process it), or 0, if it found that it was
612 * Should be called with the spin lock iocb->ki_ctx->ctx_lock
615 static inline int __queue_kicked_iocb(struct kiocb
*iocb
)
617 struct kioctx
*ctx
= iocb
->ki_ctx
;
619 if (list_empty(&iocb
->ki_run_list
)) {
620 list_add_tail(&iocb
->ki_run_list
,
628 * This is the core aio execution routine. It is
629 * invoked both for initial i/o submission and
630 * subsequent retries via the aio_kick_handler.
631 * Expects to be invoked with iocb->ki_ctx->lock
632 * already held. The lock is released and reaquired
633 * as needed during processing.
635 * Calls the iocb retry method (already setup for the
636 * iocb on initial submission) for operation specific
637 * handling, but takes care of most of common retry
638 * execution details for a given iocb. The retry method
639 * needs to be non-blocking as far as possible, to avoid
640 * holding up other iocbs waiting to be serviced by the
641 * retry kernel thread.
643 * The trickier parts in this code have to do with
644 * ensuring that only one retry instance is in progress
645 * for a given iocb at any time. Providing that guarantee
646 * simplifies the coding of individual aio operations as
647 * it avoids various potential races.
649 static ssize_t
aio_run_iocb(struct kiocb
*iocb
)
651 struct kioctx
*ctx
= iocb
->ki_ctx
;
652 ssize_t (*retry
)(struct kiocb
*);
655 if (iocb
->ki_retried
++ > 1024*1024) {
656 printk("Maximal retry count. Bytes done %Zd\n",
657 iocb
->ki_nbytes
- iocb
->ki_left
);
661 if (!(iocb
->ki_retried
& 0xff)) {
662 pr_debug("%ld retry: %d of %d\n", iocb
->ki_retried
,
663 iocb
->ki_nbytes
- iocb
->ki_left
, iocb
->ki_nbytes
);
666 if (!(retry
= iocb
->ki_retry
)) {
667 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
672 * We don't want the next retry iteration for this
673 * operation to start until this one has returned and
674 * updated the iocb state. However, wait_queue functions
675 * can trigger a kick_iocb from interrupt context in the
676 * meantime, indicating that data is available for the next
677 * iteration. We want to remember that and enable the
678 * next retry iteration _after_ we are through with
681 * So, in order to be able to register a "kick", but
682 * prevent it from being queued now, we clear the kick
683 * flag, but make the kick code *think* that the iocb is
684 * still on the run list until we are actually done.
685 * When we are done with this iteration, we check if
686 * the iocb was kicked in the meantime and if so, queue
690 kiocbClearKicked(iocb
);
693 * This is so that aio_complete knows it doesn't need to
694 * pull the iocb off the run list (We can't just call
695 * INIT_LIST_HEAD because we don't want a kick_iocb to
696 * queue this on the run list yet)
698 iocb
->ki_run_list
.next
= iocb
->ki_run_list
.prev
= NULL
;
699 spin_unlock_irq(&ctx
->ctx_lock
);
701 /* Quit retrying if the i/o has been cancelled */
702 if (kiocbIsCancelled(iocb
)) {
704 aio_complete(iocb
, ret
, 0);
705 /* must not access the iocb after this */
710 * Now we are all set to call the retry method in async
711 * context. By setting this thread's io_wait context
712 * to point to the wait queue entry inside the currently
713 * running iocb for the duration of the retry, we ensure
714 * that async notification wakeups are queued by the
715 * operation instead of blocking waits, and when notified,
716 * cause the iocb to be kicked for continuation (through
717 * the aio_wake_function callback).
719 BUG_ON(current
->io_wait
!= NULL
);
720 current
->io_wait
= &iocb
->ki_wait
;
722 current
->io_wait
= NULL
;
724 if (-EIOCBRETRY
!= ret
) {
725 if (-EIOCBQUEUED
!= ret
) {
726 BUG_ON(!list_empty(&iocb
->ki_wait
.task_list
));
727 aio_complete(iocb
, ret
, 0);
728 /* must not access the iocb after this */
732 * Issue an additional retry to avoid waiting forever if
733 * no waits were queued (e.g. in case of a short read).
735 if (list_empty(&iocb
->ki_wait
.task_list
))
736 kiocbSetKicked(iocb
);
739 spin_lock_irq(&ctx
->ctx_lock
);
741 if (-EIOCBRETRY
== ret
) {
743 * OK, now that we are done with this iteration
744 * and know that there is more left to go,
745 * this is where we let go so that a subsequent
746 * "kick" can start the next iteration
749 /* will make __queue_kicked_iocb succeed from here on */
750 INIT_LIST_HEAD(&iocb
->ki_run_list
);
751 /* we must queue the next iteration ourselves, if it
752 * has already been kicked */
753 if (kiocbIsKicked(iocb
)) {
754 __queue_kicked_iocb(iocb
);
757 * __queue_kicked_iocb will always return 1 here, because
758 * iocb->ki_run_list is empty at this point so it should
759 * be safe to unconditionally queue the context into the
770 * Process all pending retries queued on the ioctx
772 * Assumes it is operating within the aio issuer's mm
773 * context. Expects to be called with ctx->ctx_lock held
775 static int __aio_run_iocbs(struct kioctx
*ctx
)
780 list_splice_init(&ctx
->run_list
, &run_list
);
781 while (!list_empty(&run_list
)) {
782 iocb
= list_entry(run_list
.next
, struct kiocb
,
784 list_del(&iocb
->ki_run_list
);
786 * Hold an extra reference while retrying i/o.
788 iocb
->ki_users
++; /* grab extra reference */
790 if (__aio_put_req(ctx
, iocb
)) /* drop extra ref */
793 if (!list_empty(&ctx
->run_list
))
798 static void aio_queue_work(struct kioctx
* ctx
)
800 unsigned long timeout
;
802 * if someone is waiting, get the work started right
803 * away, otherwise, use a longer delay
806 if (waitqueue_active(&ctx
->wait
))
810 queue_delayed_work(aio_wq
, &ctx
->wq
, timeout
);
816 * Process all pending retries queued on the ioctx
818 * Assumes it is operating within the aio issuer's mm
821 static inline void aio_run_iocbs(struct kioctx
*ctx
)
825 spin_lock_irq(&ctx
->ctx_lock
);
827 requeue
= __aio_run_iocbs(ctx
);
828 spin_unlock_irq(&ctx
->ctx_lock
);
834 * just like aio_run_iocbs, but keeps running them until
835 * the list stays empty
837 static inline void aio_run_all_iocbs(struct kioctx
*ctx
)
839 spin_lock_irq(&ctx
->ctx_lock
);
840 while (__aio_run_iocbs(ctx
))
842 spin_unlock_irq(&ctx
->ctx_lock
);
847 * Work queue handler triggered to process pending
848 * retries on an ioctx. Takes on the aio issuer's
849 * mm context before running the iocbs, so that
850 * copy_xxx_user operates on the issuer's address
852 * Run on aiod's context.
854 static void aio_kick_handler(void *data
)
856 struct kioctx
*ctx
= data
;
857 mm_segment_t oldfs
= get_fs();
862 spin_lock_irq(&ctx
->ctx_lock
);
863 requeue
=__aio_run_iocbs(ctx
);
865 spin_unlock_irq(&ctx
->ctx_lock
);
868 * we're in a worker thread already, don't use queue_delayed_work,
871 queue_work(aio_wq
, &ctx
->wq
);
876 * Called by kick_iocb to queue the kiocb for retry
877 * and if required activate the aio work queue to process
880 static void queue_kicked_iocb(struct kiocb
*iocb
)
882 struct kioctx
*ctx
= iocb
->ki_ctx
;
886 WARN_ON((!list_empty(&iocb
->ki_wait
.task_list
)));
888 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
889 run
= __queue_kicked_iocb(iocb
);
890 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
897 * Called typically from a wait queue callback context
898 * (aio_wake_function) to trigger a retry of the iocb.
899 * The retry is usually executed by aio workqueue
900 * threads (See aio_kick_handler).
902 void fastcall
kick_iocb(struct kiocb
*iocb
)
904 /* sync iocbs are easy: they can only ever be executing from a
906 if (is_sync_kiocb(iocb
)) {
907 kiocbSetKicked(iocb
);
908 wake_up_process(iocb
->ki_obj
.tsk
);
912 /* If its already kicked we shouldn't queue it again */
913 if (!kiocbTryKick(iocb
)) {
914 queue_kicked_iocb(iocb
);
917 EXPORT_SYMBOL(kick_iocb
);
920 * Called when the io request on the given iocb is complete.
921 * Returns true if this is the last user of the request. The
922 * only other user of the request can be the cancellation code.
924 int fastcall
aio_complete(struct kiocb
*iocb
, long res
, long res2
)
926 struct kioctx
*ctx
= iocb
->ki_ctx
;
927 struct aio_ring_info
*info
;
928 struct aio_ring
*ring
;
929 struct io_event
*event
;
934 /* Special case handling for sync iocbs: events go directly
935 * into the iocb for fast handling. Note that this will not
936 * work if we allow sync kiocbs to be cancelled. in which
937 * case the usage count checks will have to move under ctx_lock
940 if (is_sync_kiocb(iocb
)) {
943 iocb
->ki_user_data
= res
;
944 if (iocb
->ki_users
== 1) {
948 spin_lock_irq(&ctx
->ctx_lock
);
950 ret
= (0 == iocb
->ki_users
);
951 spin_unlock_irq(&ctx
->ctx_lock
);
953 /* sync iocbs put the task here for us */
954 wake_up_process(iocb
->ki_obj
.tsk
);
958 info
= &ctx
->ring_info
;
960 /* add a completion event to the ring buffer.
961 * must be done holding ctx->ctx_lock to prevent
962 * other code from messing with the tail
963 * pointer since we might be called from irq
966 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
968 if (iocb
->ki_run_list
.prev
&& !list_empty(&iocb
->ki_run_list
))
969 list_del_init(&iocb
->ki_run_list
);
972 * cancelled requests don't get events, userland was given one
973 * when the event got cancelled.
975 if (kiocbIsCancelled(iocb
))
978 ring
= kmap_atomic(info
->ring_pages
[0], KM_IRQ1
);
981 event
= aio_ring_event(info
, tail
, KM_IRQ0
);
982 if (++tail
>= info
->nr
)
985 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
986 event
->data
= iocb
->ki_user_data
;
990 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
991 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
994 /* after flagging the request as done, we
995 * must never even look at it again
997 smp_wmb(); /* make event visible before updating tail */
1002 put_aio_ring_event(event
, KM_IRQ0
);
1003 kunmap_atomic(ring
, KM_IRQ1
);
1005 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
1007 pr_debug("%ld retries: %d of %d\n", iocb
->ki_retried
,
1008 iocb
->ki_nbytes
- iocb
->ki_left
, iocb
->ki_nbytes
);
1010 /* everything turned out well, dispose of the aiocb. */
1011 ret
= __aio_put_req(ctx
, iocb
);
1013 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1015 if (waitqueue_active(&ctx
->wait
))
1016 wake_up(&ctx
->wait
);
1025 * Pull an event off of the ioctx's event ring. Returns the number of
1026 * events fetched (0 or 1 ;-)
1027 * FIXME: make this use cmpxchg.
1028 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1030 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
1032 struct aio_ring_info
*info
= &ioctx
->ring_info
;
1033 struct aio_ring
*ring
;
1037 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
1038 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1039 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
1040 (unsigned long)ring
->nr
);
1042 if (ring
->head
== ring
->tail
)
1045 spin_lock(&info
->ring_lock
);
1047 head
= ring
->head
% info
->nr
;
1048 if (head
!= ring
->tail
) {
1049 struct io_event
*evp
= aio_ring_event(info
, head
, KM_USER1
);
1051 head
= (head
+ 1) % info
->nr
;
1052 smp_mb(); /* finish reading the event before updatng the head */
1055 put_aio_ring_event(evp
, KM_USER1
);
1057 spin_unlock(&info
->ring_lock
);
1060 kunmap_atomic(ring
, KM_USER0
);
1061 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
1062 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
1066 struct aio_timeout
{
1067 struct timer_list timer
;
1069 struct task_struct
*p
;
1072 static void timeout_func(unsigned long data
)
1074 struct aio_timeout
*to
= (struct aio_timeout
*)data
;
1077 wake_up_process(to
->p
);
1080 static inline void init_timeout(struct aio_timeout
*to
)
1082 init_timer(&to
->timer
);
1083 to
->timer
.data
= (unsigned long)to
;
1084 to
->timer
.function
= timeout_func
;
1089 static inline void set_timeout(long start_jiffies
, struct aio_timeout
*to
,
1090 const struct timespec
*ts
)
1092 to
->timer
.expires
= start_jiffies
+ timespec_to_jiffies(ts
);
1093 if (time_after(to
->timer
.expires
, jiffies
))
1094 add_timer(&to
->timer
);
1099 static inline void clear_timeout(struct aio_timeout
*to
)
1101 del_singleshot_timer_sync(&to
->timer
);
1104 static int read_events(struct kioctx
*ctx
,
1105 long min_nr
, long nr
,
1106 struct io_event __user
*event
,
1107 struct timespec __user
*timeout
)
1109 long start_jiffies
= jiffies
;
1110 struct task_struct
*tsk
= current
;
1111 DECLARE_WAITQUEUE(wait
, tsk
);
1114 struct io_event ent
;
1115 struct aio_timeout to
;
1118 /* needed to zero any padding within an entry (there shouldn't be
1119 * any, but C is fun!
1121 memset(&ent
, 0, sizeof(ent
));
1124 while (likely(i
< nr
)) {
1125 ret
= aio_read_evt(ctx
, &ent
);
1126 if (unlikely(ret
<= 0))
1129 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1130 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
1132 /* Could we split the check in two? */
1134 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1135 dprintk("aio: lost an event due to EFAULT.\n");
1140 /* Good, event copied to userland, update counts. */
1152 /* racey check, but it gets redone */
1153 if (!retry
&& unlikely(!list_empty(&ctx
->run_list
))) {
1155 aio_run_all_iocbs(ctx
);
1163 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1166 set_timeout(start_jiffies
, &to
, &ts
);
1169 while (likely(i
< nr
)) {
1170 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
1172 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
1173 ret
= aio_read_evt(ctx
, &ent
);
1179 if (to
.timed_out
) /* Only check after read evt */
1182 if (signal_pending(tsk
)) {
1186 /*ret = aio_read_evt(ctx, &ent);*/
1189 set_task_state(tsk
, TASK_RUNNING
);
1190 remove_wait_queue(&ctx
->wait
, &wait
);
1192 if (unlikely(ret
<= 0))
1196 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1197 dprintk("aio: lost an event due to EFAULT.\n");
1201 /* Good, event copied to userland, update counts. */
1212 /* Take an ioctx and remove it from the list of ioctx's. Protects
1213 * against races with itself via ->dead.
1215 static void io_destroy(struct kioctx
*ioctx
)
1217 struct mm_struct
*mm
= current
->mm
;
1218 struct kioctx
**tmp
;
1221 /* delete the entry from the list is someone else hasn't already */
1222 write_lock(&mm
->ioctx_list_lock
);
1223 was_dead
= ioctx
->dead
;
1225 for (tmp
= &mm
->ioctx_list
; *tmp
&& *tmp
!= ioctx
;
1226 tmp
= &(*tmp
)->next
)
1230 write_unlock(&mm
->ioctx_list_lock
);
1232 dprintk("aio_release(%p)\n", ioctx
);
1233 if (likely(!was_dead
))
1234 put_ioctx(ioctx
); /* twice for the list */
1236 aio_cancel_all(ioctx
);
1237 wait_for_all_aios(ioctx
);
1238 put_ioctx(ioctx
); /* once for the lookup */
1242 * Create an aio_context capable of receiving at least nr_events.
1243 * ctxp must not point to an aio_context that already exists, and
1244 * must be initialized to 0 prior to the call. On successful
1245 * creation of the aio_context, *ctxp is filled in with the resulting
1246 * handle. May fail with -EINVAL if *ctxp is not initialized,
1247 * if the specified nr_events exceeds internal limits. May fail
1248 * with -EAGAIN if the specified nr_events exceeds the user's limit
1249 * of available events. May fail with -ENOMEM if insufficient kernel
1250 * resources are available. May fail with -EFAULT if an invalid
1251 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1254 asmlinkage
long sys_io_setup(unsigned nr_events
, aio_context_t __user
*ctxp
)
1256 struct kioctx
*ioctx
= NULL
;
1260 ret
= get_user(ctx
, ctxp
);
1265 if (unlikely(ctx
|| (int)nr_events
<= 0)) {
1266 pr_debug("EINVAL: io_setup: ctx or nr_events > max\n");
1270 ioctx
= ioctx_alloc(nr_events
);
1271 ret
= PTR_ERR(ioctx
);
1272 if (!IS_ERR(ioctx
)) {
1273 ret
= put_user(ioctx
->user_id
, ctxp
);
1277 get_ioctx(ioctx
); /* io_destroy() expects us to hold a ref */
1286 * Destroy the aio_context specified. May cancel any outstanding
1287 * AIOs and block on completion. Will fail with -ENOSYS if not
1288 * implemented. May fail with -EFAULT if the context pointed to
1291 asmlinkage
long sys_io_destroy(aio_context_t ctx
)
1293 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1294 if (likely(NULL
!= ioctx
)) {
1298 pr_debug("EINVAL: io_destroy: invalid context id\n");
1303 * Default retry method for aio_read (also used for first time submit)
1304 * Responsible for updating iocb state as retries progress
1306 static ssize_t
aio_pread(struct kiocb
*iocb
)
1308 struct file
*file
= iocb
->ki_filp
;
1309 struct address_space
*mapping
= file
->f_mapping
;
1310 struct inode
*inode
= mapping
->host
;
1313 ret
= file
->f_op
->aio_read(iocb
, iocb
->ki_buf
,
1314 iocb
->ki_left
, iocb
->ki_pos
);
1317 * Can't just depend on iocb->ki_left to determine
1318 * whether we are done. This may have been a short read.
1321 iocb
->ki_buf
+= ret
;
1322 iocb
->ki_left
-= ret
;
1324 * For pipes and sockets we return once we have
1325 * some data; for regular files we retry till we
1326 * complete the entire read or find that we can't
1327 * read any more data (e.g short reads).
1329 if (!S_ISFIFO(inode
->i_mode
) && !S_ISSOCK(inode
->i_mode
))
1333 /* This means we must have transferred all that we could */
1334 /* No need to retry anymore */
1335 if ((ret
== 0) || (iocb
->ki_left
== 0))
1336 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1342 * Default retry method for aio_write (also used for first time submit)
1343 * Responsible for updating iocb state as retries progress
1345 static ssize_t
aio_pwrite(struct kiocb
*iocb
)
1347 struct file
*file
= iocb
->ki_filp
;
1350 ret
= file
->f_op
->aio_write(iocb
, iocb
->ki_buf
,
1351 iocb
->ki_left
, iocb
->ki_pos
);
1354 iocb
->ki_buf
+= ret
;
1355 iocb
->ki_left
-= ret
;
1360 /* This means we must have transferred all that we could */
1361 /* No need to retry anymore */
1362 if ((ret
== 0) || (iocb
->ki_left
== 0))
1363 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1368 static ssize_t
aio_fdsync(struct kiocb
*iocb
)
1370 struct file
*file
= iocb
->ki_filp
;
1371 ssize_t ret
= -EINVAL
;
1373 if (file
->f_op
->aio_fsync
)
1374 ret
= file
->f_op
->aio_fsync(iocb
, 1);
1378 static ssize_t
aio_fsync(struct kiocb
*iocb
)
1380 struct file
*file
= iocb
->ki_filp
;
1381 ssize_t ret
= -EINVAL
;
1383 if (file
->f_op
->aio_fsync
)
1384 ret
= file
->f_op
->aio_fsync(iocb
, 0);
1390 * Performs the initial checks and aio retry method
1391 * setup for the kiocb at the time of io submission.
1393 static ssize_t
aio_setup_iocb(struct kiocb
*kiocb
)
1395 struct file
*file
= kiocb
->ki_filp
;
1398 switch (kiocb
->ki_opcode
) {
1399 case IOCB_CMD_PREAD
:
1401 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1404 if (unlikely(!access_ok(VERIFY_WRITE
, kiocb
->ki_buf
,
1408 if (file
->f_op
->aio_read
)
1409 kiocb
->ki_retry
= aio_pread
;
1411 case IOCB_CMD_PWRITE
:
1413 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1416 if (unlikely(!access_ok(VERIFY_READ
, kiocb
->ki_buf
,
1420 if (file
->f_op
->aio_write
)
1421 kiocb
->ki_retry
= aio_pwrite
;
1423 case IOCB_CMD_FDSYNC
:
1425 if (file
->f_op
->aio_fsync
)
1426 kiocb
->ki_retry
= aio_fdsync
;
1428 case IOCB_CMD_FSYNC
:
1430 if (file
->f_op
->aio_fsync
)
1431 kiocb
->ki_retry
= aio_fsync
;
1434 dprintk("EINVAL: io_submit: no operation provided\n");
1438 if (!kiocb
->ki_retry
)
1445 * aio_wake_function:
1446 * wait queue callback function for aio notification,
1447 * Simply triggers a retry of the operation via kick_iocb.
1449 * This callback is specified in the wait queue entry in
1450 * a kiocb (current->io_wait points to this wait queue
1451 * entry when an aio operation executes; it is used
1452 * instead of a synchronous wait when an i/o blocking
1453 * condition is encountered during aio).
1456 * This routine is executed with the wait queue lock held.
1457 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1458 * the ioctx lock inside the wait queue lock. This is safe
1459 * because this callback isn't used for wait queues which
1460 * are nested inside ioctx lock (i.e. ctx->wait)
1462 static int aio_wake_function(wait_queue_t
*wait
, unsigned mode
,
1463 int sync
, void *key
)
1465 struct kiocb
*iocb
= container_of(wait
, struct kiocb
, ki_wait
);
1467 list_del_init(&wait
->task_list
);
1472 int fastcall
io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1479 /* enforce forwards compatibility on users */
1480 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
||
1481 iocb
->aio_reserved3
)) {
1482 pr_debug("EINVAL: io_submit: reserve field set\n");
1486 /* prevent overflows */
1488 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1489 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1490 ((ssize_t
)iocb
->aio_nbytes
< 0)
1492 pr_debug("EINVAL: io_submit: overflow check\n");
1496 file
= fget(iocb
->aio_fildes
);
1497 if (unlikely(!file
))
1500 req
= aio_get_req(ctx
); /* returns with 2 references to req */
1501 if (unlikely(!req
)) {
1506 req
->ki_filp
= file
;
1507 ret
= put_user(req
->ki_key
, &user_iocb
->aio_key
);
1508 if (unlikely(ret
)) {
1509 dprintk("EFAULT: aio_key\n");
1513 req
->ki_obj
.user
= user_iocb
;
1514 req
->ki_user_data
= iocb
->aio_data
;
1515 req
->ki_pos
= iocb
->aio_offset
;
1517 req
->ki_buf
= (char __user
*)(unsigned long)iocb
->aio_buf
;
1518 req
->ki_left
= req
->ki_nbytes
= iocb
->aio_nbytes
;
1519 req
->ki_opcode
= iocb
->aio_lio_opcode
;
1520 init_waitqueue_func_entry(&req
->ki_wait
, aio_wake_function
);
1521 INIT_LIST_HEAD(&req
->ki_wait
.task_list
);
1522 req
->ki_retried
= 0;
1524 ret
= aio_setup_iocb(req
);
1529 spin_lock_irq(&ctx
->ctx_lock
);
1530 if (likely(list_empty(&ctx
->run_list
))) {
1533 list_add_tail(&req
->ki_run_list
, &ctx
->run_list
);
1534 /* drain the run list */
1535 while (__aio_run_iocbs(ctx
))
1538 spin_unlock_irq(&ctx
->ctx_lock
);
1539 aio_put_req(req
); /* drop extra ref to req */
1543 aio_put_req(req
); /* drop extra ref to req */
1544 aio_put_req(req
); /* drop i/o ref to req */
1549 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1550 * the number of iocbs queued. May return -EINVAL if the aio_context
1551 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1552 * *iocbpp[0] is not properly initialized, if the operation specified
1553 * is invalid for the file descriptor in the iocb. May fail with
1554 * -EFAULT if any of the data structures point to invalid data. May
1555 * fail with -EBADF if the file descriptor specified in the first
1556 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1557 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1558 * fail with -ENOSYS if not implemented.
1560 asmlinkage
long sys_io_submit(aio_context_t ctx_id
, long nr
,
1561 struct iocb __user
* __user
*iocbpp
)
1567 if (unlikely(nr
< 0))
1570 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1573 ctx
= lookup_ioctx(ctx_id
);
1574 if (unlikely(!ctx
)) {
1575 pr_debug("EINVAL: io_submit: invalid context id\n");
1580 * AKPM: should this return a partial result if some of the IOs were
1581 * successfully submitted?
1583 for (i
=0; i
<nr
; i
++) {
1584 struct iocb __user
*user_iocb
;
1587 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1592 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1597 ret
= io_submit_one(ctx
, user_iocb
, &tmp
);
1607 * Finds a given iocb for cancellation.
1608 * MUST be called with ctx->ctx_lock held.
1610 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1613 struct list_head
*pos
;
1614 /* TODO: use a hash or array, this sucks. */
1615 list_for_each(pos
, &ctx
->active_reqs
) {
1616 struct kiocb
*kiocb
= list_kiocb(pos
);
1617 if (kiocb
->ki_obj
.user
== iocb
&& kiocb
->ki_key
== key
)
1624 * Attempts to cancel an iocb previously passed to io_submit. If
1625 * the operation is successfully cancelled, the resulting event is
1626 * copied into the memory pointed to by result without being placed
1627 * into the completion queue and 0 is returned. May fail with
1628 * -EFAULT if any of the data structures pointed to are invalid.
1629 * May fail with -EINVAL if aio_context specified by ctx_id is
1630 * invalid. May fail with -EAGAIN if the iocb specified was not
1631 * cancelled. Will fail with -ENOSYS if not implemented.
1633 asmlinkage
long sys_io_cancel(aio_context_t ctx_id
, struct iocb __user
*iocb
,
1634 struct io_event __user
*result
)
1636 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1638 struct kiocb
*kiocb
;
1642 ret
= get_user(key
, &iocb
->aio_key
);
1646 ctx
= lookup_ioctx(ctx_id
);
1650 spin_lock_irq(&ctx
->ctx_lock
);
1652 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1653 if (kiocb
&& kiocb
->ki_cancel
) {
1654 cancel
= kiocb
->ki_cancel
;
1656 kiocbSetCancelled(kiocb
);
1659 spin_unlock_irq(&ctx
->ctx_lock
);
1661 if (NULL
!= cancel
) {
1662 struct io_event tmp
;
1663 pr_debug("calling cancel\n");
1664 memset(&tmp
, 0, sizeof(tmp
));
1665 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_obj
.user
;
1666 tmp
.data
= kiocb
->ki_user_data
;
1667 ret
= cancel(kiocb
, &tmp
);
1669 /* Cancellation succeeded -- copy the result
1670 * into the user's buffer.
1672 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1676 printk(KERN_DEBUG
"iocb has no cancel operation\n");
1684 * Attempts to read at least min_nr events and up to nr events from
1685 * the completion queue for the aio_context specified by ctx_id. May
1686 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1687 * if nr is out of range, if when is out of range. May fail with
1688 * -EFAULT if any of the memory specified to is invalid. May return
1689 * 0 or < min_nr if no events are available and the timeout specified
1690 * by when has elapsed, where when == NULL specifies an infinite
1691 * timeout. Note that the timeout pointed to by when is relative and
1692 * will be updated if not NULL and the operation blocks. Will fail
1693 * with -ENOSYS if not implemented.
1695 asmlinkage
long sys_io_getevents(aio_context_t ctx_id
,
1698 struct io_event __user
*events
,
1699 struct timespec __user
*timeout
)
1701 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1704 if (likely(ioctx
)) {
1705 if (likely(min_nr
<= nr
&& min_nr
>= 0 && nr
>= 0))
1706 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1713 __initcall(aio_setup
);
1715 EXPORT_SYMBOL(aio_complete
);
1716 EXPORT_SYMBOL(aio_put_req
);
1717 EXPORT_SYMBOL(wait_on_sync_kiocb
);