[CONNECTOR]: Update documentation to match reality.
[linux-2.6/verdex.git] / drivers / md / raid10.c
blob28dd028415e49b51e68e5c80a7b58f303face10b
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/raid/raid10.h>
24 * RAID10 provides a combination of RAID0 and RAID1 functionality.
25 * The layout of data is defined by
26 * chunk_size
27 * raid_disks
28 * near_copies (stored in low byte of layout)
29 * far_copies (stored in second byte of layout)
31 * The data to be stored is divided into chunks using chunksize.
32 * Each device is divided into far_copies sections.
33 * In each section, chunks are laid out in a style similar to raid0, but
34 * near_copies copies of each chunk is stored (each on a different drive).
35 * The starting device for each section is offset near_copies from the starting
36 * device of the previous section.
37 * Thus there are (near_copies*far_copies) of each chunk, and each is on a different
38 * drive.
39 * near_copies and far_copies must be at least one, and their product is at most
40 * raid_disks.
44 * Number of guaranteed r10bios in case of extreme VM load:
46 #define NR_RAID10_BIOS 256
48 static void unplug_slaves(mddev_t *mddev);
50 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
52 conf_t *conf = data;
53 r10bio_t *r10_bio;
54 int size = offsetof(struct r10bio_s, devs[conf->copies]);
56 /* allocate a r10bio with room for raid_disks entries in the bios array */
57 r10_bio = kmalloc(size, gfp_flags);
58 if (r10_bio)
59 memset(r10_bio, 0, size);
60 else
61 unplug_slaves(conf->mddev);
63 return r10_bio;
66 static void r10bio_pool_free(void *r10_bio, void *data)
68 kfree(r10_bio);
71 #define RESYNC_BLOCK_SIZE (64*1024)
72 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
73 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
74 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
75 #define RESYNC_WINDOW (2048*1024)
78 * When performing a resync, we need to read and compare, so
79 * we need as many pages are there are copies.
80 * When performing a recovery, we need 2 bios, one for read,
81 * one for write (we recover only one drive per r10buf)
84 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
86 conf_t *conf = data;
87 struct page *page;
88 r10bio_t *r10_bio;
89 struct bio *bio;
90 int i, j;
91 int nalloc;
93 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
94 if (!r10_bio) {
95 unplug_slaves(conf->mddev);
96 return NULL;
99 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
100 nalloc = conf->copies; /* resync */
101 else
102 nalloc = 2; /* recovery */
105 * Allocate bios.
107 for (j = nalloc ; j-- ; ) {
108 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
109 if (!bio)
110 goto out_free_bio;
111 r10_bio->devs[j].bio = bio;
114 * Allocate RESYNC_PAGES data pages and attach them
115 * where needed.
117 for (j = 0 ; j < nalloc; j++) {
118 bio = r10_bio->devs[j].bio;
119 for (i = 0; i < RESYNC_PAGES; i++) {
120 page = alloc_page(gfp_flags);
121 if (unlikely(!page))
122 goto out_free_pages;
124 bio->bi_io_vec[i].bv_page = page;
128 return r10_bio;
130 out_free_pages:
131 for ( ; i > 0 ; i--)
132 __free_page(bio->bi_io_vec[i-1].bv_page);
133 while (j--)
134 for (i = 0; i < RESYNC_PAGES ; i++)
135 __free_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
136 j = -1;
137 out_free_bio:
138 while ( ++j < nalloc )
139 bio_put(r10_bio->devs[j].bio);
140 r10bio_pool_free(r10_bio, conf);
141 return NULL;
144 static void r10buf_pool_free(void *__r10_bio, void *data)
146 int i;
147 conf_t *conf = data;
148 r10bio_t *r10bio = __r10_bio;
149 int j;
151 for (j=0; j < conf->copies; j++) {
152 struct bio *bio = r10bio->devs[j].bio;
153 if (bio) {
154 for (i = 0; i < RESYNC_PAGES; i++) {
155 __free_page(bio->bi_io_vec[i].bv_page);
156 bio->bi_io_vec[i].bv_page = NULL;
158 bio_put(bio);
161 r10bio_pool_free(r10bio, conf);
164 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
166 int i;
168 for (i = 0; i < conf->copies; i++) {
169 struct bio **bio = & r10_bio->devs[i].bio;
170 if (*bio)
171 bio_put(*bio);
172 *bio = NULL;
176 static inline void free_r10bio(r10bio_t *r10_bio)
178 unsigned long flags;
180 conf_t *conf = mddev_to_conf(r10_bio->mddev);
183 * Wake up any possible resync thread that waits for the device
184 * to go idle.
186 spin_lock_irqsave(&conf->resync_lock, flags);
187 if (!--conf->nr_pending) {
188 wake_up(&conf->wait_idle);
189 wake_up(&conf->wait_resume);
191 spin_unlock_irqrestore(&conf->resync_lock, flags);
193 put_all_bios(conf, r10_bio);
194 mempool_free(r10_bio, conf->r10bio_pool);
197 static inline void put_buf(r10bio_t *r10_bio)
199 conf_t *conf = mddev_to_conf(r10_bio->mddev);
200 unsigned long flags;
202 mempool_free(r10_bio, conf->r10buf_pool);
204 spin_lock_irqsave(&conf->resync_lock, flags);
205 if (!conf->barrier)
206 BUG();
207 --conf->barrier;
208 wake_up(&conf->wait_resume);
209 wake_up(&conf->wait_idle);
211 if (!--conf->nr_pending) {
212 wake_up(&conf->wait_idle);
213 wake_up(&conf->wait_resume);
215 spin_unlock_irqrestore(&conf->resync_lock, flags);
218 static void reschedule_retry(r10bio_t *r10_bio)
220 unsigned long flags;
221 mddev_t *mddev = r10_bio->mddev;
222 conf_t *conf = mddev_to_conf(mddev);
224 spin_lock_irqsave(&conf->device_lock, flags);
225 list_add(&r10_bio->retry_list, &conf->retry_list);
226 spin_unlock_irqrestore(&conf->device_lock, flags);
228 md_wakeup_thread(mddev->thread);
232 * raid_end_bio_io() is called when we have finished servicing a mirrored
233 * operation and are ready to return a success/failure code to the buffer
234 * cache layer.
236 static void raid_end_bio_io(r10bio_t *r10_bio)
238 struct bio *bio = r10_bio->master_bio;
240 bio_endio(bio, bio->bi_size,
241 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
242 free_r10bio(r10_bio);
246 * Update disk head position estimator based on IRQ completion info.
248 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
250 conf_t *conf = mddev_to_conf(r10_bio->mddev);
252 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
253 r10_bio->devs[slot].addr + (r10_bio->sectors);
256 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
258 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
259 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
260 int slot, dev;
261 conf_t *conf = mddev_to_conf(r10_bio->mddev);
263 if (bio->bi_size)
264 return 1;
266 slot = r10_bio->read_slot;
267 dev = r10_bio->devs[slot].devnum;
269 * this branch is our 'one mirror IO has finished' event handler:
271 if (!uptodate)
272 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
273 else
275 * Set R10BIO_Uptodate in our master bio, so that
276 * we will return a good error code to the higher
277 * levels even if IO on some other mirrored buffer fails.
279 * The 'master' represents the composite IO operation to
280 * user-side. So if something waits for IO, then it will
281 * wait for the 'master' bio.
283 set_bit(R10BIO_Uptodate, &r10_bio->state);
285 update_head_pos(slot, r10_bio);
288 * we have only one bio on the read side
290 if (uptodate)
291 raid_end_bio_io(r10_bio);
292 else {
294 * oops, read error:
296 char b[BDEVNAME_SIZE];
297 if (printk_ratelimit())
298 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
299 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
300 reschedule_retry(r10_bio);
303 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
304 return 0;
307 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
311 int slot, dev;
312 conf_t *conf = mddev_to_conf(r10_bio->mddev);
314 if (bio->bi_size)
315 return 1;
317 for (slot = 0; slot < conf->copies; slot++)
318 if (r10_bio->devs[slot].bio == bio)
319 break;
320 dev = r10_bio->devs[slot].devnum;
323 * this branch is our 'one mirror IO has finished' event handler:
325 if (!uptodate)
326 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
327 else
329 * Set R10BIO_Uptodate in our master bio, so that
330 * we will return a good error code for to the higher
331 * levels even if IO on some other mirrored buffer fails.
333 * The 'master' represents the composite IO operation to
334 * user-side. So if something waits for IO, then it will
335 * wait for the 'master' bio.
337 set_bit(R10BIO_Uptodate, &r10_bio->state);
339 update_head_pos(slot, r10_bio);
343 * Let's see if all mirrored write operations have finished
344 * already.
346 if (atomic_dec_and_test(&r10_bio->remaining)) {
347 md_write_end(r10_bio->mddev);
348 raid_end_bio_io(r10_bio);
351 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
352 return 0;
357 * RAID10 layout manager
358 * Aswell as the chunksize and raid_disks count, there are two
359 * parameters: near_copies and far_copies.
360 * near_copies * far_copies must be <= raid_disks.
361 * Normally one of these will be 1.
362 * If both are 1, we get raid0.
363 * If near_copies == raid_disks, we get raid1.
365 * Chunks are layed out in raid0 style with near_copies copies of the
366 * first chunk, followed by near_copies copies of the next chunk and
367 * so on.
368 * If far_copies > 1, then after 1/far_copies of the array has been assigned
369 * as described above, we start again with a device offset of near_copies.
370 * So we effectively have another copy of the whole array further down all
371 * the drives, but with blocks on different drives.
372 * With this layout, and block is never stored twice on the one device.
374 * raid10_find_phys finds the sector offset of a given virtual sector
375 * on each device that it is on. If a block isn't on a device,
376 * that entry in the array is set to MaxSector.
378 * raid10_find_virt does the reverse mapping, from a device and a
379 * sector offset to a virtual address
382 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
384 int n,f;
385 sector_t sector;
386 sector_t chunk;
387 sector_t stripe;
388 int dev;
390 int slot = 0;
392 /* now calculate first sector/dev */
393 chunk = r10bio->sector >> conf->chunk_shift;
394 sector = r10bio->sector & conf->chunk_mask;
396 chunk *= conf->near_copies;
397 stripe = chunk;
398 dev = sector_div(stripe, conf->raid_disks);
400 sector += stripe << conf->chunk_shift;
402 /* and calculate all the others */
403 for (n=0; n < conf->near_copies; n++) {
404 int d = dev;
405 sector_t s = sector;
406 r10bio->devs[slot].addr = sector;
407 r10bio->devs[slot].devnum = d;
408 slot++;
410 for (f = 1; f < conf->far_copies; f++) {
411 d += conf->near_copies;
412 if (d >= conf->raid_disks)
413 d -= conf->raid_disks;
414 s += conf->stride;
415 r10bio->devs[slot].devnum = d;
416 r10bio->devs[slot].addr = s;
417 slot++;
419 dev++;
420 if (dev >= conf->raid_disks) {
421 dev = 0;
422 sector += (conf->chunk_mask + 1);
425 BUG_ON(slot != conf->copies);
428 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
430 sector_t offset, chunk, vchunk;
432 while (sector > conf->stride) {
433 sector -= conf->stride;
434 if (dev < conf->near_copies)
435 dev += conf->raid_disks - conf->near_copies;
436 else
437 dev -= conf->near_copies;
440 offset = sector & conf->chunk_mask;
441 chunk = sector >> conf->chunk_shift;
442 vchunk = chunk * conf->raid_disks + dev;
443 sector_div(vchunk, conf->near_copies);
444 return (vchunk << conf->chunk_shift) + offset;
448 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
449 * @q: request queue
450 * @bio: the buffer head that's been built up so far
451 * @biovec: the request that could be merged to it.
453 * Return amount of bytes we can accept at this offset
454 * If near_copies == raid_disk, there are no striping issues,
455 * but in that case, the function isn't called at all.
457 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio,
458 struct bio_vec *bio_vec)
460 mddev_t *mddev = q->queuedata;
461 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
462 int max;
463 unsigned int chunk_sectors = mddev->chunk_size >> 9;
464 unsigned int bio_sectors = bio->bi_size >> 9;
466 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
467 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
468 if (max <= bio_vec->bv_len && bio_sectors == 0)
469 return bio_vec->bv_len;
470 else
471 return max;
475 * This routine returns the disk from which the requested read should
476 * be done. There is a per-array 'next expected sequential IO' sector
477 * number - if this matches on the next IO then we use the last disk.
478 * There is also a per-disk 'last know head position' sector that is
479 * maintained from IRQ contexts, both the normal and the resync IO
480 * completion handlers update this position correctly. If there is no
481 * perfect sequential match then we pick the disk whose head is closest.
483 * If there are 2 mirrors in the same 2 devices, performance degrades
484 * because position is mirror, not device based.
486 * The rdev for the device selected will have nr_pending incremented.
490 * FIXME: possibly should rethink readbalancing and do it differently
491 * depending on near_copies / far_copies geometry.
493 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
495 const unsigned long this_sector = r10_bio->sector;
496 int disk, slot, nslot;
497 const int sectors = r10_bio->sectors;
498 sector_t new_distance, current_distance;
500 raid10_find_phys(conf, r10_bio);
501 rcu_read_lock();
503 * Check if we can balance. We can balance on the whole
504 * device if no resync is going on, or below the resync window.
505 * We take the first readable disk when above the resync window.
507 if (conf->mddev->recovery_cp < MaxSector
508 && (this_sector + sectors >= conf->next_resync)) {
509 /* make sure that disk is operational */
510 slot = 0;
511 disk = r10_bio->devs[slot].devnum;
513 while (!conf->mirrors[disk].rdev ||
514 !conf->mirrors[disk].rdev->in_sync) {
515 slot++;
516 if (slot == conf->copies) {
517 slot = 0;
518 disk = -1;
519 break;
521 disk = r10_bio->devs[slot].devnum;
523 goto rb_out;
527 /* make sure the disk is operational */
528 slot = 0;
529 disk = r10_bio->devs[slot].devnum;
530 while (!conf->mirrors[disk].rdev ||
531 !conf->mirrors[disk].rdev->in_sync) {
532 slot ++;
533 if (slot == conf->copies) {
534 disk = -1;
535 goto rb_out;
537 disk = r10_bio->devs[slot].devnum;
541 current_distance = abs(r10_bio->devs[slot].addr -
542 conf->mirrors[disk].head_position);
544 /* Find the disk whose head is closest */
546 for (nslot = slot; nslot < conf->copies; nslot++) {
547 int ndisk = r10_bio->devs[nslot].devnum;
550 if (!conf->mirrors[ndisk].rdev ||
551 !conf->mirrors[ndisk].rdev->in_sync)
552 continue;
554 if (!atomic_read(&conf->mirrors[ndisk].rdev->nr_pending)) {
555 disk = ndisk;
556 slot = nslot;
557 break;
559 new_distance = abs(r10_bio->devs[nslot].addr -
560 conf->mirrors[ndisk].head_position);
561 if (new_distance < current_distance) {
562 current_distance = new_distance;
563 disk = ndisk;
564 slot = nslot;
568 rb_out:
569 r10_bio->read_slot = slot;
570 /* conf->next_seq_sect = this_sector + sectors;*/
572 if (disk >= 0 && conf->mirrors[disk].rdev)
573 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
574 rcu_read_unlock();
576 return disk;
579 static void unplug_slaves(mddev_t *mddev)
581 conf_t *conf = mddev_to_conf(mddev);
582 int i;
584 rcu_read_lock();
585 for (i=0; i<mddev->raid_disks; i++) {
586 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
587 if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) {
588 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
590 atomic_inc(&rdev->nr_pending);
591 rcu_read_unlock();
593 if (r_queue->unplug_fn)
594 r_queue->unplug_fn(r_queue);
596 rdev_dec_pending(rdev, mddev);
597 rcu_read_lock();
600 rcu_read_unlock();
603 static void raid10_unplug(request_queue_t *q)
605 unplug_slaves(q->queuedata);
608 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk,
609 sector_t *error_sector)
611 mddev_t *mddev = q->queuedata;
612 conf_t *conf = mddev_to_conf(mddev);
613 int i, ret = 0;
615 rcu_read_lock();
616 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
617 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
618 if (rdev && !rdev->faulty) {
619 struct block_device *bdev = rdev->bdev;
620 request_queue_t *r_queue = bdev_get_queue(bdev);
622 if (!r_queue->issue_flush_fn)
623 ret = -EOPNOTSUPP;
624 else {
625 atomic_inc(&rdev->nr_pending);
626 rcu_read_unlock();
627 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
628 error_sector);
629 rdev_dec_pending(rdev, mddev);
630 rcu_read_lock();
634 rcu_read_unlock();
635 return ret;
639 * Throttle resync depth, so that we can both get proper overlapping of
640 * requests, but are still able to handle normal requests quickly.
642 #define RESYNC_DEPTH 32
644 static void device_barrier(conf_t *conf, sector_t sect)
646 spin_lock_irq(&conf->resync_lock);
647 wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
648 conf->resync_lock, unplug_slaves(conf->mddev));
650 if (!conf->barrier++) {
651 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
652 conf->resync_lock, unplug_slaves(conf->mddev));
653 if (conf->nr_pending)
654 BUG();
656 wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
657 conf->resync_lock, unplug_slaves(conf->mddev));
658 conf->next_resync = sect;
659 spin_unlock_irq(&conf->resync_lock);
662 static int make_request(request_queue_t *q, struct bio * bio)
664 mddev_t *mddev = q->queuedata;
665 conf_t *conf = mddev_to_conf(mddev);
666 mirror_info_t *mirror;
667 r10bio_t *r10_bio;
668 struct bio *read_bio;
669 int i;
670 int chunk_sects = conf->chunk_mask + 1;
672 if (unlikely(bio_barrier(bio))) {
673 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
674 return 0;
677 /* If this request crosses a chunk boundary, we need to
678 * split it. This will only happen for 1 PAGE (or less) requests.
680 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
681 > chunk_sects &&
682 conf->near_copies < conf->raid_disks)) {
683 struct bio_pair *bp;
684 /* Sanity check -- queue functions should prevent this happening */
685 if (bio->bi_vcnt != 1 ||
686 bio->bi_idx != 0)
687 goto bad_map;
688 /* This is a one page bio that upper layers
689 * refuse to split for us, so we need to split it.
691 bp = bio_split(bio, bio_split_pool,
692 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
693 if (make_request(q, &bp->bio1))
694 generic_make_request(&bp->bio1);
695 if (make_request(q, &bp->bio2))
696 generic_make_request(&bp->bio2);
698 bio_pair_release(bp);
699 return 0;
700 bad_map:
701 printk("raid10_make_request bug: can't convert block across chunks"
702 " or bigger than %dk %llu %d\n", chunk_sects/2,
703 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
705 bio_io_error(bio, bio->bi_size);
706 return 0;
709 md_write_start(mddev, bio);
712 * Register the new request and wait if the reconstruction
713 * thread has put up a bar for new requests.
714 * Continue immediately if no resync is active currently.
716 spin_lock_irq(&conf->resync_lock);
717 wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
718 conf->nr_pending++;
719 spin_unlock_irq(&conf->resync_lock);
721 if (bio_data_dir(bio)==WRITE) {
722 disk_stat_inc(mddev->gendisk, writes);
723 disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio));
724 } else {
725 disk_stat_inc(mddev->gendisk, reads);
726 disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio));
729 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
731 r10_bio->master_bio = bio;
732 r10_bio->sectors = bio->bi_size >> 9;
734 r10_bio->mddev = mddev;
735 r10_bio->sector = bio->bi_sector;
737 if (bio_data_dir(bio) == READ) {
739 * read balancing logic:
741 int disk = read_balance(conf, r10_bio);
742 int slot = r10_bio->read_slot;
743 if (disk < 0) {
744 raid_end_bio_io(r10_bio);
745 return 0;
747 mirror = conf->mirrors + disk;
749 read_bio = bio_clone(bio, GFP_NOIO);
751 r10_bio->devs[slot].bio = read_bio;
753 read_bio->bi_sector = r10_bio->devs[slot].addr +
754 mirror->rdev->data_offset;
755 read_bio->bi_bdev = mirror->rdev->bdev;
756 read_bio->bi_end_io = raid10_end_read_request;
757 read_bio->bi_rw = READ;
758 read_bio->bi_private = r10_bio;
760 generic_make_request(read_bio);
761 return 0;
765 * WRITE:
767 /* first select target devices under spinlock and
768 * inc refcount on their rdev. Record them by setting
769 * bios[x] to bio
771 raid10_find_phys(conf, r10_bio);
772 rcu_read_lock();
773 for (i = 0; i < conf->copies; i++) {
774 int d = r10_bio->devs[i].devnum;
775 if (conf->mirrors[d].rdev &&
776 !conf->mirrors[d].rdev->faulty) {
777 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
778 r10_bio->devs[i].bio = bio;
779 } else
780 r10_bio->devs[i].bio = NULL;
782 rcu_read_unlock();
784 atomic_set(&r10_bio->remaining, 1);
786 for (i = 0; i < conf->copies; i++) {
787 struct bio *mbio;
788 int d = r10_bio->devs[i].devnum;
789 if (!r10_bio->devs[i].bio)
790 continue;
792 mbio = bio_clone(bio, GFP_NOIO);
793 r10_bio->devs[i].bio = mbio;
795 mbio->bi_sector = r10_bio->devs[i].addr+
796 conf->mirrors[d].rdev->data_offset;
797 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
798 mbio->bi_end_io = raid10_end_write_request;
799 mbio->bi_rw = WRITE;
800 mbio->bi_private = r10_bio;
802 atomic_inc(&r10_bio->remaining);
803 generic_make_request(mbio);
806 if (atomic_dec_and_test(&r10_bio->remaining)) {
807 md_write_end(mddev);
808 raid_end_bio_io(r10_bio);
811 return 0;
814 static void status(struct seq_file *seq, mddev_t *mddev)
816 conf_t *conf = mddev_to_conf(mddev);
817 int i;
819 if (conf->near_copies < conf->raid_disks)
820 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
821 if (conf->near_copies > 1)
822 seq_printf(seq, " %d near-copies", conf->near_copies);
823 if (conf->far_copies > 1)
824 seq_printf(seq, " %d far-copies", conf->far_copies);
826 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
827 conf->working_disks);
828 for (i = 0; i < conf->raid_disks; i++)
829 seq_printf(seq, "%s",
830 conf->mirrors[i].rdev &&
831 conf->mirrors[i].rdev->in_sync ? "U" : "_");
832 seq_printf(seq, "]");
835 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
837 char b[BDEVNAME_SIZE];
838 conf_t *conf = mddev_to_conf(mddev);
841 * If it is not operational, then we have already marked it as dead
842 * else if it is the last working disks, ignore the error, let the
843 * next level up know.
844 * else mark the drive as failed
846 if (rdev->in_sync
847 && conf->working_disks == 1)
849 * Don't fail the drive, just return an IO error.
850 * The test should really be more sophisticated than
851 * "working_disks == 1", but it isn't critical, and
852 * can wait until we do more sophisticated "is the drive
853 * really dead" tests...
855 return;
856 if (rdev->in_sync) {
857 mddev->degraded++;
858 conf->working_disks--;
860 * if recovery is running, make sure it aborts.
862 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
864 rdev->in_sync = 0;
865 rdev->faulty = 1;
866 mddev->sb_dirty = 1;
867 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
868 " Operation continuing on %d devices\n",
869 bdevname(rdev->bdev,b), conf->working_disks);
872 static void print_conf(conf_t *conf)
874 int i;
875 mirror_info_t *tmp;
877 printk("RAID10 conf printout:\n");
878 if (!conf) {
879 printk("(!conf)\n");
880 return;
882 printk(" --- wd:%d rd:%d\n", conf->working_disks,
883 conf->raid_disks);
885 for (i = 0; i < conf->raid_disks; i++) {
886 char b[BDEVNAME_SIZE];
887 tmp = conf->mirrors + i;
888 if (tmp->rdev)
889 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
890 i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
891 bdevname(tmp->rdev->bdev,b));
895 static void close_sync(conf_t *conf)
897 spin_lock_irq(&conf->resync_lock);
898 wait_event_lock_irq(conf->wait_resume, !conf->barrier,
899 conf->resync_lock, unplug_slaves(conf->mddev));
900 spin_unlock_irq(&conf->resync_lock);
902 if (conf->barrier) BUG();
903 if (waitqueue_active(&conf->wait_idle)) BUG();
905 mempool_destroy(conf->r10buf_pool);
906 conf->r10buf_pool = NULL;
909 /* check if there are enough drives for
910 * every block to appear on atleast one
912 static int enough(conf_t *conf)
914 int first = 0;
916 do {
917 int n = conf->copies;
918 int cnt = 0;
919 while (n--) {
920 if (conf->mirrors[first].rdev)
921 cnt++;
922 first = (first+1) % conf->raid_disks;
924 if (cnt == 0)
925 return 0;
926 } while (first != 0);
927 return 1;
930 static int raid10_spare_active(mddev_t *mddev)
932 int i;
933 conf_t *conf = mddev->private;
934 mirror_info_t *tmp;
937 * Find all non-in_sync disks within the RAID10 configuration
938 * and mark them in_sync
940 for (i = 0; i < conf->raid_disks; i++) {
941 tmp = conf->mirrors + i;
942 if (tmp->rdev
943 && !tmp->rdev->faulty
944 && !tmp->rdev->in_sync) {
945 conf->working_disks++;
946 mddev->degraded--;
947 tmp->rdev->in_sync = 1;
951 print_conf(conf);
952 return 0;
956 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
958 conf_t *conf = mddev->private;
959 int found = 0;
960 int mirror;
961 mirror_info_t *p;
963 if (mddev->recovery_cp < MaxSector)
964 /* only hot-add to in-sync arrays, as recovery is
965 * very different from resync
967 return 0;
968 if (!enough(conf))
969 return 0;
971 for (mirror=0; mirror < mddev->raid_disks; mirror++)
972 if ( !(p=conf->mirrors+mirror)->rdev) {
974 blk_queue_stack_limits(mddev->queue,
975 rdev->bdev->bd_disk->queue);
976 /* as we don't honour merge_bvec_fn, we must never risk
977 * violating it, so limit ->max_sector to one PAGE, as
978 * a one page request is never in violation.
980 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
981 mddev->queue->max_sectors > (PAGE_SIZE>>9))
982 mddev->queue->max_sectors = (PAGE_SIZE>>9);
984 p->head_position = 0;
985 rdev->raid_disk = mirror;
986 found = 1;
987 p->rdev = rdev;
988 break;
991 print_conf(conf);
992 return found;
995 static int raid10_remove_disk(mddev_t *mddev, int number)
997 conf_t *conf = mddev->private;
998 int err = 0;
999 mdk_rdev_t *rdev;
1000 mirror_info_t *p = conf->mirrors+ number;
1002 print_conf(conf);
1003 rdev = p->rdev;
1004 if (rdev) {
1005 if (rdev->in_sync ||
1006 atomic_read(&rdev->nr_pending)) {
1007 err = -EBUSY;
1008 goto abort;
1010 p->rdev = NULL;
1011 synchronize_rcu();
1012 if (atomic_read(&rdev->nr_pending)) {
1013 /* lost the race, try later */
1014 err = -EBUSY;
1015 p->rdev = rdev;
1018 abort:
1020 print_conf(conf);
1021 return err;
1025 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1027 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1028 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1029 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1030 int i,d;
1032 if (bio->bi_size)
1033 return 1;
1035 for (i=0; i<conf->copies; i++)
1036 if (r10_bio->devs[i].bio == bio)
1037 break;
1038 if (i == conf->copies)
1039 BUG();
1040 update_head_pos(i, r10_bio);
1041 d = r10_bio->devs[i].devnum;
1042 if (!uptodate)
1043 md_error(r10_bio->mddev,
1044 conf->mirrors[d].rdev);
1046 /* for reconstruct, we always reschedule after a read.
1047 * for resync, only after all reads
1049 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1050 atomic_dec_and_test(&r10_bio->remaining)) {
1051 /* we have read all the blocks,
1052 * do the comparison in process context in raid10d
1054 reschedule_retry(r10_bio);
1056 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1057 return 0;
1060 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1062 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1063 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1064 mddev_t *mddev = r10_bio->mddev;
1065 conf_t *conf = mddev_to_conf(mddev);
1066 int i,d;
1068 if (bio->bi_size)
1069 return 1;
1071 for (i = 0; i < conf->copies; i++)
1072 if (r10_bio->devs[i].bio == bio)
1073 break;
1074 d = r10_bio->devs[i].devnum;
1076 if (!uptodate)
1077 md_error(mddev, conf->mirrors[d].rdev);
1078 update_head_pos(i, r10_bio);
1080 while (atomic_dec_and_test(&r10_bio->remaining)) {
1081 if (r10_bio->master_bio == NULL) {
1082 /* the primary of several recovery bios */
1083 md_done_sync(mddev, r10_bio->sectors, 1);
1084 put_buf(r10_bio);
1085 break;
1086 } else {
1087 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1088 put_buf(r10_bio);
1089 r10_bio = r10_bio2;
1092 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1093 return 0;
1097 * Note: sync and recover and handled very differently for raid10
1098 * This code is for resync.
1099 * For resync, we read through virtual addresses and read all blocks.
1100 * If there is any error, we schedule a write. The lowest numbered
1101 * drive is authoritative.
1102 * However requests come for physical address, so we need to map.
1103 * For every physical address there are raid_disks/copies virtual addresses,
1104 * which is always are least one, but is not necessarly an integer.
1105 * This means that a physical address can span multiple chunks, so we may
1106 * have to submit multiple io requests for a single sync request.
1109 * We check if all blocks are in-sync and only write to blocks that
1110 * aren't in sync
1112 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1114 conf_t *conf = mddev_to_conf(mddev);
1115 int i, first;
1116 struct bio *tbio, *fbio;
1118 atomic_set(&r10_bio->remaining, 1);
1120 /* find the first device with a block */
1121 for (i=0; i<conf->copies; i++)
1122 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1123 break;
1125 if (i == conf->copies)
1126 goto done;
1128 first = i;
1129 fbio = r10_bio->devs[i].bio;
1131 /* now find blocks with errors */
1132 for (i=first+1 ; i < conf->copies ; i++) {
1133 int vcnt, j, d;
1135 if (!test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1136 continue;
1137 /* We know that the bi_io_vec layout is the same for
1138 * both 'first' and 'i', so we just compare them.
1139 * All vec entries are PAGE_SIZE;
1141 tbio = r10_bio->devs[i].bio;
1142 vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1143 for (j = 0; j < vcnt; j++)
1144 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1145 page_address(tbio->bi_io_vec[j].bv_page),
1146 PAGE_SIZE))
1147 break;
1148 if (j == vcnt)
1149 continue;
1150 /* Ok, we need to write this bio
1151 * First we need to fixup bv_offset, bv_len and
1152 * bi_vecs, as the read request might have corrupted these
1154 tbio->bi_vcnt = vcnt;
1155 tbio->bi_size = r10_bio->sectors << 9;
1156 tbio->bi_idx = 0;
1157 tbio->bi_phys_segments = 0;
1158 tbio->bi_hw_segments = 0;
1159 tbio->bi_hw_front_size = 0;
1160 tbio->bi_hw_back_size = 0;
1161 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1162 tbio->bi_flags |= 1 << BIO_UPTODATE;
1163 tbio->bi_next = NULL;
1164 tbio->bi_rw = WRITE;
1165 tbio->bi_private = r10_bio;
1166 tbio->bi_sector = r10_bio->devs[i].addr;
1168 for (j=0; j < vcnt ; j++) {
1169 tbio->bi_io_vec[j].bv_offset = 0;
1170 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1172 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1173 page_address(fbio->bi_io_vec[j].bv_page),
1174 PAGE_SIZE);
1176 tbio->bi_end_io = end_sync_write;
1178 d = r10_bio->devs[i].devnum;
1179 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1180 atomic_inc(&r10_bio->remaining);
1181 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1183 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1184 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1185 generic_make_request(tbio);
1188 done:
1189 if (atomic_dec_and_test(&r10_bio->remaining)) {
1190 md_done_sync(mddev, r10_bio->sectors, 1);
1191 put_buf(r10_bio);
1196 * Now for the recovery code.
1197 * Recovery happens across physical sectors.
1198 * We recover all non-is_sync drives by finding the virtual address of
1199 * each, and then choose a working drive that also has that virt address.
1200 * There is a separate r10_bio for each non-in_sync drive.
1201 * Only the first two slots are in use. The first for reading,
1202 * The second for writing.
1206 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1208 conf_t *conf = mddev_to_conf(mddev);
1209 int i, d;
1210 struct bio *bio, *wbio;
1213 /* move the pages across to the second bio
1214 * and submit the write request
1216 bio = r10_bio->devs[0].bio;
1217 wbio = r10_bio->devs[1].bio;
1218 for (i=0; i < wbio->bi_vcnt; i++) {
1219 struct page *p = bio->bi_io_vec[i].bv_page;
1220 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1221 wbio->bi_io_vec[i].bv_page = p;
1223 d = r10_bio->devs[1].devnum;
1225 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1226 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1227 generic_make_request(wbio);
1232 * This is a kernel thread which:
1234 * 1. Retries failed read operations on working mirrors.
1235 * 2. Updates the raid superblock when problems encounter.
1236 * 3. Performs writes following reads for array syncronising.
1239 static void raid10d(mddev_t *mddev)
1241 r10bio_t *r10_bio;
1242 struct bio *bio;
1243 unsigned long flags;
1244 conf_t *conf = mddev_to_conf(mddev);
1245 struct list_head *head = &conf->retry_list;
1246 int unplug=0;
1247 mdk_rdev_t *rdev;
1249 md_check_recovery(mddev);
1251 for (;;) {
1252 char b[BDEVNAME_SIZE];
1253 spin_lock_irqsave(&conf->device_lock, flags);
1254 if (list_empty(head))
1255 break;
1256 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1257 list_del(head->prev);
1258 spin_unlock_irqrestore(&conf->device_lock, flags);
1260 mddev = r10_bio->mddev;
1261 conf = mddev_to_conf(mddev);
1262 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1263 sync_request_write(mddev, r10_bio);
1264 unplug = 1;
1265 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1266 recovery_request_write(mddev, r10_bio);
1267 unplug = 1;
1268 } else {
1269 int mirror;
1270 bio = r10_bio->devs[r10_bio->read_slot].bio;
1271 r10_bio->devs[r10_bio->read_slot].bio = NULL;
1272 bio_put(bio);
1273 mirror = read_balance(conf, r10_bio);
1274 if (mirror == -1) {
1275 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1276 " read error for block %llu\n",
1277 bdevname(bio->bi_bdev,b),
1278 (unsigned long long)r10_bio->sector);
1279 raid_end_bio_io(r10_bio);
1280 } else {
1281 rdev = conf->mirrors[mirror].rdev;
1282 if (printk_ratelimit())
1283 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1284 " another mirror\n",
1285 bdevname(rdev->bdev,b),
1286 (unsigned long long)r10_bio->sector);
1287 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1288 r10_bio->devs[r10_bio->read_slot].bio = bio;
1289 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1290 + rdev->data_offset;
1291 bio->bi_bdev = rdev->bdev;
1292 bio->bi_rw = READ;
1293 bio->bi_private = r10_bio;
1294 bio->bi_end_io = raid10_end_read_request;
1295 unplug = 1;
1296 generic_make_request(bio);
1300 spin_unlock_irqrestore(&conf->device_lock, flags);
1301 if (unplug)
1302 unplug_slaves(mddev);
1306 static int init_resync(conf_t *conf)
1308 int buffs;
1310 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1311 if (conf->r10buf_pool)
1312 BUG();
1313 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1314 if (!conf->r10buf_pool)
1315 return -ENOMEM;
1316 conf->next_resync = 0;
1317 return 0;
1321 * perform a "sync" on one "block"
1323 * We need to make sure that no normal I/O request - particularly write
1324 * requests - conflict with active sync requests.
1326 * This is achieved by tracking pending requests and a 'barrier' concept
1327 * that can be installed to exclude normal IO requests.
1329 * Resync and recovery are handled very differently.
1330 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1332 * For resync, we iterate over virtual addresses, read all copies,
1333 * and update if there are differences. If only one copy is live,
1334 * skip it.
1335 * For recovery, we iterate over physical addresses, read a good
1336 * value for each non-in_sync drive, and over-write.
1338 * So, for recovery we may have several outstanding complex requests for a
1339 * given address, one for each out-of-sync device. We model this by allocating
1340 * a number of r10_bio structures, one for each out-of-sync device.
1341 * As we setup these structures, we collect all bio's together into a list
1342 * which we then process collectively to add pages, and then process again
1343 * to pass to generic_make_request.
1345 * The r10_bio structures are linked using a borrowed master_bio pointer.
1346 * This link is counted in ->remaining. When the r10_bio that points to NULL
1347 * has its remaining count decremented to 0, the whole complex operation
1348 * is complete.
1352 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1354 conf_t *conf = mddev_to_conf(mddev);
1355 r10bio_t *r10_bio;
1356 struct bio *biolist = NULL, *bio;
1357 sector_t max_sector, nr_sectors;
1358 int disk;
1359 int i;
1361 sector_t sectors_skipped = 0;
1362 int chunks_skipped = 0;
1364 if (!conf->r10buf_pool)
1365 if (init_resync(conf))
1366 return 0;
1368 skipped:
1369 max_sector = mddev->size << 1;
1370 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1371 max_sector = mddev->resync_max_sectors;
1372 if (sector_nr >= max_sector) {
1373 close_sync(conf);
1374 *skipped = 1;
1375 return sectors_skipped;
1377 if (chunks_skipped >= conf->raid_disks) {
1378 /* if there has been nothing to do on any drive,
1379 * then there is nothing to do at all..
1381 *skipped = 1;
1382 return (max_sector - sector_nr) + sectors_skipped;
1385 /* make sure whole request will fit in a chunk - if chunks
1386 * are meaningful
1388 if (conf->near_copies < conf->raid_disks &&
1389 max_sector > (sector_nr | conf->chunk_mask))
1390 max_sector = (sector_nr | conf->chunk_mask) + 1;
1392 * If there is non-resync activity waiting for us then
1393 * put in a delay to throttle resync.
1395 if (!go_faster && waitqueue_active(&conf->wait_resume))
1396 msleep_interruptible(1000);
1397 device_barrier(conf, sector_nr + RESYNC_SECTORS);
1399 /* Again, very different code for resync and recovery.
1400 * Both must result in an r10bio with a list of bios that
1401 * have bi_end_io, bi_sector, bi_bdev set,
1402 * and bi_private set to the r10bio.
1403 * For recovery, we may actually create several r10bios
1404 * with 2 bios in each, that correspond to the bios in the main one.
1405 * In this case, the subordinate r10bios link back through a
1406 * borrowed master_bio pointer, and the counter in the master
1407 * includes a ref from each subordinate.
1409 /* First, we decide what to do and set ->bi_end_io
1410 * To end_sync_read if we want to read, and
1411 * end_sync_write if we will want to write.
1414 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1415 /* recovery... the complicated one */
1416 int i, j, k;
1417 r10_bio = NULL;
1419 for (i=0 ; i<conf->raid_disks; i++)
1420 if (conf->mirrors[i].rdev &&
1421 !conf->mirrors[i].rdev->in_sync) {
1422 /* want to reconstruct this device */
1423 r10bio_t *rb2 = r10_bio;
1425 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1426 spin_lock_irq(&conf->resync_lock);
1427 conf->nr_pending++;
1428 if (rb2) conf->barrier++;
1429 spin_unlock_irq(&conf->resync_lock);
1430 atomic_set(&r10_bio->remaining, 0);
1432 r10_bio->master_bio = (struct bio*)rb2;
1433 if (rb2)
1434 atomic_inc(&rb2->remaining);
1435 r10_bio->mddev = mddev;
1436 set_bit(R10BIO_IsRecover, &r10_bio->state);
1437 r10_bio->sector = raid10_find_virt(conf, sector_nr, i);
1438 raid10_find_phys(conf, r10_bio);
1439 for (j=0; j<conf->copies;j++) {
1440 int d = r10_bio->devs[j].devnum;
1441 if (conf->mirrors[d].rdev &&
1442 conf->mirrors[d].rdev->in_sync) {
1443 /* This is where we read from */
1444 bio = r10_bio->devs[0].bio;
1445 bio->bi_next = biolist;
1446 biolist = bio;
1447 bio->bi_private = r10_bio;
1448 bio->bi_end_io = end_sync_read;
1449 bio->bi_rw = 0;
1450 bio->bi_sector = r10_bio->devs[j].addr +
1451 conf->mirrors[d].rdev->data_offset;
1452 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1453 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1454 atomic_inc(&r10_bio->remaining);
1455 /* and we write to 'i' */
1457 for (k=0; k<conf->copies; k++)
1458 if (r10_bio->devs[k].devnum == i)
1459 break;
1460 bio = r10_bio->devs[1].bio;
1461 bio->bi_next = biolist;
1462 biolist = bio;
1463 bio->bi_private = r10_bio;
1464 bio->bi_end_io = end_sync_write;
1465 bio->bi_rw = 1;
1466 bio->bi_sector = r10_bio->devs[k].addr +
1467 conf->mirrors[i].rdev->data_offset;
1468 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1470 r10_bio->devs[0].devnum = d;
1471 r10_bio->devs[1].devnum = i;
1473 break;
1476 if (j == conf->copies) {
1477 /* Cannot recover, so abort the recovery */
1478 put_buf(r10_bio);
1479 r10_bio = rb2;
1480 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
1481 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1482 mdname(mddev));
1483 break;
1486 if (biolist == NULL) {
1487 while (r10_bio) {
1488 r10bio_t *rb2 = r10_bio;
1489 r10_bio = (r10bio_t*) rb2->master_bio;
1490 rb2->master_bio = NULL;
1491 put_buf(rb2);
1493 goto giveup;
1495 } else {
1496 /* resync. Schedule a read for every block at this virt offset */
1497 int count = 0;
1498 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1500 spin_lock_irq(&conf->resync_lock);
1501 conf->nr_pending++;
1502 spin_unlock_irq(&conf->resync_lock);
1504 r10_bio->mddev = mddev;
1505 atomic_set(&r10_bio->remaining, 0);
1507 r10_bio->master_bio = NULL;
1508 r10_bio->sector = sector_nr;
1509 set_bit(R10BIO_IsSync, &r10_bio->state);
1510 raid10_find_phys(conf, r10_bio);
1511 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1513 for (i=0; i<conf->copies; i++) {
1514 int d = r10_bio->devs[i].devnum;
1515 bio = r10_bio->devs[i].bio;
1516 bio->bi_end_io = NULL;
1517 if (conf->mirrors[d].rdev == NULL ||
1518 conf->mirrors[d].rdev->faulty)
1519 continue;
1520 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1521 atomic_inc(&r10_bio->remaining);
1522 bio->bi_next = biolist;
1523 biolist = bio;
1524 bio->bi_private = r10_bio;
1525 bio->bi_end_io = end_sync_read;
1526 bio->bi_rw = 0;
1527 bio->bi_sector = r10_bio->devs[i].addr +
1528 conf->mirrors[d].rdev->data_offset;
1529 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1530 count++;
1533 if (count < 2) {
1534 for (i=0; i<conf->copies; i++) {
1535 int d = r10_bio->devs[i].devnum;
1536 if (r10_bio->devs[i].bio->bi_end_io)
1537 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1539 put_buf(r10_bio);
1540 biolist = NULL;
1541 goto giveup;
1545 for (bio = biolist; bio ; bio=bio->bi_next) {
1547 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1548 if (bio->bi_end_io)
1549 bio->bi_flags |= 1 << BIO_UPTODATE;
1550 bio->bi_vcnt = 0;
1551 bio->bi_idx = 0;
1552 bio->bi_phys_segments = 0;
1553 bio->bi_hw_segments = 0;
1554 bio->bi_size = 0;
1557 nr_sectors = 0;
1558 do {
1559 struct page *page;
1560 int len = PAGE_SIZE;
1561 disk = 0;
1562 if (sector_nr + (len>>9) > max_sector)
1563 len = (max_sector - sector_nr) << 9;
1564 if (len == 0)
1565 break;
1566 for (bio= biolist ; bio ; bio=bio->bi_next) {
1567 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1568 if (bio_add_page(bio, page, len, 0) == 0) {
1569 /* stop here */
1570 struct bio *bio2;
1571 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1572 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1573 /* remove last page from this bio */
1574 bio2->bi_vcnt--;
1575 bio2->bi_size -= len;
1576 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1578 goto bio_full;
1580 disk = i;
1582 nr_sectors += len>>9;
1583 sector_nr += len>>9;
1584 } while (biolist->bi_vcnt < RESYNC_PAGES);
1585 bio_full:
1586 r10_bio->sectors = nr_sectors;
1588 while (biolist) {
1589 bio = biolist;
1590 biolist = biolist->bi_next;
1592 bio->bi_next = NULL;
1593 r10_bio = bio->bi_private;
1594 r10_bio->sectors = nr_sectors;
1596 if (bio->bi_end_io == end_sync_read) {
1597 md_sync_acct(bio->bi_bdev, nr_sectors);
1598 generic_make_request(bio);
1602 if (sectors_skipped)
1603 /* pretend they weren't skipped, it makes
1604 * no important difference in this case
1606 md_done_sync(mddev, sectors_skipped, 1);
1608 return sectors_skipped + nr_sectors;
1609 giveup:
1610 /* There is nowhere to write, so all non-sync
1611 * drives must be failed, so try the next chunk...
1614 sector_t sec = max_sector - sector_nr;
1615 sectors_skipped += sec;
1616 chunks_skipped ++;
1617 sector_nr = max_sector;
1618 goto skipped;
1622 static int run(mddev_t *mddev)
1624 conf_t *conf;
1625 int i, disk_idx;
1626 mirror_info_t *disk;
1627 mdk_rdev_t *rdev;
1628 struct list_head *tmp;
1629 int nc, fc;
1630 sector_t stride, size;
1632 if (mddev->level != 10) {
1633 printk(KERN_ERR "raid10: %s: raid level not set correctly... (%d)\n",
1634 mdname(mddev), mddev->level);
1635 goto out;
1637 nc = mddev->layout & 255;
1638 fc = (mddev->layout >> 8) & 255;
1639 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1640 (mddev->layout >> 16)) {
1641 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1642 mdname(mddev), mddev->layout);
1643 goto out;
1646 * copy the already verified devices into our private RAID10
1647 * bookkeeping area. [whatever we allocate in run(),
1648 * should be freed in stop()]
1650 conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1651 mddev->private = conf;
1652 if (!conf) {
1653 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1654 mdname(mddev));
1655 goto out;
1657 memset(conf, 0, sizeof(*conf));
1658 conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1659 GFP_KERNEL);
1660 if (!conf->mirrors) {
1661 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1662 mdname(mddev));
1663 goto out_free_conf;
1665 memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1667 conf->near_copies = nc;
1668 conf->far_copies = fc;
1669 conf->copies = nc*fc;
1670 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
1671 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
1672 stride = mddev->size >> (conf->chunk_shift-1);
1673 sector_div(stride, fc);
1674 conf->stride = stride << conf->chunk_shift;
1676 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
1677 r10bio_pool_free, conf);
1678 if (!conf->r10bio_pool) {
1679 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1680 mdname(mddev));
1681 goto out_free_conf;
1684 ITERATE_RDEV(mddev, rdev, tmp) {
1685 disk_idx = rdev->raid_disk;
1686 if (disk_idx >= mddev->raid_disks
1687 || disk_idx < 0)
1688 continue;
1689 disk = conf->mirrors + disk_idx;
1691 disk->rdev = rdev;
1693 blk_queue_stack_limits(mddev->queue,
1694 rdev->bdev->bd_disk->queue);
1695 /* as we don't honour merge_bvec_fn, we must never risk
1696 * violating it, so limit ->max_sector to one PAGE, as
1697 * a one page request is never in violation.
1699 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1700 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1701 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1703 disk->head_position = 0;
1704 if (!rdev->faulty && rdev->in_sync)
1705 conf->working_disks++;
1707 conf->raid_disks = mddev->raid_disks;
1708 conf->mddev = mddev;
1709 spin_lock_init(&conf->device_lock);
1710 INIT_LIST_HEAD(&conf->retry_list);
1712 spin_lock_init(&conf->resync_lock);
1713 init_waitqueue_head(&conf->wait_idle);
1714 init_waitqueue_head(&conf->wait_resume);
1716 /* need to check that every block has at least one working mirror */
1717 if (!enough(conf)) {
1718 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
1719 mdname(mddev));
1720 goto out_free_conf;
1723 mddev->degraded = 0;
1724 for (i = 0; i < conf->raid_disks; i++) {
1726 disk = conf->mirrors + i;
1728 if (!disk->rdev) {
1729 disk->head_position = 0;
1730 mddev->degraded++;
1735 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
1736 if (!mddev->thread) {
1737 printk(KERN_ERR
1738 "raid10: couldn't allocate thread for %s\n",
1739 mdname(mddev));
1740 goto out_free_conf;
1743 printk(KERN_INFO
1744 "raid10: raid set %s active with %d out of %d devices\n",
1745 mdname(mddev), mddev->raid_disks - mddev->degraded,
1746 mddev->raid_disks);
1748 * Ok, everything is just fine now
1750 size = conf->stride * conf->raid_disks;
1751 sector_div(size, conf->near_copies);
1752 mddev->array_size = size/2;
1753 mddev->resync_max_sectors = size;
1755 mddev->queue->unplug_fn = raid10_unplug;
1756 mddev->queue->issue_flush_fn = raid10_issue_flush;
1758 /* Calculate max read-ahead size.
1759 * We need to readahead at least twice a whole stripe....
1760 * maybe...
1763 int stripe = conf->raid_disks * mddev->chunk_size / PAGE_CACHE_SIZE;
1764 stripe /= conf->near_copies;
1765 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
1766 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
1769 if (conf->near_copies < mddev->raid_disks)
1770 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
1771 return 0;
1773 out_free_conf:
1774 if (conf->r10bio_pool)
1775 mempool_destroy(conf->r10bio_pool);
1776 kfree(conf->mirrors);
1777 kfree(conf);
1778 mddev->private = NULL;
1779 out:
1780 return -EIO;
1783 static int stop(mddev_t *mddev)
1785 conf_t *conf = mddev_to_conf(mddev);
1787 md_unregister_thread(mddev->thread);
1788 mddev->thread = NULL;
1789 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1790 if (conf->r10bio_pool)
1791 mempool_destroy(conf->r10bio_pool);
1792 kfree(conf->mirrors);
1793 kfree(conf);
1794 mddev->private = NULL;
1795 return 0;
1799 static mdk_personality_t raid10_personality =
1801 .name = "raid10",
1802 .owner = THIS_MODULE,
1803 .make_request = make_request,
1804 .run = run,
1805 .stop = stop,
1806 .status = status,
1807 .error_handler = error,
1808 .hot_add_disk = raid10_add_disk,
1809 .hot_remove_disk= raid10_remove_disk,
1810 .spare_active = raid10_spare_active,
1811 .sync_request = sync_request,
1814 static int __init raid_init(void)
1816 return register_md_personality(RAID10, &raid10_personality);
1819 static void raid_exit(void)
1821 unregister_md_personality(RAID10);
1824 module_init(raid_init);
1825 module_exit(raid_exit);
1826 MODULE_LICENSE("GPL");
1827 MODULE_ALIAS("md-personality-9"); /* RAID10 */