SUNRPC: Provide a callback to allow free pages allocated during xdr encoding
[linux-2.6/verdex.git] / net / core / skbuff.c
blobaf9b1516e21fbe7bcfd23cef764a419ef02ba5c0
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
9 * Fixes:
10 * Alan Cox : Fixed the worst of the load
11 * balancer bugs.
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
25 * NOTE:
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/types.h>
44 #include <linux/kernel.h>
45 #include <linux/sched.h>
46 #include <linux/mm.h>
47 #include <linux/interrupt.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/slab.h>
51 #include <linux/netdevice.h>
52 #ifdef CONFIG_NET_CLS_ACT
53 #include <net/pkt_sched.h>
54 #endif
55 #include <linux/string.h>
56 #include <linux/skbuff.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/highmem.h>
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
71 static kmem_cache_t *skbuff_head_cache __read_mostly;
72 static kmem_cache_t *skbuff_fclone_cache __read_mostly;
75 * Keep out-of-line to prevent kernel bloat.
76 * __builtin_return_address is not used because it is not always
77 * reliable.
80 /**
81 * skb_over_panic - private function
82 * @skb: buffer
83 * @sz: size
84 * @here: address
86 * Out of line support code for skb_put(). Not user callable.
88 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
90 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 "data:%p tail:%p end:%p dev:%s\n",
92 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
93 skb->dev ? skb->dev->name : "<NULL>");
94 BUG();
97 /**
98 * skb_under_panic - private function
99 * @skb: buffer
100 * @sz: size
101 * @here: address
103 * Out of line support code for skb_push(). Not user callable.
106 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
108 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
109 "data:%p tail:%p end:%p dev:%s\n",
110 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
111 skb->dev ? skb->dev->name : "<NULL>");
112 BUG();
115 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
116 * 'private' fields and also do memory statistics to find all the
117 * [BEEP] leaks.
122 * __alloc_skb - allocate a network buffer
123 * @size: size to allocate
124 * @gfp_mask: allocation mask
126 * Allocate a new &sk_buff. The returned buffer has no headroom and a
127 * tail room of size bytes. The object has a reference count of one.
128 * The return is the buffer. On a failure the return is %NULL.
130 * Buffers may only be allocated from interrupts using a @gfp_mask of
131 * %GFP_ATOMIC.
133 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
134 int fclone)
136 struct sk_buff *skb;
137 u8 *data;
139 /* Get the HEAD */
140 if (fclone)
141 skb = kmem_cache_alloc(skbuff_fclone_cache,
142 gfp_mask & ~__GFP_DMA);
143 else
144 skb = kmem_cache_alloc(skbuff_head_cache,
145 gfp_mask & ~__GFP_DMA);
147 if (!skb)
148 goto out;
150 /* Get the DATA. Size must match skb_add_mtu(). */
151 size = SKB_DATA_ALIGN(size);
152 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
153 if (!data)
154 goto nodata;
156 memset(skb, 0, offsetof(struct sk_buff, truesize));
157 skb->truesize = size + sizeof(struct sk_buff);
158 atomic_set(&skb->users, 1);
159 skb->head = data;
160 skb->data = data;
161 skb->tail = data;
162 skb->end = data + size;
163 if (fclone) {
164 struct sk_buff *child = skb + 1;
165 atomic_t *fclone_ref = (atomic_t *) (child + 1);
167 skb->fclone = SKB_FCLONE_ORIG;
168 atomic_set(fclone_ref, 1);
170 child->fclone = SKB_FCLONE_UNAVAILABLE;
172 atomic_set(&(skb_shinfo(skb)->dataref), 1);
173 skb_shinfo(skb)->nr_frags = 0;
174 skb_shinfo(skb)->tso_size = 0;
175 skb_shinfo(skb)->tso_segs = 0;
176 skb_shinfo(skb)->frag_list = NULL;
177 out:
178 return skb;
179 nodata:
180 kmem_cache_free(skbuff_head_cache, skb);
181 skb = NULL;
182 goto out;
186 * alloc_skb_from_cache - allocate a network buffer
187 * @cp: kmem_cache from which to allocate the data area
188 * (object size must be big enough for @size bytes + skb overheads)
189 * @size: size to allocate
190 * @gfp_mask: allocation mask
192 * Allocate a new &sk_buff. The returned buffer has no headroom and
193 * tail room of size bytes. The object has a reference count of one.
194 * The return is the buffer. On a failure the return is %NULL.
196 * Buffers may only be allocated from interrupts using a @gfp_mask of
197 * %GFP_ATOMIC.
199 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
200 unsigned int size,
201 gfp_t gfp_mask)
203 struct sk_buff *skb;
204 u8 *data;
206 /* Get the HEAD */
207 skb = kmem_cache_alloc(skbuff_head_cache,
208 gfp_mask & ~__GFP_DMA);
209 if (!skb)
210 goto out;
212 /* Get the DATA. */
213 size = SKB_DATA_ALIGN(size);
214 data = kmem_cache_alloc(cp, gfp_mask);
215 if (!data)
216 goto nodata;
218 memset(skb, 0, offsetof(struct sk_buff, truesize));
219 skb->truesize = size + sizeof(struct sk_buff);
220 atomic_set(&skb->users, 1);
221 skb->head = data;
222 skb->data = data;
223 skb->tail = data;
224 skb->end = data + size;
226 atomic_set(&(skb_shinfo(skb)->dataref), 1);
227 skb_shinfo(skb)->nr_frags = 0;
228 skb_shinfo(skb)->tso_size = 0;
229 skb_shinfo(skb)->tso_segs = 0;
230 skb_shinfo(skb)->frag_list = NULL;
231 out:
232 return skb;
233 nodata:
234 kmem_cache_free(skbuff_head_cache, skb);
235 skb = NULL;
236 goto out;
240 static void skb_drop_fraglist(struct sk_buff *skb)
242 struct sk_buff *list = skb_shinfo(skb)->frag_list;
244 skb_shinfo(skb)->frag_list = NULL;
246 do {
247 struct sk_buff *this = list;
248 list = list->next;
249 kfree_skb(this);
250 } while (list);
253 static void skb_clone_fraglist(struct sk_buff *skb)
255 struct sk_buff *list;
257 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
258 skb_get(list);
261 void skb_release_data(struct sk_buff *skb)
263 if (!skb->cloned ||
264 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
265 &skb_shinfo(skb)->dataref)) {
266 if (skb_shinfo(skb)->nr_frags) {
267 int i;
268 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
269 put_page(skb_shinfo(skb)->frags[i].page);
272 if (skb_shinfo(skb)->frag_list)
273 skb_drop_fraglist(skb);
275 kfree(skb->head);
280 * Free an skbuff by memory without cleaning the state.
282 void kfree_skbmem(struct sk_buff *skb)
284 struct sk_buff *other;
285 atomic_t *fclone_ref;
287 skb_release_data(skb);
288 switch (skb->fclone) {
289 case SKB_FCLONE_UNAVAILABLE:
290 kmem_cache_free(skbuff_head_cache, skb);
291 break;
293 case SKB_FCLONE_ORIG:
294 fclone_ref = (atomic_t *) (skb + 2);
295 if (atomic_dec_and_test(fclone_ref))
296 kmem_cache_free(skbuff_fclone_cache, skb);
297 break;
299 case SKB_FCLONE_CLONE:
300 fclone_ref = (atomic_t *) (skb + 1);
301 other = skb - 1;
303 /* The clone portion is available for
304 * fast-cloning again.
306 skb->fclone = SKB_FCLONE_UNAVAILABLE;
308 if (atomic_dec_and_test(fclone_ref))
309 kmem_cache_free(skbuff_fclone_cache, other);
310 break;
315 * __kfree_skb - private function
316 * @skb: buffer
318 * Free an sk_buff. Release anything attached to the buffer.
319 * Clean the state. This is an internal helper function. Users should
320 * always call kfree_skb
323 void __kfree_skb(struct sk_buff *skb)
325 dst_release(skb->dst);
326 #ifdef CONFIG_XFRM
327 secpath_put(skb->sp);
328 #endif
329 if (skb->destructor) {
330 WARN_ON(in_irq());
331 skb->destructor(skb);
333 #ifdef CONFIG_NETFILTER
334 nf_conntrack_put(skb->nfct);
335 #ifdef CONFIG_BRIDGE_NETFILTER
336 nf_bridge_put(skb->nf_bridge);
337 #endif
338 #endif
339 /* XXX: IS this still necessary? - JHS */
340 #ifdef CONFIG_NET_SCHED
341 skb->tc_index = 0;
342 #ifdef CONFIG_NET_CLS_ACT
343 skb->tc_verd = 0;
344 #endif
345 #endif
347 kfree_skbmem(skb);
351 * skb_clone - duplicate an sk_buff
352 * @skb: buffer to clone
353 * @gfp_mask: allocation priority
355 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
356 * copies share the same packet data but not structure. The new
357 * buffer has a reference count of 1. If the allocation fails the
358 * function returns %NULL otherwise the new buffer is returned.
360 * If this function is called from an interrupt gfp_mask() must be
361 * %GFP_ATOMIC.
364 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
366 struct sk_buff *n;
368 n = skb + 1;
369 if (skb->fclone == SKB_FCLONE_ORIG &&
370 n->fclone == SKB_FCLONE_UNAVAILABLE) {
371 atomic_t *fclone_ref = (atomic_t *) (n + 1);
372 n->fclone = SKB_FCLONE_CLONE;
373 atomic_inc(fclone_ref);
374 } else {
375 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
376 if (!n)
377 return NULL;
378 n->fclone = SKB_FCLONE_UNAVAILABLE;
381 #define C(x) n->x = skb->x
383 n->next = n->prev = NULL;
384 n->sk = NULL;
385 C(tstamp);
386 C(dev);
387 C(h);
388 C(nh);
389 C(mac);
390 C(dst);
391 dst_clone(skb->dst);
392 C(sp);
393 #ifdef CONFIG_INET
394 secpath_get(skb->sp);
395 #endif
396 memcpy(n->cb, skb->cb, sizeof(skb->cb));
397 C(len);
398 C(data_len);
399 C(csum);
400 C(local_df);
401 n->cloned = 1;
402 n->nohdr = 0;
403 C(pkt_type);
404 C(ip_summed);
405 C(priority);
406 C(protocol);
407 n->destructor = NULL;
408 #ifdef CONFIG_NETFILTER
409 C(nfmark);
410 C(nfct);
411 nf_conntrack_get(skb->nfct);
412 C(nfctinfo);
413 #ifdef CONFIG_BRIDGE_NETFILTER
414 C(nf_bridge);
415 nf_bridge_get(skb->nf_bridge);
416 #endif
417 #endif /*CONFIG_NETFILTER*/
418 #ifdef CONFIG_NET_SCHED
419 C(tc_index);
420 #ifdef CONFIG_NET_CLS_ACT
421 n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
422 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
423 n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
424 C(input_dev);
425 #endif
427 #endif
428 C(truesize);
429 atomic_set(&n->users, 1);
430 C(head);
431 C(data);
432 C(tail);
433 C(end);
435 atomic_inc(&(skb_shinfo(skb)->dataref));
436 skb->cloned = 1;
438 return n;
441 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
444 * Shift between the two data areas in bytes
446 unsigned long offset = new->data - old->data;
448 new->sk = NULL;
449 new->dev = old->dev;
450 new->priority = old->priority;
451 new->protocol = old->protocol;
452 new->dst = dst_clone(old->dst);
453 #ifdef CONFIG_INET
454 new->sp = secpath_get(old->sp);
455 #endif
456 new->h.raw = old->h.raw + offset;
457 new->nh.raw = old->nh.raw + offset;
458 new->mac.raw = old->mac.raw + offset;
459 memcpy(new->cb, old->cb, sizeof(old->cb));
460 new->local_df = old->local_df;
461 new->fclone = SKB_FCLONE_UNAVAILABLE;
462 new->pkt_type = old->pkt_type;
463 new->tstamp = old->tstamp;
464 new->destructor = NULL;
465 #ifdef CONFIG_NETFILTER
466 new->nfmark = old->nfmark;
467 new->nfct = old->nfct;
468 nf_conntrack_get(old->nfct);
469 new->nfctinfo = old->nfctinfo;
470 #ifdef CONFIG_BRIDGE_NETFILTER
471 new->nf_bridge = old->nf_bridge;
472 nf_bridge_get(old->nf_bridge);
473 #endif
474 #endif
475 #ifdef CONFIG_NET_SCHED
476 #ifdef CONFIG_NET_CLS_ACT
477 new->tc_verd = old->tc_verd;
478 #endif
479 new->tc_index = old->tc_index;
480 #endif
481 atomic_set(&new->users, 1);
482 skb_shinfo(new)->tso_size = skb_shinfo(old)->tso_size;
483 skb_shinfo(new)->tso_segs = skb_shinfo(old)->tso_segs;
487 * skb_copy - create private copy of an sk_buff
488 * @skb: buffer to copy
489 * @gfp_mask: allocation priority
491 * Make a copy of both an &sk_buff and its data. This is used when the
492 * caller wishes to modify the data and needs a private copy of the
493 * data to alter. Returns %NULL on failure or the pointer to the buffer
494 * on success. The returned buffer has a reference count of 1.
496 * As by-product this function converts non-linear &sk_buff to linear
497 * one, so that &sk_buff becomes completely private and caller is allowed
498 * to modify all the data of returned buffer. This means that this
499 * function is not recommended for use in circumstances when only
500 * header is going to be modified. Use pskb_copy() instead.
503 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
505 int headerlen = skb->data - skb->head;
507 * Allocate the copy buffer
509 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
510 gfp_mask);
511 if (!n)
512 return NULL;
514 /* Set the data pointer */
515 skb_reserve(n, headerlen);
516 /* Set the tail pointer and length */
517 skb_put(n, skb->len);
518 n->csum = skb->csum;
519 n->ip_summed = skb->ip_summed;
521 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
522 BUG();
524 copy_skb_header(n, skb);
525 return n;
530 * pskb_copy - create copy of an sk_buff with private head.
531 * @skb: buffer to copy
532 * @gfp_mask: allocation priority
534 * Make a copy of both an &sk_buff and part of its data, located
535 * in header. Fragmented data remain shared. This is used when
536 * the caller wishes to modify only header of &sk_buff and needs
537 * private copy of the header to alter. Returns %NULL on failure
538 * or the pointer to the buffer on success.
539 * The returned buffer has a reference count of 1.
542 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
545 * Allocate the copy buffer
547 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
549 if (!n)
550 goto out;
552 /* Set the data pointer */
553 skb_reserve(n, skb->data - skb->head);
554 /* Set the tail pointer and length */
555 skb_put(n, skb_headlen(skb));
556 /* Copy the bytes */
557 memcpy(n->data, skb->data, n->len);
558 n->csum = skb->csum;
559 n->ip_summed = skb->ip_summed;
561 n->data_len = skb->data_len;
562 n->len = skb->len;
564 if (skb_shinfo(skb)->nr_frags) {
565 int i;
567 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
568 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
569 get_page(skb_shinfo(n)->frags[i].page);
571 skb_shinfo(n)->nr_frags = i;
574 if (skb_shinfo(skb)->frag_list) {
575 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
576 skb_clone_fraglist(n);
579 copy_skb_header(n, skb);
580 out:
581 return n;
585 * pskb_expand_head - reallocate header of &sk_buff
586 * @skb: buffer to reallocate
587 * @nhead: room to add at head
588 * @ntail: room to add at tail
589 * @gfp_mask: allocation priority
591 * Expands (or creates identical copy, if &nhead and &ntail are zero)
592 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
593 * reference count of 1. Returns zero in the case of success or error,
594 * if expansion failed. In the last case, &sk_buff is not changed.
596 * All the pointers pointing into skb header may change and must be
597 * reloaded after call to this function.
600 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
601 gfp_t gfp_mask)
603 int i;
604 u8 *data;
605 int size = nhead + (skb->end - skb->head) + ntail;
606 long off;
608 if (skb_shared(skb))
609 BUG();
611 size = SKB_DATA_ALIGN(size);
613 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
614 if (!data)
615 goto nodata;
617 /* Copy only real data... and, alas, header. This should be
618 * optimized for the cases when header is void. */
619 memcpy(data + nhead, skb->head, skb->tail - skb->head);
620 memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
622 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
623 get_page(skb_shinfo(skb)->frags[i].page);
625 if (skb_shinfo(skb)->frag_list)
626 skb_clone_fraglist(skb);
628 skb_release_data(skb);
630 off = (data + nhead) - skb->head;
632 skb->head = data;
633 skb->end = data + size;
634 skb->data += off;
635 skb->tail += off;
636 skb->mac.raw += off;
637 skb->h.raw += off;
638 skb->nh.raw += off;
639 skb->cloned = 0;
640 skb->nohdr = 0;
641 atomic_set(&skb_shinfo(skb)->dataref, 1);
642 return 0;
644 nodata:
645 return -ENOMEM;
648 /* Make private copy of skb with writable head and some headroom */
650 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
652 struct sk_buff *skb2;
653 int delta = headroom - skb_headroom(skb);
655 if (delta <= 0)
656 skb2 = pskb_copy(skb, GFP_ATOMIC);
657 else {
658 skb2 = skb_clone(skb, GFP_ATOMIC);
659 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
660 GFP_ATOMIC)) {
661 kfree_skb(skb2);
662 skb2 = NULL;
665 return skb2;
670 * skb_copy_expand - copy and expand sk_buff
671 * @skb: buffer to copy
672 * @newheadroom: new free bytes at head
673 * @newtailroom: new free bytes at tail
674 * @gfp_mask: allocation priority
676 * Make a copy of both an &sk_buff and its data and while doing so
677 * allocate additional space.
679 * This is used when the caller wishes to modify the data and needs a
680 * private copy of the data to alter as well as more space for new fields.
681 * Returns %NULL on failure or the pointer to the buffer
682 * on success. The returned buffer has a reference count of 1.
684 * You must pass %GFP_ATOMIC as the allocation priority if this function
685 * is called from an interrupt.
687 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
688 * only by netfilter in the cases when checksum is recalculated? --ANK
690 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
691 int newheadroom, int newtailroom,
692 gfp_t gfp_mask)
695 * Allocate the copy buffer
697 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
698 gfp_mask);
699 int head_copy_len, head_copy_off;
701 if (!n)
702 return NULL;
704 skb_reserve(n, newheadroom);
706 /* Set the tail pointer and length */
707 skb_put(n, skb->len);
709 head_copy_len = skb_headroom(skb);
710 head_copy_off = 0;
711 if (newheadroom <= head_copy_len)
712 head_copy_len = newheadroom;
713 else
714 head_copy_off = newheadroom - head_copy_len;
716 /* Copy the linear header and data. */
717 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
718 skb->len + head_copy_len))
719 BUG();
721 copy_skb_header(n, skb);
723 return n;
727 * skb_pad - zero pad the tail of an skb
728 * @skb: buffer to pad
729 * @pad: space to pad
731 * Ensure that a buffer is followed by a padding area that is zero
732 * filled. Used by network drivers which may DMA or transfer data
733 * beyond the buffer end onto the wire.
735 * May return NULL in out of memory cases.
738 struct sk_buff *skb_pad(struct sk_buff *skb, int pad)
740 struct sk_buff *nskb;
742 /* If the skbuff is non linear tailroom is always zero.. */
743 if (skb_tailroom(skb) >= pad) {
744 memset(skb->data+skb->len, 0, pad);
745 return skb;
748 nskb = skb_copy_expand(skb, skb_headroom(skb), skb_tailroom(skb) + pad, GFP_ATOMIC);
749 kfree_skb(skb);
750 if (nskb)
751 memset(nskb->data+nskb->len, 0, pad);
752 return nskb;
755 /* Trims skb to length len. It can change skb pointers, if "realloc" is 1.
756 * If realloc==0 and trimming is impossible without change of data,
757 * it is BUG().
760 int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc)
762 int offset = skb_headlen(skb);
763 int nfrags = skb_shinfo(skb)->nr_frags;
764 int i;
766 for (i = 0; i < nfrags; i++) {
767 int end = offset + skb_shinfo(skb)->frags[i].size;
768 if (end > len) {
769 if (skb_cloned(skb)) {
770 if (!realloc)
771 BUG();
772 if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
773 return -ENOMEM;
775 if (len <= offset) {
776 put_page(skb_shinfo(skb)->frags[i].page);
777 skb_shinfo(skb)->nr_frags--;
778 } else {
779 skb_shinfo(skb)->frags[i].size = len - offset;
782 offset = end;
785 if (offset < len) {
786 skb->data_len -= skb->len - len;
787 skb->len = len;
788 } else {
789 if (len <= skb_headlen(skb)) {
790 skb->len = len;
791 skb->data_len = 0;
792 skb->tail = skb->data + len;
793 if (skb_shinfo(skb)->frag_list && !skb_cloned(skb))
794 skb_drop_fraglist(skb);
795 } else {
796 skb->data_len -= skb->len - len;
797 skb->len = len;
801 return 0;
805 * __pskb_pull_tail - advance tail of skb header
806 * @skb: buffer to reallocate
807 * @delta: number of bytes to advance tail
809 * The function makes a sense only on a fragmented &sk_buff,
810 * it expands header moving its tail forward and copying necessary
811 * data from fragmented part.
813 * &sk_buff MUST have reference count of 1.
815 * Returns %NULL (and &sk_buff does not change) if pull failed
816 * or value of new tail of skb in the case of success.
818 * All the pointers pointing into skb header may change and must be
819 * reloaded after call to this function.
822 /* Moves tail of skb head forward, copying data from fragmented part,
823 * when it is necessary.
824 * 1. It may fail due to malloc failure.
825 * 2. It may change skb pointers.
827 * It is pretty complicated. Luckily, it is called only in exceptional cases.
829 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
831 /* If skb has not enough free space at tail, get new one
832 * plus 128 bytes for future expansions. If we have enough
833 * room at tail, reallocate without expansion only if skb is cloned.
835 int i, k, eat = (skb->tail + delta) - skb->end;
837 if (eat > 0 || skb_cloned(skb)) {
838 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
839 GFP_ATOMIC))
840 return NULL;
843 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
844 BUG();
846 /* Optimization: no fragments, no reasons to preestimate
847 * size of pulled pages. Superb.
849 if (!skb_shinfo(skb)->frag_list)
850 goto pull_pages;
852 /* Estimate size of pulled pages. */
853 eat = delta;
854 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
855 if (skb_shinfo(skb)->frags[i].size >= eat)
856 goto pull_pages;
857 eat -= skb_shinfo(skb)->frags[i].size;
860 /* If we need update frag list, we are in troubles.
861 * Certainly, it possible to add an offset to skb data,
862 * but taking into account that pulling is expected to
863 * be very rare operation, it is worth to fight against
864 * further bloating skb head and crucify ourselves here instead.
865 * Pure masohism, indeed. 8)8)
867 if (eat) {
868 struct sk_buff *list = skb_shinfo(skb)->frag_list;
869 struct sk_buff *clone = NULL;
870 struct sk_buff *insp = NULL;
872 do {
873 if (!list)
874 BUG();
876 if (list->len <= eat) {
877 /* Eaten as whole. */
878 eat -= list->len;
879 list = list->next;
880 insp = list;
881 } else {
882 /* Eaten partially. */
884 if (skb_shared(list)) {
885 /* Sucks! We need to fork list. :-( */
886 clone = skb_clone(list, GFP_ATOMIC);
887 if (!clone)
888 return NULL;
889 insp = list->next;
890 list = clone;
891 } else {
892 /* This may be pulled without
893 * problems. */
894 insp = list;
896 if (!pskb_pull(list, eat)) {
897 if (clone)
898 kfree_skb(clone);
899 return NULL;
901 break;
903 } while (eat);
905 /* Free pulled out fragments. */
906 while ((list = skb_shinfo(skb)->frag_list) != insp) {
907 skb_shinfo(skb)->frag_list = list->next;
908 kfree_skb(list);
910 /* And insert new clone at head. */
911 if (clone) {
912 clone->next = list;
913 skb_shinfo(skb)->frag_list = clone;
916 /* Success! Now we may commit changes to skb data. */
918 pull_pages:
919 eat = delta;
920 k = 0;
921 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
922 if (skb_shinfo(skb)->frags[i].size <= eat) {
923 put_page(skb_shinfo(skb)->frags[i].page);
924 eat -= skb_shinfo(skb)->frags[i].size;
925 } else {
926 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
927 if (eat) {
928 skb_shinfo(skb)->frags[k].page_offset += eat;
929 skb_shinfo(skb)->frags[k].size -= eat;
930 eat = 0;
932 k++;
935 skb_shinfo(skb)->nr_frags = k;
937 skb->tail += delta;
938 skb->data_len -= delta;
940 return skb->tail;
943 /* Copy some data bits from skb to kernel buffer. */
945 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
947 int i, copy;
948 int start = skb_headlen(skb);
950 if (offset > (int)skb->len - len)
951 goto fault;
953 /* Copy header. */
954 if ((copy = start - offset) > 0) {
955 if (copy > len)
956 copy = len;
957 memcpy(to, skb->data + offset, copy);
958 if ((len -= copy) == 0)
959 return 0;
960 offset += copy;
961 to += copy;
964 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
965 int end;
967 BUG_TRAP(start <= offset + len);
969 end = start + skb_shinfo(skb)->frags[i].size;
970 if ((copy = end - offset) > 0) {
971 u8 *vaddr;
973 if (copy > len)
974 copy = len;
976 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
977 memcpy(to,
978 vaddr + skb_shinfo(skb)->frags[i].page_offset+
979 offset - start, copy);
980 kunmap_skb_frag(vaddr);
982 if ((len -= copy) == 0)
983 return 0;
984 offset += copy;
985 to += copy;
987 start = end;
990 if (skb_shinfo(skb)->frag_list) {
991 struct sk_buff *list = skb_shinfo(skb)->frag_list;
993 for (; list; list = list->next) {
994 int end;
996 BUG_TRAP(start <= offset + len);
998 end = start + list->len;
999 if ((copy = end - offset) > 0) {
1000 if (copy > len)
1001 copy = len;
1002 if (skb_copy_bits(list, offset - start,
1003 to, copy))
1004 goto fault;
1005 if ((len -= copy) == 0)
1006 return 0;
1007 offset += copy;
1008 to += copy;
1010 start = end;
1013 if (!len)
1014 return 0;
1016 fault:
1017 return -EFAULT;
1021 * skb_store_bits - store bits from kernel buffer to skb
1022 * @skb: destination buffer
1023 * @offset: offset in destination
1024 * @from: source buffer
1025 * @len: number of bytes to copy
1027 * Copy the specified number of bytes from the source buffer to the
1028 * destination skb. This function handles all the messy bits of
1029 * traversing fragment lists and such.
1032 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1034 int i, copy;
1035 int start = skb_headlen(skb);
1037 if (offset > (int)skb->len - len)
1038 goto fault;
1040 if ((copy = start - offset) > 0) {
1041 if (copy > len)
1042 copy = len;
1043 memcpy(skb->data + offset, from, copy);
1044 if ((len -= copy) == 0)
1045 return 0;
1046 offset += copy;
1047 from += copy;
1050 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1051 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1052 int end;
1054 BUG_TRAP(start <= offset + len);
1056 end = start + frag->size;
1057 if ((copy = end - offset) > 0) {
1058 u8 *vaddr;
1060 if (copy > len)
1061 copy = len;
1063 vaddr = kmap_skb_frag(frag);
1064 memcpy(vaddr + frag->page_offset + offset - start,
1065 from, copy);
1066 kunmap_skb_frag(vaddr);
1068 if ((len -= copy) == 0)
1069 return 0;
1070 offset += copy;
1071 from += copy;
1073 start = end;
1076 if (skb_shinfo(skb)->frag_list) {
1077 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1079 for (; list; list = list->next) {
1080 int end;
1082 BUG_TRAP(start <= offset + len);
1084 end = start + list->len;
1085 if ((copy = end - offset) > 0) {
1086 if (copy > len)
1087 copy = len;
1088 if (skb_store_bits(list, offset - start,
1089 from, copy))
1090 goto fault;
1091 if ((len -= copy) == 0)
1092 return 0;
1093 offset += copy;
1094 from += copy;
1096 start = end;
1099 if (!len)
1100 return 0;
1102 fault:
1103 return -EFAULT;
1106 EXPORT_SYMBOL(skb_store_bits);
1108 /* Checksum skb data. */
1110 unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1111 int len, unsigned int csum)
1113 int start = skb_headlen(skb);
1114 int i, copy = start - offset;
1115 int pos = 0;
1117 /* Checksum header. */
1118 if (copy > 0) {
1119 if (copy > len)
1120 copy = len;
1121 csum = csum_partial(skb->data + offset, copy, csum);
1122 if ((len -= copy) == 0)
1123 return csum;
1124 offset += copy;
1125 pos = copy;
1128 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1129 int end;
1131 BUG_TRAP(start <= offset + len);
1133 end = start + skb_shinfo(skb)->frags[i].size;
1134 if ((copy = end - offset) > 0) {
1135 unsigned int csum2;
1136 u8 *vaddr;
1137 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1139 if (copy > len)
1140 copy = len;
1141 vaddr = kmap_skb_frag(frag);
1142 csum2 = csum_partial(vaddr + frag->page_offset +
1143 offset - start, copy, 0);
1144 kunmap_skb_frag(vaddr);
1145 csum = csum_block_add(csum, csum2, pos);
1146 if (!(len -= copy))
1147 return csum;
1148 offset += copy;
1149 pos += copy;
1151 start = end;
1154 if (skb_shinfo(skb)->frag_list) {
1155 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1157 for (; list; list = list->next) {
1158 int end;
1160 BUG_TRAP(start <= offset + len);
1162 end = start + list->len;
1163 if ((copy = end - offset) > 0) {
1164 unsigned int csum2;
1165 if (copy > len)
1166 copy = len;
1167 csum2 = skb_checksum(list, offset - start,
1168 copy, 0);
1169 csum = csum_block_add(csum, csum2, pos);
1170 if ((len -= copy) == 0)
1171 return csum;
1172 offset += copy;
1173 pos += copy;
1175 start = end;
1178 if (len)
1179 BUG();
1181 return csum;
1184 /* Both of above in one bottle. */
1186 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1187 u8 *to, int len, unsigned int csum)
1189 int start = skb_headlen(skb);
1190 int i, copy = start - offset;
1191 int pos = 0;
1193 /* Copy header. */
1194 if (copy > 0) {
1195 if (copy > len)
1196 copy = len;
1197 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1198 copy, csum);
1199 if ((len -= copy) == 0)
1200 return csum;
1201 offset += copy;
1202 to += copy;
1203 pos = copy;
1206 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1207 int end;
1209 BUG_TRAP(start <= offset + len);
1211 end = start + skb_shinfo(skb)->frags[i].size;
1212 if ((copy = end - offset) > 0) {
1213 unsigned int csum2;
1214 u8 *vaddr;
1215 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1217 if (copy > len)
1218 copy = len;
1219 vaddr = kmap_skb_frag(frag);
1220 csum2 = csum_partial_copy_nocheck(vaddr +
1221 frag->page_offset +
1222 offset - start, to,
1223 copy, 0);
1224 kunmap_skb_frag(vaddr);
1225 csum = csum_block_add(csum, csum2, pos);
1226 if (!(len -= copy))
1227 return csum;
1228 offset += copy;
1229 to += copy;
1230 pos += copy;
1232 start = end;
1235 if (skb_shinfo(skb)->frag_list) {
1236 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1238 for (; list; list = list->next) {
1239 unsigned int csum2;
1240 int end;
1242 BUG_TRAP(start <= offset + len);
1244 end = start + list->len;
1245 if ((copy = end - offset) > 0) {
1246 if (copy > len)
1247 copy = len;
1248 csum2 = skb_copy_and_csum_bits(list,
1249 offset - start,
1250 to, copy, 0);
1251 csum = csum_block_add(csum, csum2, pos);
1252 if ((len -= copy) == 0)
1253 return csum;
1254 offset += copy;
1255 to += copy;
1256 pos += copy;
1258 start = end;
1261 if (len)
1262 BUG();
1263 return csum;
1266 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1268 unsigned int csum;
1269 long csstart;
1271 if (skb->ip_summed == CHECKSUM_HW)
1272 csstart = skb->h.raw - skb->data;
1273 else
1274 csstart = skb_headlen(skb);
1276 if (csstart > skb_headlen(skb))
1277 BUG();
1279 memcpy(to, skb->data, csstart);
1281 csum = 0;
1282 if (csstart != skb->len)
1283 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1284 skb->len - csstart, 0);
1286 if (skb->ip_summed == CHECKSUM_HW) {
1287 long csstuff = csstart + skb->csum;
1289 *((unsigned short *)(to + csstuff)) = csum_fold(csum);
1294 * skb_dequeue - remove from the head of the queue
1295 * @list: list to dequeue from
1297 * Remove the head of the list. The list lock is taken so the function
1298 * may be used safely with other locking list functions. The head item is
1299 * returned or %NULL if the list is empty.
1302 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1304 unsigned long flags;
1305 struct sk_buff *result;
1307 spin_lock_irqsave(&list->lock, flags);
1308 result = __skb_dequeue(list);
1309 spin_unlock_irqrestore(&list->lock, flags);
1310 return result;
1314 * skb_dequeue_tail - remove from the tail of the queue
1315 * @list: list to dequeue from
1317 * Remove the tail of the list. The list lock is taken so the function
1318 * may be used safely with other locking list functions. The tail item is
1319 * returned or %NULL if the list is empty.
1321 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1323 unsigned long flags;
1324 struct sk_buff *result;
1326 spin_lock_irqsave(&list->lock, flags);
1327 result = __skb_dequeue_tail(list);
1328 spin_unlock_irqrestore(&list->lock, flags);
1329 return result;
1333 * skb_queue_purge - empty a list
1334 * @list: list to empty
1336 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1337 * the list and one reference dropped. This function takes the list
1338 * lock and is atomic with respect to other list locking functions.
1340 void skb_queue_purge(struct sk_buff_head *list)
1342 struct sk_buff *skb;
1343 while ((skb = skb_dequeue(list)) != NULL)
1344 kfree_skb(skb);
1348 * skb_queue_head - queue a buffer at the list head
1349 * @list: list to use
1350 * @newsk: buffer to queue
1352 * Queue a buffer at the start of the list. This function takes the
1353 * list lock and can be used safely with other locking &sk_buff functions
1354 * safely.
1356 * A buffer cannot be placed on two lists at the same time.
1358 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1360 unsigned long flags;
1362 spin_lock_irqsave(&list->lock, flags);
1363 __skb_queue_head(list, newsk);
1364 spin_unlock_irqrestore(&list->lock, flags);
1368 * skb_queue_tail - queue a buffer at the list tail
1369 * @list: list to use
1370 * @newsk: buffer to queue
1372 * Queue a buffer at the tail of the list. This function takes the
1373 * list lock and can be used safely with other locking &sk_buff functions
1374 * safely.
1376 * A buffer cannot be placed on two lists at the same time.
1378 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1380 unsigned long flags;
1382 spin_lock_irqsave(&list->lock, flags);
1383 __skb_queue_tail(list, newsk);
1384 spin_unlock_irqrestore(&list->lock, flags);
1388 * skb_unlink - remove a buffer from a list
1389 * @skb: buffer to remove
1390 * @list: list to use
1392 * Remove a packet from a list. The list locks are taken and this
1393 * function is atomic with respect to other list locked calls
1395 * You must know what list the SKB is on.
1397 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1399 unsigned long flags;
1401 spin_lock_irqsave(&list->lock, flags);
1402 __skb_unlink(skb, list);
1403 spin_unlock_irqrestore(&list->lock, flags);
1407 * skb_append - append a buffer
1408 * @old: buffer to insert after
1409 * @newsk: buffer to insert
1410 * @list: list to use
1412 * Place a packet after a given packet in a list. The list locks are taken
1413 * and this function is atomic with respect to other list locked calls.
1414 * A buffer cannot be placed on two lists at the same time.
1416 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1418 unsigned long flags;
1420 spin_lock_irqsave(&list->lock, flags);
1421 __skb_append(old, newsk, list);
1422 spin_unlock_irqrestore(&list->lock, flags);
1427 * skb_insert - insert a buffer
1428 * @old: buffer to insert before
1429 * @newsk: buffer to insert
1430 * @list: list to use
1432 * Place a packet before a given packet in a list. The list locks are
1433 * taken and this function is atomic with respect to other list locked
1434 * calls.
1436 * A buffer cannot be placed on two lists at the same time.
1438 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1440 unsigned long flags;
1442 spin_lock_irqsave(&list->lock, flags);
1443 __skb_insert(newsk, old->prev, old, list);
1444 spin_unlock_irqrestore(&list->lock, flags);
1447 #if 0
1449 * Tune the memory allocator for a new MTU size.
1451 void skb_add_mtu(int mtu)
1453 /* Must match allocation in alloc_skb */
1454 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1456 kmem_add_cache_size(mtu);
1458 #endif
1460 static inline void skb_split_inside_header(struct sk_buff *skb,
1461 struct sk_buff* skb1,
1462 const u32 len, const int pos)
1464 int i;
1466 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1468 /* And move data appendix as is. */
1469 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1470 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1472 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1473 skb_shinfo(skb)->nr_frags = 0;
1474 skb1->data_len = skb->data_len;
1475 skb1->len += skb1->data_len;
1476 skb->data_len = 0;
1477 skb->len = len;
1478 skb->tail = skb->data + len;
1481 static inline void skb_split_no_header(struct sk_buff *skb,
1482 struct sk_buff* skb1,
1483 const u32 len, int pos)
1485 int i, k = 0;
1486 const int nfrags = skb_shinfo(skb)->nr_frags;
1488 skb_shinfo(skb)->nr_frags = 0;
1489 skb1->len = skb1->data_len = skb->len - len;
1490 skb->len = len;
1491 skb->data_len = len - pos;
1493 for (i = 0; i < nfrags; i++) {
1494 int size = skb_shinfo(skb)->frags[i].size;
1496 if (pos + size > len) {
1497 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1499 if (pos < len) {
1500 /* Split frag.
1501 * We have two variants in this case:
1502 * 1. Move all the frag to the second
1503 * part, if it is possible. F.e.
1504 * this approach is mandatory for TUX,
1505 * where splitting is expensive.
1506 * 2. Split is accurately. We make this.
1508 get_page(skb_shinfo(skb)->frags[i].page);
1509 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1510 skb_shinfo(skb1)->frags[0].size -= len - pos;
1511 skb_shinfo(skb)->frags[i].size = len - pos;
1512 skb_shinfo(skb)->nr_frags++;
1514 k++;
1515 } else
1516 skb_shinfo(skb)->nr_frags++;
1517 pos += size;
1519 skb_shinfo(skb1)->nr_frags = k;
1523 * skb_split - Split fragmented skb to two parts at length len.
1524 * @skb: the buffer to split
1525 * @skb1: the buffer to receive the second part
1526 * @len: new length for skb
1528 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1530 int pos = skb_headlen(skb);
1532 if (len < pos) /* Split line is inside header. */
1533 skb_split_inside_header(skb, skb1, len, pos);
1534 else /* Second chunk has no header, nothing to copy. */
1535 skb_split_no_header(skb, skb1, len, pos);
1539 * skb_prepare_seq_read - Prepare a sequential read of skb data
1540 * @skb: the buffer to read
1541 * @from: lower offset of data to be read
1542 * @to: upper offset of data to be read
1543 * @st: state variable
1545 * Initializes the specified state variable. Must be called before
1546 * invoking skb_seq_read() for the first time.
1548 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1549 unsigned int to, struct skb_seq_state *st)
1551 st->lower_offset = from;
1552 st->upper_offset = to;
1553 st->root_skb = st->cur_skb = skb;
1554 st->frag_idx = st->stepped_offset = 0;
1555 st->frag_data = NULL;
1559 * skb_seq_read - Sequentially read skb data
1560 * @consumed: number of bytes consumed by the caller so far
1561 * @data: destination pointer for data to be returned
1562 * @st: state variable
1564 * Reads a block of skb data at &consumed relative to the
1565 * lower offset specified to skb_prepare_seq_read(). Assigns
1566 * the head of the data block to &data and returns the length
1567 * of the block or 0 if the end of the skb data or the upper
1568 * offset has been reached.
1570 * The caller is not required to consume all of the data
1571 * returned, i.e. &consumed is typically set to the number
1572 * of bytes already consumed and the next call to
1573 * skb_seq_read() will return the remaining part of the block.
1575 * Note: The size of each block of data returned can be arbitary,
1576 * this limitation is the cost for zerocopy seqeuental
1577 * reads of potentially non linear data.
1579 * Note: Fragment lists within fragments are not implemented
1580 * at the moment, state->root_skb could be replaced with
1581 * a stack for this purpose.
1583 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1584 struct skb_seq_state *st)
1586 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1587 skb_frag_t *frag;
1589 if (unlikely(abs_offset >= st->upper_offset))
1590 return 0;
1592 next_skb:
1593 block_limit = skb_headlen(st->cur_skb);
1595 if (abs_offset < block_limit) {
1596 *data = st->cur_skb->data + abs_offset;
1597 return block_limit - abs_offset;
1600 if (st->frag_idx == 0 && !st->frag_data)
1601 st->stepped_offset += skb_headlen(st->cur_skb);
1603 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1604 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1605 block_limit = frag->size + st->stepped_offset;
1607 if (abs_offset < block_limit) {
1608 if (!st->frag_data)
1609 st->frag_data = kmap_skb_frag(frag);
1611 *data = (u8 *) st->frag_data + frag->page_offset +
1612 (abs_offset - st->stepped_offset);
1614 return block_limit - abs_offset;
1617 if (st->frag_data) {
1618 kunmap_skb_frag(st->frag_data);
1619 st->frag_data = NULL;
1622 st->frag_idx++;
1623 st->stepped_offset += frag->size;
1626 if (st->cur_skb->next) {
1627 st->cur_skb = st->cur_skb->next;
1628 st->frag_idx = 0;
1629 goto next_skb;
1630 } else if (st->root_skb == st->cur_skb &&
1631 skb_shinfo(st->root_skb)->frag_list) {
1632 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1633 goto next_skb;
1636 return 0;
1640 * skb_abort_seq_read - Abort a sequential read of skb data
1641 * @st: state variable
1643 * Must be called if skb_seq_read() was not called until it
1644 * returned 0.
1646 void skb_abort_seq_read(struct skb_seq_state *st)
1648 if (st->frag_data)
1649 kunmap_skb_frag(st->frag_data);
1652 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1654 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1655 struct ts_config *conf,
1656 struct ts_state *state)
1658 return skb_seq_read(offset, text, TS_SKB_CB(state));
1661 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1663 skb_abort_seq_read(TS_SKB_CB(state));
1667 * skb_find_text - Find a text pattern in skb data
1668 * @skb: the buffer to look in
1669 * @from: search offset
1670 * @to: search limit
1671 * @config: textsearch configuration
1672 * @state: uninitialized textsearch state variable
1674 * Finds a pattern in the skb data according to the specified
1675 * textsearch configuration. Use textsearch_next() to retrieve
1676 * subsequent occurrences of the pattern. Returns the offset
1677 * to the first occurrence or UINT_MAX if no match was found.
1679 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1680 unsigned int to, struct ts_config *config,
1681 struct ts_state *state)
1683 config->get_next_block = skb_ts_get_next_block;
1684 config->finish = skb_ts_finish;
1686 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1688 return textsearch_find(config, state);
1691 void __init skb_init(void)
1693 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
1694 sizeof(struct sk_buff),
1696 SLAB_HWCACHE_ALIGN,
1697 NULL, NULL);
1698 if (!skbuff_head_cache)
1699 panic("cannot create skbuff cache");
1701 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
1702 (2*sizeof(struct sk_buff)) +
1703 sizeof(atomic_t),
1705 SLAB_HWCACHE_ALIGN,
1706 NULL, NULL);
1707 if (!skbuff_fclone_cache)
1708 panic("cannot create skbuff cache");
1711 EXPORT_SYMBOL(___pskb_trim);
1712 EXPORT_SYMBOL(__kfree_skb);
1713 EXPORT_SYMBOL(__pskb_pull_tail);
1714 EXPORT_SYMBOL(__alloc_skb);
1715 EXPORT_SYMBOL(pskb_copy);
1716 EXPORT_SYMBOL(pskb_expand_head);
1717 EXPORT_SYMBOL(skb_checksum);
1718 EXPORT_SYMBOL(skb_clone);
1719 EXPORT_SYMBOL(skb_clone_fraglist);
1720 EXPORT_SYMBOL(skb_copy);
1721 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1722 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1723 EXPORT_SYMBOL(skb_copy_bits);
1724 EXPORT_SYMBOL(skb_copy_expand);
1725 EXPORT_SYMBOL(skb_over_panic);
1726 EXPORT_SYMBOL(skb_pad);
1727 EXPORT_SYMBOL(skb_realloc_headroom);
1728 EXPORT_SYMBOL(skb_under_panic);
1729 EXPORT_SYMBOL(skb_dequeue);
1730 EXPORT_SYMBOL(skb_dequeue_tail);
1731 EXPORT_SYMBOL(skb_insert);
1732 EXPORT_SYMBOL(skb_queue_purge);
1733 EXPORT_SYMBOL(skb_queue_head);
1734 EXPORT_SYMBOL(skb_queue_tail);
1735 EXPORT_SYMBOL(skb_unlink);
1736 EXPORT_SYMBOL(skb_append);
1737 EXPORT_SYMBOL(skb_split);
1738 EXPORT_SYMBOL(skb_prepare_seq_read);
1739 EXPORT_SYMBOL(skb_seq_read);
1740 EXPORT_SYMBOL(skb_abort_seq_read);
1741 EXPORT_SYMBOL(skb_find_text);