3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
10 * Derived from "arch/i386/mm/init.c"
11 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
13 * Dave Engebretsen <engebret@us.ibm.com>
14 * Rework for PPC64 port.
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation; either version
19 * 2 of the License, or (at your option) any later version.
23 #include <linux/config.h>
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/bootmem.h>
38 #include <linux/highmem.h>
39 #include <linux/idr.h>
40 #include <linux/nodemask.h>
41 #include <linux/module.h>
43 #include <asm/pgalloc.h>
49 #include <asm/mmu_context.h>
50 #include <asm/pgtable.h>
52 #include <asm/uaccess.h>
54 #include <asm/machdep.h>
57 #include <asm/processor.h>
58 #include <asm/mmzone.h>
59 #include <asm/cputable.h>
60 #include <asm/ppcdebug.h>
61 #include <asm/sections.h>
62 #include <asm/system.h>
63 #include <asm/iommu.h>
64 #include <asm/abs_addr.h>
66 #include <asm/imalloc.h>
68 #if PGTABLE_RANGE > USER_VSID_RANGE
69 #warning Limited user VSID range means pagetable space is wasted
72 #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
73 #warning TASK_SIZE is smaller than it needs to be.
77 unsigned long ioremap_bot
= IMALLOC_BASE
;
78 static unsigned long phbs_io_bot
= PHBS_IO_BASE
;
80 extern pgd_t swapper_pg_dir
[];
81 extern struct task_struct
*current_set
[NR_CPUS
];
83 unsigned long klimit
= (unsigned long)_end
;
85 unsigned long _SDR1
=0;
88 /* max amount of RAM to use */
89 unsigned long __max_memory
;
91 /* info on what we think the IO hole is */
92 unsigned long io_hole_start
;
93 unsigned long io_hole_size
;
97 unsigned long total
= 0, reserved
= 0;
98 unsigned long shared
= 0, cached
= 0;
103 printk("Mem-info:\n");
105 printk("Free swap: %6ldkB\n", nr_swap_pages
<<(PAGE_SHIFT
-10));
106 for_each_pgdat(pgdat
) {
107 for (i
= 0; i
< pgdat
->node_spanned_pages
; i
++) {
108 page
= pgdat_page_nr(pgdat
, i
);
110 if (PageReserved(page
))
112 else if (PageSwapCache(page
))
114 else if (page_count(page
))
115 shared
+= page_count(page
) - 1;
118 printk("%ld pages of RAM\n", total
);
119 printk("%ld reserved pages\n", reserved
);
120 printk("%ld pages shared\n", shared
);
121 printk("%ld pages swap cached\n", cached
);
124 #ifdef CONFIG_PPC_ISERIES
126 void __iomem
*ioremap(unsigned long addr
, unsigned long size
)
128 return (void __iomem
*)addr
;
131 extern void __iomem
*__ioremap(unsigned long addr
, unsigned long size
,
134 return (void __iomem
*)addr
;
137 void iounmap(volatile void __iomem
*addr
)
145 * map_io_page currently only called by __ioremap
146 * map_io_page adds an entry to the ioremap page table
147 * and adds an entry to the HPT, possibly bolting it
149 static int map_io_page(unsigned long ea
, unsigned long pa
, int flags
)
158 spin_lock(&init_mm
.page_table_lock
);
159 pgdp
= pgd_offset_k(ea
);
160 pudp
= pud_alloc(&init_mm
, pgdp
, ea
);
163 pmdp
= pmd_alloc(&init_mm
, pudp
, ea
);
166 ptep
= pte_alloc_kernel(&init_mm
, pmdp
, ea
);
169 set_pte_at(&init_mm
, ea
, ptep
, pfn_pte(pa
>> PAGE_SHIFT
,
171 spin_unlock(&init_mm
.page_table_lock
);
173 unsigned long va
, vpn
, hash
, hpteg
;
176 * If the mm subsystem is not fully up, we cannot create a
177 * linux page table entry for this mapping. Simply bolt an
178 * entry in the hardware page table.
180 vsid
= get_kernel_vsid(ea
);
181 va
= (vsid
<< 28) | (ea
& 0xFFFFFFF);
182 vpn
= va
>> PAGE_SHIFT
;
184 hash
= hpt_hash(vpn
, 0);
186 hpteg
= ((hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
188 /* Panic if a pte grpup is full */
189 if (ppc_md
.hpte_insert(hpteg
, va
, pa
>> PAGE_SHIFT
,
191 _PAGE_NO_CACHE
|_PAGE_GUARDED
|PP_RWXX
)
193 panic("map_io_page: could not insert mapping");
200 static void __iomem
* __ioremap_com(unsigned long addr
, unsigned long pa
,
201 unsigned long ea
, unsigned long size
,
206 if ((flags
& _PAGE_PRESENT
) == 0)
207 flags
|= pgprot_val(PAGE_KERNEL
);
209 for (i
= 0; i
< size
; i
+= PAGE_SIZE
)
210 if (map_io_page(ea
+i
, pa
+i
, flags
))
213 return (void __iomem
*) (ea
+ (addr
& ~PAGE_MASK
));
218 ioremap(unsigned long addr
, unsigned long size
)
220 return __ioremap(addr
, size
, _PAGE_NO_CACHE
| _PAGE_GUARDED
);
223 void __iomem
* __ioremap(unsigned long addr
, unsigned long size
,
226 unsigned long pa
, ea
;
230 * Choose an address to map it to.
231 * Once the imalloc system is running, we use it.
232 * Before that, we map using addresses going
233 * up from ioremap_bot. imalloc will use
234 * the addresses from ioremap_bot through
238 pa
= addr
& PAGE_MASK
;
239 size
= PAGE_ALIGN(addr
+ size
) - pa
;
245 struct vm_struct
*area
;
246 area
= im_get_free_area(size
);
249 ea
= (unsigned long)(area
->addr
);
250 ret
= __ioremap_com(addr
, pa
, ea
, size
, flags
);
255 ret
= __ioremap_com(addr
, pa
, ea
, size
, flags
);
262 #define IS_PAGE_ALIGNED(_val) ((_val) == ((_val) & PAGE_MASK))
264 int __ioremap_explicit(unsigned long pa
, unsigned long ea
,
265 unsigned long size
, unsigned long flags
)
267 struct vm_struct
*area
;
270 /* For now, require page-aligned values for pa, ea, and size */
271 if (!IS_PAGE_ALIGNED(pa
) || !IS_PAGE_ALIGNED(ea
) ||
272 !IS_PAGE_ALIGNED(size
)) {
273 printk(KERN_ERR
"unaligned value in %s\n", __FUNCTION__
);
277 if (!mem_init_done
) {
278 /* Two things to consider in this case:
279 * 1) No records will be kept (imalloc, etc) that the region
281 * 2) It won't be easy to iounmap() the region later (because
286 area
= im_get_area(ea
, size
,
287 IM_REGION_UNUSED
|IM_REGION_SUBSET
|IM_REGION_EXISTS
);
289 /* Expected when PHB-dlpar is in play */
292 if (ea
!= (unsigned long) area
->addr
) {
293 printk(KERN_ERR
"unexpected addr return from "
299 ret
= __ioremap_com(pa
, pa
, ea
, size
, flags
);
301 printk(KERN_ERR
"ioremap_explicit() allocation failure !\n");
304 if (ret
!= (void *) ea
) {
305 printk(KERN_ERR
"__ioremap_com() returned unexpected addr\n");
313 * Unmap an IO region and remove it from imalloc'd list.
314 * Access to IO memory should be serialized by driver.
315 * This code is modeled after vmalloc code - unmap_vm_area()
317 * XXX what about calls before mem_init_done (ie python_countermeasures())
319 void iounmap(volatile void __iomem
*token
)
326 addr
= (void *) ((unsigned long __force
) token
& PAGE_MASK
);
331 static int iounmap_subset_regions(unsigned long addr
, unsigned long size
)
333 struct vm_struct
*area
;
335 /* Check whether subsets of this region exist */
336 area
= im_get_area(addr
, size
, IM_REGION_SUPERSET
);
341 iounmap((void __iomem
*) area
->addr
);
342 area
= im_get_area(addr
, size
,
349 int iounmap_explicit(volatile void __iomem
*start
, unsigned long size
)
351 struct vm_struct
*area
;
355 addr
= (unsigned long __force
) start
& PAGE_MASK
;
357 /* Verify that the region either exists or is a subset of an existing
358 * region. In the latter case, split the parent region to create
361 area
= im_get_area(addr
, size
,
362 IM_REGION_EXISTS
| IM_REGION_SUBSET
);
364 /* Determine whether subset regions exist. If so, unmap */
365 rc
= iounmap_subset_regions(addr
, size
);
368 "%s() cannot unmap nonexistent range 0x%lx\n",
373 iounmap((void __iomem
*) area
->addr
);
376 * FIXME! This can't be right:
378 * Maybe it should be "iounmap(area);"
385 EXPORT_SYMBOL(ioremap
);
386 EXPORT_SYMBOL(__ioremap
);
387 EXPORT_SYMBOL(iounmap
);
389 void free_initmem(void)
393 addr
= (unsigned long)__init_begin
;
394 for (; addr
< (unsigned long)__init_end
; addr
+= PAGE_SIZE
) {
395 memset((void *)addr
, 0xcc, PAGE_SIZE
);
396 ClearPageReserved(virt_to_page(addr
));
397 set_page_count(virt_to_page(addr
), 1);
401 printk ("Freeing unused kernel memory: %luk freed\n",
402 ((unsigned long)__init_end
- (unsigned long)__init_begin
) >> 10);
405 #ifdef CONFIG_BLK_DEV_INITRD
406 void free_initrd_mem(unsigned long start
, unsigned long end
)
409 printk ("Freeing initrd memory: %ldk freed\n", (end
- start
) >> 10);
410 for (; start
< end
; start
+= PAGE_SIZE
) {
411 ClearPageReserved(virt_to_page(start
));
412 set_page_count(virt_to_page(start
), 1);
419 static DEFINE_SPINLOCK(mmu_context_lock
);
420 static DEFINE_IDR(mmu_context_idr
);
422 int init_new_context(struct task_struct
*tsk
, struct mm_struct
*mm
)
428 if (!idr_pre_get(&mmu_context_idr
, GFP_KERNEL
))
431 spin_lock(&mmu_context_lock
);
432 err
= idr_get_new_above(&mmu_context_idr
, NULL
, 1, &index
);
433 spin_unlock(&mmu_context_lock
);
440 if (index
> MAX_CONTEXT
) {
441 idr_remove(&mmu_context_idr
, index
);
445 mm
->context
.id
= index
;
450 void destroy_context(struct mm_struct
*mm
)
452 spin_lock(&mmu_context_lock
);
453 idr_remove(&mmu_context_idr
, mm
->context
.id
);
454 spin_unlock(&mmu_context_lock
);
456 mm
->context
.id
= NO_CONTEXT
;
460 * Do very early mm setup.
462 void __init
mm_init_ppc64(void)
464 #ifndef CONFIG_PPC_ISERIES
468 ppc64_boot_msg(0x100, "MM Init");
470 /* This is the story of the IO hole... please, keep seated,
471 * unfortunately, we are out of oxygen masks at the moment.
472 * So we need some rough way to tell where your big IO hole
473 * is. On pmac, it's between 2G and 4G, on POWER3, it's around
474 * that area as well, on POWER4 we don't have one, etc...
475 * We need that as a "hint" when sizing the TCE table on POWER3
476 * So far, the simplest way that seem work well enough for us it
477 * to just assume that the first discontinuity in our physical
478 * RAM layout is the IO hole. That may not be correct in the future
479 * (and isn't on iSeries but then we don't care ;)
482 #ifndef CONFIG_PPC_ISERIES
483 for (i
= 1; i
< lmb
.memory
.cnt
; i
++) {
484 unsigned long base
, prevbase
, prevsize
;
486 prevbase
= lmb
.memory
.region
[i
-1].base
;
487 prevsize
= lmb
.memory
.region
[i
-1].size
;
488 base
= lmb
.memory
.region
[i
].base
;
489 if (base
> (prevbase
+ prevsize
)) {
490 io_hole_start
= prevbase
+ prevsize
;
491 io_hole_size
= base
- (prevbase
+ prevsize
);
495 #endif /* CONFIG_PPC_ISERIES */
497 printk("IO Hole assumed to be %lx -> %lx\n",
498 io_hole_start
, io_hole_start
+ io_hole_size
- 1);
500 ppc64_boot_msg(0x100, "MM Init Done");
504 * This is called by /dev/mem to know if a given address has to
505 * be mapped non-cacheable or not
507 int page_is_ram(unsigned long pfn
)
510 unsigned long paddr
= (pfn
<< PAGE_SHIFT
);
512 for (i
=0; i
< lmb
.memory
.cnt
; i
++) {
515 base
= lmb
.memory
.region
[i
].base
;
517 if ((paddr
>= base
) &&
518 (paddr
< (base
+ lmb
.memory
.region
[i
].size
))) {
525 EXPORT_SYMBOL(page_is_ram
);
528 * Initialize the bootmem system and give it all the memory we
531 #ifndef CONFIG_NEED_MULTIPLE_NODES
532 void __init
do_init_bootmem(void)
535 unsigned long start
, bootmap_pages
;
536 unsigned long total_pages
= lmb_end_of_DRAM() >> PAGE_SHIFT
;
540 * Find an area to use for the bootmem bitmap. Calculate the size of
541 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
542 * Add 1 additional page in case the address isn't page-aligned.
544 bootmap_pages
= bootmem_bootmap_pages(total_pages
);
546 start
= lmb_alloc(bootmap_pages
<<PAGE_SHIFT
, PAGE_SIZE
);
549 boot_mapsize
= init_bootmem(start
>> PAGE_SHIFT
, total_pages
);
551 max_pfn
= max_low_pfn
;
553 /* Add all physical memory to the bootmem map, mark each area
556 for (i
=0; i
< lmb
.memory
.cnt
; i
++)
557 free_bootmem(lmb
.memory
.region
[i
].base
,
558 lmb_size_bytes(&lmb
.memory
, i
));
560 /* reserve the sections we're already using */
561 for (i
=0; i
< lmb
.reserved
.cnt
; i
++)
562 reserve_bootmem(lmb
.reserved
.region
[i
].base
,
563 lmb_size_bytes(&lmb
.reserved
, i
));
565 for (i
=0; i
< lmb
.memory
.cnt
; i
++)
566 memory_present(0, lmb_start_pfn(&lmb
.memory
, i
),
567 lmb_end_pfn(&lmb
.memory
, i
));
571 * paging_init() sets up the page tables - in fact we've already done this.
573 void __init
paging_init(void)
575 unsigned long zones_size
[MAX_NR_ZONES
];
576 unsigned long zholes_size
[MAX_NR_ZONES
];
577 unsigned long total_ram
= lmb_phys_mem_size();
578 unsigned long top_of_ram
= lmb_end_of_DRAM();
580 printk(KERN_INFO
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
581 top_of_ram
, total_ram
);
582 printk(KERN_INFO
"Memory hole size: %ldMB\n",
583 (top_of_ram
- total_ram
) >> 20);
585 * All pages are DMA-able so we put them all in the DMA zone.
587 memset(zones_size
, 0, sizeof(zones_size
));
588 memset(zholes_size
, 0, sizeof(zholes_size
));
590 zones_size
[ZONE_DMA
] = top_of_ram
>> PAGE_SHIFT
;
591 zholes_size
[ZONE_DMA
] = (top_of_ram
- total_ram
) >> PAGE_SHIFT
;
593 free_area_init_node(0, NODE_DATA(0), zones_size
,
594 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, zholes_size
);
596 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
598 static struct kcore_list kcore_vmem
;
600 static int __init
setup_kcore(void)
604 for (i
=0; i
< lmb
.memory
.cnt
; i
++) {
605 unsigned long base
, size
;
606 struct kcore_list
*kcore_mem
;
608 base
= lmb
.memory
.region
[i
].base
;
609 size
= lmb
.memory
.region
[i
].size
;
611 /* GFP_ATOMIC to avoid might_sleep warnings during boot */
612 kcore_mem
= kmalloc(sizeof(struct kcore_list
), GFP_ATOMIC
);
614 panic("mem_init: kmalloc failed\n");
616 kclist_add(kcore_mem
, __va(base
), size
);
619 kclist_add(&kcore_vmem
, (void *)VMALLOC_START
, VMALLOC_END
-VMALLOC_START
);
623 module_init(setup_kcore
);
625 void __init
mem_init(void)
627 #ifdef CONFIG_NEED_MULTIPLE_NODES
633 unsigned long reservedpages
= 0, codesize
, initsize
, datasize
, bsssize
;
635 num_physpages
= max_low_pfn
; /* RAM is assumed contiguous */
636 high_memory
= (void *) __va(max_low_pfn
* PAGE_SIZE
);
638 #ifdef CONFIG_NEED_MULTIPLE_NODES
639 for_each_online_node(nid
) {
640 if (NODE_DATA(nid
)->node_spanned_pages
!= 0) {
641 printk("freeing bootmem node %x\n", nid
);
643 free_all_bootmem_node(NODE_DATA(nid
));
647 max_mapnr
= num_physpages
;
648 totalram_pages
+= free_all_bootmem();
651 for_each_pgdat(pgdat
) {
652 for (i
= 0; i
< pgdat
->node_spanned_pages
; i
++) {
653 page
= pgdat_page_nr(pgdat
, i
);
654 if (PageReserved(page
))
659 codesize
= (unsigned long)&_etext
- (unsigned long)&_stext
;
660 initsize
= (unsigned long)&__init_end
- (unsigned long)&__init_begin
;
661 datasize
= (unsigned long)&_edata
- (unsigned long)&__init_end
;
662 bsssize
= (unsigned long)&__bss_stop
- (unsigned long)&__bss_start
;
664 printk(KERN_INFO
"Memory: %luk/%luk available (%luk kernel code, "
665 "%luk reserved, %luk data, %luk bss, %luk init)\n",
666 (unsigned long)nr_free_pages() << (PAGE_SHIFT
-10),
667 num_physpages
<< (PAGE_SHIFT
-10),
669 reservedpages
<< (PAGE_SHIFT
-10),
676 /* Initialize the vDSO */
681 * This is called when a page has been modified by the kernel.
682 * It just marks the page as not i-cache clean. We do the i-cache
683 * flush later when the page is given to a user process, if necessary.
685 void flush_dcache_page(struct page
*page
)
687 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE
))
689 /* avoid an atomic op if possible */
690 if (test_bit(PG_arch_1
, &page
->flags
))
691 clear_bit(PG_arch_1
, &page
->flags
);
693 EXPORT_SYMBOL(flush_dcache_page
);
695 void clear_user_page(void *page
, unsigned long vaddr
, struct page
*pg
)
699 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE
))
702 * We shouldnt have to do this, but some versions of glibc
703 * require it (ld.so assumes zero filled pages are icache clean)
707 /* avoid an atomic op if possible */
708 if (test_bit(PG_arch_1
, &pg
->flags
))
709 clear_bit(PG_arch_1
, &pg
->flags
);
711 EXPORT_SYMBOL(clear_user_page
);
713 void copy_user_page(void *vto
, void *vfrom
, unsigned long vaddr
,
716 copy_page(vto
, vfrom
);
719 * We should be able to use the following optimisation, however
720 * there are two problems.
721 * Firstly a bug in some versions of binutils meant PLT sections
722 * were not marked executable.
723 * Secondly the first word in the GOT section is blrl, used
724 * to establish the GOT address. Until recently the GOT was
725 * not marked executable.
729 if (!vma
->vm_file
&& ((vma
->vm_flags
& VM_EXEC
) == 0))
733 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE
))
736 /* avoid an atomic op if possible */
737 if (test_bit(PG_arch_1
, &pg
->flags
))
738 clear_bit(PG_arch_1
, &pg
->flags
);
741 void flush_icache_user_range(struct vm_area_struct
*vma
, struct page
*page
,
742 unsigned long addr
, int len
)
746 maddr
= (unsigned long)page_address(page
) + (addr
& ~PAGE_MASK
);
747 flush_icache_range(maddr
, maddr
+ len
);
749 EXPORT_SYMBOL(flush_icache_user_range
);
752 * This is called at the end of handling a user page fault, when the
753 * fault has been handled by updating a PTE in the linux page tables.
754 * We use it to preload an HPTE into the hash table corresponding to
755 * the updated linux PTE.
757 * This must always be called with the mm->page_table_lock held
759 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long ea
,
769 /* handle i-cache coherency */
770 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE
) &&
771 !cpu_has_feature(CPU_FTR_NOEXECUTE
)) {
772 unsigned long pfn
= pte_pfn(pte
);
773 if (pfn_valid(pfn
)) {
774 struct page
*page
= pfn_to_page(pfn
);
775 if (!PageReserved(page
)
776 && !test_bit(PG_arch_1
, &page
->flags
)) {
777 __flush_dcache_icache(page_address(page
));
778 set_bit(PG_arch_1
, &page
->flags
);
783 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
787 pgdir
= vma
->vm_mm
->pgd
;
791 ptep
= find_linux_pte(pgdir
, ea
);
795 vsid
= get_vsid(vma
->vm_mm
->context
.id
, ea
);
797 local_irq_save(flags
);
798 tmp
= cpumask_of_cpu(smp_processor_id());
799 if (cpus_equal(vma
->vm_mm
->cpu_vm_mask
, tmp
))
802 __hash_page(ea
, pte_val(pte
) & (_PAGE_USER
|_PAGE_RW
), vsid
, ptep
,
804 local_irq_restore(flags
);
807 void __iomem
* reserve_phb_iospace(unsigned long size
)
809 void __iomem
*virt_addr
;
811 if (phbs_io_bot
>= IMALLOC_BASE
)
812 panic("reserve_phb_iospace(): phb io space overflow\n");
814 virt_addr
= (void __iomem
*) phbs_io_bot
;
820 static void zero_ctor(void *addr
, kmem_cache_t
*cache
, unsigned long flags
)
822 memset(addr
, 0, kmem_cache_size(cache
));
825 static const int pgtable_cache_size
[2] = {
826 PTE_TABLE_SIZE
, PMD_TABLE_SIZE
828 static const char *pgtable_cache_name
[ARRAY_SIZE(pgtable_cache_size
)] = {
829 "pgd_pte_cache", "pud_pmd_cache",
832 kmem_cache_t
*pgtable_cache
[ARRAY_SIZE(pgtable_cache_size
)];
834 void pgtable_cache_init(void)
838 BUILD_BUG_ON(PTE_TABLE_SIZE
!= pgtable_cache_size
[PTE_CACHE_NUM
]);
839 BUILD_BUG_ON(PMD_TABLE_SIZE
!= pgtable_cache_size
[PMD_CACHE_NUM
]);
840 BUILD_BUG_ON(PUD_TABLE_SIZE
!= pgtable_cache_size
[PUD_CACHE_NUM
]);
841 BUILD_BUG_ON(PGD_TABLE_SIZE
!= pgtable_cache_size
[PGD_CACHE_NUM
]);
843 for (i
= 0; i
< ARRAY_SIZE(pgtable_cache_size
); i
++) {
844 int size
= pgtable_cache_size
[i
];
845 const char *name
= pgtable_cache_name
[i
];
847 pgtable_cache
[i
] = kmem_cache_create(name
,
850 | SLAB_MUST_HWCACHE_ALIGN
,
853 if (! pgtable_cache
[i
])
854 panic("pgtable_cache_init(): could not create %s!\n",
859 pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long addr
,
860 unsigned long size
, pgprot_t vma_prot
)
862 if (ppc_md
.phys_mem_access_prot
)
863 return ppc_md
.phys_mem_access_prot(file
, addr
, size
, vma_prot
);
865 if (!page_is_ram(addr
>> PAGE_SHIFT
))
866 vma_prot
= __pgprot(pgprot_val(vma_prot
)
867 | _PAGE_GUARDED
| _PAGE_NO_CACHE
);
870 EXPORT_SYMBOL(phys_mem_access_prot
);