2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * Driver for FEC on MPC8540 and TSEC on MPC8540/MPC8560
6 * Based on 8260_io/fcc_enet.c
9 * Maintainer: Kumar Gala (kumar.gala@freescale.com)
11 * Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
18 * Gianfar: AKA Lambda Draconis, "Dragon"
25 * This driver is designed for the non-CPM ethernet controllers
26 * on the 85xx and 83xx family of integrated processors
28 * The driver is initialized through platform_device. Structures which
29 * define the configuration needed by the board are defined in a
30 * board structure in arch/ppc/platforms (though I do not
31 * discount the possibility that other architectures could one
32 * day be supported. One assumption the driver currently makes
33 * is that the PHY is configured in such a way to advertise all
34 * capabilities. This is a sensible default, and on certain
35 * PHYs, changing this default encounters substantial errata
36 * issues. Future versions may remove this requirement, but for
37 * now, it is best for the firmware to ensure this is the case.
39 * The Gianfar Ethernet Controller uses a ring of buffer
40 * descriptors. The beginning is indicated by a register
41 * pointing to the physical address of the start of the ring.
42 * The end is determined by a "wrap" bit being set in the
43 * last descriptor of the ring.
45 * When a packet is received, the RXF bit in the
46 * IEVENT register is set, triggering an interrupt when the
47 * corresponding bit in the IMASK register is also set (if
48 * interrupt coalescing is active, then the interrupt may not
49 * happen immediately, but will wait until either a set number
50 * of frames or amount of time have passed.). In NAPI, the
51 * interrupt handler will signal there is work to be done, and
52 * exit. Without NAPI, the packet(s) will be handled
53 * immediately. Both methods will start at the last known empty
54 * descriptor, and process every subsequent descriptor until there
55 * are none left with data (NAPI will stop after a set number of
56 * packets to give time to other tasks, but will eventually
57 * process all the packets). The data arrives inside a
58 * pre-allocated skb, and so after the skb is passed up to the
59 * stack, a new skb must be allocated, and the address field in
60 * the buffer descriptor must be updated to indicate this new
63 * When the kernel requests that a packet be transmitted, the
64 * driver starts where it left off last time, and points the
65 * descriptor at the buffer which was passed in. The driver
66 * then informs the DMA engine that there are packets ready to
67 * be transmitted. Once the controller is finished transmitting
68 * the packet, an interrupt may be triggered (under the same
69 * conditions as for reception, but depending on the TXF bit).
70 * The driver then cleans up the buffer.
73 #include <linux/config.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/string.h>
77 #include <linux/errno.h>
78 #include <linux/slab.h>
79 #include <linux/interrupt.h>
80 #include <linux/init.h>
81 #include <linux/delay.h>
82 #include <linux/netdevice.h>
83 #include <linux/etherdevice.h>
84 #include <linux/skbuff.h>
85 #include <linux/if_vlan.h>
86 #include <linux/spinlock.h>
88 #include <linux/device.h>
90 #include <linux/tcp.h>
91 #include <linux/udp.h>
95 #include <asm/uaccess.h>
96 #include <linux/module.h>
97 #include <linux/version.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
102 #include "gianfar_phy.h"
104 #define TX_TIMEOUT (1*HZ)
105 #define SKB_ALLOC_TIMEOUT 1000000
106 #undef BRIEF_GFAR_ERRORS
107 #undef VERBOSE_GFAR_ERRORS
109 #ifdef CONFIG_GFAR_NAPI
110 #define RECEIVE(x) netif_receive_skb(x)
112 #define RECEIVE(x) netif_rx(x)
115 const char gfar_driver_name
[] = "Gianfar Ethernet";
116 const char gfar_driver_version
[] = "1.1";
118 int startup_gfar(struct net_device
*dev
);
119 static int gfar_enet_open(struct net_device
*dev
);
120 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
121 static void gfar_timeout(struct net_device
*dev
);
122 static int gfar_close(struct net_device
*dev
);
123 struct sk_buff
*gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
);
124 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
);
125 static int gfar_set_mac_address(struct net_device
*dev
);
126 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
127 static irqreturn_t
gfar_error(int irq
, void *dev_id
, struct pt_regs
*regs
);
128 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
, struct pt_regs
*regs
);
129 static irqreturn_t
gfar_receive(int irq
, void *dev_id
, struct pt_regs
*regs
);
130 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
);
131 static irqreturn_t
phy_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
);
132 static void gfar_phy_change(void *data
);
133 static void gfar_phy_timer(unsigned long data
);
134 static void adjust_link(struct net_device
*dev
);
135 static void init_registers(struct net_device
*dev
);
136 static int init_phy(struct net_device
*dev
);
137 static int gfar_probe(struct device
*device
);
138 static int gfar_remove(struct device
*device
);
139 void free_skb_resources(struct gfar_private
*priv
);
140 static void gfar_set_multi(struct net_device
*dev
);
141 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
142 #ifdef CONFIG_GFAR_NAPI
143 static int gfar_poll(struct net_device
*dev
, int *budget
);
145 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
);
146 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
, int length
);
147 static void gfar_phy_startup_timer(unsigned long data
);
148 static void gfar_vlan_rx_register(struct net_device
*netdev
,
149 struct vlan_group
*grp
);
150 static void gfar_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
);
152 extern struct ethtool_ops gfar_ethtool_ops
;
154 MODULE_AUTHOR("Freescale Semiconductor, Inc");
155 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
156 MODULE_LICENSE("GPL");
158 int gfar_uses_fcb(struct gfar_private
*priv
)
160 if (priv
->vlan_enable
|| priv
->rx_csum_enable
)
165 static int gfar_probe(struct device
*device
)
168 struct net_device
*dev
= NULL
;
169 struct gfar_private
*priv
= NULL
;
170 struct platform_device
*pdev
= to_platform_device(device
);
171 struct gianfar_platform_data
*einfo
;
176 einfo
= (struct gianfar_platform_data
*) pdev
->dev
.platform_data
;
179 printk(KERN_ERR
"gfar %d: Missing additional data!\n",
185 /* Create an ethernet device instance */
186 dev
= alloc_etherdev(sizeof (*priv
));
191 priv
= netdev_priv(dev
);
193 /* Set the info in the priv to the current info */
196 /* fill out IRQ fields */
197 if (einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
198 priv
->interruptTransmit
= platform_get_irq_byname(pdev
, "tx");
199 priv
->interruptReceive
= platform_get_irq_byname(pdev
, "rx");
200 priv
->interruptError
= platform_get_irq_byname(pdev
, "error");
202 priv
->interruptTransmit
= platform_get_irq(pdev
, 0);
205 /* get a pointer to the register memory */
206 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
207 priv
->regs
= (struct gfar
*)
208 ioremap(r
->start
, sizeof (struct gfar
));
210 if (priv
->regs
== NULL
) {
215 /* Set the PHY base address */
216 priv
->phyregs
= (struct gfar
*)
217 ioremap(einfo
->phy_reg_addr
, sizeof (struct gfar
));
219 if (priv
->phyregs
== NULL
) {
224 spin_lock_init(&priv
->lock
);
226 dev_set_drvdata(device
, dev
);
228 /* Stop the DMA engine now, in case it was running before */
229 /* (The firmware could have used it, and left it running). */
230 /* To do this, we write Graceful Receive Stop and Graceful */
231 /* Transmit Stop, and then wait until the corresponding bits */
232 /* in IEVENT indicate the stops have completed. */
233 tempval
= gfar_read(&priv
->regs
->dmactrl
);
234 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
235 gfar_write(&priv
->regs
->dmactrl
, tempval
);
237 tempval
= gfar_read(&priv
->regs
->dmactrl
);
238 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
239 gfar_write(&priv
->regs
->dmactrl
, tempval
);
241 while (!(gfar_read(&priv
->regs
->ievent
) & (IEVENT_GRSC
| IEVENT_GTSC
)))
244 /* Reset MAC layer */
245 gfar_write(&priv
->regs
->maccfg1
, MACCFG1_SOFT_RESET
);
247 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
248 gfar_write(&priv
->regs
->maccfg1
, tempval
);
250 /* Initialize MACCFG2. */
251 gfar_write(&priv
->regs
->maccfg2
, MACCFG2_INIT_SETTINGS
);
253 /* Initialize ECNTRL */
254 gfar_write(&priv
->regs
->ecntrl
, ECNTRL_INIT_SETTINGS
);
256 /* Copy the station address into the dev structure, */
257 memcpy(dev
->dev_addr
, einfo
->mac_addr
, MAC_ADDR_LEN
);
259 /* Set the dev->base_addr to the gfar reg region */
260 dev
->base_addr
= (unsigned long) (priv
->regs
);
262 SET_MODULE_OWNER(dev
);
263 SET_NETDEV_DEV(dev
, device
);
265 /* Fill in the dev structure */
266 dev
->open
= gfar_enet_open
;
267 dev
->hard_start_xmit
= gfar_start_xmit
;
268 dev
->tx_timeout
= gfar_timeout
;
269 dev
->watchdog_timeo
= TX_TIMEOUT
;
270 #ifdef CONFIG_GFAR_NAPI
271 dev
->poll
= gfar_poll
;
272 dev
->weight
= GFAR_DEV_WEIGHT
;
274 dev
->stop
= gfar_close
;
275 dev
->get_stats
= gfar_get_stats
;
276 dev
->change_mtu
= gfar_change_mtu
;
278 dev
->set_multicast_list
= gfar_set_multi
;
280 dev
->ethtool_ops
= &gfar_ethtool_ops
;
282 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
283 priv
->rx_csum_enable
= 1;
284 dev
->features
|= NETIF_F_IP_CSUM
;
286 priv
->rx_csum_enable
= 0;
290 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
) {
291 dev
->vlan_rx_register
= gfar_vlan_rx_register
;
292 dev
->vlan_rx_kill_vid
= gfar_vlan_rx_kill_vid
;
294 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
296 priv
->vlan_enable
= 1;
299 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
300 priv
->extended_hash
= 1;
301 priv
->hash_width
= 9;
303 priv
->hash_regs
[0] = &priv
->regs
->igaddr0
;
304 priv
->hash_regs
[1] = &priv
->regs
->igaddr1
;
305 priv
->hash_regs
[2] = &priv
->regs
->igaddr2
;
306 priv
->hash_regs
[3] = &priv
->regs
->igaddr3
;
307 priv
->hash_regs
[4] = &priv
->regs
->igaddr4
;
308 priv
->hash_regs
[5] = &priv
->regs
->igaddr5
;
309 priv
->hash_regs
[6] = &priv
->regs
->igaddr6
;
310 priv
->hash_regs
[7] = &priv
->regs
->igaddr7
;
311 priv
->hash_regs
[8] = &priv
->regs
->gaddr0
;
312 priv
->hash_regs
[9] = &priv
->regs
->gaddr1
;
313 priv
->hash_regs
[10] = &priv
->regs
->gaddr2
;
314 priv
->hash_regs
[11] = &priv
->regs
->gaddr3
;
315 priv
->hash_regs
[12] = &priv
->regs
->gaddr4
;
316 priv
->hash_regs
[13] = &priv
->regs
->gaddr5
;
317 priv
->hash_regs
[14] = &priv
->regs
->gaddr6
;
318 priv
->hash_regs
[15] = &priv
->regs
->gaddr7
;
321 priv
->extended_hash
= 0;
322 priv
->hash_width
= 8;
324 priv
->hash_regs
[0] = &priv
->regs
->gaddr0
;
325 priv
->hash_regs
[1] = &priv
->regs
->gaddr1
;
326 priv
->hash_regs
[2] = &priv
->regs
->gaddr2
;
327 priv
->hash_regs
[3] = &priv
->regs
->gaddr3
;
328 priv
->hash_regs
[4] = &priv
->regs
->gaddr4
;
329 priv
->hash_regs
[5] = &priv
->regs
->gaddr5
;
330 priv
->hash_regs
[6] = &priv
->regs
->gaddr6
;
331 priv
->hash_regs
[7] = &priv
->regs
->gaddr7
;
334 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
335 priv
->padding
= DEFAULT_PADDING
;
339 dev
->hard_header_len
+= priv
->padding
;
341 if (dev
->features
& NETIF_F_IP_CSUM
)
342 dev
->hard_header_len
+= GMAC_FCB_LEN
;
344 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
345 #ifdef CONFIG_GFAR_BUFSTASH
346 priv
->rx_stash_size
= STASH_LENGTH
;
348 priv
->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
349 priv
->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
351 priv
->txcoalescing
= DEFAULT_TX_COALESCE
;
352 priv
->txcount
= DEFAULT_TXCOUNT
;
353 priv
->txtime
= DEFAULT_TXTIME
;
354 priv
->rxcoalescing
= DEFAULT_RX_COALESCE
;
355 priv
->rxcount
= DEFAULT_RXCOUNT
;
356 priv
->rxtime
= DEFAULT_RXTIME
;
358 /* Enable most messages by default */
359 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
361 err
= register_netdev(dev
);
364 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
369 /* Print out the device info */
370 printk(KERN_INFO DEVICE_NAME
, dev
->name
);
371 for (idx
= 0; idx
< 6; idx
++)
372 printk("%2.2x%c", dev
->dev_addr
[idx
], idx
== 5 ? ' ' : ':');
375 /* Even more device info helps when determining which kernel */
376 /* provided which set of benchmarks. Since this is global for all */
377 /* devices, we only print it once */
378 #ifdef CONFIG_GFAR_NAPI
379 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
381 printk(KERN_INFO
"%s: Running with NAPI disabled\n", dev
->name
);
383 printk(KERN_INFO
"%s: %d/%d RX/TX BD ring size\n",
384 dev
->name
, priv
->rx_ring_size
, priv
->tx_ring_size
);
389 iounmap((void *) priv
->phyregs
);
391 iounmap((void *) priv
->regs
);
397 static int gfar_remove(struct device
*device
)
399 struct net_device
*dev
= dev_get_drvdata(device
);
400 struct gfar_private
*priv
= netdev_priv(dev
);
402 dev_set_drvdata(device
, NULL
);
404 iounmap((void *) priv
->regs
);
405 iounmap((void *) priv
->phyregs
);
412 /* Configure the PHY for dev.
413 * returns 0 if success. -1 if failure
415 static int init_phy(struct net_device
*dev
)
417 struct gfar_private
*priv
= netdev_priv(dev
);
418 struct phy_info
*curphy
;
419 unsigned int timeout
= PHY_INIT_TIMEOUT
;
420 struct gfar
*phyregs
= priv
->phyregs
;
421 struct gfar_mii_info
*mii_info
;
426 priv
->oldduplex
= -1;
428 mii_info
= kmalloc(sizeof(struct gfar_mii_info
),
431 if(NULL
== mii_info
) {
432 if (netif_msg_ifup(priv
))
433 printk(KERN_ERR
"%s: Could not allocate mii_info\n",
438 mii_info
->speed
= SPEED_1000
;
439 mii_info
->duplex
= DUPLEX_FULL
;
443 mii_info
->advertising
= (ADVERTISED_10baseT_Half
|
444 ADVERTISED_10baseT_Full
|
445 ADVERTISED_100baseT_Half
|
446 ADVERTISED_100baseT_Full
|
447 ADVERTISED_1000baseT_Full
);
448 mii_info
->autoneg
= 1;
450 spin_lock_init(&mii_info
->mdio_lock
);
452 mii_info
->mii_id
= priv
->einfo
->phyid
;
456 mii_info
->mdio_read
= &read_phy_reg
;
457 mii_info
->mdio_write
= &write_phy_reg
;
459 priv
->mii_info
= mii_info
;
461 /* Reset the management interface */
462 gfar_write(&phyregs
->miimcfg
, MIIMCFG_RESET
);
464 /* Setup the MII Mgmt clock speed */
465 gfar_write(&phyregs
->miimcfg
, MIIMCFG_INIT_VALUE
);
467 /* Wait until the bus is free */
468 while ((gfar_read(&phyregs
->miimind
) & MIIMIND_BUSY
) &&
473 printk(KERN_ERR
"%s: The MII Bus is stuck!\n",
479 /* get info for this PHY */
480 curphy
= get_phy_info(priv
->mii_info
);
482 if (curphy
== NULL
) {
483 if (netif_msg_ifup(priv
))
484 printk(KERN_ERR
"%s: No PHY found\n", dev
->name
);
489 mii_info
->phyinfo
= curphy
;
491 /* Run the commands which initialize the PHY */
493 err
= curphy
->init(priv
->mii_info
);
509 static void init_registers(struct net_device
*dev
)
511 struct gfar_private
*priv
= netdev_priv(dev
);
514 gfar_write(&priv
->regs
->ievent
, IEVENT_INIT_CLEAR
);
516 /* Initialize IMASK */
517 gfar_write(&priv
->regs
->imask
, IMASK_INIT_CLEAR
);
519 /* Init hash registers to zero */
520 gfar_write(&priv
->regs
->igaddr0
, 0);
521 gfar_write(&priv
->regs
->igaddr1
, 0);
522 gfar_write(&priv
->regs
->igaddr2
, 0);
523 gfar_write(&priv
->regs
->igaddr3
, 0);
524 gfar_write(&priv
->regs
->igaddr4
, 0);
525 gfar_write(&priv
->regs
->igaddr5
, 0);
526 gfar_write(&priv
->regs
->igaddr6
, 0);
527 gfar_write(&priv
->regs
->igaddr7
, 0);
529 gfar_write(&priv
->regs
->gaddr0
, 0);
530 gfar_write(&priv
->regs
->gaddr1
, 0);
531 gfar_write(&priv
->regs
->gaddr2
, 0);
532 gfar_write(&priv
->regs
->gaddr3
, 0);
533 gfar_write(&priv
->regs
->gaddr4
, 0);
534 gfar_write(&priv
->regs
->gaddr5
, 0);
535 gfar_write(&priv
->regs
->gaddr6
, 0);
536 gfar_write(&priv
->regs
->gaddr7
, 0);
538 /* Zero out the rmon mib registers if it has them */
539 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
540 memset((void *) &(priv
->regs
->rmon
), 0,
541 sizeof (struct rmon_mib
));
543 /* Mask off the CAM interrupts */
544 gfar_write(&priv
->regs
->rmon
.cam1
, 0xffffffff);
545 gfar_write(&priv
->regs
->rmon
.cam2
, 0xffffffff);
548 /* Initialize the max receive buffer length */
549 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
551 #ifdef CONFIG_GFAR_BUFSTASH
552 /* If we are stashing buffers, we need to set the
553 * extraction length to the size of the buffer */
554 gfar_write(&priv
->regs
->attreli
, priv
->rx_stash_size
<< 16);
557 /* Initialize the Minimum Frame Length Register */
558 gfar_write(&priv
->regs
->minflr
, MINFLR_INIT_SETTINGS
);
560 /* Setup Attributes so that snooping is on for rx */
561 gfar_write(&priv
->regs
->attr
, ATTR_INIT_SETTINGS
);
562 gfar_write(&priv
->regs
->attreli
, ATTRELI_INIT_SETTINGS
);
564 /* Assign the TBI an address which won't conflict with the PHYs */
565 gfar_write(&priv
->regs
->tbipa
, TBIPA_VALUE
);
569 /* Halt the receive and transmit queues */
570 void gfar_halt(struct net_device
*dev
)
572 struct gfar_private
*priv
= netdev_priv(dev
);
573 struct gfar
*regs
= priv
->regs
;
576 /* Mask all interrupts */
577 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
579 /* Clear all interrupts */
580 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
582 /* Stop the DMA, and wait for it to stop */
583 tempval
= gfar_read(&priv
->regs
->dmactrl
);
584 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
585 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
586 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
587 gfar_write(&priv
->regs
->dmactrl
, tempval
);
589 while (!(gfar_read(&priv
->regs
->ievent
) &
590 (IEVENT_GRSC
| IEVENT_GTSC
)))
594 /* Disable Rx and Tx */
595 tempval
= gfar_read(®s
->maccfg1
);
596 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
597 gfar_write(®s
->maccfg1
, tempval
);
600 void stop_gfar(struct net_device
*dev
)
602 struct gfar_private
*priv
= netdev_priv(dev
);
603 struct gfar
*regs
= priv
->regs
;
607 spin_lock_irqsave(&priv
->lock
, flags
);
609 /* Tell the kernel the link is down */
610 priv
->mii_info
->link
= 0;
615 if (priv
->einfo
->board_flags
& FSL_GIANFAR_BRD_HAS_PHY_INTR
) {
616 /* Clear any pending interrupts */
617 mii_clear_phy_interrupt(priv
->mii_info
);
619 /* Disable PHY Interrupts */
620 mii_configure_phy_interrupt(priv
->mii_info
,
621 MII_INTERRUPT_DISABLED
);
624 spin_unlock_irqrestore(&priv
->lock
, flags
);
627 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
628 free_irq(priv
->interruptError
, dev
);
629 free_irq(priv
->interruptTransmit
, dev
);
630 free_irq(priv
->interruptReceive
, dev
);
632 free_irq(priv
->interruptTransmit
, dev
);
635 if (priv
->einfo
->board_flags
& FSL_GIANFAR_BRD_HAS_PHY_INTR
) {
636 free_irq(priv
->einfo
->interruptPHY
, dev
);
638 del_timer_sync(&priv
->phy_info_timer
);
641 free_skb_resources(priv
);
643 dma_free_coherent(NULL
,
644 sizeof(struct txbd8
)*priv
->tx_ring_size
645 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
647 gfar_read(®s
->tbase0
));
650 /* If there are any tx skbs or rx skbs still around, free them.
651 * Then free tx_skbuff and rx_skbuff */
652 void free_skb_resources(struct gfar_private
*priv
)
658 /* Go through all the buffer descriptors and free their data buffers */
659 txbdp
= priv
->tx_bd_base
;
661 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
663 if (priv
->tx_skbuff
[i
]) {
664 dma_unmap_single(NULL
, txbdp
->bufPtr
,
667 dev_kfree_skb_any(priv
->tx_skbuff
[i
]);
668 priv
->tx_skbuff
[i
] = NULL
;
672 kfree(priv
->tx_skbuff
);
674 rxbdp
= priv
->rx_bd_base
;
676 /* rx_skbuff is not guaranteed to be allocated, so only
677 * free it and its contents if it is allocated */
678 if(priv
->rx_skbuff
!= NULL
) {
679 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
680 if (priv
->rx_skbuff
[i
]) {
681 dma_unmap_single(NULL
, rxbdp
->bufPtr
,
686 dev_kfree_skb_any(priv
->rx_skbuff
[i
]);
687 priv
->rx_skbuff
[i
] = NULL
;
697 kfree(priv
->rx_skbuff
);
701 void gfar_start(struct net_device
*dev
)
703 struct gfar_private
*priv
= netdev_priv(dev
);
704 struct gfar
*regs
= priv
->regs
;
707 /* Enable Rx and Tx in MACCFG1 */
708 tempval
= gfar_read(®s
->maccfg1
);
709 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
710 gfar_write(®s
->maccfg1
, tempval
);
712 /* Initialize DMACTRL to have WWR and WOP */
713 tempval
= gfar_read(&priv
->regs
->dmactrl
);
714 tempval
|= DMACTRL_INIT_SETTINGS
;
715 gfar_write(&priv
->regs
->dmactrl
, tempval
);
717 /* Clear THLT, so that the DMA starts polling now */
718 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
);
720 /* Make sure we aren't stopped */
721 tempval
= gfar_read(&priv
->regs
->dmactrl
);
722 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
723 gfar_write(&priv
->regs
->dmactrl
, tempval
);
725 /* Unmask the interrupts we look for */
726 gfar_write(®s
->imask
, IMASK_DEFAULT
);
729 /* Bring the controller up and running */
730 int startup_gfar(struct net_device
*dev
)
737 struct gfar_private
*priv
= netdev_priv(dev
);
738 struct gfar
*regs
= priv
->regs
;
742 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
744 /* Allocate memory for the buffer descriptors */
745 vaddr
= (unsigned long) dma_alloc_coherent(NULL
,
746 sizeof (struct txbd8
) * priv
->tx_ring_size
+
747 sizeof (struct rxbd8
) * priv
->rx_ring_size
,
751 if (netif_msg_ifup(priv
))
752 printk(KERN_ERR
"%s: Could not allocate buffer descriptors!\n",
757 priv
->tx_bd_base
= (struct txbd8
*) vaddr
;
759 /* enet DMA only understands physical addresses */
760 gfar_write(®s
->tbase0
, addr
);
762 /* Start the rx descriptor ring where the tx ring leaves off */
763 addr
= addr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
764 vaddr
= vaddr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
765 priv
->rx_bd_base
= (struct rxbd8
*) vaddr
;
766 gfar_write(®s
->rbase0
, addr
);
768 /* Setup the skbuff rings */
770 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
771 priv
->tx_ring_size
, GFP_KERNEL
);
773 if (priv
->tx_skbuff
== NULL
) {
774 if (netif_msg_ifup(priv
))
775 printk(KERN_ERR
"%s: Could not allocate tx_skbuff\n",
781 for (i
= 0; i
< priv
->tx_ring_size
; i
++)
782 priv
->tx_skbuff
[i
] = NULL
;
785 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
786 priv
->rx_ring_size
, GFP_KERNEL
);
788 if (priv
->rx_skbuff
== NULL
) {
789 if (netif_msg_ifup(priv
))
790 printk(KERN_ERR
"%s: Could not allocate rx_skbuff\n",
796 for (i
= 0; i
< priv
->rx_ring_size
; i
++)
797 priv
->rx_skbuff
[i
] = NULL
;
799 /* Initialize some variables in our dev structure */
800 priv
->dirty_tx
= priv
->cur_tx
= priv
->tx_bd_base
;
801 priv
->cur_rx
= priv
->rx_bd_base
;
802 priv
->skb_curtx
= priv
->skb_dirtytx
= 0;
805 /* Initialize Transmit Descriptor Ring */
806 txbdp
= priv
->tx_bd_base
;
807 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
814 /* Set the last descriptor in the ring to indicate wrap */
816 txbdp
->status
|= TXBD_WRAP
;
818 rxbdp
= priv
->rx_bd_base
;
819 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
820 struct sk_buff
*skb
= NULL
;
824 skb
= gfar_new_skb(dev
, rxbdp
);
826 priv
->rx_skbuff
[i
] = skb
;
831 /* Set the last descriptor in the ring to wrap */
833 rxbdp
->status
|= RXBD_WRAP
;
835 /* If the device has multiple interrupts, register for
836 * them. Otherwise, only register for the one */
837 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
838 /* Install our interrupt handlers for Error,
839 * Transmit, and Receive */
840 if (request_irq(priv
->interruptError
, gfar_error
,
841 0, "enet_error", dev
) < 0) {
842 if (netif_msg_intr(priv
))
843 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
844 dev
->name
, priv
->interruptError
);
850 if (request_irq(priv
->interruptTransmit
, gfar_transmit
,
851 0, "enet_tx", dev
) < 0) {
852 if (netif_msg_intr(priv
))
853 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
854 dev
->name
, priv
->interruptTransmit
);
861 if (request_irq(priv
->interruptReceive
, gfar_receive
,
862 0, "enet_rx", dev
) < 0) {
863 if (netif_msg_intr(priv
))
864 printk(KERN_ERR
"%s: Can't get IRQ %d (receive0)\n",
865 dev
->name
, priv
->interruptReceive
);
871 if (request_irq(priv
->interruptTransmit
, gfar_interrupt
,
872 0, "gfar_interrupt", dev
) < 0) {
873 if (netif_msg_intr(priv
))
874 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
875 dev
->name
, priv
->interruptError
);
882 /* Set up the PHY change work queue */
883 INIT_WORK(&priv
->tq
, gfar_phy_change
, dev
);
885 init_timer(&priv
->phy_info_timer
);
886 priv
->phy_info_timer
.function
= &gfar_phy_startup_timer
;
887 priv
->phy_info_timer
.data
= (unsigned long) priv
->mii_info
;
888 mod_timer(&priv
->phy_info_timer
, jiffies
+ HZ
);
890 /* Configure the coalescing support */
891 if (priv
->txcoalescing
)
892 gfar_write(®s
->txic
,
893 mk_ic_value(priv
->txcount
, priv
->txtime
));
895 gfar_write(®s
->txic
, 0);
897 if (priv
->rxcoalescing
)
898 gfar_write(®s
->rxic
,
899 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
901 gfar_write(®s
->rxic
, 0);
903 if (priv
->rx_csum_enable
)
904 rctrl
|= RCTRL_CHECKSUMMING
;
906 if (priv
->extended_hash
)
907 rctrl
|= RCTRL_EXTHASH
;
909 if (priv
->vlan_enable
)
912 /* Init rctrl based on our settings */
913 gfar_write(&priv
->regs
->rctrl
, rctrl
);
915 if (dev
->features
& NETIF_F_IP_CSUM
)
916 gfar_write(&priv
->regs
->tctrl
, TCTRL_INIT_CSUM
);
923 free_irq(priv
->interruptTransmit
, dev
);
925 free_irq(priv
->interruptError
, dev
);
928 free_skb_resources(priv
);
930 dma_free_coherent(NULL
,
931 sizeof(struct txbd8
)*priv
->tx_ring_size
932 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
934 gfar_read(®s
->tbase0
));
936 if (priv
->mii_info
->phyinfo
->close
)
937 priv
->mii_info
->phyinfo
->close(priv
->mii_info
);
939 kfree(priv
->mii_info
);
944 /* Called when something needs to use the ethernet device */
945 /* Returns 0 for success. */
946 static int gfar_enet_open(struct net_device
*dev
)
950 /* Initialize a bunch of registers */
953 gfar_set_mac_address(dev
);
960 err
= startup_gfar(dev
);
962 netif_start_queue(dev
);
967 static struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
, struct txbd8
*bdp
)
969 struct txfcb
*fcb
= (struct txfcb
*)skb_push (skb
, GMAC_FCB_LEN
);
971 memset(fcb
, 0, GMAC_FCB_LEN
);
973 /* Flag the bd so the controller looks for the FCB */
974 bdp
->status
|= TXBD_TOE
;
979 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
983 /* If we're here, it's a IP packet with a TCP or UDP
984 * payload. We set it to checksum, using a pseudo-header
992 /* Notify the controller what the protocol is */
993 if (skb
->nh
.iph
->protocol
== IPPROTO_UDP
)
996 /* l3os is the distance between the start of the
997 * frame (skb->data) and the start of the IP hdr.
998 * l4os is the distance between the start of the
999 * l3 hdr and the l4 hdr */
1000 fcb
->l3os
= (u16
)(skb
->nh
.raw
- skb
->data
- GMAC_FCB_LEN
);
1001 fcb
->l4os
= (u16
)(skb
->h
.raw
- skb
->nh
.raw
);
1003 len
= skb
->nh
.iph
->tot_len
- fcb
->l4os
;
1005 /* Provide the pseudoheader csum */
1006 fcb
->phcs
= ~csum_tcpudp_magic(skb
->nh
.iph
->saddr
,
1007 skb
->nh
.iph
->daddr
, len
,
1008 skb
->nh
.iph
->protocol
, 0);
1011 void gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
1014 fcb
->vlctl
= vlan_tx_tag_get(skb
);
1017 /* This is called by the kernel when a frame is ready for transmission. */
1018 /* It is pointed to by the dev->hard_start_xmit function pointer */
1019 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1021 struct gfar_private
*priv
= netdev_priv(dev
);
1022 struct txfcb
*fcb
= NULL
;
1023 struct txbd8
*txbdp
;
1025 /* Update transmit stats */
1026 priv
->stats
.tx_bytes
+= skb
->len
;
1029 spin_lock_irq(&priv
->lock
);
1031 /* Point at the first free tx descriptor */
1032 txbdp
= priv
->cur_tx
;
1034 /* Clear all but the WRAP status flags */
1035 txbdp
->status
&= TXBD_WRAP
;
1037 /* Set up checksumming */
1038 if ((dev
->features
& NETIF_F_IP_CSUM
)
1039 && (CHECKSUM_HW
== skb
->ip_summed
)) {
1040 fcb
= gfar_add_fcb(skb
, txbdp
);
1041 gfar_tx_checksum(skb
, fcb
);
1044 if (priv
->vlan_enable
&&
1045 unlikely(priv
->vlgrp
&& vlan_tx_tag_present(skb
))) {
1047 fcb
= gfar_add_fcb(skb
, txbdp
);
1049 gfar_tx_vlan(skb
, fcb
);
1052 /* Set buffer length and pointer */
1053 txbdp
->length
= skb
->len
;
1054 txbdp
->bufPtr
= dma_map_single(NULL
, skb
->data
,
1055 skb
->len
, DMA_TO_DEVICE
);
1057 /* Save the skb pointer so we can free it later */
1058 priv
->tx_skbuff
[priv
->skb_curtx
] = skb
;
1060 /* Update the current skb pointer (wrapping if this was the last) */
1062 (priv
->skb_curtx
+ 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
1064 /* Flag the BD as interrupt-causing */
1065 txbdp
->status
|= TXBD_INTERRUPT
;
1067 /* Flag the BD as ready to go, last in frame, and */
1068 /* in need of CRC */
1069 txbdp
->status
|= (TXBD_READY
| TXBD_LAST
| TXBD_CRC
);
1071 dev
->trans_start
= jiffies
;
1073 /* If this was the last BD in the ring, the next one */
1074 /* is at the beginning of the ring */
1075 if (txbdp
->status
& TXBD_WRAP
)
1076 txbdp
= priv
->tx_bd_base
;
1080 /* If the next BD still needs to be cleaned up, then the bds
1081 are full. We need to tell the kernel to stop sending us stuff. */
1082 if (txbdp
== priv
->dirty_tx
) {
1083 netif_stop_queue(dev
);
1085 priv
->stats
.tx_fifo_errors
++;
1088 /* Update the current txbd to the next one */
1089 priv
->cur_tx
= txbdp
;
1091 /* Tell the DMA to go go go */
1092 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1095 spin_unlock_irq(&priv
->lock
);
1100 /* Stops the kernel queue, and halts the controller */
1101 static int gfar_close(struct net_device
*dev
)
1103 struct gfar_private
*priv
= netdev_priv(dev
);
1106 /* Shutdown the PHY */
1107 if (priv
->mii_info
->phyinfo
->close
)
1108 priv
->mii_info
->phyinfo
->close(priv
->mii_info
);
1110 kfree(priv
->mii_info
);
1112 netif_stop_queue(dev
);
1117 /* returns a net_device_stats structure pointer */
1118 static struct net_device_stats
* gfar_get_stats(struct net_device
*dev
)
1120 struct gfar_private
*priv
= netdev_priv(dev
);
1122 return &(priv
->stats
);
1125 /* Changes the mac address if the controller is not running. */
1126 int gfar_set_mac_address(struct net_device
*dev
)
1128 struct gfar_private
*priv
= netdev_priv(dev
);
1130 char tmpbuf
[MAC_ADDR_LEN
];
1133 /* Now copy it into the mac registers backwards, cuz */
1134 /* little endian is silly */
1135 for (i
= 0; i
< MAC_ADDR_LEN
; i
++)
1136 tmpbuf
[MAC_ADDR_LEN
- 1 - i
] = dev
->dev_addr
[i
];
1138 gfar_write(&priv
->regs
->macstnaddr1
, *((u32
*) (tmpbuf
)));
1140 tempval
= *((u32
*) (tmpbuf
+ 4));
1142 gfar_write(&priv
->regs
->macstnaddr2
, tempval
);
1148 /* Enables and disables VLAN insertion/extraction */
1149 static void gfar_vlan_rx_register(struct net_device
*dev
,
1150 struct vlan_group
*grp
)
1152 struct gfar_private
*priv
= netdev_priv(dev
);
1153 unsigned long flags
;
1156 spin_lock_irqsave(&priv
->lock
, flags
);
1161 /* Enable VLAN tag insertion */
1162 tempval
= gfar_read(&priv
->regs
->tctrl
);
1163 tempval
|= TCTRL_VLINS
;
1165 gfar_write(&priv
->regs
->tctrl
, tempval
);
1167 /* Enable VLAN tag extraction */
1168 tempval
= gfar_read(&priv
->regs
->rctrl
);
1169 tempval
|= RCTRL_VLEX
;
1170 gfar_write(&priv
->regs
->rctrl
, tempval
);
1172 /* Disable VLAN tag insertion */
1173 tempval
= gfar_read(&priv
->regs
->tctrl
);
1174 tempval
&= ~TCTRL_VLINS
;
1175 gfar_write(&priv
->regs
->tctrl
, tempval
);
1177 /* Disable VLAN tag extraction */
1178 tempval
= gfar_read(&priv
->regs
->rctrl
);
1179 tempval
&= ~RCTRL_VLEX
;
1180 gfar_write(&priv
->regs
->rctrl
, tempval
);
1183 spin_unlock_irqrestore(&priv
->lock
, flags
);
1187 static void gfar_vlan_rx_kill_vid(struct net_device
*dev
, uint16_t vid
)
1189 struct gfar_private
*priv
= netdev_priv(dev
);
1190 unsigned long flags
;
1192 spin_lock_irqsave(&priv
->lock
, flags
);
1195 priv
->vlgrp
->vlan_devices
[vid
] = NULL
;
1197 spin_unlock_irqrestore(&priv
->lock
, flags
);
1201 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
1203 int tempsize
, tempval
;
1204 struct gfar_private
*priv
= netdev_priv(dev
);
1205 int oldsize
= priv
->rx_buffer_size
;
1206 int frame_size
= new_mtu
+ ETH_HLEN
;
1208 if (priv
->vlan_enable
)
1209 frame_size
+= VLAN_ETH_HLEN
;
1211 if (gfar_uses_fcb(priv
))
1212 frame_size
+= GMAC_FCB_LEN
;
1214 frame_size
+= priv
->padding
;
1216 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
1217 if (netif_msg_drv(priv
))
1218 printk(KERN_ERR
"%s: Invalid MTU setting\n",
1224 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
1225 INCREMENTAL_BUFFER_SIZE
;
1227 /* Only stop and start the controller if it isn't already
1229 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1232 priv
->rx_buffer_size
= tempsize
;
1236 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
1237 gfar_write(&priv
->regs
->maxfrm
, priv
->rx_buffer_size
);
1239 /* If the mtu is larger than the max size for standard
1240 * ethernet frames (ie, a jumbo frame), then set maccfg2
1241 * to allow huge frames, and to check the length */
1242 tempval
= gfar_read(&priv
->regs
->maccfg2
);
1244 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
)
1245 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1247 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1249 gfar_write(&priv
->regs
->maccfg2
, tempval
);
1251 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1257 /* gfar_timeout gets called when a packet has not been
1258 * transmitted after a set amount of time.
1259 * For now, assume that clearing out all the structures, and
1260 * starting over will fix the problem. */
1261 static void gfar_timeout(struct net_device
*dev
)
1263 struct gfar_private
*priv
= netdev_priv(dev
);
1265 priv
->stats
.tx_errors
++;
1267 if (dev
->flags
& IFF_UP
) {
1272 netif_schedule(dev
);
1275 /* Interrupt Handler for Transmit complete */
1276 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
, struct pt_regs
*regs
)
1278 struct net_device
*dev
= (struct net_device
*) dev_id
;
1279 struct gfar_private
*priv
= netdev_priv(dev
);
1283 gfar_write(&priv
->regs
->ievent
, IEVENT_TX_MASK
);
1286 spin_lock(&priv
->lock
);
1287 bdp
= priv
->dirty_tx
;
1288 while ((bdp
->status
& TXBD_READY
) == 0) {
1289 /* If dirty_tx and cur_tx are the same, then either the */
1290 /* ring is empty or full now (it could only be full in the beginning, */
1291 /* obviously). If it is empty, we are done. */
1292 if ((bdp
== priv
->cur_tx
) && (netif_queue_stopped(dev
) == 0))
1295 priv
->stats
.tx_packets
++;
1297 /* Deferred means some collisions occurred during transmit, */
1298 /* but we eventually sent the packet. */
1299 if (bdp
->status
& TXBD_DEF
)
1300 priv
->stats
.collisions
++;
1302 /* Free the sk buffer associated with this TxBD */
1303 dev_kfree_skb_irq(priv
->tx_skbuff
[priv
->skb_dirtytx
]);
1304 priv
->tx_skbuff
[priv
->skb_dirtytx
] = NULL
;
1306 (priv
->skb_dirtytx
+
1307 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
1309 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1310 if (bdp
->status
& TXBD_WRAP
)
1311 bdp
= priv
->tx_bd_base
;
1315 /* Move dirty_tx to be the next bd */
1316 priv
->dirty_tx
= bdp
;
1318 /* We freed a buffer, so now we can restart transmission */
1319 if (netif_queue_stopped(dev
))
1320 netif_wake_queue(dev
);
1321 } /* while ((bdp->status & TXBD_READY) == 0) */
1323 /* If we are coalescing the interrupts, reset the timer */
1324 /* Otherwise, clear it */
1325 if (priv
->txcoalescing
)
1326 gfar_write(&priv
->regs
->txic
,
1327 mk_ic_value(priv
->txcount
, priv
->txtime
));
1329 gfar_write(&priv
->regs
->txic
, 0);
1331 spin_unlock(&priv
->lock
);
1336 struct sk_buff
* gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
)
1338 struct gfar_private
*priv
= netdev_priv(dev
);
1339 struct sk_buff
*skb
= NULL
;
1340 unsigned int timeout
= SKB_ALLOC_TIMEOUT
;
1342 /* We have to allocate the skb, so keep trying till we succeed */
1343 while ((!skb
) && timeout
--)
1344 skb
= dev_alloc_skb(priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
1349 /* We need the data buffer to be aligned properly. We will reserve
1350 * as many bytes as needed to align the data properly
1354 (((unsigned) skb
->data
) & (RXBUF_ALIGNMENT
- 1)));
1358 bdp
->bufPtr
= dma_map_single(NULL
, skb
->data
,
1359 priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
,
1364 /* Mark the buffer empty */
1365 bdp
->status
|= (RXBD_EMPTY
| RXBD_INTERRUPT
);
1370 static inline void count_errors(unsigned short status
, struct gfar_private
*priv
)
1372 struct net_device_stats
*stats
= &priv
->stats
;
1373 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
1375 /* If the packet was truncated, none of the other errors
1377 if (status
& RXBD_TRUNCATED
) {
1378 stats
->rx_length_errors
++;
1384 /* Count the errors, if there were any */
1385 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
1386 stats
->rx_length_errors
++;
1388 if (status
& RXBD_LARGE
)
1393 if (status
& RXBD_NONOCTET
) {
1394 stats
->rx_frame_errors
++;
1395 estats
->rx_nonoctet
++;
1397 if (status
& RXBD_CRCERR
) {
1398 estats
->rx_crcerr
++;
1399 stats
->rx_crc_errors
++;
1401 if (status
& RXBD_OVERRUN
) {
1402 estats
->rx_overrun
++;
1403 stats
->rx_crc_errors
++;
1407 irqreturn_t
gfar_receive(int irq
, void *dev_id
, struct pt_regs
*regs
)
1409 struct net_device
*dev
= (struct net_device
*) dev_id
;
1410 struct gfar_private
*priv
= netdev_priv(dev
);
1412 #ifdef CONFIG_GFAR_NAPI
1416 /* Clear IEVENT, so rx interrupt isn't called again
1417 * because of this interrupt */
1418 gfar_write(&priv
->regs
->ievent
, IEVENT_RX_MASK
);
1421 #ifdef CONFIG_GFAR_NAPI
1422 if (netif_rx_schedule_prep(dev
)) {
1423 tempval
= gfar_read(&priv
->regs
->imask
);
1424 tempval
&= IMASK_RX_DISABLED
;
1425 gfar_write(&priv
->regs
->imask
, tempval
);
1427 __netif_rx_schedule(dev
);
1429 if (netif_msg_rx_err(priv
))
1430 printk(KERN_DEBUG
"%s: receive called twice (%x)[%x]\n",
1431 dev
->name
, gfar_read(&priv
->regs
->ievent
),
1432 gfar_read(&priv
->regs
->imask
));
1436 spin_lock(&priv
->lock
);
1437 gfar_clean_rx_ring(dev
, priv
->rx_ring_size
);
1439 /* If we are coalescing interrupts, update the timer */
1440 /* Otherwise, clear it */
1441 if (priv
->rxcoalescing
)
1442 gfar_write(&priv
->regs
->rxic
,
1443 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1445 gfar_write(&priv
->regs
->rxic
, 0);
1447 spin_unlock(&priv
->lock
);
1453 static inline int gfar_rx_vlan(struct sk_buff
*skb
,
1454 struct vlan_group
*vlgrp
, unsigned short vlctl
)
1456 #ifdef CONFIG_GFAR_NAPI
1457 return vlan_hwaccel_receive_skb(skb
, vlgrp
, vlctl
);
1459 return vlan_hwaccel_rx(skb
, vlgrp
, vlctl
);
1463 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
1465 /* If valid headers were found, and valid sums
1466 * were verified, then we tell the kernel that no
1467 * checksumming is necessary. Otherwise, it is */
1468 if (fcb
->cip
&& !fcb
->eip
&& fcb
->ctu
&& !fcb
->etu
)
1469 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1471 skb
->ip_summed
= CHECKSUM_NONE
;
1475 static inline struct rxfcb
*gfar_get_fcb(struct sk_buff
*skb
)
1477 struct rxfcb
*fcb
= (struct rxfcb
*)skb
->data
;
1479 /* Remove the FCB from the skb */
1480 skb_pull(skb
, GMAC_FCB_LEN
);
1485 /* gfar_process_frame() -- handle one incoming packet if skb
1487 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
1490 struct gfar_private
*priv
= netdev_priv(dev
);
1491 struct rxfcb
*fcb
= NULL
;
1494 if (netif_msg_rx_err(priv
))
1495 printk(KERN_WARNING
"%s: Missing skb!!.\n", dev
->name
);
1496 priv
->stats
.rx_dropped
++;
1497 priv
->extra_stats
.rx_skbmissing
++;
1501 /* Prep the skb for the packet */
1502 skb_put(skb
, length
);
1504 /* Grab the FCB if there is one */
1505 if (gfar_uses_fcb(priv
))
1506 fcb
= gfar_get_fcb(skb
);
1508 /* Remove the padded bytes, if there are any */
1510 skb_pull(skb
, priv
->padding
);
1512 if (priv
->rx_csum_enable
)
1513 gfar_rx_checksum(skb
, fcb
);
1515 /* Tell the skb what kind of packet this is */
1516 skb
->protocol
= eth_type_trans(skb
, dev
);
1518 /* Send the packet up the stack */
1519 if (unlikely(priv
->vlgrp
&& fcb
->vln
))
1520 ret
= gfar_rx_vlan(skb
, priv
->vlgrp
, fcb
->vlctl
);
1524 if (NET_RX_DROP
== ret
)
1525 priv
->extra_stats
.kernel_dropped
++;
1531 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1532 * until the budget/quota has been reached. Returns the number
1535 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
)
1538 struct sk_buff
*skb
;
1541 struct gfar_private
*priv
= netdev_priv(dev
);
1543 /* Get the first full descriptor */
1546 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
1547 skb
= priv
->rx_skbuff
[priv
->skb_currx
];
1550 (RXBD_LARGE
| RXBD_SHORT
| RXBD_NONOCTET
1551 | RXBD_CRCERR
| RXBD_OVERRUN
| RXBD_TRUNCATED
))) {
1552 /* Increment the number of packets */
1553 priv
->stats
.rx_packets
++;
1556 /* Remove the FCS from the packet length */
1557 pkt_len
= bdp
->length
- 4;
1559 gfar_process_frame(dev
, skb
, pkt_len
);
1561 priv
->stats
.rx_bytes
+= pkt_len
;
1563 count_errors(bdp
->status
, priv
);
1566 dev_kfree_skb_any(skb
);
1568 priv
->rx_skbuff
[priv
->skb_currx
] = NULL
;
1571 dev
->last_rx
= jiffies
;
1573 /* Clear the status flags for this buffer */
1574 bdp
->status
&= ~RXBD_STATS
;
1576 /* Add another skb for the future */
1577 skb
= gfar_new_skb(dev
, bdp
);
1578 priv
->rx_skbuff
[priv
->skb_currx
] = skb
;
1580 /* Update to the next pointer */
1581 if (bdp
->status
& RXBD_WRAP
)
1582 bdp
= priv
->rx_bd_base
;
1586 /* update to point at the next skb */
1589 1) & RX_RING_MOD_MASK(priv
->rx_ring_size
);
1593 /* Update the current rxbd pointer to be the next one */
1596 /* If no packets have arrived since the
1597 * last one we processed, clear the IEVENT RX and
1598 * BSY bits so that another interrupt won't be
1599 * generated when we set IMASK */
1600 if (bdp
->status
& RXBD_EMPTY
)
1601 gfar_write(&priv
->regs
->ievent
, IEVENT_RX_MASK
);
1606 #ifdef CONFIG_GFAR_NAPI
1607 static int gfar_poll(struct net_device
*dev
, int *budget
)
1610 struct gfar_private
*priv
= netdev_priv(dev
);
1611 int rx_work_limit
= *budget
;
1613 if (rx_work_limit
> dev
->quota
)
1614 rx_work_limit
= dev
->quota
;
1616 howmany
= gfar_clean_rx_ring(dev
, rx_work_limit
);
1618 dev
->quota
-= howmany
;
1619 rx_work_limit
-= howmany
;
1622 if (rx_work_limit
>= 0) {
1623 netif_rx_complete(dev
);
1625 /* Clear the halt bit in RSTAT */
1626 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1628 gfar_write(&priv
->regs
->imask
, IMASK_DEFAULT
);
1630 /* If we are coalescing interrupts, update the timer */
1631 /* Otherwise, clear it */
1632 if (priv
->rxcoalescing
)
1633 gfar_write(&priv
->regs
->rxic
,
1634 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1636 gfar_write(&priv
->regs
->rxic
, 0);
1639 return (rx_work_limit
< 0) ? 1 : 0;
1643 /* The interrupt handler for devices with one interrupt */
1644 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
1646 struct net_device
*dev
= dev_id
;
1647 struct gfar_private
*priv
= netdev_priv(dev
);
1649 /* Save ievent for future reference */
1650 u32 events
= gfar_read(&priv
->regs
->ievent
);
1653 gfar_write(&priv
->regs
->ievent
, events
);
1655 /* Check for reception */
1656 if ((events
& IEVENT_RXF0
) || (events
& IEVENT_RXB0
))
1657 gfar_receive(irq
, dev_id
, regs
);
1659 /* Check for transmit completion */
1660 if ((events
& IEVENT_TXF
) || (events
& IEVENT_TXB
))
1661 gfar_transmit(irq
, dev_id
, regs
);
1663 /* Update error statistics */
1664 if (events
& IEVENT_TXE
) {
1665 priv
->stats
.tx_errors
++;
1667 if (events
& IEVENT_LC
)
1668 priv
->stats
.tx_window_errors
++;
1669 if (events
& IEVENT_CRL
)
1670 priv
->stats
.tx_aborted_errors
++;
1671 if (events
& IEVENT_XFUN
) {
1672 if (netif_msg_tx_err(priv
))
1673 printk(KERN_WARNING
"%s: tx underrun. dropped packet\n", dev
->name
);
1674 priv
->stats
.tx_dropped
++;
1675 priv
->extra_stats
.tx_underrun
++;
1677 /* Reactivate the Tx Queues */
1678 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1681 if (events
& IEVENT_BSY
) {
1682 priv
->stats
.rx_errors
++;
1683 priv
->extra_stats
.rx_bsy
++;
1685 gfar_receive(irq
, dev_id
, regs
);
1687 #ifndef CONFIG_GFAR_NAPI
1688 /* Clear the halt bit in RSTAT */
1689 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1692 if (netif_msg_rx_err(priv
))
1693 printk(KERN_DEBUG
"%s: busy error (rhalt: %x)\n",
1695 gfar_read(&priv
->regs
->rstat
));
1697 if (events
& IEVENT_BABR
) {
1698 priv
->stats
.rx_errors
++;
1699 priv
->extra_stats
.rx_babr
++;
1701 if (netif_msg_rx_err(priv
))
1702 printk(KERN_DEBUG
"%s: babbling error\n", dev
->name
);
1704 if (events
& IEVENT_EBERR
) {
1705 priv
->extra_stats
.eberr
++;
1706 if (netif_msg_rx_err(priv
))
1707 printk(KERN_DEBUG
"%s: EBERR\n", dev
->name
);
1709 if ((events
& IEVENT_RXC
) && (netif_msg_rx_err(priv
)))
1710 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
1712 if (events
& IEVENT_BABT
) {
1713 priv
->extra_stats
.tx_babt
++;
1714 if (netif_msg_rx_err(priv
))
1715 printk(KERN_DEBUG
"%s: babt error\n", dev
->name
);
1721 static irqreturn_t
phy_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
1723 struct net_device
*dev
= (struct net_device
*) dev_id
;
1724 struct gfar_private
*priv
= netdev_priv(dev
);
1726 /* Clear the interrupt */
1727 mii_clear_phy_interrupt(priv
->mii_info
);
1729 /* Disable PHY interrupts */
1730 mii_configure_phy_interrupt(priv
->mii_info
,
1731 MII_INTERRUPT_DISABLED
);
1733 /* Schedule the phy change */
1734 schedule_work(&priv
->tq
);
1739 /* Scheduled by the phy_interrupt/timer to handle PHY changes */
1740 static void gfar_phy_change(void *data
)
1742 struct net_device
*dev
= (struct net_device
*) data
;
1743 struct gfar_private
*priv
= netdev_priv(dev
);
1746 /* Delay to give the PHY a chance to change the
1750 /* Update the link, speed, duplex */
1751 result
= priv
->mii_info
->phyinfo
->read_status(priv
->mii_info
);
1753 /* Adjust the known status as long as the link
1754 * isn't still coming up */
1755 if((0 == result
) || (priv
->mii_info
->link
== 0))
1758 /* Reenable interrupts, if needed */
1759 if (priv
->einfo
->board_flags
& FSL_GIANFAR_BRD_HAS_PHY_INTR
)
1760 mii_configure_phy_interrupt(priv
->mii_info
,
1761 MII_INTERRUPT_ENABLED
);
1764 /* Called every so often on systems that don't interrupt
1765 * the core for PHY changes */
1766 static void gfar_phy_timer(unsigned long data
)
1768 struct net_device
*dev
= (struct net_device
*) data
;
1769 struct gfar_private
*priv
= netdev_priv(dev
);
1771 schedule_work(&priv
->tq
);
1773 mod_timer(&priv
->phy_info_timer
, jiffies
+
1774 GFAR_PHY_CHANGE_TIME
* HZ
);
1777 /* Keep trying aneg for some time
1778 * If, after GFAR_AN_TIMEOUT seconds, it has not
1779 * finished, we switch to forced.
1780 * Either way, once the process has completed, we either
1781 * request the interrupt, or switch the timer over to
1782 * using gfar_phy_timer to check status */
1783 static void gfar_phy_startup_timer(unsigned long data
)
1786 static int secondary
= GFAR_AN_TIMEOUT
;
1787 struct gfar_mii_info
*mii_info
= (struct gfar_mii_info
*)data
;
1788 struct gfar_private
*priv
= netdev_priv(mii_info
->dev
);
1790 /* Configure the Auto-negotiation */
1791 result
= mii_info
->phyinfo
->config_aneg(mii_info
);
1793 /* If autonegotiation failed to start, and
1794 * we haven't timed out, reset the timer, and return */
1795 if (result
&& secondary
--) {
1796 mod_timer(&priv
->phy_info_timer
, jiffies
+ HZ
);
1798 } else if (result
) {
1799 /* Couldn't start autonegotiation.
1800 * Try switching to forced */
1801 mii_info
->autoneg
= 0;
1802 result
= mii_info
->phyinfo
->config_aneg(mii_info
);
1804 /* Forcing failed! Give up */
1806 if (netif_msg_link(priv
))
1807 printk(KERN_ERR
"%s: Forcing failed!\n",
1808 mii_info
->dev
->name
);
1813 /* Kill the timer so it can be restarted */
1814 del_timer_sync(&priv
->phy_info_timer
);
1816 /* Grab the PHY interrupt, if necessary/possible */
1817 if (priv
->einfo
->board_flags
& FSL_GIANFAR_BRD_HAS_PHY_INTR
) {
1818 if (request_irq(priv
->einfo
->interruptPHY
,
1822 mii_info
->dev
) < 0) {
1823 if (netif_msg_intr(priv
))
1824 printk(KERN_ERR
"%s: Can't get IRQ %d (PHY)\n",
1825 mii_info
->dev
->name
,
1826 priv
->einfo
->interruptPHY
);
1828 mii_configure_phy_interrupt(priv
->mii_info
,
1829 MII_INTERRUPT_ENABLED
);
1834 /* Start the timer again, this time in order to
1835 * handle a change in status */
1836 init_timer(&priv
->phy_info_timer
);
1837 priv
->phy_info_timer
.function
= &gfar_phy_timer
;
1838 priv
->phy_info_timer
.data
= (unsigned long) mii_info
->dev
;
1839 mod_timer(&priv
->phy_info_timer
, jiffies
+
1840 GFAR_PHY_CHANGE_TIME
* HZ
);
1843 /* Called every time the controller might need to be made
1844 * aware of new link state. The PHY code conveys this
1845 * information through variables in the priv structure, and this
1846 * function converts those variables into the appropriate
1847 * register values, and can bring down the device if needed.
1849 static void adjust_link(struct net_device
*dev
)
1851 struct gfar_private
*priv
= netdev_priv(dev
);
1852 struct gfar
*regs
= priv
->regs
;
1854 struct gfar_mii_info
*mii_info
= priv
->mii_info
;
1856 if (mii_info
->link
) {
1857 /* Now we make sure that we can be in full duplex mode.
1858 * If not, we operate in half-duplex mode. */
1859 if (mii_info
->duplex
!= priv
->oldduplex
) {
1860 if (!(mii_info
->duplex
)) {
1861 tempval
= gfar_read(®s
->maccfg2
);
1862 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
1863 gfar_write(®s
->maccfg2
, tempval
);
1865 if (netif_msg_link(priv
))
1866 printk(KERN_INFO
"%s: Half Duplex\n",
1869 tempval
= gfar_read(®s
->maccfg2
);
1870 tempval
|= MACCFG2_FULL_DUPLEX
;
1871 gfar_write(®s
->maccfg2
, tempval
);
1873 if (netif_msg_link(priv
))
1874 printk(KERN_INFO
"%s: Full Duplex\n",
1878 priv
->oldduplex
= mii_info
->duplex
;
1881 if (mii_info
->speed
!= priv
->oldspeed
) {
1882 switch (mii_info
->speed
) {
1884 tempval
= gfar_read(®s
->maccfg2
);
1886 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
1887 gfar_write(®s
->maccfg2
, tempval
);
1891 tempval
= gfar_read(®s
->maccfg2
);
1893 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
1894 gfar_write(®s
->maccfg2
, tempval
);
1897 if (netif_msg_link(priv
))
1899 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1900 dev
->name
, mii_info
->speed
);
1904 if (netif_msg_link(priv
))
1905 printk(KERN_INFO
"%s: Speed %dBT\n", dev
->name
,
1908 priv
->oldspeed
= mii_info
->speed
;
1911 if (!priv
->oldlink
) {
1912 if (netif_msg_link(priv
))
1913 printk(KERN_INFO
"%s: Link is up\n", dev
->name
);
1915 netif_carrier_on(dev
);
1916 netif_schedule(dev
);
1919 if (priv
->oldlink
) {
1920 if (netif_msg_link(priv
))
1921 printk(KERN_INFO
"%s: Link is down\n",
1925 priv
->oldduplex
= -1;
1926 netif_carrier_off(dev
);
1932 /* Update the hash table based on the current list of multicast
1933 * addresses we subscribe to. Also, change the promiscuity of
1934 * the device based on the flags (this function is called
1935 * whenever dev->flags is changed */
1936 static void gfar_set_multi(struct net_device
*dev
)
1938 struct dev_mc_list
*mc_ptr
;
1939 struct gfar_private
*priv
= netdev_priv(dev
);
1940 struct gfar
*regs
= priv
->regs
;
1943 if(dev
->flags
& IFF_PROMISC
) {
1944 if (netif_msg_drv(priv
))
1945 printk(KERN_INFO
"%s: Entering promiscuous mode.\n",
1947 /* Set RCTRL to PROM */
1948 tempval
= gfar_read(®s
->rctrl
);
1949 tempval
|= RCTRL_PROM
;
1950 gfar_write(®s
->rctrl
, tempval
);
1952 /* Set RCTRL to not PROM */
1953 tempval
= gfar_read(®s
->rctrl
);
1954 tempval
&= ~(RCTRL_PROM
);
1955 gfar_write(®s
->rctrl
, tempval
);
1958 if(dev
->flags
& IFF_ALLMULTI
) {
1959 /* Set the hash to rx all multicast frames */
1960 gfar_write(®s
->igaddr0
, 0xffffffff);
1961 gfar_write(®s
->igaddr1
, 0xffffffff);
1962 gfar_write(®s
->igaddr2
, 0xffffffff);
1963 gfar_write(®s
->igaddr3
, 0xffffffff);
1964 gfar_write(®s
->igaddr4
, 0xffffffff);
1965 gfar_write(®s
->igaddr5
, 0xffffffff);
1966 gfar_write(®s
->igaddr6
, 0xffffffff);
1967 gfar_write(®s
->igaddr7
, 0xffffffff);
1968 gfar_write(®s
->gaddr0
, 0xffffffff);
1969 gfar_write(®s
->gaddr1
, 0xffffffff);
1970 gfar_write(®s
->gaddr2
, 0xffffffff);
1971 gfar_write(®s
->gaddr3
, 0xffffffff);
1972 gfar_write(®s
->gaddr4
, 0xffffffff);
1973 gfar_write(®s
->gaddr5
, 0xffffffff);
1974 gfar_write(®s
->gaddr6
, 0xffffffff);
1975 gfar_write(®s
->gaddr7
, 0xffffffff);
1977 /* zero out the hash */
1978 gfar_write(®s
->igaddr0
, 0x0);
1979 gfar_write(®s
->igaddr1
, 0x0);
1980 gfar_write(®s
->igaddr2
, 0x0);
1981 gfar_write(®s
->igaddr3
, 0x0);
1982 gfar_write(®s
->igaddr4
, 0x0);
1983 gfar_write(®s
->igaddr5
, 0x0);
1984 gfar_write(®s
->igaddr6
, 0x0);
1985 gfar_write(®s
->igaddr7
, 0x0);
1986 gfar_write(®s
->gaddr0
, 0x0);
1987 gfar_write(®s
->gaddr1
, 0x0);
1988 gfar_write(®s
->gaddr2
, 0x0);
1989 gfar_write(®s
->gaddr3
, 0x0);
1990 gfar_write(®s
->gaddr4
, 0x0);
1991 gfar_write(®s
->gaddr5
, 0x0);
1992 gfar_write(®s
->gaddr6
, 0x0);
1993 gfar_write(®s
->gaddr7
, 0x0);
1995 if(dev
->mc_count
== 0)
1998 /* Parse the list, and set the appropriate bits */
1999 for(mc_ptr
= dev
->mc_list
; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
2000 gfar_set_hash_for_addr(dev
, mc_ptr
->dmi_addr
);
2007 /* Set the appropriate hash bit for the given addr */
2008 /* The algorithm works like so:
2009 * 1) Take the Destination Address (ie the multicast address), and
2010 * do a CRC on it (little endian), and reverse the bits of the
2012 * 2) Use the 8 most significant bits as a hash into a 256-entry
2013 * table. The table is controlled through 8 32-bit registers:
2014 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2015 * gaddr7. This means that the 3 most significant bits in the
2016 * hash index which gaddr register to use, and the 5 other bits
2017 * indicate which bit (assuming an IBM numbering scheme, which
2018 * for PowerPC (tm) is usually the case) in the register holds
2020 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
2023 struct gfar_private
*priv
= netdev_priv(dev
);
2024 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
2025 int width
= priv
->hash_width
;
2026 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
2027 u8 whichreg
= result
>> (32 - width
+ 5);
2028 u32 value
= (1 << (31-whichbit
));
2030 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
2032 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
2037 /* GFAR error interrupt handler */
2038 static irqreturn_t
gfar_error(int irq
, void *dev_id
, struct pt_regs
*regs
)
2040 struct net_device
*dev
= dev_id
;
2041 struct gfar_private
*priv
= netdev_priv(dev
);
2043 /* Save ievent for future reference */
2044 u32 events
= gfar_read(&priv
->regs
->ievent
);
2047 gfar_write(&priv
->regs
->ievent
, IEVENT_ERR_MASK
);
2050 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
2051 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2052 dev
->name
, events
, gfar_read(&priv
->regs
->imask
));
2054 /* Update the error counters */
2055 if (events
& IEVENT_TXE
) {
2056 priv
->stats
.tx_errors
++;
2058 if (events
& IEVENT_LC
)
2059 priv
->stats
.tx_window_errors
++;
2060 if (events
& IEVENT_CRL
)
2061 priv
->stats
.tx_aborted_errors
++;
2062 if (events
& IEVENT_XFUN
) {
2063 if (netif_msg_tx_err(priv
))
2064 printk(KERN_DEBUG
"%s: underrun. packet dropped.\n",
2066 priv
->stats
.tx_dropped
++;
2067 priv
->extra_stats
.tx_underrun
++;
2069 /* Reactivate the Tx Queues */
2070 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
2072 if (netif_msg_tx_err(priv
))
2073 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
2075 if (events
& IEVENT_BSY
) {
2076 priv
->stats
.rx_errors
++;
2077 priv
->extra_stats
.rx_bsy
++;
2079 gfar_receive(irq
, dev_id
, regs
);
2081 #ifndef CONFIG_GFAR_NAPI
2082 /* Clear the halt bit in RSTAT */
2083 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
2086 if (netif_msg_rx_err(priv
))
2087 printk(KERN_DEBUG
"%s: busy error (rhalt: %x)\n",
2089 gfar_read(&priv
->regs
->rstat
));
2091 if (events
& IEVENT_BABR
) {
2092 priv
->stats
.rx_errors
++;
2093 priv
->extra_stats
.rx_babr
++;
2095 if (netif_msg_rx_err(priv
))
2096 printk(KERN_DEBUG
"%s: babbling error\n", dev
->name
);
2098 if (events
& IEVENT_EBERR
) {
2099 priv
->extra_stats
.eberr
++;
2100 if (netif_msg_rx_err(priv
))
2101 printk(KERN_DEBUG
"%s: EBERR\n", dev
->name
);
2103 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
2104 if (netif_msg_rx_status(priv
))
2105 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
2107 if (events
& IEVENT_BABT
) {
2108 priv
->extra_stats
.tx_babt
++;
2109 if (netif_msg_tx_err(priv
))
2110 printk(KERN_DEBUG
"%s: babt error\n", dev
->name
);
2115 /* Structure for a device driver */
2116 static struct device_driver gfar_driver
= {
2117 .name
= "fsl-gianfar",
2118 .bus
= &platform_bus_type
,
2119 .probe
= gfar_probe
,
2120 .remove
= gfar_remove
,
2123 static int __init
gfar_init(void)
2125 return driver_register(&gfar_driver
);
2128 static void __exit
gfar_exit(void)
2130 driver_unregister(&gfar_driver
);
2133 module_init(gfar_init
);
2134 module_exit(gfar_exit
);