2 * Copyright (c) 2000-2002 Silicon Graphics, Inc. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
28 * For further information regarding this notice, see:
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
34 * This file contains the implementation of the xfs_inode_log_item.
35 * It contains the item operations used to manipulate the inode log
36 * items as well as utility routines used by the inode specific
37 * transaction routines.
40 #include "xfs_macros.h"
41 #include "xfs_types.h"
44 #include "xfs_trans.h"
45 #include "xfs_buf_item.h"
49 #include "xfs_dmapi.h"
50 #include "xfs_mount.h"
51 #include "xfs_trans_priv.h"
53 #include "xfs_alloc_btree.h"
54 #include "xfs_bmap_btree.h"
55 #include "xfs_ialloc_btree.h"
56 #include "xfs_btree.h"
57 #include "xfs_ialloc.h"
58 #include "xfs_attr_sf.h"
59 #include "xfs_dir_sf.h"
60 #include "xfs_dir2_sf.h"
61 #include "xfs_dinode.h"
62 #include "xfs_inode_item.h"
63 #include "xfs_inode.h"
67 kmem_zone_t
*xfs_ili_zone
; /* inode log item zone */
70 * This returns the number of iovecs needed to log the given inode item.
72 * We need one iovec for the inode log format structure, one for the
73 * inode core, and possibly one for the inode data/extents/b-tree root
74 * and one for the inode attribute data/extents/b-tree root.
78 xfs_inode_log_item_t
*iip
)
87 * Only log the data/extents/b-tree root if there is something
90 iip
->ili_format
.ilf_fields
|= XFS_ILOG_CORE
;
92 switch (ip
->i_d
.di_format
) {
93 case XFS_DINODE_FMT_EXTENTS
:
94 iip
->ili_format
.ilf_fields
&=
95 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
96 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
97 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
) &&
98 (ip
->i_d
.di_nextents
> 0) &&
99 (ip
->i_df
.if_bytes
> 0)) {
100 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
103 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DEXT
;
107 case XFS_DINODE_FMT_BTREE
:
108 ASSERT(ip
->i_df
.if_ext_max
==
109 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
));
110 iip
->ili_format
.ilf_fields
&=
111 ~(XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
112 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
113 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DBROOT
) &&
114 (ip
->i_df
.if_broot_bytes
> 0)) {
115 ASSERT(ip
->i_df
.if_broot
!= NULL
);
118 ASSERT(!(iip
->ili_format
.ilf_fields
&
120 #ifdef XFS_TRANS_DEBUG
121 if (iip
->ili_root_size
> 0) {
122 ASSERT(iip
->ili_root_size
==
123 ip
->i_df
.if_broot_bytes
);
124 ASSERT(memcmp(iip
->ili_orig_root
,
126 iip
->ili_root_size
) == 0);
128 ASSERT(ip
->i_df
.if_broot_bytes
== 0);
131 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DBROOT
;
135 case XFS_DINODE_FMT_LOCAL
:
136 iip
->ili_format
.ilf_fields
&=
137 ~(XFS_ILOG_DEXT
| XFS_ILOG_DBROOT
|
138 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
139 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DDATA
) &&
140 (ip
->i_df
.if_bytes
> 0)) {
141 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
142 ASSERT(ip
->i_d
.di_size
> 0);
145 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DDATA
;
149 case XFS_DINODE_FMT_DEV
:
150 iip
->ili_format
.ilf_fields
&=
151 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
152 XFS_ILOG_DEXT
| XFS_ILOG_UUID
);
155 case XFS_DINODE_FMT_UUID
:
156 iip
->ili_format
.ilf_fields
&=
157 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
158 XFS_ILOG_DEXT
| XFS_ILOG_DEV
);
167 * If there are no attributes associated with this file,
168 * then there cannot be anything more to log.
169 * Clear all attribute-related log flags.
171 if (!XFS_IFORK_Q(ip
)) {
172 iip
->ili_format
.ilf_fields
&=
173 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
);
178 * Log any necessary attribute data.
180 switch (ip
->i_d
.di_aformat
) {
181 case XFS_DINODE_FMT_EXTENTS
:
182 iip
->ili_format
.ilf_fields
&=
183 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
);
184 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
) &&
185 (ip
->i_d
.di_anextents
> 0) &&
186 (ip
->i_afp
->if_bytes
> 0)) {
187 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
190 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_AEXT
;
194 case XFS_DINODE_FMT_BTREE
:
195 iip
->ili_format
.ilf_fields
&=
196 ~(XFS_ILOG_ADATA
| XFS_ILOG_AEXT
);
197 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_ABROOT
) &&
198 (ip
->i_afp
->if_broot_bytes
> 0)) {
199 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
202 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_ABROOT
;
206 case XFS_DINODE_FMT_LOCAL
:
207 iip
->ili_format
.ilf_fields
&=
208 ~(XFS_ILOG_AEXT
| XFS_ILOG_ABROOT
);
209 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_ADATA
) &&
210 (ip
->i_afp
->if_bytes
> 0)) {
211 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
214 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_ADATA
;
227 * This is called to fill in the vector of log iovecs for the
228 * given inode log item. It fills the first item with an inode
229 * log format structure, the second with the on-disk inode structure,
230 * and a possible third and/or fourth with the inode data/extents/b-tree
231 * root and inode attributes data/extents/b-tree root.
234 xfs_inode_item_format(
235 xfs_inode_log_item_t
*iip
,
236 xfs_log_iovec_t
*log_vector
)
239 xfs_log_iovec_t
*vecp
;
242 xfs_bmbt_rec_t
*ext_buffer
;
249 vecp
->i_addr
= (xfs_caddr_t
)&iip
->ili_format
;
250 vecp
->i_len
= sizeof(xfs_inode_log_format_t
);
251 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IFORMAT
);
256 * Clear i_update_core if the timestamps (or any other
257 * non-transactional modification) need flushing/logging
258 * and we're about to log them with the rest of the core.
260 * This is the same logic as xfs_iflush() but this code can't
261 * run at the same time as xfs_iflush because we're in commit
262 * processing here and so we have the inode lock held in
263 * exclusive mode. Although it doesn't really matter
264 * for the timestamps if both routines were to grab the
265 * timestamps or not. That would be ok.
267 * We clear i_update_core before copying out the data.
268 * This is for coordination with our timestamp updates
269 * that don't hold the inode lock. They will always
270 * update the timestamps BEFORE setting i_update_core,
271 * so if we clear i_update_core after they set it we
272 * are guaranteed to see their updates to the timestamps
273 * either here. Likewise, if they set it after we clear it
274 * here, we'll see it either on the next commit of this
275 * inode or the next time the inode gets flushed via
276 * xfs_iflush(). This depends on strongly ordered memory
277 * semantics, but we have that. We use the SYNCHRONIZE
278 * macro to make sure that the compiler does not reorder
279 * the i_update_core access below the data copy below.
281 if (ip
->i_update_core
) {
282 ip
->i_update_core
= 0;
287 * We don't have to worry about re-ordering here because
288 * the update_size field is protected by the inode lock
289 * and we have that held in exclusive mode.
291 if (ip
->i_update_size
)
292 ip
->i_update_size
= 0;
294 vecp
->i_addr
= (xfs_caddr_t
)&ip
->i_d
;
295 vecp
->i_len
= sizeof(xfs_dinode_core_t
);
296 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_ICORE
);
299 iip
->ili_format
.ilf_fields
|= XFS_ILOG_CORE
;
302 * If this is really an old format inode, then we need to
303 * log it as such. This means that we have to copy the link
304 * count from the new field to the old. We don't have to worry
305 * about the new fields, because nothing trusts them as long as
306 * the old inode version number is there. If the superblock already
307 * has a new version number, then we don't bother converting back.
310 ASSERT(ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
||
311 XFS_SB_VERSION_HASNLINK(&mp
->m_sb
));
312 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
313 if (!XFS_SB_VERSION_HASNLINK(&mp
->m_sb
)) {
317 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
318 ip
->i_d
.di_onlink
= ip
->i_d
.di_nlink
;
321 * The superblock version has already been bumped,
322 * so just make the conversion to the new inode
325 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
326 ip
->i_d
.di_onlink
= 0;
327 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
331 switch (ip
->i_d
.di_format
) {
332 case XFS_DINODE_FMT_EXTENTS
:
333 ASSERT(!(iip
->ili_format
.ilf_fields
&
334 (XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
335 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
336 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
) {
337 ASSERT(ip
->i_df
.if_bytes
> 0);
338 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
339 ASSERT(ip
->i_d
.di_nextents
> 0);
340 ASSERT(iip
->ili_extents_buf
== NULL
);
341 nrecs
= ip
->i_df
.if_bytes
/
342 (uint
)sizeof(xfs_bmbt_rec_t
);
344 #ifdef XFS_NATIVE_HOST
345 if (nrecs
== ip
->i_d
.di_nextents
) {
347 * There are no delayed allocation
348 * extents, so just point to the
349 * real extents array.
352 (char *)(ip
->i_df
.if_u1
.if_extents
);
353 vecp
->i_len
= ip
->i_df
.if_bytes
;
354 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IEXT
);
359 * There are delayed allocation extents
360 * in the inode, or we need to convert
361 * the extents to on disk format.
362 * Use xfs_iextents_copy()
363 * to copy only the real extents into
364 * a separate buffer. We'll free the
365 * buffer in the unlock routine.
367 ext_buffer
= kmem_alloc(ip
->i_df
.if_bytes
,
369 iip
->ili_extents_buf
= ext_buffer
;
370 vecp
->i_addr
= (xfs_caddr_t
)ext_buffer
;
371 vecp
->i_len
= xfs_iextents_copy(ip
, ext_buffer
,
373 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IEXT
);
375 ASSERT(vecp
->i_len
<= ip
->i_df
.if_bytes
);
376 iip
->ili_format
.ilf_dsize
= vecp
->i_len
;
382 case XFS_DINODE_FMT_BTREE
:
383 ASSERT(!(iip
->ili_format
.ilf_fields
&
384 (XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
385 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
386 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DBROOT
) {
387 ASSERT(ip
->i_df
.if_broot_bytes
> 0);
388 ASSERT(ip
->i_df
.if_broot
!= NULL
);
389 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_df
.if_broot
;
390 vecp
->i_len
= ip
->i_df
.if_broot_bytes
;
391 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IBROOT
);
394 iip
->ili_format
.ilf_dsize
= ip
->i_df
.if_broot_bytes
;
398 case XFS_DINODE_FMT_LOCAL
:
399 ASSERT(!(iip
->ili_format
.ilf_fields
&
400 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
401 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
402 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DDATA
) {
403 ASSERT(ip
->i_df
.if_bytes
> 0);
404 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
405 ASSERT(ip
->i_d
.di_size
> 0);
407 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_df
.if_u1
.if_data
;
409 * Round i_bytes up to a word boundary.
410 * The underlying memory is guaranteed to
411 * to be there by xfs_idata_realloc().
413 data_bytes
= roundup(ip
->i_df
.if_bytes
, 4);
414 ASSERT((ip
->i_df
.if_real_bytes
== 0) ||
415 (ip
->i_df
.if_real_bytes
== data_bytes
));
416 vecp
->i_len
= (int)data_bytes
;
417 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_ILOCAL
);
420 iip
->ili_format
.ilf_dsize
= (unsigned)data_bytes
;
424 case XFS_DINODE_FMT_DEV
:
425 ASSERT(!(iip
->ili_format
.ilf_fields
&
426 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
427 XFS_ILOG_DDATA
| XFS_ILOG_UUID
)));
428 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
429 iip
->ili_format
.ilf_u
.ilfu_rdev
=
430 ip
->i_df
.if_u2
.if_rdev
;
434 case XFS_DINODE_FMT_UUID
:
435 ASSERT(!(iip
->ili_format
.ilf_fields
&
436 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
437 XFS_ILOG_DDATA
| XFS_ILOG_DEV
)));
438 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
439 iip
->ili_format
.ilf_u
.ilfu_uuid
=
440 ip
->i_df
.if_u2
.if_uuid
;
450 * If there are no attributes associated with the file,
452 * Assert that no attribute-related log flags are set.
454 if (!XFS_IFORK_Q(ip
)) {
455 ASSERT(nvecs
== iip
->ili_item
.li_desc
->lid_size
);
456 iip
->ili_format
.ilf_size
= nvecs
;
457 ASSERT(!(iip
->ili_format
.ilf_fields
&
458 (XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
)));
462 switch (ip
->i_d
.di_aformat
) {
463 case XFS_DINODE_FMT_EXTENTS
:
464 ASSERT(!(iip
->ili_format
.ilf_fields
&
465 (XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
)));
466 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
) {
467 ASSERT(ip
->i_afp
->if_bytes
> 0);
468 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
469 ASSERT(ip
->i_d
.di_anextents
> 0);
471 nrecs
= ip
->i_afp
->if_bytes
/
472 (uint
)sizeof(xfs_bmbt_rec_t
);
475 ASSERT(nrecs
== ip
->i_d
.di_anextents
);
476 #ifdef XFS_NATIVE_HOST
478 * There are not delayed allocation extents
479 * for attributes, so just point at the array.
481 vecp
->i_addr
= (char *)(ip
->i_afp
->if_u1
.if_extents
);
482 vecp
->i_len
= ip
->i_afp
->if_bytes
;
484 ASSERT(iip
->ili_aextents_buf
== NULL
);
486 * Need to endian flip before logging
488 ext_buffer
= kmem_alloc(ip
->i_afp
->if_bytes
,
490 iip
->ili_aextents_buf
= ext_buffer
;
491 vecp
->i_addr
= (xfs_caddr_t
)ext_buffer
;
492 vecp
->i_len
= xfs_iextents_copy(ip
, ext_buffer
,
495 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IATTR_EXT
);
496 iip
->ili_format
.ilf_asize
= vecp
->i_len
;
502 case XFS_DINODE_FMT_BTREE
:
503 ASSERT(!(iip
->ili_format
.ilf_fields
&
504 (XFS_ILOG_ADATA
| XFS_ILOG_AEXT
)));
505 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_ABROOT
) {
506 ASSERT(ip
->i_afp
->if_broot_bytes
> 0);
507 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
508 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_afp
->if_broot
;
509 vecp
->i_len
= ip
->i_afp
->if_broot_bytes
;
510 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IATTR_BROOT
);
513 iip
->ili_format
.ilf_asize
= ip
->i_afp
->if_broot_bytes
;
517 case XFS_DINODE_FMT_LOCAL
:
518 ASSERT(!(iip
->ili_format
.ilf_fields
&
519 (XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
)));
520 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_ADATA
) {
521 ASSERT(ip
->i_afp
->if_bytes
> 0);
522 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
524 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_afp
->if_u1
.if_data
;
526 * Round i_bytes up to a word boundary.
527 * The underlying memory is guaranteed to
528 * to be there by xfs_idata_realloc().
530 data_bytes
= roundup(ip
->i_afp
->if_bytes
, 4);
531 ASSERT((ip
->i_afp
->if_real_bytes
== 0) ||
532 (ip
->i_afp
->if_real_bytes
== data_bytes
));
533 vecp
->i_len
= (int)data_bytes
;
534 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IATTR_LOCAL
);
537 iip
->ili_format
.ilf_asize
= (unsigned)data_bytes
;
546 ASSERT(nvecs
== iip
->ili_item
.li_desc
->lid_size
);
547 iip
->ili_format
.ilf_size
= nvecs
;
552 * This is called to pin the inode associated with the inode log
553 * item in memory so it cannot be written out. Do this by calling
554 * xfs_ipin() to bump the pin count in the inode while holding the
559 xfs_inode_log_item_t
*iip
)
561 ASSERT(ismrlocked(&(iip
->ili_inode
->i_lock
), MR_UPDATE
));
562 xfs_ipin(iip
->ili_inode
);
567 * This is called to unpin the inode associated with the inode log
568 * item which was previously pinned with a call to xfs_inode_item_pin().
569 * Just call xfs_iunpin() on the inode to do this.
573 xfs_inode_item_unpin(
574 xfs_inode_log_item_t
*iip
,
577 xfs_iunpin(iip
->ili_inode
);
582 xfs_inode_item_unpin_remove(
583 xfs_inode_log_item_t
*iip
,
586 xfs_iunpin(iip
->ili_inode
);
590 * This is called to attempt to lock the inode associated with this
591 * inode log item, in preparation for the push routine which does the actual
592 * iflush. Don't sleep on the inode lock or the flush lock.
594 * If the flush lock is already held, indicating that the inode has
595 * been or is in the process of being flushed, then (ideally) we'd like to
596 * see if the inode's buffer is still incore, and if so give it a nudge.
597 * We delay doing so until the pushbuf routine, though, to avoid holding
598 * the AIL lock across a call to the blackhole which is the buffercache.
599 * Also we don't want to sleep in any device strategy routines, which can happen
600 * if we do the subsequent bawrite in here.
603 xfs_inode_item_trylock(
604 xfs_inode_log_item_t
*iip
)
606 register xfs_inode_t
*ip
;
610 if (xfs_ipincount(ip
) > 0) {
611 return XFS_ITEM_PINNED
;
614 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
)) {
615 return XFS_ITEM_LOCKED
;
618 if (!xfs_iflock_nowait(ip
)) {
620 * If someone else isn't already trying to push the inode
621 * buffer, we get to do it.
623 if (iip
->ili_pushbuf_flag
== 0) {
624 iip
->ili_pushbuf_flag
= 1;
626 iip
->ili_push_owner
= get_thread_id();
629 * Inode is left locked in shared mode.
630 * Pushbuf routine gets to unlock it.
632 return XFS_ITEM_PUSHBUF
;
635 * We hold the AIL_LOCK, so we must specify the
636 * NONOTIFY flag so that we won't double trip.
638 xfs_iunlock(ip
, XFS_ILOCK_SHARED
|XFS_IUNLOCK_NONOTIFY
);
639 return XFS_ITEM_FLUSHING
;
644 /* Stale items should force out the iclog */
645 if (ip
->i_flags
& XFS_ISTALE
) {
647 xfs_iunlock(ip
, XFS_ILOCK_SHARED
|XFS_IUNLOCK_NONOTIFY
);
648 return XFS_ITEM_PINNED
;
652 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
653 ASSERT(iip
->ili_format
.ilf_fields
!= 0);
654 ASSERT(iip
->ili_logged
== 0);
655 ASSERT(iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
);
658 return XFS_ITEM_SUCCESS
;
662 * Unlock the inode associated with the inode log item.
663 * Clear the fields of the inode and inode log item that
664 * are specific to the current transaction. If the
665 * hold flags is set, do not unlock the inode.
668 xfs_inode_item_unlock(
669 xfs_inode_log_item_t
*iip
)
677 ASSERT(iip
->ili_inode
->i_itemp
!= NULL
);
678 ASSERT(ismrlocked(&(iip
->ili_inode
->i_lock
), MR_UPDATE
));
679 ASSERT((!(iip
->ili_inode
->i_itemp
->ili_flags
&
680 XFS_ILI_IOLOCKED_EXCL
)) ||
681 ismrlocked(&(iip
->ili_inode
->i_iolock
), MR_UPDATE
));
682 ASSERT((!(iip
->ili_inode
->i_itemp
->ili_flags
&
683 XFS_ILI_IOLOCKED_SHARED
)) ||
684 ismrlocked(&(iip
->ili_inode
->i_iolock
), MR_ACCESS
));
686 * Clear the transaction pointer in the inode.
692 * If the inode needed a separate buffer with which to log
693 * its extents, then free it now.
695 if (iip
->ili_extents_buf
!= NULL
) {
696 ASSERT(ip
->i_d
.di_format
== XFS_DINODE_FMT_EXTENTS
);
697 ASSERT(ip
->i_d
.di_nextents
> 0);
698 ASSERT(iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
);
699 ASSERT(ip
->i_df
.if_bytes
> 0);
700 kmem_free(iip
->ili_extents_buf
, ip
->i_df
.if_bytes
);
701 iip
->ili_extents_buf
= NULL
;
703 if (iip
->ili_aextents_buf
!= NULL
) {
704 ASSERT(ip
->i_d
.di_aformat
== XFS_DINODE_FMT_EXTENTS
);
705 ASSERT(ip
->i_d
.di_anextents
> 0);
706 ASSERT(iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
);
707 ASSERT(ip
->i_afp
->if_bytes
> 0);
708 kmem_free(iip
->ili_aextents_buf
, ip
->i_afp
->if_bytes
);
709 iip
->ili_aextents_buf
= NULL
;
713 * Figure out if we should unlock the inode or not.
715 hold
= iip
->ili_flags
& XFS_ILI_HOLD
;
718 * Before clearing out the flags, remember whether we
719 * are holding the inode's IO lock.
721 iolocked
= iip
->ili_flags
& XFS_ILI_IOLOCKED_ANY
;
724 * Clear out the fields of the inode log item particular
725 * to the current transaction.
727 iip
->ili_ilock_recur
= 0;
728 iip
->ili_iolock_recur
= 0;
732 * Unlock the inode if XFS_ILI_HOLD was not set.
735 lock_flags
= XFS_ILOCK_EXCL
;
736 if (iolocked
& XFS_ILI_IOLOCKED_EXCL
) {
737 lock_flags
|= XFS_IOLOCK_EXCL
;
738 } else if (iolocked
& XFS_ILI_IOLOCKED_SHARED
) {
739 lock_flags
|= XFS_IOLOCK_SHARED
;
741 xfs_iput(iip
->ili_inode
, lock_flags
);
746 * This is called to find out where the oldest active copy of the
747 * inode log item in the on disk log resides now that the last log
748 * write of it completed at the given lsn. Since we always re-log
749 * all dirty data in an inode, the latest copy in the on disk log
750 * is the only one that matters. Therefore, simply return the
755 xfs_inode_item_committed(
756 xfs_inode_log_item_t
*iip
,
763 * The transaction with the inode locked has aborted. The inode
764 * must not be dirty within the transaction (unless we're forcibly
765 * shutting down). We simply unlock just as if the transaction
766 * had been cancelled.
769 xfs_inode_item_abort(
770 xfs_inode_log_item_t
*iip
)
772 xfs_inode_item_unlock(iip
);
778 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
779 * failed to get the inode flush lock but did get the inode locked SHARED.
780 * Here we're trying to see if the inode buffer is incore, and if so whether it's
781 * marked delayed write. If that's the case, we'll initiate a bawrite on that
782 * buffer to expedite the process.
784 * We aren't holding the AIL_LOCK (or the flush lock) when this gets called,
785 * so it is inherently race-y.
788 xfs_inode_item_pushbuf(
789 xfs_inode_log_item_t
*iip
)
798 ASSERT(ismrlocked(&(ip
->i_lock
), MR_ACCESS
));
801 * The ili_pushbuf_flag keeps others from
802 * trying to duplicate our effort.
804 ASSERT(iip
->ili_pushbuf_flag
!= 0);
805 ASSERT(iip
->ili_push_owner
== get_thread_id());
808 * If flushlock isn't locked anymore, chances are that the
809 * inode flush completed and the inode was taken off the AIL.
812 if ((valusema(&(ip
->i_flock
)) > 0) ||
813 ((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0)) {
814 iip
->ili_pushbuf_flag
= 0;
815 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
820 bp
= xfs_incore(mp
->m_ddev_targp
, iip
->ili_format
.ilf_blkno
,
821 iip
->ili_format
.ilf_len
, XFS_INCORE_TRYLOCK
);
824 if (XFS_BUF_ISDELAYWRITE(bp
)) {
826 * We were racing with iflush because we don't hold
827 * the AIL_LOCK or the flush lock. However, at this point,
828 * we have the buffer, and we know that it's dirty.
829 * So, it's possible that iflush raced with us, and
830 * this item is already taken off the AIL.
831 * If not, we can flush it async.
833 dopush
= ((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) &&
834 (valusema(&(ip
->i_flock
)) <= 0));
835 iip
->ili_pushbuf_flag
= 0;
836 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
837 xfs_buftrace("INODE ITEM PUSH", bp
);
838 if (XFS_BUF_ISPINNED(bp
)) {
839 xfs_log_force(mp
, (xfs_lsn_t
)0,
848 iip
->ili_pushbuf_flag
= 0;
849 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
855 * We have to be careful about resetting pushbuf flag too early (above).
856 * Even though in theory we can do it as soon as we have the buflock,
857 * we don't want others to be doing work needlessly. They'll come to
858 * this function thinking that pushing the buffer is their
859 * responsibility only to find that the buffer is still locked by
860 * another doing the same thing
862 iip
->ili_pushbuf_flag
= 0;
863 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
869 * This is called to asynchronously write the inode associated with this
870 * inode log item out to disk. The inode will already have been locked by
871 * a successful call to xfs_inode_item_trylock().
875 xfs_inode_log_item_t
*iip
)
881 ASSERT(ismrlocked(&(ip
->i_lock
), MR_ACCESS
));
882 ASSERT(valusema(&(ip
->i_flock
)) <= 0);
884 * Since we were able to lock the inode's flush lock and
885 * we found it on the AIL, the inode must be dirty. This
886 * is because the inode is removed from the AIL while still
887 * holding the flush lock in xfs_iflush_done(). Thus, if
888 * we found it in the AIL and were able to obtain the flush
889 * lock without sleeping, then there must not have been
890 * anyone in the process of flushing the inode.
892 ASSERT(XFS_FORCED_SHUTDOWN(ip
->i_mount
) ||
893 iip
->ili_format
.ilf_fields
!= 0);
896 * Write out the inode. The completion routine ('iflush_done') will
897 * pull it from the AIL, mark it clean, unlock the flush lock.
899 (void) xfs_iflush(ip
, XFS_IFLUSH_ASYNC
);
900 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
906 * XXX rcc - this one really has to do something. Probably needs
907 * to stamp in a new field in the incore inode.
911 xfs_inode_item_committing(
912 xfs_inode_log_item_t
*iip
,
915 iip
->ili_last_lsn
= lsn
;
920 * This is the ops vector shared by all buf log items.
922 STATIC
struct xfs_item_ops xfs_inode_item_ops
= {
923 .iop_size
= (uint(*)(xfs_log_item_t
*))xfs_inode_item_size
,
924 .iop_format
= (void(*)(xfs_log_item_t
*, xfs_log_iovec_t
*))
925 xfs_inode_item_format
,
926 .iop_pin
= (void(*)(xfs_log_item_t
*))xfs_inode_item_pin
,
927 .iop_unpin
= (void(*)(xfs_log_item_t
*, int))xfs_inode_item_unpin
,
928 .iop_unpin_remove
= (void(*)(xfs_log_item_t
*, xfs_trans_t
*))
929 xfs_inode_item_unpin_remove
,
930 .iop_trylock
= (uint(*)(xfs_log_item_t
*))xfs_inode_item_trylock
,
931 .iop_unlock
= (void(*)(xfs_log_item_t
*))xfs_inode_item_unlock
,
932 .iop_committed
= (xfs_lsn_t(*)(xfs_log_item_t
*, xfs_lsn_t
))
933 xfs_inode_item_committed
,
934 .iop_push
= (void(*)(xfs_log_item_t
*))xfs_inode_item_push
,
935 .iop_abort
= (void(*)(xfs_log_item_t
*))xfs_inode_item_abort
,
936 .iop_pushbuf
= (void(*)(xfs_log_item_t
*))xfs_inode_item_pushbuf
,
937 .iop_committing
= (void(*)(xfs_log_item_t
*, xfs_lsn_t
))
938 xfs_inode_item_committing
943 * Initialize the inode log item for a newly allocated (in-core) inode.
950 xfs_inode_log_item_t
*iip
;
952 ASSERT(ip
->i_itemp
== NULL
);
953 iip
= ip
->i_itemp
= kmem_zone_zalloc(xfs_ili_zone
, KM_SLEEP
);
955 iip
->ili_item
.li_type
= XFS_LI_INODE
;
956 iip
->ili_item
.li_ops
= &xfs_inode_item_ops
;
957 iip
->ili_item
.li_mountp
= mp
;
961 We have zeroed memory. No need ...
962 iip->ili_extents_buf = NULL;
963 iip->ili_pushbuf_flag = 0;
966 iip
->ili_format
.ilf_type
= XFS_LI_INODE
;
967 iip
->ili_format
.ilf_ino
= ip
->i_ino
;
968 iip
->ili_format
.ilf_blkno
= ip
->i_blkno
;
969 iip
->ili_format
.ilf_len
= ip
->i_len
;
970 iip
->ili_format
.ilf_boffset
= ip
->i_boffset
;
974 * Free the inode log item and any memory hanging off of it.
977 xfs_inode_item_destroy(
980 #ifdef XFS_TRANS_DEBUG
981 if (ip
->i_itemp
->ili_root_size
!= 0) {
982 kmem_free(ip
->i_itemp
->ili_orig_root
,
983 ip
->i_itemp
->ili_root_size
);
986 kmem_zone_free(xfs_ili_zone
, ip
->i_itemp
);
991 * This is the inode flushing I/O completion routine. It is called
992 * from interrupt level when the buffer containing the inode is
993 * flushed to disk. It is responsible for removing the inode item
994 * from the AIL if it has not been re-logged, and unlocking the inode's
1001 xfs_inode_log_item_t
*iip
)
1006 ip
= iip
->ili_inode
;
1009 * We only want to pull the item from the AIL if it is
1010 * actually there and its location in the log has not
1011 * changed since we started the flush. Thus, we only bother
1012 * if the ili_logged flag is set and the inode's lsn has not
1013 * changed. First we check the lsn outside
1014 * the lock since it's cheaper, and then we recheck while
1015 * holding the lock before removing the inode from the AIL.
1017 if (iip
->ili_logged
&&
1018 (iip
->ili_item
.li_lsn
== iip
->ili_flush_lsn
)) {
1019 AIL_LOCK(ip
->i_mount
, s
);
1020 if (iip
->ili_item
.li_lsn
== iip
->ili_flush_lsn
) {
1022 * xfs_trans_delete_ail() drops the AIL lock.
1024 xfs_trans_delete_ail(ip
->i_mount
,
1025 (xfs_log_item_t
*)iip
, s
);
1027 AIL_UNLOCK(ip
->i_mount
, s
);
1031 iip
->ili_logged
= 0;
1034 * Clear the ili_last_fields bits now that we know that the
1035 * data corresponding to them is safely on disk.
1037 iip
->ili_last_fields
= 0;
1040 * Release the inode's flush lock since we're done with it.
1048 * This is the inode flushing abort routine. It is called
1049 * from xfs_iflush when the filesystem is shutting down to clean
1050 * up the inode state.
1051 * It is responsible for removing the inode item
1052 * from the AIL if it has not been re-logged, and unlocking the inode's
1059 xfs_inode_log_item_t
*iip
;
1066 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
1068 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
1070 * xfs_trans_delete_ail() drops the AIL lock.
1072 xfs_trans_delete_ail(mp
, (xfs_log_item_t
*)iip
,
1077 iip
->ili_logged
= 0;
1079 * Clear the ili_last_fields bits now that we know that the
1080 * data corresponding to them is safely on disk.
1082 iip
->ili_last_fields
= 0;
1084 * Clear the inode logging fields so no more flushes are
1087 iip
->ili_format
.ilf_fields
= 0;
1090 * Release the inode's flush lock since we're done with it.
1098 xfs_inode_log_item_t
*iip
)
1100 xfs_iflush_abort(iip
->ili_inode
);