[PATCH] w1: Added w1_reset_select_slave() - Resets the bus and then selects the slave by
[linux-2.6/verdex.git] / fs / xfs / xfs_inode.c
blobdb43308aae9329597e961bc71b8c844c8fc313cd
1 /*
2 * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
26 * http://www.sgi.com
28 * For further information regarding this notice, see:
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
33 #include "xfs.h"
34 #include "xfs_macros.h"
35 #include "xfs_types.h"
36 #include "xfs_inum.h"
37 #include "xfs_log.h"
38 #include "xfs_trans.h"
39 #include "xfs_trans_priv.h"
40 #include "xfs_sb.h"
41 #include "xfs_ag.h"
42 #include "xfs_dir.h"
43 #include "xfs_dir2.h"
44 #include "xfs_dmapi.h"
45 #include "xfs_mount.h"
46 #include "xfs_alloc_btree.h"
47 #include "xfs_bmap_btree.h"
48 #include "xfs_ialloc_btree.h"
49 #include "xfs_btree.h"
50 #include "xfs_imap.h"
51 #include "xfs_alloc.h"
52 #include "xfs_ialloc.h"
53 #include "xfs_attr_sf.h"
54 #include "xfs_dir_sf.h"
55 #include "xfs_dir2_sf.h"
56 #include "xfs_dinode.h"
57 #include "xfs_inode_item.h"
58 #include "xfs_inode.h"
59 #include "xfs_bmap.h"
60 #include "xfs_buf_item.h"
61 #include "xfs_rw.h"
62 #include "xfs_error.h"
63 #include "xfs_bit.h"
64 #include "xfs_utils.h"
65 #include "xfs_dir2_trace.h"
66 #include "xfs_quota.h"
67 #include "xfs_mac.h"
68 #include "xfs_acl.h"
71 kmem_zone_t *xfs_ifork_zone;
72 kmem_zone_t *xfs_inode_zone;
73 kmem_zone_t *xfs_chashlist_zone;
76 * Used in xfs_itruncate(). This is the maximum number of extents
77 * freed from a file in a single transaction.
79 #define XFS_ITRUNC_MAX_EXTENTS 2
81 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
82 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
83 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
84 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
87 #ifdef DEBUG
89 * Make sure that the extents in the given memory buffer
90 * are valid.
92 STATIC void
93 xfs_validate_extents(
94 xfs_bmbt_rec_t *ep,
95 int nrecs,
96 int disk,
97 xfs_exntfmt_t fmt)
99 xfs_bmbt_irec_t irec;
100 xfs_bmbt_rec_t rec;
101 int i;
103 for (i = 0; i < nrecs; i++) {
104 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
105 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
106 if (disk)
107 xfs_bmbt_disk_get_all(&rec, &irec);
108 else
109 xfs_bmbt_get_all(&rec, &irec);
110 if (fmt == XFS_EXTFMT_NOSTATE)
111 ASSERT(irec.br_state == XFS_EXT_NORM);
112 ep++;
115 #else /* DEBUG */
116 #define xfs_validate_extents(ep, nrecs, disk, fmt)
117 #endif /* DEBUG */
120 * Check that none of the inode's in the buffer have a next
121 * unlinked field of 0.
123 #if defined(DEBUG)
124 void
125 xfs_inobp_check(
126 xfs_mount_t *mp,
127 xfs_buf_t *bp)
129 int i;
130 int j;
131 xfs_dinode_t *dip;
133 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
135 for (i = 0; i < j; i++) {
136 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
137 i * mp->m_sb.sb_inodesize);
138 if (!dip->di_next_unlinked) {
139 xfs_fs_cmn_err(CE_ALERT, mp,
140 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
141 bp);
142 ASSERT(dip->di_next_unlinked);
146 #endif
149 * This routine is called to map an inode number within a file
150 * system to the buffer containing the on-disk version of the
151 * inode. It returns a pointer to the buffer containing the
152 * on-disk inode in the bpp parameter, and in the dip parameter
153 * it returns a pointer to the on-disk inode within that buffer.
155 * If a non-zero error is returned, then the contents of bpp and
156 * dipp are undefined.
158 * Use xfs_imap() to determine the size and location of the
159 * buffer to read from disk.
161 STATIC int
162 xfs_inotobp(
163 xfs_mount_t *mp,
164 xfs_trans_t *tp,
165 xfs_ino_t ino,
166 xfs_dinode_t **dipp,
167 xfs_buf_t **bpp,
168 int *offset)
170 int di_ok;
171 xfs_imap_t imap;
172 xfs_buf_t *bp;
173 int error;
174 xfs_dinode_t *dip;
177 * Call the space managment code to find the location of the
178 * inode on disk.
180 imap.im_blkno = 0;
181 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
182 if (error != 0) {
183 cmn_err(CE_WARN,
184 "xfs_inotobp: xfs_imap() returned an "
185 "error %d on %s. Returning error.", error, mp->m_fsname);
186 return error;
190 * If the inode number maps to a block outside the bounds of the
191 * file system then return NULL rather than calling read_buf
192 * and panicing when we get an error from the driver.
194 if ((imap.im_blkno + imap.im_len) >
195 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
196 cmn_err(CE_WARN,
197 "xfs_inotobp: inode number (%d + %d) maps to a block outside the bounds "
198 "of the file system %s. Returning EINVAL.",
199 imap.im_blkno, imap.im_len,mp->m_fsname);
200 return XFS_ERROR(EINVAL);
204 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
205 * default to just a read_buf() call.
207 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
208 (int)imap.im_len, XFS_BUF_LOCK, &bp);
210 if (error) {
211 cmn_err(CE_WARN,
212 "xfs_inotobp: xfs_trans_read_buf() returned an "
213 "error %d on %s. Returning error.", error, mp->m_fsname);
214 return error;
216 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
217 di_ok =
218 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
219 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
220 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
221 XFS_RANDOM_ITOBP_INOTOBP))) {
222 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
223 xfs_trans_brelse(tp, bp);
224 cmn_err(CE_WARN,
225 "xfs_inotobp: XFS_TEST_ERROR() returned an "
226 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
227 return XFS_ERROR(EFSCORRUPTED);
230 xfs_inobp_check(mp, bp);
233 * Set *dipp to point to the on-disk inode in the buffer.
235 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
236 *bpp = bp;
237 *offset = imap.im_boffset;
238 return 0;
243 * This routine is called to map an inode to the buffer containing
244 * the on-disk version of the inode. It returns a pointer to the
245 * buffer containing the on-disk inode in the bpp parameter, and in
246 * the dip parameter it returns a pointer to the on-disk inode within
247 * that buffer.
249 * If a non-zero error is returned, then the contents of bpp and
250 * dipp are undefined.
252 * If the inode is new and has not yet been initialized, use xfs_imap()
253 * to determine the size and location of the buffer to read from disk.
254 * If the inode has already been mapped to its buffer and read in once,
255 * then use the mapping information stored in the inode rather than
256 * calling xfs_imap(). This allows us to avoid the overhead of looking
257 * at the inode btree for small block file systems (see xfs_dilocate()).
258 * We can tell whether the inode has been mapped in before by comparing
259 * its disk block address to 0. Only uninitialized inodes will have
260 * 0 for the disk block address.
263 xfs_itobp(
264 xfs_mount_t *mp,
265 xfs_trans_t *tp,
266 xfs_inode_t *ip,
267 xfs_dinode_t **dipp,
268 xfs_buf_t **bpp,
269 xfs_daddr_t bno)
271 xfs_buf_t *bp;
272 int error;
273 xfs_imap_t imap;
274 #ifdef __KERNEL__
275 int i;
276 int ni;
277 #endif
279 if (ip->i_blkno == (xfs_daddr_t)0) {
281 * Call the space management code to find the location of the
282 * inode on disk.
284 imap.im_blkno = bno;
285 error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP);
286 if (error != 0) {
287 return error;
291 * If the inode number maps to a block outside the bounds
292 * of the file system then return NULL rather than calling
293 * read_buf and panicing when we get an error from the
294 * driver.
296 if ((imap.im_blkno + imap.im_len) >
297 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
298 #ifdef DEBUG
299 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
300 "(imap.im_blkno (0x%llx) "
301 "+ imap.im_len (0x%llx)) > "
302 " XFS_FSB_TO_BB(mp, "
303 "mp->m_sb.sb_dblocks) (0x%llx)",
304 (unsigned long long) imap.im_blkno,
305 (unsigned long long) imap.im_len,
306 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
307 #endif /* DEBUG */
308 return XFS_ERROR(EINVAL);
312 * Fill in the fields in the inode that will be used to
313 * map the inode to its buffer from now on.
315 ip->i_blkno = imap.im_blkno;
316 ip->i_len = imap.im_len;
317 ip->i_boffset = imap.im_boffset;
318 } else {
320 * We've already mapped the inode once, so just use the
321 * mapping that we saved the first time.
323 imap.im_blkno = ip->i_blkno;
324 imap.im_len = ip->i_len;
325 imap.im_boffset = ip->i_boffset;
327 ASSERT(bno == 0 || bno == imap.im_blkno);
330 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
331 * default to just a read_buf() call.
333 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
334 (int)imap.im_len, XFS_BUF_LOCK, &bp);
336 if (error) {
337 #ifdef DEBUG
338 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
339 "xfs_trans_read_buf() returned error %d, "
340 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
341 error, (unsigned long long) imap.im_blkno,
342 (unsigned long long) imap.im_len);
343 #endif /* DEBUG */
344 return error;
346 #ifdef __KERNEL__
348 * Validate the magic number and version of every inode in the buffer
349 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
351 #ifdef DEBUG
352 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
353 #else
354 ni = 1;
355 #endif
356 for (i = 0; i < ni; i++) {
357 int di_ok;
358 xfs_dinode_t *dip;
360 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
361 (i << mp->m_sb.sb_inodelog));
362 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
363 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
364 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
365 XFS_RANDOM_ITOBP_INOTOBP))) {
366 #ifdef DEBUG
367 prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
368 mp->m_ddev_targp,
369 (unsigned long long)imap.im_blkno, i,
370 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
371 #endif
372 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
373 mp, dip);
374 xfs_trans_brelse(tp, bp);
375 return XFS_ERROR(EFSCORRUPTED);
378 #endif /* __KERNEL__ */
380 xfs_inobp_check(mp, bp);
383 * Mark the buffer as an inode buffer now that it looks good
385 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
388 * Set *dipp to point to the on-disk inode in the buffer.
390 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
391 *bpp = bp;
392 return 0;
396 * Move inode type and inode format specific information from the
397 * on-disk inode to the in-core inode. For fifos, devs, and sockets
398 * this means set if_rdev to the proper value. For files, directories,
399 * and symlinks this means to bring in the in-line data or extent
400 * pointers. For a file in B-tree format, only the root is immediately
401 * brought in-core. The rest will be in-lined in if_extents when it
402 * is first referenced (see xfs_iread_extents()).
404 STATIC int
405 xfs_iformat(
406 xfs_inode_t *ip,
407 xfs_dinode_t *dip)
409 xfs_attr_shortform_t *atp;
410 int size;
411 int error;
412 xfs_fsize_t di_size;
413 ip->i_df.if_ext_max =
414 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
415 error = 0;
417 if (unlikely(
418 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
419 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
420 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
421 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
422 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu."
423 " Unmount and run xfs_repair.",
424 (unsigned long long)ip->i_ino,
425 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
426 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
427 (unsigned long long)
428 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
429 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
430 ip->i_mount, dip);
431 return XFS_ERROR(EFSCORRUPTED);
434 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
435 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
436 "corrupt dinode %Lu, forkoff = 0x%x."
437 " Unmount and run xfs_repair.",
438 (unsigned long long)ip->i_ino,
439 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
440 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
441 ip->i_mount, dip);
442 return XFS_ERROR(EFSCORRUPTED);
445 switch (ip->i_d.di_mode & S_IFMT) {
446 case S_IFIFO:
447 case S_IFCHR:
448 case S_IFBLK:
449 case S_IFSOCK:
450 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
451 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
452 ip->i_mount, dip);
453 return XFS_ERROR(EFSCORRUPTED);
455 ip->i_d.di_size = 0;
456 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
457 break;
459 case S_IFREG:
460 case S_IFLNK:
461 case S_IFDIR:
462 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
463 case XFS_DINODE_FMT_LOCAL:
465 * no local regular files yet
467 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
468 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
469 "corrupt inode (local format for regular file) %Lu. Unmount and run xfs_repair.",
470 (unsigned long long) ip->i_ino);
471 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
472 XFS_ERRLEVEL_LOW,
473 ip->i_mount, dip);
474 return XFS_ERROR(EFSCORRUPTED);
477 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
478 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
479 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
480 "corrupt inode %Lu (bad size %Ld for local inode). Unmount and run xfs_repair.",
481 (unsigned long long) ip->i_ino,
482 (long long) di_size);
483 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
484 XFS_ERRLEVEL_LOW,
485 ip->i_mount, dip);
486 return XFS_ERROR(EFSCORRUPTED);
489 size = (int)di_size;
490 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
491 break;
492 case XFS_DINODE_FMT_EXTENTS:
493 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
494 break;
495 case XFS_DINODE_FMT_BTREE:
496 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
497 break;
498 default:
499 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
500 ip->i_mount);
501 return XFS_ERROR(EFSCORRUPTED);
503 break;
505 default:
506 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
507 return XFS_ERROR(EFSCORRUPTED);
509 if (error) {
510 return error;
512 if (!XFS_DFORK_Q(dip))
513 return 0;
514 ASSERT(ip->i_afp == NULL);
515 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
516 ip->i_afp->if_ext_max =
517 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
518 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
519 case XFS_DINODE_FMT_LOCAL:
520 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
521 size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT);
522 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
523 break;
524 case XFS_DINODE_FMT_EXTENTS:
525 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
526 break;
527 case XFS_DINODE_FMT_BTREE:
528 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
529 break;
530 default:
531 error = XFS_ERROR(EFSCORRUPTED);
532 break;
534 if (error) {
535 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
536 ip->i_afp = NULL;
537 xfs_idestroy_fork(ip, XFS_DATA_FORK);
539 return error;
543 * The file is in-lined in the on-disk inode.
544 * If it fits into if_inline_data, then copy
545 * it there, otherwise allocate a buffer for it
546 * and copy the data there. Either way, set
547 * if_data to point at the data.
548 * If we allocate a buffer for the data, make
549 * sure that its size is a multiple of 4 and
550 * record the real size in i_real_bytes.
552 STATIC int
553 xfs_iformat_local(
554 xfs_inode_t *ip,
555 xfs_dinode_t *dip,
556 int whichfork,
557 int size)
559 xfs_ifork_t *ifp;
560 int real_size;
563 * If the size is unreasonable, then something
564 * is wrong and we just bail out rather than crash in
565 * kmem_alloc() or memcpy() below.
567 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
568 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
569 "corrupt inode %Lu (bad size %d for local fork, size = %d). Unmount and run xfs_repair.",
570 (unsigned long long) ip->i_ino, size,
571 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
572 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
573 ip->i_mount, dip);
574 return XFS_ERROR(EFSCORRUPTED);
576 ifp = XFS_IFORK_PTR(ip, whichfork);
577 real_size = 0;
578 if (size == 0)
579 ifp->if_u1.if_data = NULL;
580 else if (size <= sizeof(ifp->if_u2.if_inline_data))
581 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
582 else {
583 real_size = roundup(size, 4);
584 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
586 ifp->if_bytes = size;
587 ifp->if_real_bytes = real_size;
588 if (size)
589 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
590 ifp->if_flags &= ~XFS_IFEXTENTS;
591 ifp->if_flags |= XFS_IFINLINE;
592 return 0;
596 * The file consists of a set of extents all
597 * of which fit into the on-disk inode.
598 * If there are few enough extents to fit into
599 * the if_inline_ext, then copy them there.
600 * Otherwise allocate a buffer for them and copy
601 * them into it. Either way, set if_extents
602 * to point at the extents.
604 STATIC int
605 xfs_iformat_extents(
606 xfs_inode_t *ip,
607 xfs_dinode_t *dip,
608 int whichfork)
610 xfs_bmbt_rec_t *ep, *dp;
611 xfs_ifork_t *ifp;
612 int nex;
613 int real_size;
614 int size;
615 int i;
617 ifp = XFS_IFORK_PTR(ip, whichfork);
618 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
619 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
622 * If the number of extents is unreasonable, then something
623 * is wrong and we just bail out rather than crash in
624 * kmem_alloc() or memcpy() below.
626 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
627 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
628 "corrupt inode %Lu ((a)extents = %d). Unmount and run xfs_repair.",
629 (unsigned long long) ip->i_ino, nex);
630 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
631 ip->i_mount, dip);
632 return XFS_ERROR(EFSCORRUPTED);
635 real_size = 0;
636 if (nex == 0)
637 ifp->if_u1.if_extents = NULL;
638 else if (nex <= XFS_INLINE_EXTS)
639 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
640 else {
641 ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
642 ASSERT(ifp->if_u1.if_extents != NULL);
643 real_size = size;
645 ifp->if_bytes = size;
646 ifp->if_real_bytes = real_size;
647 if (size) {
648 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
649 xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip));
650 ep = ifp->if_u1.if_extents;
651 for (i = 0; i < nex; i++, ep++, dp++) {
652 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
653 ARCH_CONVERT);
654 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
655 ARCH_CONVERT);
657 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
658 whichfork);
659 if (whichfork != XFS_DATA_FORK ||
660 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
661 if (unlikely(xfs_check_nostate_extents(
662 ifp->if_u1.if_extents, nex))) {
663 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
664 XFS_ERRLEVEL_LOW,
665 ip->i_mount);
666 return XFS_ERROR(EFSCORRUPTED);
669 ifp->if_flags |= XFS_IFEXTENTS;
670 return 0;
674 * The file has too many extents to fit into
675 * the inode, so they are in B-tree format.
676 * Allocate a buffer for the root of the B-tree
677 * and copy the root into it. The i_extents
678 * field will remain NULL until all of the
679 * extents are read in (when they are needed).
681 STATIC int
682 xfs_iformat_btree(
683 xfs_inode_t *ip,
684 xfs_dinode_t *dip,
685 int whichfork)
687 xfs_bmdr_block_t *dfp;
688 xfs_ifork_t *ifp;
689 /* REFERENCED */
690 int nrecs;
691 int size;
693 ifp = XFS_IFORK_PTR(ip, whichfork);
694 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
695 size = XFS_BMAP_BROOT_SPACE(dfp);
696 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
699 * blow out if -- fork has less extents than can fit in
700 * fork (fork shouldn't be a btree format), root btree
701 * block has more records than can fit into the fork,
702 * or the number of extents is greater than the number of
703 * blocks.
705 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
706 || XFS_BMDR_SPACE_CALC(nrecs) >
707 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
708 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
709 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
710 "corrupt inode %Lu (btree). Unmount and run xfs_repair.",
711 (unsigned long long) ip->i_ino);
712 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
713 ip->i_mount);
714 return XFS_ERROR(EFSCORRUPTED);
717 ifp->if_broot_bytes = size;
718 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
719 ASSERT(ifp->if_broot != NULL);
721 * Copy and convert from the on-disk structure
722 * to the in-memory structure.
724 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
725 ifp->if_broot, size);
726 ifp->if_flags &= ~XFS_IFEXTENTS;
727 ifp->if_flags |= XFS_IFBROOT;
729 return 0;
733 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
734 * and native format
736 * buf = on-disk representation
737 * dip = native representation
738 * dir = direction - +ve -> disk to native
739 * -ve -> native to disk
741 void
742 xfs_xlate_dinode_core(
743 xfs_caddr_t buf,
744 xfs_dinode_core_t *dip,
745 int dir)
747 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
748 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
749 xfs_arch_t arch = ARCH_CONVERT;
751 ASSERT(dir);
753 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
754 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
755 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
756 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
757 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
758 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
759 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
760 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
761 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
763 if (dir > 0) {
764 memcpy(mem_core->di_pad, buf_core->di_pad,
765 sizeof(buf_core->di_pad));
766 } else {
767 memcpy(buf_core->di_pad, mem_core->di_pad,
768 sizeof(buf_core->di_pad));
771 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
773 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
774 dir, arch);
775 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
776 dir, arch);
777 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
778 dir, arch);
779 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
780 dir, arch);
781 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
782 dir, arch);
783 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
784 dir, arch);
785 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
786 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
787 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
788 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
789 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
790 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
791 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
792 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
793 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
794 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
795 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
798 STATIC uint
799 _xfs_dic2xflags(
800 xfs_dinode_core_t *dic,
801 __uint16_t di_flags)
803 uint flags = 0;
805 if (di_flags & XFS_DIFLAG_ANY) {
806 if (di_flags & XFS_DIFLAG_REALTIME)
807 flags |= XFS_XFLAG_REALTIME;
808 if (di_flags & XFS_DIFLAG_PREALLOC)
809 flags |= XFS_XFLAG_PREALLOC;
810 if (di_flags & XFS_DIFLAG_IMMUTABLE)
811 flags |= XFS_XFLAG_IMMUTABLE;
812 if (di_flags & XFS_DIFLAG_APPEND)
813 flags |= XFS_XFLAG_APPEND;
814 if (di_flags & XFS_DIFLAG_SYNC)
815 flags |= XFS_XFLAG_SYNC;
816 if (di_flags & XFS_DIFLAG_NOATIME)
817 flags |= XFS_XFLAG_NOATIME;
818 if (di_flags & XFS_DIFLAG_NODUMP)
819 flags |= XFS_XFLAG_NODUMP;
820 if (di_flags & XFS_DIFLAG_RTINHERIT)
821 flags |= XFS_XFLAG_RTINHERIT;
822 if (di_flags & XFS_DIFLAG_PROJINHERIT)
823 flags |= XFS_XFLAG_PROJINHERIT;
824 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
825 flags |= XFS_XFLAG_NOSYMLINKS;
828 return flags;
831 uint
832 xfs_ip2xflags(
833 xfs_inode_t *ip)
835 xfs_dinode_core_t *dic = &ip->i_d;
837 return _xfs_dic2xflags(dic, dic->di_flags) |
838 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
841 uint
842 xfs_dic2xflags(
843 xfs_dinode_core_t *dic)
845 return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
846 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
850 * Given a mount structure and an inode number, return a pointer
851 * to a newly allocated in-core inode coresponding to the given
852 * inode number.
854 * Initialize the inode's attributes and extent pointers if it
855 * already has them (it will not if the inode has no links).
858 xfs_iread(
859 xfs_mount_t *mp,
860 xfs_trans_t *tp,
861 xfs_ino_t ino,
862 xfs_inode_t **ipp,
863 xfs_daddr_t bno)
865 xfs_buf_t *bp;
866 xfs_dinode_t *dip;
867 xfs_inode_t *ip;
868 int error;
870 ASSERT(xfs_inode_zone != NULL);
872 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
873 ip->i_ino = ino;
874 ip->i_mount = mp;
877 * Get pointer's to the on-disk inode and the buffer containing it.
878 * If the inode number refers to a block outside the file system
879 * then xfs_itobp() will return NULL. In this case we should
880 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
881 * know that this is a new incore inode.
883 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno);
885 if (error != 0) {
886 kmem_zone_free(xfs_inode_zone, ip);
887 return error;
891 * Initialize inode's trace buffers.
892 * Do this before xfs_iformat in case it adds entries.
894 #ifdef XFS_BMAP_TRACE
895 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
896 #endif
897 #ifdef XFS_BMBT_TRACE
898 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
899 #endif
900 #ifdef XFS_RW_TRACE
901 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
902 #endif
903 #ifdef XFS_ILOCK_TRACE
904 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
905 #endif
906 #ifdef XFS_DIR2_TRACE
907 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
908 #endif
911 * If we got something that isn't an inode it means someone
912 * (nfs or dmi) has a stale handle.
914 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
915 kmem_zone_free(xfs_inode_zone, ip);
916 xfs_trans_brelse(tp, bp);
917 #ifdef DEBUG
918 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
919 "dip->di_core.di_magic (0x%x) != "
920 "XFS_DINODE_MAGIC (0x%x)",
921 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
922 XFS_DINODE_MAGIC);
923 #endif /* DEBUG */
924 return XFS_ERROR(EINVAL);
928 * If the on-disk inode is already linked to a directory
929 * entry, copy all of the inode into the in-core inode.
930 * xfs_iformat() handles copying in the inode format
931 * specific information.
932 * Otherwise, just get the truly permanent information.
934 if (dip->di_core.di_mode) {
935 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
936 &(ip->i_d), 1);
937 error = xfs_iformat(ip, dip);
938 if (error) {
939 kmem_zone_free(xfs_inode_zone, ip);
940 xfs_trans_brelse(tp, bp);
941 #ifdef DEBUG
942 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
943 "xfs_iformat() returned error %d",
944 error);
945 #endif /* DEBUG */
946 return error;
948 } else {
949 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
950 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
951 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
952 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
954 * Make sure to pull in the mode here as well in
955 * case the inode is released without being used.
956 * This ensures that xfs_inactive() will see that
957 * the inode is already free and not try to mess
958 * with the uninitialized part of it.
960 ip->i_d.di_mode = 0;
962 * Initialize the per-fork minima and maxima for a new
963 * inode here. xfs_iformat will do it for old inodes.
965 ip->i_df.if_ext_max =
966 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
969 INIT_LIST_HEAD(&ip->i_reclaim);
972 * The inode format changed when we moved the link count and
973 * made it 32 bits long. If this is an old format inode,
974 * convert it in memory to look like a new one. If it gets
975 * flushed to disk we will convert back before flushing or
976 * logging it. We zero out the new projid field and the old link
977 * count field. We'll handle clearing the pad field (the remains
978 * of the old uuid field) when we actually convert the inode to
979 * the new format. We don't change the version number so that we
980 * can distinguish this from a real new format inode.
982 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
983 ip->i_d.di_nlink = ip->i_d.di_onlink;
984 ip->i_d.di_onlink = 0;
985 ip->i_d.di_projid = 0;
988 ip->i_delayed_blks = 0;
991 * Mark the buffer containing the inode as something to keep
992 * around for a while. This helps to keep recently accessed
993 * meta-data in-core longer.
995 XFS_BUF_SET_REF(bp, XFS_INO_REF);
998 * Use xfs_trans_brelse() to release the buffer containing the
999 * on-disk inode, because it was acquired with xfs_trans_read_buf()
1000 * in xfs_itobp() above. If tp is NULL, this is just a normal
1001 * brelse(). If we're within a transaction, then xfs_trans_brelse()
1002 * will only release the buffer if it is not dirty within the
1003 * transaction. It will be OK to release the buffer in this case,
1004 * because inodes on disk are never destroyed and we will be
1005 * locking the new in-core inode before putting it in the hash
1006 * table where other processes can find it. Thus we don't have
1007 * to worry about the inode being changed just because we released
1008 * the buffer.
1010 xfs_trans_brelse(tp, bp);
1011 *ipp = ip;
1012 return 0;
1016 * Read in extents from a btree-format inode.
1017 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1020 xfs_iread_extents(
1021 xfs_trans_t *tp,
1022 xfs_inode_t *ip,
1023 int whichfork)
1025 int error;
1026 xfs_ifork_t *ifp;
1027 size_t size;
1029 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1030 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1031 ip->i_mount);
1032 return XFS_ERROR(EFSCORRUPTED);
1034 size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t);
1035 ifp = XFS_IFORK_PTR(ip, whichfork);
1037 * We know that the size is valid (it's checked in iformat_btree)
1039 ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
1040 ASSERT(ifp->if_u1.if_extents != NULL);
1041 ifp->if_lastex = NULLEXTNUM;
1042 ifp->if_bytes = ifp->if_real_bytes = (int)size;
1043 ifp->if_flags |= XFS_IFEXTENTS;
1044 error = xfs_bmap_read_extents(tp, ip, whichfork);
1045 if (error) {
1046 kmem_free(ifp->if_u1.if_extents, size);
1047 ifp->if_u1.if_extents = NULL;
1048 ifp->if_bytes = ifp->if_real_bytes = 0;
1049 ifp->if_flags &= ~XFS_IFEXTENTS;
1050 return error;
1052 xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents,
1053 XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip));
1054 return 0;
1058 * Allocate an inode on disk and return a copy of its in-core version.
1059 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1060 * appropriately within the inode. The uid and gid for the inode are
1061 * set according to the contents of the given cred structure.
1063 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1064 * has a free inode available, call xfs_iget()
1065 * to obtain the in-core version of the allocated inode. Finally,
1066 * fill in the inode and log its initial contents. In this case,
1067 * ialloc_context would be set to NULL and call_again set to false.
1069 * If xfs_dialloc() does not have an available inode,
1070 * it will replenish its supply by doing an allocation. Since we can
1071 * only do one allocation within a transaction without deadlocks, we
1072 * must commit the current transaction before returning the inode itself.
1073 * In this case, therefore, we will set call_again to true and return.
1074 * The caller should then commit the current transaction, start a new
1075 * transaction, and call xfs_ialloc() again to actually get the inode.
1077 * To ensure that some other process does not grab the inode that
1078 * was allocated during the first call to xfs_ialloc(), this routine
1079 * also returns the [locked] bp pointing to the head of the freelist
1080 * as ialloc_context. The caller should hold this buffer across
1081 * the commit and pass it back into this routine on the second call.
1084 xfs_ialloc(
1085 xfs_trans_t *tp,
1086 xfs_inode_t *pip,
1087 mode_t mode,
1088 xfs_nlink_t nlink,
1089 xfs_dev_t rdev,
1090 cred_t *cr,
1091 xfs_prid_t prid,
1092 int okalloc,
1093 xfs_buf_t **ialloc_context,
1094 boolean_t *call_again,
1095 xfs_inode_t **ipp)
1097 xfs_ino_t ino;
1098 xfs_inode_t *ip;
1099 vnode_t *vp;
1100 uint flags;
1101 int error;
1104 * Call the space management code to pick
1105 * the on-disk inode to be allocated.
1107 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1108 ialloc_context, call_again, &ino);
1109 if (error != 0) {
1110 return error;
1112 if (*call_again || ino == NULLFSINO) {
1113 *ipp = NULL;
1114 return 0;
1116 ASSERT(*ialloc_context == NULL);
1119 * Get the in-core inode with the lock held exclusively.
1120 * This is because we're setting fields here we need
1121 * to prevent others from looking at until we're done.
1123 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1124 IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1125 if (error != 0) {
1126 return error;
1128 ASSERT(ip != NULL);
1130 vp = XFS_ITOV(ip);
1131 ip->i_d.di_mode = (__uint16_t)mode;
1132 ip->i_d.di_onlink = 0;
1133 ip->i_d.di_nlink = nlink;
1134 ASSERT(ip->i_d.di_nlink == nlink);
1135 ip->i_d.di_uid = current_fsuid(cr);
1136 ip->i_d.di_gid = current_fsgid(cr);
1137 ip->i_d.di_projid = prid;
1138 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1141 * If the superblock version is up to where we support new format
1142 * inodes and this is currently an old format inode, then change
1143 * the inode version number now. This way we only do the conversion
1144 * here rather than here and in the flush/logging code.
1146 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1147 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1148 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1150 * We've already zeroed the old link count, the projid field,
1151 * and the pad field.
1156 * Project ids won't be stored on disk if we are using a version 1 inode.
1158 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1159 xfs_bump_ino_vers2(tp, ip);
1161 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1162 ip->i_d.di_gid = pip->i_d.di_gid;
1163 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1164 ip->i_d.di_mode |= S_ISGID;
1169 * If the group ID of the new file does not match the effective group
1170 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1171 * (and only if the irix_sgid_inherit compatibility variable is set).
1173 if ((irix_sgid_inherit) &&
1174 (ip->i_d.di_mode & S_ISGID) &&
1175 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1176 ip->i_d.di_mode &= ~S_ISGID;
1179 ip->i_d.di_size = 0;
1180 ip->i_d.di_nextents = 0;
1181 ASSERT(ip->i_d.di_nblocks == 0);
1182 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1184 * di_gen will have been taken care of in xfs_iread.
1186 ip->i_d.di_extsize = 0;
1187 ip->i_d.di_dmevmask = 0;
1188 ip->i_d.di_dmstate = 0;
1189 ip->i_d.di_flags = 0;
1190 flags = XFS_ILOG_CORE;
1191 switch (mode & S_IFMT) {
1192 case S_IFIFO:
1193 case S_IFCHR:
1194 case S_IFBLK:
1195 case S_IFSOCK:
1196 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1197 ip->i_df.if_u2.if_rdev = rdev;
1198 ip->i_df.if_flags = 0;
1199 flags |= XFS_ILOG_DEV;
1200 break;
1201 case S_IFREG:
1202 case S_IFDIR:
1203 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1204 uint di_flags = 0;
1206 if ((mode & S_IFMT) == S_IFDIR) {
1207 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1208 di_flags |= XFS_DIFLAG_RTINHERIT;
1209 } else {
1210 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1211 di_flags |= XFS_DIFLAG_REALTIME;
1212 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1215 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1216 xfs_inherit_noatime)
1217 di_flags |= XFS_DIFLAG_NOATIME;
1218 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1219 xfs_inherit_nodump)
1220 di_flags |= XFS_DIFLAG_NODUMP;
1221 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1222 xfs_inherit_sync)
1223 di_flags |= XFS_DIFLAG_SYNC;
1224 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1225 xfs_inherit_nosymlinks)
1226 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1227 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1228 di_flags |= XFS_DIFLAG_PROJINHERIT;
1229 ip->i_d.di_flags |= di_flags;
1231 /* FALLTHROUGH */
1232 case S_IFLNK:
1233 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1234 ip->i_df.if_flags = XFS_IFEXTENTS;
1235 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1236 ip->i_df.if_u1.if_extents = NULL;
1237 break;
1238 default:
1239 ASSERT(0);
1242 * Attribute fork settings for new inode.
1244 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1245 ip->i_d.di_anextents = 0;
1248 * Log the new values stuffed into the inode.
1250 xfs_trans_log_inode(tp, ip, flags);
1252 /* now that we have an i_mode we can set Linux inode ops (& unlock) */
1253 VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1255 *ipp = ip;
1256 return 0;
1260 * Check to make sure that there are no blocks allocated to the
1261 * file beyond the size of the file. We don't check this for
1262 * files with fixed size extents or real time extents, but we
1263 * at least do it for regular files.
1265 #ifdef DEBUG
1266 void
1267 xfs_isize_check(
1268 xfs_mount_t *mp,
1269 xfs_inode_t *ip,
1270 xfs_fsize_t isize)
1272 xfs_fileoff_t map_first;
1273 int nimaps;
1274 xfs_bmbt_irec_t imaps[2];
1276 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1277 return;
1279 if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME )
1280 return;
1282 nimaps = 2;
1283 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1285 * The filesystem could be shutting down, so bmapi may return
1286 * an error.
1288 if (xfs_bmapi(NULL, ip, map_first,
1289 (XFS_B_TO_FSB(mp,
1290 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1291 map_first),
1292 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1293 NULL))
1294 return;
1295 ASSERT(nimaps == 1);
1296 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1298 #endif /* DEBUG */
1301 * Calculate the last possible buffered byte in a file. This must
1302 * include data that was buffered beyond the EOF by the write code.
1303 * This also needs to deal with overflowing the xfs_fsize_t type
1304 * which can happen for sizes near the limit.
1306 * We also need to take into account any blocks beyond the EOF. It
1307 * may be the case that they were buffered by a write which failed.
1308 * In that case the pages will still be in memory, but the inode size
1309 * will never have been updated.
1311 xfs_fsize_t
1312 xfs_file_last_byte(
1313 xfs_inode_t *ip)
1315 xfs_mount_t *mp;
1316 xfs_fsize_t last_byte;
1317 xfs_fileoff_t last_block;
1318 xfs_fileoff_t size_last_block;
1319 int error;
1321 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1323 mp = ip->i_mount;
1325 * Only check for blocks beyond the EOF if the extents have
1326 * been read in. This eliminates the need for the inode lock,
1327 * and it also saves us from looking when it really isn't
1328 * necessary.
1330 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1331 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1332 XFS_DATA_FORK);
1333 if (error) {
1334 last_block = 0;
1336 } else {
1337 last_block = 0;
1339 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1340 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1342 last_byte = XFS_FSB_TO_B(mp, last_block);
1343 if (last_byte < 0) {
1344 return XFS_MAXIOFFSET(mp);
1346 last_byte += (1 << mp->m_writeio_log);
1347 if (last_byte < 0) {
1348 return XFS_MAXIOFFSET(mp);
1350 return last_byte;
1353 #if defined(XFS_RW_TRACE)
1354 STATIC void
1355 xfs_itrunc_trace(
1356 int tag,
1357 xfs_inode_t *ip,
1358 int flag,
1359 xfs_fsize_t new_size,
1360 xfs_off_t toss_start,
1361 xfs_off_t toss_finish)
1363 if (ip->i_rwtrace == NULL) {
1364 return;
1367 ktrace_enter(ip->i_rwtrace,
1368 (void*)((long)tag),
1369 (void*)ip,
1370 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1371 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1372 (void*)((long)flag),
1373 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1374 (void*)(unsigned long)(new_size & 0xffffffff),
1375 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1376 (void*)(unsigned long)(toss_start & 0xffffffff),
1377 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1378 (void*)(unsigned long)(toss_finish & 0xffffffff),
1379 (void*)(unsigned long)current_cpu(),
1380 (void*)0,
1381 (void*)0,
1382 (void*)0,
1383 (void*)0);
1385 #else
1386 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1387 #endif
1390 * Start the truncation of the file to new_size. The new size
1391 * must be smaller than the current size. This routine will
1392 * clear the buffer and page caches of file data in the removed
1393 * range, and xfs_itruncate_finish() will remove the underlying
1394 * disk blocks.
1396 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1397 * must NOT have the inode lock held at all. This is because we're
1398 * calling into the buffer/page cache code and we can't hold the
1399 * inode lock when we do so.
1401 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1402 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1403 * in the case that the caller is locking things out of order and
1404 * may not be able to call xfs_itruncate_finish() with the inode lock
1405 * held without dropping the I/O lock. If the caller must drop the
1406 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1407 * must be called again with all the same restrictions as the initial
1408 * call.
1410 void
1411 xfs_itruncate_start(
1412 xfs_inode_t *ip,
1413 uint flags,
1414 xfs_fsize_t new_size)
1416 xfs_fsize_t last_byte;
1417 xfs_off_t toss_start;
1418 xfs_mount_t *mp;
1419 vnode_t *vp;
1421 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1422 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1423 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1424 (flags == XFS_ITRUNC_MAYBE));
1426 mp = ip->i_mount;
1427 vp = XFS_ITOV(ip);
1429 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1430 * overlapping the region being removed. We have to use
1431 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1432 * caller may not be able to finish the truncate without
1433 * dropping the inode's I/O lock. Make sure
1434 * to catch any pages brought in by buffers overlapping
1435 * the EOF by searching out beyond the isize by our
1436 * block size. We round new_size up to a block boundary
1437 * so that we don't toss things on the same block as
1438 * new_size but before it.
1440 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1441 * call remapf() over the same region if the file is mapped.
1442 * This frees up mapped file references to the pages in the
1443 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1444 * that we get the latest mapped changes flushed out.
1446 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1447 toss_start = XFS_FSB_TO_B(mp, toss_start);
1448 if (toss_start < 0) {
1450 * The place to start tossing is beyond our maximum
1451 * file size, so there is no way that the data extended
1452 * out there.
1454 return;
1456 last_byte = xfs_file_last_byte(ip);
1457 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1458 last_byte);
1459 if (last_byte > toss_start) {
1460 if (flags & XFS_ITRUNC_DEFINITE) {
1461 VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1462 } else {
1463 VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1467 #ifdef DEBUG
1468 if (new_size == 0) {
1469 ASSERT(VN_CACHED(vp) == 0);
1471 #endif
1475 * Shrink the file to the given new_size. The new
1476 * size must be smaller than the current size.
1477 * This will free up the underlying blocks
1478 * in the removed range after a call to xfs_itruncate_start()
1479 * or xfs_atruncate_start().
1481 * The transaction passed to this routine must have made
1482 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1483 * This routine may commit the given transaction and
1484 * start new ones, so make sure everything involved in
1485 * the transaction is tidy before calling here.
1486 * Some transaction will be returned to the caller to be
1487 * committed. The incoming transaction must already include
1488 * the inode, and both inode locks must be held exclusively.
1489 * The inode must also be "held" within the transaction. On
1490 * return the inode will be "held" within the returned transaction.
1491 * This routine does NOT require any disk space to be reserved
1492 * for it within the transaction.
1494 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1495 * and it indicates the fork which is to be truncated. For the
1496 * attribute fork we only support truncation to size 0.
1498 * We use the sync parameter to indicate whether or not the first
1499 * transaction we perform might have to be synchronous. For the attr fork,
1500 * it needs to be so if the unlink of the inode is not yet known to be
1501 * permanent in the log. This keeps us from freeing and reusing the
1502 * blocks of the attribute fork before the unlink of the inode becomes
1503 * permanent.
1505 * For the data fork, we normally have to run synchronously if we're
1506 * being called out of the inactive path or we're being called
1507 * out of the create path where we're truncating an existing file.
1508 * Either way, the truncate needs to be sync so blocks don't reappear
1509 * in the file with altered data in case of a crash. wsync filesystems
1510 * can run the first case async because anything that shrinks the inode
1511 * has to run sync so by the time we're called here from inactive, the
1512 * inode size is permanently set to 0.
1514 * Calls from the truncate path always need to be sync unless we're
1515 * in a wsync filesystem and the file has already been unlinked.
1517 * The caller is responsible for correctly setting the sync parameter.
1518 * It gets too hard for us to guess here which path we're being called
1519 * out of just based on inode state.
1522 xfs_itruncate_finish(
1523 xfs_trans_t **tp,
1524 xfs_inode_t *ip,
1525 xfs_fsize_t new_size,
1526 int fork,
1527 int sync)
1529 xfs_fsblock_t first_block;
1530 xfs_fileoff_t first_unmap_block;
1531 xfs_fileoff_t last_block;
1532 xfs_filblks_t unmap_len=0;
1533 xfs_mount_t *mp;
1534 xfs_trans_t *ntp;
1535 int done;
1536 int committed;
1537 xfs_bmap_free_t free_list;
1538 int error;
1540 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1541 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1542 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1543 ASSERT(*tp != NULL);
1544 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1545 ASSERT(ip->i_transp == *tp);
1546 ASSERT(ip->i_itemp != NULL);
1547 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1550 ntp = *tp;
1551 mp = (ntp)->t_mountp;
1552 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1555 * We only support truncating the entire attribute fork.
1557 if (fork == XFS_ATTR_FORK) {
1558 new_size = 0LL;
1560 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1561 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1563 * The first thing we do is set the size to new_size permanently
1564 * on disk. This way we don't have to worry about anyone ever
1565 * being able to look at the data being freed even in the face
1566 * of a crash. What we're getting around here is the case where
1567 * we free a block, it is allocated to another file, it is written
1568 * to, and then we crash. If the new data gets written to the
1569 * file but the log buffers containing the free and reallocation
1570 * don't, then we'd end up with garbage in the blocks being freed.
1571 * As long as we make the new_size permanent before actually
1572 * freeing any blocks it doesn't matter if they get writtten to.
1574 * The callers must signal into us whether or not the size
1575 * setting here must be synchronous. There are a few cases
1576 * where it doesn't have to be synchronous. Those cases
1577 * occur if the file is unlinked and we know the unlink is
1578 * permanent or if the blocks being truncated are guaranteed
1579 * to be beyond the inode eof (regardless of the link count)
1580 * and the eof value is permanent. Both of these cases occur
1581 * only on wsync-mounted filesystems. In those cases, we're
1582 * guaranteed that no user will ever see the data in the blocks
1583 * that are being truncated so the truncate can run async.
1584 * In the free beyond eof case, the file may wind up with
1585 * more blocks allocated to it than it needs if we crash
1586 * and that won't get fixed until the next time the file
1587 * is re-opened and closed but that's ok as that shouldn't
1588 * be too many blocks.
1590 * However, we can't just make all wsync xactions run async
1591 * because there's one call out of the create path that needs
1592 * to run sync where it's truncating an existing file to size
1593 * 0 whose size is > 0.
1595 * It's probably possible to come up with a test in this
1596 * routine that would correctly distinguish all the above
1597 * cases from the values of the function parameters and the
1598 * inode state but for sanity's sake, I've decided to let the
1599 * layers above just tell us. It's simpler to correctly figure
1600 * out in the layer above exactly under what conditions we
1601 * can run async and I think it's easier for others read and
1602 * follow the logic in case something has to be changed.
1603 * cscope is your friend -- rcc.
1605 * The attribute fork is much simpler.
1607 * For the attribute fork we allow the caller to tell us whether
1608 * the unlink of the inode that led to this call is yet permanent
1609 * in the on disk log. If it is not and we will be freeing extents
1610 * in this inode then we make the first transaction synchronous
1611 * to make sure that the unlink is permanent by the time we free
1612 * the blocks.
1614 if (fork == XFS_DATA_FORK) {
1615 if (ip->i_d.di_nextents > 0) {
1616 ip->i_d.di_size = new_size;
1617 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1619 } else if (sync) {
1620 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1621 if (ip->i_d.di_anextents > 0)
1622 xfs_trans_set_sync(ntp);
1624 ASSERT(fork == XFS_DATA_FORK ||
1625 (fork == XFS_ATTR_FORK &&
1626 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1627 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1630 * Since it is possible for space to become allocated beyond
1631 * the end of the file (in a crash where the space is allocated
1632 * but the inode size is not yet updated), simply remove any
1633 * blocks which show up between the new EOF and the maximum
1634 * possible file size. If the first block to be removed is
1635 * beyond the maximum file size (ie it is the same as last_block),
1636 * then there is nothing to do.
1638 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1639 ASSERT(first_unmap_block <= last_block);
1640 done = 0;
1641 if (last_block == first_unmap_block) {
1642 done = 1;
1643 } else {
1644 unmap_len = last_block - first_unmap_block + 1;
1646 while (!done) {
1648 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1649 * will tell us whether it freed the entire range or
1650 * not. If this is a synchronous mount (wsync),
1651 * then we can tell bunmapi to keep all the
1652 * transactions asynchronous since the unlink
1653 * transaction that made this inode inactive has
1654 * already hit the disk. There's no danger of
1655 * the freed blocks being reused, there being a
1656 * crash, and the reused blocks suddenly reappearing
1657 * in this file with garbage in them once recovery
1658 * runs.
1660 XFS_BMAP_INIT(&free_list, &first_block);
1661 error = xfs_bunmapi(ntp, ip, first_unmap_block,
1662 unmap_len,
1663 XFS_BMAPI_AFLAG(fork) |
1664 (sync ? 0 : XFS_BMAPI_ASYNC),
1665 XFS_ITRUNC_MAX_EXTENTS,
1666 &first_block, &free_list, &done);
1667 if (error) {
1669 * If the bunmapi call encounters an error,
1670 * return to the caller where the transaction
1671 * can be properly aborted. We just need to
1672 * make sure we're not holding any resources
1673 * that we were not when we came in.
1675 xfs_bmap_cancel(&free_list);
1676 return error;
1680 * Duplicate the transaction that has the permanent
1681 * reservation and commit the old transaction.
1683 error = xfs_bmap_finish(tp, &free_list, first_block,
1684 &committed);
1685 ntp = *tp;
1686 if (error) {
1688 * If the bmap finish call encounters an error,
1689 * return to the caller where the transaction
1690 * can be properly aborted. We just need to
1691 * make sure we're not holding any resources
1692 * that we were not when we came in.
1694 * Aborting from this point might lose some
1695 * blocks in the file system, but oh well.
1697 xfs_bmap_cancel(&free_list);
1698 if (committed) {
1700 * If the passed in transaction committed
1701 * in xfs_bmap_finish(), then we want to
1702 * add the inode to this one before returning.
1703 * This keeps things simple for the higher
1704 * level code, because it always knows that
1705 * the inode is locked and held in the
1706 * transaction that returns to it whether
1707 * errors occur or not. We don't mark the
1708 * inode dirty so that this transaction can
1709 * be easily aborted if possible.
1711 xfs_trans_ijoin(ntp, ip,
1712 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1713 xfs_trans_ihold(ntp, ip);
1715 return error;
1718 if (committed) {
1720 * The first xact was committed,
1721 * so add the inode to the new one.
1722 * Mark it dirty so it will be logged
1723 * and moved forward in the log as
1724 * part of every commit.
1726 xfs_trans_ijoin(ntp, ip,
1727 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1728 xfs_trans_ihold(ntp, ip);
1729 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1731 ntp = xfs_trans_dup(ntp);
1732 (void) xfs_trans_commit(*tp, 0, NULL);
1733 *tp = ntp;
1734 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1735 XFS_TRANS_PERM_LOG_RES,
1736 XFS_ITRUNCATE_LOG_COUNT);
1738 * Add the inode being truncated to the next chained
1739 * transaction.
1741 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1742 xfs_trans_ihold(ntp, ip);
1743 if (error)
1744 return (error);
1747 * Only update the size in the case of the data fork, but
1748 * always re-log the inode so that our permanent transaction
1749 * can keep on rolling it forward in the log.
1751 if (fork == XFS_DATA_FORK) {
1752 xfs_isize_check(mp, ip, new_size);
1753 ip->i_d.di_size = new_size;
1755 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1756 ASSERT((new_size != 0) ||
1757 (fork == XFS_ATTR_FORK) ||
1758 (ip->i_delayed_blks == 0));
1759 ASSERT((new_size != 0) ||
1760 (fork == XFS_ATTR_FORK) ||
1761 (ip->i_d.di_nextents == 0));
1762 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1763 return 0;
1768 * xfs_igrow_start
1770 * Do the first part of growing a file: zero any data in the last
1771 * block that is beyond the old EOF. We need to do this before
1772 * the inode is joined to the transaction to modify the i_size.
1773 * That way we can drop the inode lock and call into the buffer
1774 * cache to get the buffer mapping the EOF.
1777 xfs_igrow_start(
1778 xfs_inode_t *ip,
1779 xfs_fsize_t new_size,
1780 cred_t *credp)
1782 xfs_fsize_t isize;
1783 int error;
1785 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1786 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1787 ASSERT(new_size > ip->i_d.di_size);
1789 error = 0;
1790 isize = ip->i_d.di_size;
1792 * Zero any pages that may have been created by
1793 * xfs_write_file() beyond the end of the file
1794 * and any blocks between the old and new file sizes.
1796 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize,
1797 new_size);
1798 return error;
1802 * xfs_igrow_finish
1804 * This routine is called to extend the size of a file.
1805 * The inode must have both the iolock and the ilock locked
1806 * for update and it must be a part of the current transaction.
1807 * The xfs_igrow_start() function must have been called previously.
1808 * If the change_flag is not zero, the inode change timestamp will
1809 * be updated.
1811 void
1812 xfs_igrow_finish(
1813 xfs_trans_t *tp,
1814 xfs_inode_t *ip,
1815 xfs_fsize_t new_size,
1816 int change_flag)
1818 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1819 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1820 ASSERT(ip->i_transp == tp);
1821 ASSERT(new_size > ip->i_d.di_size);
1824 * Update the file size. Update the inode change timestamp
1825 * if change_flag set.
1827 ip->i_d.di_size = new_size;
1828 if (change_flag)
1829 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1830 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1836 * This is called when the inode's link count goes to 0.
1837 * We place the on-disk inode on a list in the AGI. It
1838 * will be pulled from this list when the inode is freed.
1841 xfs_iunlink(
1842 xfs_trans_t *tp,
1843 xfs_inode_t *ip)
1845 xfs_mount_t *mp;
1846 xfs_agi_t *agi;
1847 xfs_dinode_t *dip;
1848 xfs_buf_t *agibp;
1849 xfs_buf_t *ibp;
1850 xfs_agnumber_t agno;
1851 xfs_daddr_t agdaddr;
1852 xfs_agino_t agino;
1853 short bucket_index;
1854 int offset;
1855 int error;
1856 int agi_ok;
1858 ASSERT(ip->i_d.di_nlink == 0);
1859 ASSERT(ip->i_d.di_mode != 0);
1860 ASSERT(ip->i_transp == tp);
1862 mp = tp->t_mountp;
1864 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1865 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1868 * Get the agi buffer first. It ensures lock ordering
1869 * on the list.
1871 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1872 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1873 if (error) {
1874 return error;
1877 * Validate the magic number of the agi block.
1879 agi = XFS_BUF_TO_AGI(agibp);
1880 agi_ok =
1881 INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
1882 XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
1883 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1884 XFS_RANDOM_IUNLINK))) {
1885 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1886 xfs_trans_brelse(tp, agibp);
1887 return XFS_ERROR(EFSCORRUPTED);
1890 * Get the index into the agi hash table for the
1891 * list this inode will go on.
1893 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1894 ASSERT(agino != 0);
1895 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1896 ASSERT(agi->agi_unlinked[bucket_index]);
1897 ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != agino);
1899 if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO) {
1901 * There is already another inode in the bucket we need
1902 * to add ourselves to. Add us at the front of the list.
1903 * Here we put the head pointer into our next pointer,
1904 * and then we fall through to point the head at us.
1906 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1907 if (error) {
1908 return error;
1910 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1911 ASSERT(dip->di_next_unlinked);
1912 /* both on-disk, don't endian flip twice */
1913 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1914 offset = ip->i_boffset +
1915 offsetof(xfs_dinode_t, di_next_unlinked);
1916 xfs_trans_inode_buf(tp, ibp);
1917 xfs_trans_log_buf(tp, ibp, offset,
1918 (offset + sizeof(xfs_agino_t) - 1));
1919 xfs_inobp_check(mp, ibp);
1923 * Point the bucket head pointer at the inode being inserted.
1925 ASSERT(agino != 0);
1926 INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, agino);
1927 offset = offsetof(xfs_agi_t, agi_unlinked) +
1928 (sizeof(xfs_agino_t) * bucket_index);
1929 xfs_trans_log_buf(tp, agibp, offset,
1930 (offset + sizeof(xfs_agino_t) - 1));
1931 return 0;
1935 * Pull the on-disk inode from the AGI unlinked list.
1937 STATIC int
1938 xfs_iunlink_remove(
1939 xfs_trans_t *tp,
1940 xfs_inode_t *ip)
1942 xfs_ino_t next_ino;
1943 xfs_mount_t *mp;
1944 xfs_agi_t *agi;
1945 xfs_dinode_t *dip;
1946 xfs_buf_t *agibp;
1947 xfs_buf_t *ibp;
1948 xfs_agnumber_t agno;
1949 xfs_daddr_t agdaddr;
1950 xfs_agino_t agino;
1951 xfs_agino_t next_agino;
1952 xfs_buf_t *last_ibp;
1953 xfs_dinode_t *last_dip;
1954 short bucket_index;
1955 int offset, last_offset;
1956 int error;
1957 int agi_ok;
1960 * First pull the on-disk inode from the AGI unlinked list.
1962 mp = tp->t_mountp;
1964 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1965 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1968 * Get the agi buffer first. It ensures lock ordering
1969 * on the list.
1971 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1972 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1973 if (error) {
1974 cmn_err(CE_WARN,
1975 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1976 error, mp->m_fsname);
1977 return error;
1980 * Validate the magic number of the agi block.
1982 agi = XFS_BUF_TO_AGI(agibp);
1983 agi_ok =
1984 INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
1985 XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
1986 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1987 XFS_RANDOM_IUNLINK_REMOVE))) {
1988 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1989 mp, agi);
1990 xfs_trans_brelse(tp, agibp);
1991 cmn_err(CE_WARN,
1992 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
1993 mp->m_fsname);
1994 return XFS_ERROR(EFSCORRUPTED);
1997 * Get the index into the agi hash table for the
1998 * list this inode will go on.
2000 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2001 ASSERT(agino != 0);
2002 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2003 ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO);
2004 ASSERT(agi->agi_unlinked[bucket_index]);
2006 if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) == agino) {
2008 * We're at the head of the list. Get the inode's
2009 * on-disk buffer to see if there is anyone after us
2010 * on the list. Only modify our next pointer if it
2011 * is not already NULLAGINO. This saves us the overhead
2012 * of dealing with the buffer when there is no need to
2013 * change it.
2015 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2016 if (error) {
2017 cmn_err(CE_WARN,
2018 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2019 error, mp->m_fsname);
2020 return error;
2022 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2023 ASSERT(next_agino != 0);
2024 if (next_agino != NULLAGINO) {
2025 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2026 offset = ip->i_boffset +
2027 offsetof(xfs_dinode_t, di_next_unlinked);
2028 xfs_trans_inode_buf(tp, ibp);
2029 xfs_trans_log_buf(tp, ibp, offset,
2030 (offset + sizeof(xfs_agino_t) - 1));
2031 xfs_inobp_check(mp, ibp);
2032 } else {
2033 xfs_trans_brelse(tp, ibp);
2036 * Point the bucket head pointer at the next inode.
2038 ASSERT(next_agino != 0);
2039 ASSERT(next_agino != agino);
2040 INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, next_agino);
2041 offset = offsetof(xfs_agi_t, agi_unlinked) +
2042 (sizeof(xfs_agino_t) * bucket_index);
2043 xfs_trans_log_buf(tp, agibp, offset,
2044 (offset + sizeof(xfs_agino_t) - 1));
2045 } else {
2047 * We need to search the list for the inode being freed.
2049 next_agino = INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT);
2050 last_ibp = NULL;
2051 while (next_agino != agino) {
2053 * If the last inode wasn't the one pointing to
2054 * us, then release its buffer since we're not
2055 * going to do anything with it.
2057 if (last_ibp != NULL) {
2058 xfs_trans_brelse(tp, last_ibp);
2060 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2061 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2062 &last_ibp, &last_offset);
2063 if (error) {
2064 cmn_err(CE_WARN,
2065 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2066 error, mp->m_fsname);
2067 return error;
2069 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2070 ASSERT(next_agino != NULLAGINO);
2071 ASSERT(next_agino != 0);
2074 * Now last_ibp points to the buffer previous to us on
2075 * the unlinked list. Pull us from the list.
2077 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2078 if (error) {
2079 cmn_err(CE_WARN,
2080 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2081 error, mp->m_fsname);
2082 return error;
2084 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2085 ASSERT(next_agino != 0);
2086 ASSERT(next_agino != agino);
2087 if (next_agino != NULLAGINO) {
2088 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2089 offset = ip->i_boffset +
2090 offsetof(xfs_dinode_t, di_next_unlinked);
2091 xfs_trans_inode_buf(tp, ibp);
2092 xfs_trans_log_buf(tp, ibp, offset,
2093 (offset + sizeof(xfs_agino_t) - 1));
2094 xfs_inobp_check(mp, ibp);
2095 } else {
2096 xfs_trans_brelse(tp, ibp);
2099 * Point the previous inode on the list to the next inode.
2101 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2102 ASSERT(next_agino != 0);
2103 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2104 xfs_trans_inode_buf(tp, last_ibp);
2105 xfs_trans_log_buf(tp, last_ibp, offset,
2106 (offset + sizeof(xfs_agino_t) - 1));
2107 xfs_inobp_check(mp, last_ibp);
2109 return 0;
2112 static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2114 return (((ip->i_itemp == NULL) ||
2115 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2116 (ip->i_update_core == 0));
2119 STATIC void
2120 xfs_ifree_cluster(
2121 xfs_inode_t *free_ip,
2122 xfs_trans_t *tp,
2123 xfs_ino_t inum)
2125 xfs_mount_t *mp = free_ip->i_mount;
2126 int blks_per_cluster;
2127 int nbufs;
2128 int ninodes;
2129 int i, j, found, pre_flushed;
2130 xfs_daddr_t blkno;
2131 xfs_buf_t *bp;
2132 xfs_ihash_t *ih;
2133 xfs_inode_t *ip, **ip_found;
2134 xfs_inode_log_item_t *iip;
2135 xfs_log_item_t *lip;
2136 SPLDECL(s);
2138 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2139 blks_per_cluster = 1;
2140 ninodes = mp->m_sb.sb_inopblock;
2141 nbufs = XFS_IALLOC_BLOCKS(mp);
2142 } else {
2143 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2144 mp->m_sb.sb_blocksize;
2145 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2146 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2149 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2151 for (j = 0; j < nbufs; j++, inum += ninodes) {
2152 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2153 XFS_INO_TO_AGBNO(mp, inum));
2157 * Look for each inode in memory and attempt to lock it,
2158 * we can be racing with flush and tail pushing here.
2159 * any inode we get the locks on, add to an array of
2160 * inode items to process later.
2162 * The get the buffer lock, we could beat a flush
2163 * or tail pushing thread to the lock here, in which
2164 * case they will go looking for the inode buffer
2165 * and fail, we need some other form of interlock
2166 * here.
2168 found = 0;
2169 for (i = 0; i < ninodes; i++) {
2170 ih = XFS_IHASH(mp, inum + i);
2171 read_lock(&ih->ih_lock);
2172 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2173 if (ip->i_ino == inum + i)
2174 break;
2177 /* Inode not in memory or we found it already,
2178 * nothing to do
2180 if (!ip || (ip->i_flags & XFS_ISTALE)) {
2181 read_unlock(&ih->ih_lock);
2182 continue;
2185 if (xfs_inode_clean(ip)) {
2186 read_unlock(&ih->ih_lock);
2187 continue;
2190 /* If we can get the locks then add it to the
2191 * list, otherwise by the time we get the bp lock
2192 * below it will already be attached to the
2193 * inode buffer.
2196 /* This inode will already be locked - by us, lets
2197 * keep it that way.
2200 if (ip == free_ip) {
2201 if (xfs_iflock_nowait(ip)) {
2202 ip->i_flags |= XFS_ISTALE;
2204 if (xfs_inode_clean(ip)) {
2205 xfs_ifunlock(ip);
2206 } else {
2207 ip_found[found++] = ip;
2210 read_unlock(&ih->ih_lock);
2211 continue;
2214 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2215 if (xfs_iflock_nowait(ip)) {
2216 ip->i_flags |= XFS_ISTALE;
2218 if (xfs_inode_clean(ip)) {
2219 xfs_ifunlock(ip);
2220 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2221 } else {
2222 ip_found[found++] = ip;
2224 } else {
2225 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2229 read_unlock(&ih->ih_lock);
2232 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2233 mp->m_bsize * blks_per_cluster,
2234 XFS_BUF_LOCK);
2236 pre_flushed = 0;
2237 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2238 while (lip) {
2239 if (lip->li_type == XFS_LI_INODE) {
2240 iip = (xfs_inode_log_item_t *)lip;
2241 ASSERT(iip->ili_logged == 1);
2242 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2243 AIL_LOCK(mp,s);
2244 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2245 AIL_UNLOCK(mp, s);
2246 iip->ili_inode->i_flags |= XFS_ISTALE;
2247 pre_flushed++;
2249 lip = lip->li_bio_list;
2252 for (i = 0; i < found; i++) {
2253 ip = ip_found[i];
2254 iip = ip->i_itemp;
2256 if (!iip) {
2257 ip->i_update_core = 0;
2258 xfs_ifunlock(ip);
2259 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2260 continue;
2263 iip->ili_last_fields = iip->ili_format.ilf_fields;
2264 iip->ili_format.ilf_fields = 0;
2265 iip->ili_logged = 1;
2266 AIL_LOCK(mp,s);
2267 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2268 AIL_UNLOCK(mp, s);
2270 xfs_buf_attach_iodone(bp,
2271 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2272 xfs_istale_done, (xfs_log_item_t *)iip);
2273 if (ip != free_ip) {
2274 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2278 if (found || pre_flushed)
2279 xfs_trans_stale_inode_buf(tp, bp);
2280 xfs_trans_binval(tp, bp);
2283 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2287 * This is called to return an inode to the inode free list.
2288 * The inode should already be truncated to 0 length and have
2289 * no pages associated with it. This routine also assumes that
2290 * the inode is already a part of the transaction.
2292 * The on-disk copy of the inode will have been added to the list
2293 * of unlinked inodes in the AGI. We need to remove the inode from
2294 * that list atomically with respect to freeing it here.
2297 xfs_ifree(
2298 xfs_trans_t *tp,
2299 xfs_inode_t *ip,
2300 xfs_bmap_free_t *flist)
2302 int error;
2303 int delete;
2304 xfs_ino_t first_ino;
2306 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2307 ASSERT(ip->i_transp == tp);
2308 ASSERT(ip->i_d.di_nlink == 0);
2309 ASSERT(ip->i_d.di_nextents == 0);
2310 ASSERT(ip->i_d.di_anextents == 0);
2311 ASSERT((ip->i_d.di_size == 0) ||
2312 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2313 ASSERT(ip->i_d.di_nblocks == 0);
2316 * Pull the on-disk inode from the AGI unlinked list.
2318 error = xfs_iunlink_remove(tp, ip);
2319 if (error != 0) {
2320 return error;
2323 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2324 if (error != 0) {
2325 return error;
2327 ip->i_d.di_mode = 0; /* mark incore inode as free */
2328 ip->i_d.di_flags = 0;
2329 ip->i_d.di_dmevmask = 0;
2330 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2331 ip->i_df.if_ext_max =
2332 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2333 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2334 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2336 * Bump the generation count so no one will be confused
2337 * by reincarnations of this inode.
2339 ip->i_d.di_gen++;
2340 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2342 if (delete) {
2343 xfs_ifree_cluster(ip, tp, first_ino);
2346 return 0;
2350 * Reallocate the space for if_broot based on the number of records
2351 * being added or deleted as indicated in rec_diff. Move the records
2352 * and pointers in if_broot to fit the new size. When shrinking this
2353 * will eliminate holes between the records and pointers created by
2354 * the caller. When growing this will create holes to be filled in
2355 * by the caller.
2357 * The caller must not request to add more records than would fit in
2358 * the on-disk inode root. If the if_broot is currently NULL, then
2359 * if we adding records one will be allocated. The caller must also
2360 * not request that the number of records go below zero, although
2361 * it can go to zero.
2363 * ip -- the inode whose if_broot area is changing
2364 * ext_diff -- the change in the number of records, positive or negative,
2365 * requested for the if_broot array.
2367 void
2368 xfs_iroot_realloc(
2369 xfs_inode_t *ip,
2370 int rec_diff,
2371 int whichfork)
2373 int cur_max;
2374 xfs_ifork_t *ifp;
2375 xfs_bmbt_block_t *new_broot;
2376 int new_max;
2377 size_t new_size;
2378 char *np;
2379 char *op;
2382 * Handle the degenerate case quietly.
2384 if (rec_diff == 0) {
2385 return;
2388 ifp = XFS_IFORK_PTR(ip, whichfork);
2389 if (rec_diff > 0) {
2391 * If there wasn't any memory allocated before, just
2392 * allocate it now and get out.
2394 if (ifp->if_broot_bytes == 0) {
2395 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2396 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2397 KM_SLEEP);
2398 ifp->if_broot_bytes = (int)new_size;
2399 return;
2403 * If there is already an existing if_broot, then we need
2404 * to realloc() it and shift the pointers to their new
2405 * location. The records don't change location because
2406 * they are kept butted up against the btree block header.
2408 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2409 new_max = cur_max + rec_diff;
2410 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2411 ifp->if_broot = (xfs_bmbt_block_t *)
2412 kmem_realloc(ifp->if_broot,
2413 new_size,
2414 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2415 KM_SLEEP);
2416 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2417 ifp->if_broot_bytes);
2418 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2419 (int)new_size);
2420 ifp->if_broot_bytes = (int)new_size;
2421 ASSERT(ifp->if_broot_bytes <=
2422 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2423 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2424 return;
2428 * rec_diff is less than 0. In this case, we are shrinking the
2429 * if_broot buffer. It must already exist. If we go to zero
2430 * records, just get rid of the root and clear the status bit.
2432 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2433 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2434 new_max = cur_max + rec_diff;
2435 ASSERT(new_max >= 0);
2436 if (new_max > 0)
2437 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2438 else
2439 new_size = 0;
2440 if (new_size > 0) {
2441 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2443 * First copy over the btree block header.
2445 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2446 } else {
2447 new_broot = NULL;
2448 ifp->if_flags &= ~XFS_IFBROOT;
2452 * Only copy the records and pointers if there are any.
2454 if (new_max > 0) {
2456 * First copy the records.
2458 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2459 ifp->if_broot_bytes);
2460 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2461 (int)new_size);
2462 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2465 * Then copy the pointers.
2467 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2468 ifp->if_broot_bytes);
2469 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2470 (int)new_size);
2471 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2473 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2474 ifp->if_broot = new_broot;
2475 ifp->if_broot_bytes = (int)new_size;
2476 ASSERT(ifp->if_broot_bytes <=
2477 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2478 return;
2483 * This is called when the amount of space needed for if_extents
2484 * is increased or decreased. The change in size is indicated by
2485 * the number of extents that need to be added or deleted in the
2486 * ext_diff parameter.
2488 * If the amount of space needed has decreased below the size of the
2489 * inline buffer, then switch to using the inline buffer. Otherwise,
2490 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2491 * to what is needed.
2493 * ip -- the inode whose if_extents area is changing
2494 * ext_diff -- the change in the number of extents, positive or negative,
2495 * requested for the if_extents array.
2497 void
2498 xfs_iext_realloc(
2499 xfs_inode_t *ip,
2500 int ext_diff,
2501 int whichfork)
2503 int byte_diff;
2504 xfs_ifork_t *ifp;
2505 int new_size;
2506 uint rnew_size;
2508 if (ext_diff == 0) {
2509 return;
2512 ifp = XFS_IFORK_PTR(ip, whichfork);
2513 byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t);
2514 new_size = (int)ifp->if_bytes + byte_diff;
2515 ASSERT(new_size >= 0);
2517 if (new_size == 0) {
2518 if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2519 ASSERT(ifp->if_real_bytes != 0);
2520 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2522 ifp->if_u1.if_extents = NULL;
2523 rnew_size = 0;
2524 } else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) {
2526 * If the valid extents can fit in if_inline_ext,
2527 * copy them from the malloc'd vector and free it.
2529 if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2531 * For now, empty files are format EXTENTS,
2532 * so the if_extents pointer is null.
2534 if (ifp->if_u1.if_extents) {
2535 memcpy(ifp->if_u2.if_inline_ext,
2536 ifp->if_u1.if_extents, new_size);
2537 kmem_free(ifp->if_u1.if_extents,
2538 ifp->if_real_bytes);
2540 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2542 rnew_size = 0;
2543 } else {
2544 rnew_size = new_size;
2545 if ((rnew_size & (rnew_size - 1)) != 0)
2546 rnew_size = xfs_iroundup(rnew_size);
2548 * Stuck with malloc/realloc.
2550 if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) {
2551 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2552 kmem_alloc(rnew_size, KM_SLEEP);
2553 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
2554 sizeof(ifp->if_u2.if_inline_ext));
2555 } else if (rnew_size != ifp->if_real_bytes) {
2556 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2557 kmem_realloc(ifp->if_u1.if_extents,
2558 rnew_size,
2559 ifp->if_real_bytes,
2560 KM_NOFS);
2563 ifp->if_real_bytes = rnew_size;
2564 ifp->if_bytes = new_size;
2569 * This is called when the amount of space needed for if_data
2570 * is increased or decreased. The change in size is indicated by
2571 * the number of bytes that need to be added or deleted in the
2572 * byte_diff parameter.
2574 * If the amount of space needed has decreased below the size of the
2575 * inline buffer, then switch to using the inline buffer. Otherwise,
2576 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2577 * to what is needed.
2579 * ip -- the inode whose if_data area is changing
2580 * byte_diff -- the change in the number of bytes, positive or negative,
2581 * requested for the if_data array.
2583 void
2584 xfs_idata_realloc(
2585 xfs_inode_t *ip,
2586 int byte_diff,
2587 int whichfork)
2589 xfs_ifork_t *ifp;
2590 int new_size;
2591 int real_size;
2593 if (byte_diff == 0) {
2594 return;
2597 ifp = XFS_IFORK_PTR(ip, whichfork);
2598 new_size = (int)ifp->if_bytes + byte_diff;
2599 ASSERT(new_size >= 0);
2601 if (new_size == 0) {
2602 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2603 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2605 ifp->if_u1.if_data = NULL;
2606 real_size = 0;
2607 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2609 * If the valid extents/data can fit in if_inline_ext/data,
2610 * copy them from the malloc'd vector and free it.
2612 if (ifp->if_u1.if_data == NULL) {
2613 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2614 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2615 ASSERT(ifp->if_real_bytes != 0);
2616 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2617 new_size);
2618 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2619 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2621 real_size = 0;
2622 } else {
2624 * Stuck with malloc/realloc.
2625 * For inline data, the underlying buffer must be
2626 * a multiple of 4 bytes in size so that it can be
2627 * logged and stay on word boundaries. We enforce
2628 * that here.
2630 real_size = roundup(new_size, 4);
2631 if (ifp->if_u1.if_data == NULL) {
2632 ASSERT(ifp->if_real_bytes == 0);
2633 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2634 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2636 * Only do the realloc if the underlying size
2637 * is really changing.
2639 if (ifp->if_real_bytes != real_size) {
2640 ifp->if_u1.if_data =
2641 kmem_realloc(ifp->if_u1.if_data,
2642 real_size,
2643 ifp->if_real_bytes,
2644 KM_SLEEP);
2646 } else {
2647 ASSERT(ifp->if_real_bytes == 0);
2648 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2649 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2650 ifp->if_bytes);
2653 ifp->if_real_bytes = real_size;
2654 ifp->if_bytes = new_size;
2655 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2662 * Map inode to disk block and offset.
2664 * mp -- the mount point structure for the current file system
2665 * tp -- the current transaction
2666 * ino -- the inode number of the inode to be located
2667 * imap -- this structure is filled in with the information necessary
2668 * to retrieve the given inode from disk
2669 * flags -- flags to pass to xfs_dilocate indicating whether or not
2670 * lookups in the inode btree were OK or not
2673 xfs_imap(
2674 xfs_mount_t *mp,
2675 xfs_trans_t *tp,
2676 xfs_ino_t ino,
2677 xfs_imap_t *imap,
2678 uint flags)
2680 xfs_fsblock_t fsbno;
2681 int len;
2682 int off;
2683 int error;
2685 fsbno = imap->im_blkno ?
2686 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2687 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2688 if (error != 0) {
2689 return error;
2691 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2692 imap->im_len = XFS_FSB_TO_BB(mp, len);
2693 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2694 imap->im_ioffset = (ushort)off;
2695 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2696 return 0;
2699 void
2700 xfs_idestroy_fork(
2701 xfs_inode_t *ip,
2702 int whichfork)
2704 xfs_ifork_t *ifp;
2706 ifp = XFS_IFORK_PTR(ip, whichfork);
2707 if (ifp->if_broot != NULL) {
2708 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2709 ifp->if_broot = NULL;
2713 * If the format is local, then we can't have an extents
2714 * array so just look for an inline data array. If we're
2715 * not local then we may or may not have an extents list,
2716 * so check and free it up if we do.
2718 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2719 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2720 (ifp->if_u1.if_data != NULL)) {
2721 ASSERT(ifp->if_real_bytes != 0);
2722 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2723 ifp->if_u1.if_data = NULL;
2724 ifp->if_real_bytes = 0;
2726 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2727 (ifp->if_u1.if_extents != NULL) &&
2728 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) {
2729 ASSERT(ifp->if_real_bytes != 0);
2730 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2731 ifp->if_u1.if_extents = NULL;
2732 ifp->if_real_bytes = 0;
2734 ASSERT(ifp->if_u1.if_extents == NULL ||
2735 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2736 ASSERT(ifp->if_real_bytes == 0);
2737 if (whichfork == XFS_ATTR_FORK) {
2738 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2739 ip->i_afp = NULL;
2744 * This is called free all the memory associated with an inode.
2745 * It must free the inode itself and any buffers allocated for
2746 * if_extents/if_data and if_broot. It must also free the lock
2747 * associated with the inode.
2749 void
2750 xfs_idestroy(
2751 xfs_inode_t *ip)
2754 switch (ip->i_d.di_mode & S_IFMT) {
2755 case S_IFREG:
2756 case S_IFDIR:
2757 case S_IFLNK:
2758 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2759 break;
2761 if (ip->i_afp)
2762 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2763 mrfree(&ip->i_lock);
2764 mrfree(&ip->i_iolock);
2765 freesema(&ip->i_flock);
2766 #ifdef XFS_BMAP_TRACE
2767 ktrace_free(ip->i_xtrace);
2768 #endif
2769 #ifdef XFS_BMBT_TRACE
2770 ktrace_free(ip->i_btrace);
2771 #endif
2772 #ifdef XFS_RW_TRACE
2773 ktrace_free(ip->i_rwtrace);
2774 #endif
2775 #ifdef XFS_ILOCK_TRACE
2776 ktrace_free(ip->i_lock_trace);
2777 #endif
2778 #ifdef XFS_DIR2_TRACE
2779 ktrace_free(ip->i_dir_trace);
2780 #endif
2781 if (ip->i_itemp) {
2782 /* XXXdpd should be able to assert this but shutdown
2783 * is leaving the AIL behind. */
2784 ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2785 XFS_FORCED_SHUTDOWN(ip->i_mount));
2786 xfs_inode_item_destroy(ip);
2788 kmem_zone_free(xfs_inode_zone, ip);
2793 * Increment the pin count of the given buffer.
2794 * This value is protected by ipinlock spinlock in the mount structure.
2796 void
2797 xfs_ipin(
2798 xfs_inode_t *ip)
2800 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2802 atomic_inc(&ip->i_pincount);
2806 * Decrement the pin count of the given inode, and wake up
2807 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2808 * inode must have been previoulsy pinned with a call to xfs_ipin().
2810 void
2811 xfs_iunpin(
2812 xfs_inode_t *ip)
2814 ASSERT(atomic_read(&ip->i_pincount) > 0);
2816 if (atomic_dec_and_test(&ip->i_pincount)) {
2817 vnode_t *vp = XFS_ITOV_NULL(ip);
2819 /* make sync come back and flush this inode */
2820 if (vp) {
2821 struct inode *inode = LINVFS_GET_IP(vp);
2823 if (!(inode->i_state & I_NEW))
2824 mark_inode_dirty_sync(inode);
2827 wake_up(&ip->i_ipin_wait);
2832 * This is called to wait for the given inode to be unpinned.
2833 * It will sleep until this happens. The caller must have the
2834 * inode locked in at least shared mode so that the buffer cannot
2835 * be subsequently pinned once someone is waiting for it to be
2836 * unpinned.
2838 STATIC void
2839 xfs_iunpin_wait(
2840 xfs_inode_t *ip)
2842 xfs_inode_log_item_t *iip;
2843 xfs_lsn_t lsn;
2845 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2847 if (atomic_read(&ip->i_pincount) == 0) {
2848 return;
2851 iip = ip->i_itemp;
2852 if (iip && iip->ili_last_lsn) {
2853 lsn = iip->ili_last_lsn;
2854 } else {
2855 lsn = (xfs_lsn_t)0;
2859 * Give the log a push so we don't wait here too long.
2861 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2863 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2868 * xfs_iextents_copy()
2870 * This is called to copy the REAL extents (as opposed to the delayed
2871 * allocation extents) from the inode into the given buffer. It
2872 * returns the number of bytes copied into the buffer.
2874 * If there are no delayed allocation extents, then we can just
2875 * memcpy() the extents into the buffer. Otherwise, we need to
2876 * examine each extent in turn and skip those which are delayed.
2879 xfs_iextents_copy(
2880 xfs_inode_t *ip,
2881 xfs_bmbt_rec_t *buffer,
2882 int whichfork)
2884 int copied;
2885 xfs_bmbt_rec_t *dest_ep;
2886 xfs_bmbt_rec_t *ep;
2887 #ifdef XFS_BMAP_TRACE
2888 static char fname[] = "xfs_iextents_copy";
2889 #endif
2890 int i;
2891 xfs_ifork_t *ifp;
2892 int nrecs;
2893 xfs_fsblock_t start_block;
2895 ifp = XFS_IFORK_PTR(ip, whichfork);
2896 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2897 ASSERT(ifp->if_bytes > 0);
2899 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2900 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2901 ASSERT(nrecs > 0);
2904 * There are some delayed allocation extents in the
2905 * inode, so copy the extents one at a time and skip
2906 * the delayed ones. There must be at least one
2907 * non-delayed extent.
2909 ep = ifp->if_u1.if_extents;
2910 dest_ep = buffer;
2911 copied = 0;
2912 for (i = 0; i < nrecs; i++) {
2913 start_block = xfs_bmbt_get_startblock(ep);
2914 if (ISNULLSTARTBLOCK(start_block)) {
2916 * It's a delayed allocation extent, so skip it.
2918 ep++;
2919 continue;
2922 /* Translate to on disk format */
2923 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2924 (__uint64_t*)&dest_ep->l0);
2925 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2926 (__uint64_t*)&dest_ep->l1);
2927 dest_ep++;
2928 ep++;
2929 copied++;
2931 ASSERT(copied != 0);
2932 xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip));
2934 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2938 * Each of the following cases stores data into the same region
2939 * of the on-disk inode, so only one of them can be valid at
2940 * any given time. While it is possible to have conflicting formats
2941 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2942 * in EXTENTS format, this can only happen when the fork has
2943 * changed formats after being modified but before being flushed.
2944 * In these cases, the format always takes precedence, because the
2945 * format indicates the current state of the fork.
2947 /*ARGSUSED*/
2948 STATIC int
2949 xfs_iflush_fork(
2950 xfs_inode_t *ip,
2951 xfs_dinode_t *dip,
2952 xfs_inode_log_item_t *iip,
2953 int whichfork,
2954 xfs_buf_t *bp)
2956 char *cp;
2957 xfs_ifork_t *ifp;
2958 xfs_mount_t *mp;
2959 #ifdef XFS_TRANS_DEBUG
2960 int first;
2961 #endif
2962 static const short brootflag[2] =
2963 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2964 static const short dataflag[2] =
2965 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2966 static const short extflag[2] =
2967 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2969 if (iip == NULL)
2970 return 0;
2971 ifp = XFS_IFORK_PTR(ip, whichfork);
2973 * This can happen if we gave up in iformat in an error path,
2974 * for the attribute fork.
2976 if (ifp == NULL) {
2977 ASSERT(whichfork == XFS_ATTR_FORK);
2978 return 0;
2980 cp = XFS_DFORK_PTR(dip, whichfork);
2981 mp = ip->i_mount;
2982 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2983 case XFS_DINODE_FMT_LOCAL:
2984 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2985 (ifp->if_bytes > 0)) {
2986 ASSERT(ifp->if_u1.if_data != NULL);
2987 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2988 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2990 if (whichfork == XFS_DATA_FORK) {
2991 if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
2992 XFS_ERROR_REPORT("xfs_iflush_fork",
2993 XFS_ERRLEVEL_LOW, mp);
2994 return XFS_ERROR(EFSCORRUPTED);
2997 break;
2999 case XFS_DINODE_FMT_EXTENTS:
3000 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
3001 !(iip->ili_format.ilf_fields & extflag[whichfork]));
3002 ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0));
3003 ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0));
3004 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
3005 (ifp->if_bytes > 0)) {
3006 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
3007 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
3008 whichfork);
3010 break;
3012 case XFS_DINODE_FMT_BTREE:
3013 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3014 (ifp->if_broot_bytes > 0)) {
3015 ASSERT(ifp->if_broot != NULL);
3016 ASSERT(ifp->if_broot_bytes <=
3017 (XFS_IFORK_SIZE(ip, whichfork) +
3018 XFS_BROOT_SIZE_ADJ));
3019 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3020 (xfs_bmdr_block_t *)cp,
3021 XFS_DFORK_SIZE(dip, mp, whichfork));
3023 break;
3025 case XFS_DINODE_FMT_DEV:
3026 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3027 ASSERT(whichfork == XFS_DATA_FORK);
3028 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
3030 break;
3032 case XFS_DINODE_FMT_UUID:
3033 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3034 ASSERT(whichfork == XFS_DATA_FORK);
3035 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3036 sizeof(uuid_t));
3038 break;
3040 default:
3041 ASSERT(0);
3042 break;
3045 return 0;
3049 * xfs_iflush() will write a modified inode's changes out to the
3050 * inode's on disk home. The caller must have the inode lock held
3051 * in at least shared mode and the inode flush semaphore must be
3052 * held as well. The inode lock will still be held upon return from
3053 * the call and the caller is free to unlock it.
3054 * The inode flush lock will be unlocked when the inode reaches the disk.
3055 * The flags indicate how the inode's buffer should be written out.
3058 xfs_iflush(
3059 xfs_inode_t *ip,
3060 uint flags)
3062 xfs_inode_log_item_t *iip;
3063 xfs_buf_t *bp;
3064 xfs_dinode_t *dip;
3065 xfs_mount_t *mp;
3066 int error;
3067 /* REFERENCED */
3068 xfs_chash_t *ch;
3069 xfs_inode_t *iq;
3070 int clcount; /* count of inodes clustered */
3071 int bufwasdelwri;
3072 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3073 SPLDECL(s);
3075 XFS_STATS_INC(xs_iflush_count);
3077 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3078 ASSERT(valusema(&ip->i_flock) <= 0);
3079 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3080 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3082 iip = ip->i_itemp;
3083 mp = ip->i_mount;
3086 * If the inode isn't dirty, then just release the inode
3087 * flush lock and do nothing.
3089 if ((ip->i_update_core == 0) &&
3090 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3091 ASSERT((iip != NULL) ?
3092 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3093 xfs_ifunlock(ip);
3094 return 0;
3098 * We can't flush the inode until it is unpinned, so
3099 * wait for it. We know noone new can pin it, because
3100 * we are holding the inode lock shared and you need
3101 * to hold it exclusively to pin the inode.
3103 xfs_iunpin_wait(ip);
3106 * This may have been unpinned because the filesystem is shutting
3107 * down forcibly. If that's the case we must not write this inode
3108 * to disk, because the log record didn't make it to disk!
3110 if (XFS_FORCED_SHUTDOWN(mp)) {
3111 ip->i_update_core = 0;
3112 if (iip)
3113 iip->ili_format.ilf_fields = 0;
3114 xfs_ifunlock(ip);
3115 return XFS_ERROR(EIO);
3119 * Get the buffer containing the on-disk inode.
3121 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0);
3122 if (error != 0) {
3123 xfs_ifunlock(ip);
3124 return error;
3128 * Decide how buffer will be flushed out. This is done before
3129 * the call to xfs_iflush_int because this field is zeroed by it.
3131 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3133 * Flush out the inode buffer according to the directions
3134 * of the caller. In the cases where the caller has given
3135 * us a choice choose the non-delwri case. This is because
3136 * the inode is in the AIL and we need to get it out soon.
3138 switch (flags) {
3139 case XFS_IFLUSH_SYNC:
3140 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3141 flags = 0;
3142 break;
3143 case XFS_IFLUSH_ASYNC:
3144 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3145 flags = INT_ASYNC;
3146 break;
3147 case XFS_IFLUSH_DELWRI:
3148 flags = INT_DELWRI;
3149 break;
3150 default:
3151 ASSERT(0);
3152 flags = 0;
3153 break;
3155 } else {
3156 switch (flags) {
3157 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3158 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3159 case XFS_IFLUSH_DELWRI:
3160 flags = INT_DELWRI;
3161 break;
3162 case XFS_IFLUSH_ASYNC:
3163 flags = INT_ASYNC;
3164 break;
3165 case XFS_IFLUSH_SYNC:
3166 flags = 0;
3167 break;
3168 default:
3169 ASSERT(0);
3170 flags = 0;
3171 break;
3176 * First flush out the inode that xfs_iflush was called with.
3178 error = xfs_iflush_int(ip, bp);
3179 if (error) {
3180 goto corrupt_out;
3184 * inode clustering:
3185 * see if other inodes can be gathered into this write
3188 ip->i_chash->chl_buf = bp;
3190 ch = XFS_CHASH(mp, ip->i_blkno);
3191 s = mutex_spinlock(&ch->ch_lock);
3193 clcount = 0;
3194 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3196 * Do an un-protected check to see if the inode is dirty and
3197 * is a candidate for flushing. These checks will be repeated
3198 * later after the appropriate locks are acquired.
3200 iip = iq->i_itemp;
3201 if ((iq->i_update_core == 0) &&
3202 ((iip == NULL) ||
3203 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3204 xfs_ipincount(iq) == 0) {
3205 continue;
3209 * Try to get locks. If any are unavailable,
3210 * then this inode cannot be flushed and is skipped.
3213 /* get inode locks (just i_lock) */
3214 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3215 /* get inode flush lock */
3216 if (xfs_iflock_nowait(iq)) {
3217 /* check if pinned */
3218 if (xfs_ipincount(iq) == 0) {
3219 /* arriving here means that
3220 * this inode can be flushed.
3221 * first re-check that it's
3222 * dirty
3224 iip = iq->i_itemp;
3225 if ((iq->i_update_core != 0)||
3226 ((iip != NULL) &&
3227 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3228 clcount++;
3229 error = xfs_iflush_int(iq, bp);
3230 if (error) {
3231 xfs_iunlock(iq,
3232 XFS_ILOCK_SHARED);
3233 goto cluster_corrupt_out;
3235 } else {
3236 xfs_ifunlock(iq);
3238 } else {
3239 xfs_ifunlock(iq);
3242 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3245 mutex_spinunlock(&ch->ch_lock, s);
3247 if (clcount) {
3248 XFS_STATS_INC(xs_icluster_flushcnt);
3249 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3253 * If the buffer is pinned then push on the log so we won't
3254 * get stuck waiting in the write for too long.
3256 if (XFS_BUF_ISPINNED(bp)){
3257 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3260 if (flags & INT_DELWRI) {
3261 xfs_bdwrite(mp, bp);
3262 } else if (flags & INT_ASYNC) {
3263 xfs_bawrite(mp, bp);
3264 } else {
3265 error = xfs_bwrite(mp, bp);
3267 return error;
3269 corrupt_out:
3270 xfs_buf_relse(bp);
3271 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3272 xfs_iflush_abort(ip);
3274 * Unlocks the flush lock
3276 return XFS_ERROR(EFSCORRUPTED);
3278 cluster_corrupt_out:
3279 /* Corruption detected in the clustering loop. Invalidate the
3280 * inode buffer and shut down the filesystem.
3282 mutex_spinunlock(&ch->ch_lock, s);
3285 * Clean up the buffer. If it was B_DELWRI, just release it --
3286 * brelse can handle it with no problems. If not, shut down the
3287 * filesystem before releasing the buffer.
3289 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3290 xfs_buf_relse(bp);
3293 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3295 if(!bufwasdelwri) {
3297 * Just like incore_relse: if we have b_iodone functions,
3298 * mark the buffer as an error and call them. Otherwise
3299 * mark it as stale and brelse.
3301 if (XFS_BUF_IODONE_FUNC(bp)) {
3302 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3303 XFS_BUF_UNDONE(bp);
3304 XFS_BUF_STALE(bp);
3305 XFS_BUF_SHUT(bp);
3306 XFS_BUF_ERROR(bp,EIO);
3307 xfs_biodone(bp);
3308 } else {
3309 XFS_BUF_STALE(bp);
3310 xfs_buf_relse(bp);
3314 xfs_iflush_abort(iq);
3316 * Unlocks the flush lock
3318 return XFS_ERROR(EFSCORRUPTED);
3322 STATIC int
3323 xfs_iflush_int(
3324 xfs_inode_t *ip,
3325 xfs_buf_t *bp)
3327 xfs_inode_log_item_t *iip;
3328 xfs_dinode_t *dip;
3329 xfs_mount_t *mp;
3330 #ifdef XFS_TRANS_DEBUG
3331 int first;
3332 #endif
3333 SPLDECL(s);
3335 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3336 ASSERT(valusema(&ip->i_flock) <= 0);
3337 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3338 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3340 iip = ip->i_itemp;
3341 mp = ip->i_mount;
3345 * If the inode isn't dirty, then just release the inode
3346 * flush lock and do nothing.
3348 if ((ip->i_update_core == 0) &&
3349 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3350 xfs_ifunlock(ip);
3351 return 0;
3354 /* set *dip = inode's place in the buffer */
3355 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3358 * Clear i_update_core before copying out the data.
3359 * This is for coordination with our timestamp updates
3360 * that don't hold the inode lock. They will always
3361 * update the timestamps BEFORE setting i_update_core,
3362 * so if we clear i_update_core after they set it we
3363 * are guaranteed to see their updates to the timestamps.
3364 * I believe that this depends on strongly ordered memory
3365 * semantics, but we have that. We use the SYNCHRONIZE
3366 * macro to make sure that the compiler does not reorder
3367 * the i_update_core access below the data copy below.
3369 ip->i_update_core = 0;
3370 SYNCHRONIZE();
3372 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3373 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3374 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3375 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3376 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3377 goto corrupt_out;
3379 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3380 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3381 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3382 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3383 ip->i_ino, ip, ip->i_d.di_magic);
3384 goto corrupt_out;
3386 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3387 if (XFS_TEST_ERROR(
3388 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3389 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3390 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3391 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3392 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3393 ip->i_ino, ip);
3394 goto corrupt_out;
3396 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3397 if (XFS_TEST_ERROR(
3398 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3399 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3400 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3401 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3402 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3403 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3404 ip->i_ino, ip);
3405 goto corrupt_out;
3408 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3409 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3410 XFS_RANDOM_IFLUSH_5)) {
3411 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3412 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3413 ip->i_ino,
3414 ip->i_d.di_nextents + ip->i_d.di_anextents,
3415 ip->i_d.di_nblocks,
3416 ip);
3417 goto corrupt_out;
3419 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3420 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3421 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3422 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3423 ip->i_ino, ip->i_d.di_forkoff, ip);
3424 goto corrupt_out;
3427 * bump the flush iteration count, used to detect flushes which
3428 * postdate a log record during recovery.
3431 ip->i_d.di_flushiter++;
3434 * Copy the dirty parts of the inode into the on-disk
3435 * inode. We always copy out the core of the inode,
3436 * because if the inode is dirty at all the core must
3437 * be.
3439 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3441 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3442 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3443 ip->i_d.di_flushiter = 0;
3446 * If this is really an old format inode and the superblock version
3447 * has not been updated to support only new format inodes, then
3448 * convert back to the old inode format. If the superblock version
3449 * has been updated, then make the conversion permanent.
3451 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3452 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3453 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3454 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3456 * Convert it back.
3458 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3459 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3460 } else {
3462 * The superblock version has already been bumped,
3463 * so just make the conversion to the new inode
3464 * format permanent.
3466 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3467 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3468 ip->i_d.di_onlink = 0;
3469 dip->di_core.di_onlink = 0;
3470 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3471 memset(&(dip->di_core.di_pad[0]), 0,
3472 sizeof(dip->di_core.di_pad));
3473 ASSERT(ip->i_d.di_projid == 0);
3477 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3478 goto corrupt_out;
3481 if (XFS_IFORK_Q(ip)) {
3483 * The only error from xfs_iflush_fork is on the data fork.
3485 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3487 xfs_inobp_check(mp, bp);
3490 * We've recorded everything logged in the inode, so we'd
3491 * like to clear the ilf_fields bits so we don't log and
3492 * flush things unnecessarily. However, we can't stop
3493 * logging all this information until the data we've copied
3494 * into the disk buffer is written to disk. If we did we might
3495 * overwrite the copy of the inode in the log with all the
3496 * data after re-logging only part of it, and in the face of
3497 * a crash we wouldn't have all the data we need to recover.
3499 * What we do is move the bits to the ili_last_fields field.
3500 * When logging the inode, these bits are moved back to the
3501 * ilf_fields field. In the xfs_iflush_done() routine we
3502 * clear ili_last_fields, since we know that the information
3503 * those bits represent is permanently on disk. As long as
3504 * the flush completes before the inode is logged again, then
3505 * both ilf_fields and ili_last_fields will be cleared.
3507 * We can play with the ilf_fields bits here, because the inode
3508 * lock must be held exclusively in order to set bits there
3509 * and the flush lock protects the ili_last_fields bits.
3510 * Set ili_logged so the flush done
3511 * routine can tell whether or not to look in the AIL.
3512 * Also, store the current LSN of the inode so that we can tell
3513 * whether the item has moved in the AIL from xfs_iflush_done().
3514 * In order to read the lsn we need the AIL lock, because
3515 * it is a 64 bit value that cannot be read atomically.
3517 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3518 iip->ili_last_fields = iip->ili_format.ilf_fields;
3519 iip->ili_format.ilf_fields = 0;
3520 iip->ili_logged = 1;
3522 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3523 AIL_LOCK(mp,s);
3524 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3525 AIL_UNLOCK(mp, s);
3528 * Attach the function xfs_iflush_done to the inode's
3529 * buffer. This will remove the inode from the AIL
3530 * and unlock the inode's flush lock when the inode is
3531 * completely written to disk.
3533 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3534 xfs_iflush_done, (xfs_log_item_t *)iip);
3536 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3537 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3538 } else {
3540 * We're flushing an inode which is not in the AIL and has
3541 * not been logged but has i_update_core set. For this
3542 * case we can use a B_DELWRI flush and immediately drop
3543 * the inode flush lock because we can avoid the whole
3544 * AIL state thing. It's OK to drop the flush lock now,
3545 * because we've already locked the buffer and to do anything
3546 * you really need both.
3548 if (iip != NULL) {
3549 ASSERT(iip->ili_logged == 0);
3550 ASSERT(iip->ili_last_fields == 0);
3551 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3553 xfs_ifunlock(ip);
3556 return 0;
3558 corrupt_out:
3559 return XFS_ERROR(EFSCORRUPTED);
3564 * Flush all inactive inodes in mp.
3566 void
3567 xfs_iflush_all(
3568 xfs_mount_t *mp)
3570 xfs_inode_t *ip;
3571 vnode_t *vp;
3573 again:
3574 XFS_MOUNT_ILOCK(mp);
3575 ip = mp->m_inodes;
3576 if (ip == NULL)
3577 goto out;
3579 do {
3580 /* Make sure we skip markers inserted by sync */
3581 if (ip->i_mount == NULL) {
3582 ip = ip->i_mnext;
3583 continue;
3586 vp = XFS_ITOV_NULL(ip);
3587 if (!vp) {
3588 XFS_MOUNT_IUNLOCK(mp);
3589 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3590 goto again;
3593 ASSERT(vn_count(vp) == 0);
3595 ip = ip->i_mnext;
3596 } while (ip != mp->m_inodes);
3597 out:
3598 XFS_MOUNT_IUNLOCK(mp);
3602 * xfs_iaccess: check accessibility of inode for mode.
3605 xfs_iaccess(
3606 xfs_inode_t *ip,
3607 mode_t mode,
3608 cred_t *cr)
3610 int error;
3611 mode_t orgmode = mode;
3612 struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip));
3614 if (mode & S_IWUSR) {
3615 umode_t imode = inode->i_mode;
3617 if (IS_RDONLY(inode) &&
3618 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3619 return XFS_ERROR(EROFS);
3621 if (IS_IMMUTABLE(inode))
3622 return XFS_ERROR(EACCES);
3626 * If there's an Access Control List it's used instead of
3627 * the mode bits.
3629 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3630 return error ? XFS_ERROR(error) : 0;
3632 if (current_fsuid(cr) != ip->i_d.di_uid) {
3633 mode >>= 3;
3634 if (!in_group_p((gid_t)ip->i_d.di_gid))
3635 mode >>= 3;
3639 * If the DACs are ok we don't need any capability check.
3641 if ((ip->i_d.di_mode & mode) == mode)
3642 return 0;
3644 * Read/write DACs are always overridable.
3645 * Executable DACs are overridable if at least one exec bit is set.
3647 if (!(orgmode & S_IXUSR) ||
3648 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3649 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3650 return 0;
3652 if ((orgmode == S_IRUSR) ||
3653 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3654 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3655 return 0;
3656 #ifdef NOISE
3657 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3658 #endif /* NOISE */
3659 return XFS_ERROR(EACCES);
3661 return XFS_ERROR(EACCES);
3665 * xfs_iroundup: round up argument to next power of two
3667 uint
3668 xfs_iroundup(
3669 uint v)
3671 int i;
3672 uint m;
3674 if ((v & (v - 1)) == 0)
3675 return v;
3676 ASSERT((v & 0x80000000) == 0);
3677 if ((v & (v + 1)) == 0)
3678 return v + 1;
3679 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3680 if (v & m)
3681 continue;
3682 v |= m;
3683 if ((v & (v + 1)) == 0)
3684 return v + 1;
3686 ASSERT(0);
3687 return( 0 );
3691 * Change the requested timestamp in the given inode.
3692 * We don't lock across timestamp updates, and we don't log them but
3693 * we do record the fact that there is dirty information in core.
3695 * NOTE -- callers MUST combine XFS_ICHGTIME_MOD or XFS_ICHGTIME_CHG
3696 * with XFS_ICHGTIME_ACC to be sure that access time
3697 * update will take. Calling first with XFS_ICHGTIME_ACC
3698 * and then XFS_ICHGTIME_MOD may fail to modify the access
3699 * timestamp if the filesystem is mounted noacctm.
3701 void
3702 xfs_ichgtime(xfs_inode_t *ip,
3703 int flags)
3705 timespec_t tv;
3706 vnode_t *vp = XFS_ITOV(ip);
3707 struct inode *inode = LINVFS_GET_IP(vp);
3710 * We're not supposed to change timestamps in readonly-mounted
3711 * filesystems. Throw it away if anyone asks us.
3713 if (unlikely(vp->v_vfsp->vfs_flag & VFS_RDONLY))
3714 return;
3717 * Don't update access timestamps on reads if mounted "noatime"
3718 * Throw it away if anyone asks us.
3720 if ((ip->i_mount->m_flags & XFS_MOUNT_NOATIME || IS_NOATIME(inode)) &&
3721 ((flags & (XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD|XFS_ICHGTIME_CHG))
3722 == XFS_ICHGTIME_ACC))
3723 return;
3725 nanotime(&tv);
3726 if (flags & XFS_ICHGTIME_MOD) {
3727 VN_MTIMESET(vp, &tv);
3728 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
3729 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
3731 if (flags & XFS_ICHGTIME_ACC) {
3732 VN_ATIMESET(vp, &tv);
3733 ip->i_d.di_atime.t_sec = (__int32_t)tv.tv_sec;
3734 ip->i_d.di_atime.t_nsec = (__int32_t)tv.tv_nsec;
3736 if (flags & XFS_ICHGTIME_CHG) {
3737 VN_CTIMESET(vp, &tv);
3738 ip->i_d.di_ctime.t_sec = (__int32_t)tv.tv_sec;
3739 ip->i_d.di_ctime.t_nsec = (__int32_t)tv.tv_nsec;
3743 * We update the i_update_core field _after_ changing
3744 * the timestamps in order to coordinate properly with
3745 * xfs_iflush() so that we don't lose timestamp updates.
3746 * This keeps us from having to hold the inode lock
3747 * while doing this. We use the SYNCHRONIZE macro to
3748 * ensure that the compiler does not reorder the update
3749 * of i_update_core above the timestamp updates above.
3751 SYNCHRONIZE();
3752 ip->i_update_core = 1;
3753 if (!(inode->i_state & I_LOCK))
3754 mark_inode_dirty_sync(inode);
3757 #ifdef XFS_ILOCK_TRACE
3758 ktrace_t *xfs_ilock_trace_buf;
3760 void
3761 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3763 ktrace_enter(ip->i_lock_trace,
3764 (void *)ip,
3765 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3766 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3767 (void *)ra, /* caller of ilock */
3768 (void *)(unsigned long)current_cpu(),
3769 (void *)(unsigned long)current_pid(),
3770 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3772 #endif