[CONNECTOR]: Update documentation to match reality.
[linux-2.6/verdex.git] / drivers / mfd / ucb1x00-ts.c
bloba260f83bcb021080f00f45c459435224cda8a5b2
1 /*
2 * Touchscreen driver for UCB1x00-based touchscreens
4 * Copyright (C) 2001 Russell King, All Rights Reserved.
5 * Copyright (C) 2005 Pavel Machek
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * 21-Jan-2002 <jco@ict.es> :
13 * Added support for synchronous A/D mode. This mode is useful to
14 * avoid noise induced in the touchpanel by the LCD, provided that
15 * the UCB1x00 has a valid LCD sync signal routed to its ADCSYNC pin.
16 * It is important to note that the signal connected to the ADCSYNC
17 * pin should provide pulses even when the LCD is blanked, otherwise
18 * a pen touch needed to unblank the LCD will never be read.
20 #include <linux/config.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/smp.h>
25 #include <linux/smp_lock.h>
26 #include <linux/sched.h>
27 #include <linux/completion.h>
28 #include <linux/delay.h>
29 #include <linux/string.h>
30 #include <linux/input.h>
31 #include <linux/device.h>
32 #include <linux/suspend.h>
33 #include <linux/slab.h>
34 #include <linux/kthread.h>
36 #include <asm/dma.h>
37 #include <asm/semaphore.h>
39 #include "ucb1x00.h"
42 struct ucb1x00_ts {
43 struct input_dev idev;
44 struct ucb1x00 *ucb;
46 wait_queue_head_t irq_wait;
47 struct task_struct *rtask;
48 u16 x_res;
49 u16 y_res;
51 unsigned int restart:1;
52 unsigned int adcsync:1;
55 static int adcsync;
57 static inline void ucb1x00_ts_evt_add(struct ucb1x00_ts *ts, u16 pressure, u16 x, u16 y)
59 input_report_abs(&ts->idev, ABS_X, x);
60 input_report_abs(&ts->idev, ABS_Y, y);
61 input_report_abs(&ts->idev, ABS_PRESSURE, pressure);
62 input_sync(&ts->idev);
65 static inline void ucb1x00_ts_event_release(struct ucb1x00_ts *ts)
67 input_report_abs(&ts->idev, ABS_PRESSURE, 0);
68 input_sync(&ts->idev);
72 * Switch to interrupt mode.
74 static inline void ucb1x00_ts_mode_int(struct ucb1x00_ts *ts)
76 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
77 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
78 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
79 UCB_TS_CR_MODE_INT);
83 * Switch to pressure mode, and read pressure. We don't need to wait
84 * here, since both plates are being driven.
86 static inline unsigned int ucb1x00_ts_read_pressure(struct ucb1x00_ts *ts)
88 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
89 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
90 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
91 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
93 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
97 * Switch to X position mode and measure Y plate. We switch the plate
98 * configuration in pressure mode, then switch to position mode. This
99 * gives a faster response time. Even so, we need to wait about 55us
100 * for things to stabilise.
102 static inline unsigned int ucb1x00_ts_read_xpos(struct ucb1x00_ts *ts)
104 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
105 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
106 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
107 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
108 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
109 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
110 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
111 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
112 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
114 udelay(55);
116 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
120 * Switch to Y position mode and measure X plate. We switch the plate
121 * configuration in pressure mode, then switch to position mode. This
122 * gives a faster response time. Even so, we need to wait about 55us
123 * for things to stabilise.
125 static inline unsigned int ucb1x00_ts_read_ypos(struct ucb1x00_ts *ts)
127 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
128 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
129 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
130 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
131 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
132 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
133 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
134 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
135 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
137 udelay(55);
139 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPX, ts->adcsync);
143 * Switch to X plate resistance mode. Set MX to ground, PX to
144 * supply. Measure current.
146 static inline unsigned int ucb1x00_ts_read_xres(struct ucb1x00_ts *ts)
148 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
149 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
150 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
151 return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
155 * Switch to Y plate resistance mode. Set MY to ground, PY to
156 * supply. Measure current.
158 static inline unsigned int ucb1x00_ts_read_yres(struct ucb1x00_ts *ts)
160 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
161 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
162 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
163 return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
167 * This is a RT kernel thread that handles the ADC accesses
168 * (mainly so we can use semaphores in the UCB1200 core code
169 * to serialise accesses to the ADC).
171 static int ucb1x00_thread(void *_ts)
173 struct ucb1x00_ts *ts = _ts;
174 struct task_struct *tsk = current;
175 DECLARE_WAITQUEUE(wait, tsk);
176 int valid;
179 * We could run as a real-time thread. However, thus far
180 * this doesn't seem to be necessary.
182 // tsk->policy = SCHED_FIFO;
183 // tsk->rt_priority = 1;
185 valid = 0;
187 add_wait_queue(&ts->irq_wait, &wait);
188 while (!kthread_should_stop()) {
189 unsigned int x, y, p, val;
190 signed long timeout;
192 ts->restart = 0;
194 ucb1x00_adc_enable(ts->ucb);
196 x = ucb1x00_ts_read_xpos(ts);
197 y = ucb1x00_ts_read_ypos(ts);
198 p = ucb1x00_ts_read_pressure(ts);
201 * Switch back to interrupt mode.
203 ucb1x00_ts_mode_int(ts);
204 ucb1x00_adc_disable(ts->ucb);
206 msleep(10);
208 ucb1x00_enable(ts->ucb);
209 val = ucb1x00_reg_read(ts->ucb, UCB_TS_CR);
211 if (val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW)) {
212 set_task_state(tsk, TASK_INTERRUPTIBLE);
214 ucb1x00_enable_irq(ts->ucb, UCB_IRQ_TSPX, UCB_FALLING);
215 ucb1x00_disable(ts->ucb);
218 * If we spat out a valid sample set last time,
219 * spit out a "pen off" sample here.
221 if (valid) {
222 ucb1x00_ts_event_release(ts);
223 valid = 0;
226 timeout = MAX_SCHEDULE_TIMEOUT;
227 } else {
228 ucb1x00_disable(ts->ucb);
231 * Filtering is policy. Policy belongs in user
232 * space. We therefore leave it to user space
233 * to do any filtering they please.
235 if (!ts->restart) {
236 ucb1x00_ts_evt_add(ts, p, x, y);
237 valid = 1;
240 set_task_state(tsk, TASK_INTERRUPTIBLE);
241 timeout = HZ / 100;
244 try_to_freeze();
246 schedule_timeout(timeout);
249 remove_wait_queue(&ts->irq_wait, &wait);
251 ts->rtask = NULL;
252 return 0;
256 * We only detect touch screen _touches_ with this interrupt
257 * handler, and even then we just schedule our task.
259 static void ucb1x00_ts_irq(int idx, void *id)
261 struct ucb1x00_ts *ts = id;
262 ucb1x00_disable_irq(ts->ucb, UCB_IRQ_TSPX, UCB_FALLING);
263 wake_up(&ts->irq_wait);
266 static int ucb1x00_ts_open(struct input_dev *idev)
268 struct ucb1x00_ts *ts = (struct ucb1x00_ts *)idev;
269 int ret = 0;
271 BUG_ON(ts->rtask);
273 init_waitqueue_head(&ts->irq_wait);
274 ret = ucb1x00_hook_irq(ts->ucb, UCB_IRQ_TSPX, ucb1x00_ts_irq, ts);
275 if (ret < 0)
276 goto out;
279 * If we do this at all, we should allow the user to
280 * measure and read the X and Y resistance at any time.
282 ucb1x00_adc_enable(ts->ucb);
283 ts->x_res = ucb1x00_ts_read_xres(ts);
284 ts->y_res = ucb1x00_ts_read_yres(ts);
285 ucb1x00_adc_disable(ts->ucb);
287 ts->rtask = kthread_run(ucb1x00_thread, ts, "ktsd");
288 if (!IS_ERR(ts->rtask)) {
289 ret = 0;
290 } else {
291 ucb1x00_free_irq(ts->ucb, UCB_IRQ_TSPX, ts);
292 ts->rtask = NULL;
293 ret = -EFAULT;
296 out:
297 return ret;
301 * Release touchscreen resources. Disable IRQs.
303 static void ucb1x00_ts_close(struct input_dev *idev)
305 struct ucb1x00_ts *ts = (struct ucb1x00_ts *)idev;
307 if (ts->rtask)
308 kthread_stop(ts->rtask);
310 ucb1x00_enable(ts->ucb);
311 ucb1x00_free_irq(ts->ucb, UCB_IRQ_TSPX, ts);
312 ucb1x00_reg_write(ts->ucb, UCB_TS_CR, 0);
313 ucb1x00_disable(ts->ucb);
316 #ifdef CONFIG_PM
317 static int ucb1x00_ts_resume(struct ucb1x00_dev *dev)
319 struct ucb1x00_ts *ts = dev->priv;
321 if (ts->rtask != NULL) {
323 * Restart the TS thread to ensure the
324 * TS interrupt mode is set up again
325 * after sleep.
327 ts->restart = 1;
328 wake_up(&ts->irq_wait);
330 return 0;
332 #else
333 #define ucb1x00_ts_resume NULL
334 #endif
338 * Initialisation.
340 static int ucb1x00_ts_add(struct ucb1x00_dev *dev)
342 struct ucb1x00_ts *ts;
344 ts = kmalloc(sizeof(struct ucb1x00_ts), GFP_KERNEL);
345 if (!ts)
346 return -ENOMEM;
348 memset(ts, 0, sizeof(struct ucb1x00_ts));
350 ts->ucb = dev->ucb;
351 ts->adcsync = adcsync ? UCB_SYNC : UCB_NOSYNC;
353 ts->idev.name = "Touchscreen panel";
354 ts->idev.id.product = ts->ucb->id;
355 ts->idev.open = ucb1x00_ts_open;
356 ts->idev.close = ucb1x00_ts_close;
358 __set_bit(EV_ABS, ts->idev.evbit);
359 __set_bit(ABS_X, ts->idev.absbit);
360 __set_bit(ABS_Y, ts->idev.absbit);
361 __set_bit(ABS_PRESSURE, ts->idev.absbit);
363 input_register_device(&ts->idev);
365 dev->priv = ts;
367 return 0;
370 static void ucb1x00_ts_remove(struct ucb1x00_dev *dev)
372 struct ucb1x00_ts *ts = dev->priv;
373 input_unregister_device(&ts->idev);
374 kfree(ts);
377 static struct ucb1x00_driver ucb1x00_ts_driver = {
378 .add = ucb1x00_ts_add,
379 .remove = ucb1x00_ts_remove,
380 .resume = ucb1x00_ts_resume,
383 static int __init ucb1x00_ts_init(void)
385 return ucb1x00_register_driver(&ucb1x00_ts_driver);
388 static void __exit ucb1x00_ts_exit(void)
390 ucb1x00_unregister_driver(&ucb1x00_ts_driver);
393 module_param(adcsync, int, 0444);
394 module_init(ucb1x00_ts_init);
395 module_exit(ucb1x00_ts_exit);
397 MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
398 MODULE_DESCRIPTION("UCB1x00 touchscreen driver");
399 MODULE_LICENSE("GPL");