[CONNECTOR]: Update documentation to match reality.
[linux-2.6/verdex.git] / drivers / scsi / aacraid / commsup.c
blobe4d543a474ae7182cde72d0b3472952414e9c829
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Module Name:
25 * commsup.c
27 * Abstract: Contain all routines that are required for FSA host/adapter
28 * communication.
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_device.h>
43 #include <asm/semaphore.h>
44 #include <asm/delay.h>
46 #include "aacraid.h"
48 /**
49 * fib_map_alloc - allocate the fib objects
50 * @dev: Adapter to allocate for
52 * Allocate and map the shared PCI space for the FIB blocks used to
53 * talk to the Adaptec firmware.
56 static int fib_map_alloc(struct aac_dev *dev)
58 dprintk((KERN_INFO
59 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
60 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
61 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
62 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
63 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
64 &dev->hw_fib_pa))==NULL)
65 return -ENOMEM;
66 return 0;
69 /**
70 * fib_map_free - free the fib objects
71 * @dev: Adapter to free
73 * Free the PCI mappings and the memory allocated for FIB blocks
74 * on this adapter.
77 void fib_map_free(struct aac_dev *dev)
79 pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
82 /**
83 * fib_setup - setup the fibs
84 * @dev: Adapter to set up
86 * Allocate the PCI space for the fibs, map it and then intialise the
87 * fib area, the unmapped fib data and also the free list
90 int fib_setup(struct aac_dev * dev)
92 struct fib *fibptr;
93 struct hw_fib *hw_fib_va;
94 dma_addr_t hw_fib_pa;
95 int i;
97 while (((i = fib_map_alloc(dev)) == -ENOMEM)
98 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
99 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
100 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
102 if (i<0)
103 return -ENOMEM;
105 hw_fib_va = dev->hw_fib_va;
106 hw_fib_pa = dev->hw_fib_pa;
107 memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
109 * Initialise the fibs
111 for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
113 fibptr->dev = dev;
114 fibptr->hw_fib = hw_fib_va;
115 fibptr->data = (void *) fibptr->hw_fib->data;
116 fibptr->next = fibptr+1; /* Forward chain the fibs */
117 init_MUTEX_LOCKED(&fibptr->event_wait);
118 spin_lock_init(&fibptr->event_lock);
119 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
120 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
121 fibptr->hw_fib_pa = hw_fib_pa;
122 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
123 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
126 * Add the fib chain to the free list
128 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
130 * Enable this to debug out of queue space
132 dev->free_fib = &dev->fibs[0];
133 return 0;
137 * fib_alloc - allocate a fib
138 * @dev: Adapter to allocate the fib for
140 * Allocate a fib from the adapter fib pool. If the pool is empty we
141 * return NULL.
144 struct fib * fib_alloc(struct aac_dev *dev)
146 struct fib * fibptr;
147 unsigned long flags;
148 spin_lock_irqsave(&dev->fib_lock, flags);
149 fibptr = dev->free_fib;
150 if(!fibptr){
151 spin_unlock_irqrestore(&dev->fib_lock, flags);
152 return fibptr;
154 dev->free_fib = fibptr->next;
155 spin_unlock_irqrestore(&dev->fib_lock, flags);
157 * Set the proper node type code and node byte size
159 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
160 fibptr->size = sizeof(struct fib);
162 * Null out fields that depend on being zero at the start of
163 * each I/O
165 fibptr->hw_fib->header.XferState = 0;
166 fibptr->callback = NULL;
167 fibptr->callback_data = NULL;
169 return fibptr;
173 * fib_free - free a fib
174 * @fibptr: fib to free up
176 * Frees up a fib and places it on the appropriate queue
177 * (either free or timed out)
180 void fib_free(struct fib * fibptr)
182 unsigned long flags;
184 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
185 if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
186 aac_config.fib_timeouts++;
187 fibptr->next = fibptr->dev->timeout_fib;
188 fibptr->dev->timeout_fib = fibptr;
189 } else {
190 if (fibptr->hw_fib->header.XferState != 0) {
191 printk(KERN_WARNING "fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
192 (void*)fibptr,
193 le32_to_cpu(fibptr->hw_fib->header.XferState));
195 fibptr->next = fibptr->dev->free_fib;
196 fibptr->dev->free_fib = fibptr;
198 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
202 * fib_init - initialise a fib
203 * @fibptr: The fib to initialize
205 * Set up the generic fib fields ready for use
208 void fib_init(struct fib *fibptr)
210 struct hw_fib *hw_fib = fibptr->hw_fib;
212 hw_fib->header.StructType = FIB_MAGIC;
213 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
214 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
215 hw_fib->header.SenderFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
216 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
217 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
221 * fib_deallocate - deallocate a fib
222 * @fibptr: fib to deallocate
224 * Will deallocate and return to the free pool the FIB pointed to by the
225 * caller.
228 static void fib_dealloc(struct fib * fibptr)
230 struct hw_fib *hw_fib = fibptr->hw_fib;
231 if(hw_fib->header.StructType != FIB_MAGIC)
232 BUG();
233 hw_fib->header.XferState = 0;
237 * Commuication primitives define and support the queuing method we use to
238 * support host to adapter commuication. All queue accesses happen through
239 * these routines and are the only routines which have a knowledge of the
240 * how these queues are implemented.
244 * aac_get_entry - get a queue entry
245 * @dev: Adapter
246 * @qid: Queue Number
247 * @entry: Entry return
248 * @index: Index return
249 * @nonotify: notification control
251 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
252 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
253 * returned.
256 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
258 struct aac_queue * q;
259 unsigned long idx;
262 * All of the queues wrap when they reach the end, so we check
263 * to see if they have reached the end and if they have we just
264 * set the index back to zero. This is a wrap. You could or off
265 * the high bits in all updates but this is a bit faster I think.
268 q = &dev->queues->queue[qid];
270 idx = *index = le32_to_cpu(*(q->headers.producer));
271 /* Interrupt Moderation, only interrupt for first two entries */
272 if (idx != le32_to_cpu(*(q->headers.consumer))) {
273 if (--idx == 0) {
274 if (qid == AdapNormCmdQueue)
275 idx = ADAP_NORM_CMD_ENTRIES;
276 else
277 idx = ADAP_NORM_RESP_ENTRIES;
279 if (idx != le32_to_cpu(*(q->headers.consumer)))
280 *nonotify = 1;
283 if (qid == AdapNormCmdQueue) {
284 if (*index >= ADAP_NORM_CMD_ENTRIES)
285 *index = 0; /* Wrap to front of the Producer Queue. */
286 } else {
287 if (*index >= ADAP_NORM_RESP_ENTRIES)
288 *index = 0; /* Wrap to front of the Producer Queue. */
291 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
292 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
293 qid, q->numpending);
294 return 0;
295 } else {
296 *entry = q->base + *index;
297 return 1;
302 * aac_queue_get - get the next free QE
303 * @dev: Adapter
304 * @index: Returned index
305 * @priority: Priority of fib
306 * @fib: Fib to associate with the queue entry
307 * @wait: Wait if queue full
308 * @fibptr: Driver fib object to go with fib
309 * @nonotify: Don't notify the adapter
311 * Gets the next free QE off the requested priorty adapter command
312 * queue and associates the Fib with the QE. The QE represented by
313 * index is ready to insert on the queue when this routine returns
314 * success.
317 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
319 struct aac_entry * entry = NULL;
320 int map = 0;
322 if (qid == AdapNormCmdQueue) {
323 /* if no entries wait for some if caller wants to */
324 while (!aac_get_entry(dev, qid, &entry, index, nonotify))
326 printk(KERN_ERR "GetEntries failed\n");
329 * Setup queue entry with a command, status and fib mapped
331 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
332 map = 1;
333 } else {
334 while(!aac_get_entry(dev, qid, &entry, index, nonotify))
336 /* if no entries wait for some if caller wants to */
339 * Setup queue entry with command, status and fib mapped
341 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
342 entry->addr = hw_fib->header.SenderFibAddress;
343 /* Restore adapters pointer to the FIB */
344 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
345 map = 0;
348 * If MapFib is true than we need to map the Fib and put pointers
349 * in the queue entry.
351 if (map)
352 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
353 return 0;
357 * Define the highest level of host to adapter communication routines.
358 * These routines will support host to adapter FS commuication. These
359 * routines have no knowledge of the commuication method used. This level
360 * sends and receives FIBs. This level has no knowledge of how these FIBs
361 * get passed back and forth.
365 * fib_send - send a fib to the adapter
366 * @command: Command to send
367 * @fibptr: The fib
368 * @size: Size of fib data area
369 * @priority: Priority of Fib
370 * @wait: Async/sync select
371 * @reply: True if a reply is wanted
372 * @callback: Called with reply
373 * @callback_data: Passed to callback
375 * Sends the requested FIB to the adapter and optionally will wait for a
376 * response FIB. If the caller does not wish to wait for a response than
377 * an event to wait on must be supplied. This event will be set when a
378 * response FIB is received from the adapter.
381 int fib_send(u16 command, struct fib * fibptr, unsigned long size, int priority, int wait, int reply, fib_callback callback, void * callback_data)
383 u32 index;
384 struct aac_dev * dev = fibptr->dev;
385 unsigned long nointr = 0;
386 struct hw_fib * hw_fib = fibptr->hw_fib;
387 struct aac_queue * q;
388 unsigned long flags = 0;
389 unsigned long qflags;
391 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
392 return -EBUSY;
394 * There are 5 cases with the wait and reponse requested flags.
395 * The only invalid cases are if the caller requests to wait and
396 * does not request a response and if the caller does not want a
397 * response and the Fib is not allocated from pool. If a response
398 * is not requesed the Fib will just be deallocaed by the DPC
399 * routine when the response comes back from the adapter. No
400 * further processing will be done besides deleting the Fib. We
401 * will have a debug mode where the adapter can notify the host
402 * it had a problem and the host can log that fact.
404 if (wait && !reply) {
405 return -EINVAL;
406 } else if (!wait && reply) {
407 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
408 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
409 } else if (!wait && !reply) {
410 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
411 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
412 } else if (wait && reply) {
413 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
414 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
417 * Map the fib into 32bits by using the fib number
420 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr-dev->fibs)) << 1);
421 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
423 * Set FIB state to indicate where it came from and if we want a
424 * response from the adapter. Also load the command from the
425 * caller.
427 * Map the hw fib pointer as a 32bit value
429 hw_fib->header.Command = cpu_to_le16(command);
430 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
431 fibptr->hw_fib->header.Flags = 0; /* 0 the flags field - internal only*/
433 * Set the size of the Fib we want to send to the adapter
435 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
436 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
437 return -EMSGSIZE;
440 * Get a queue entry connect the FIB to it and send an notify
441 * the adapter a command is ready.
443 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
446 * Fill in the Callback and CallbackContext if we are not
447 * going to wait.
449 if (!wait) {
450 fibptr->callback = callback;
451 fibptr->callback_data = callback_data;
454 fibptr->done = 0;
455 fibptr->flags = 0;
457 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
459 dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
460 dprintk((KERN_DEBUG "Fib contents:.\n"));
461 dprintk((KERN_DEBUG " Command = %d.\n", hw_fib->header.Command));
462 dprintk((KERN_DEBUG " XferState = %x.\n", hw_fib->header.XferState));
463 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib));
464 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
465 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
467 q = &dev->queues->queue[AdapNormCmdQueue];
469 if(wait)
470 spin_lock_irqsave(&fibptr->event_lock, flags);
471 spin_lock_irqsave(q->lock, qflags);
472 aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
474 list_add_tail(&fibptr->queue, &q->pendingq);
475 q->numpending++;
476 *(q->headers.producer) = cpu_to_le32(index + 1);
477 spin_unlock_irqrestore(q->lock, qflags);
478 if (!(nointr & aac_config.irq_mod))
479 aac_adapter_notify(dev, AdapNormCmdQueue);
481 * If the caller wanted us to wait for response wait now.
484 if (wait) {
485 spin_unlock_irqrestore(&fibptr->event_lock, flags);
486 /* Only set for first known interruptable command */
487 if (wait < 0) {
489 * *VERY* Dangerous to time out a command, the
490 * assumption is made that we have no hope of
491 * functioning because an interrupt routing or other
492 * hardware failure has occurred.
494 unsigned long count = 36000000L; /* 3 minutes */
495 unsigned long qflags;
496 while (down_trylock(&fibptr->event_wait)) {
497 if (--count == 0) {
498 spin_lock_irqsave(q->lock, qflags);
499 q->numpending--;
500 list_del(&fibptr->queue);
501 spin_unlock_irqrestore(q->lock, qflags);
502 if (wait == -1) {
503 printk(KERN_ERR "aacraid: fib_send: first asynchronous command timed out.\n"
504 "Usually a result of a PCI interrupt routing problem;\n"
505 "update mother board BIOS or consider utilizing one of\n"
506 "the SAFE mode kernel options (acpi, apic etc)\n");
508 return -ETIMEDOUT;
510 udelay(5);
512 } else
513 down(&fibptr->event_wait);
514 if(fibptr->done == 0)
515 BUG();
517 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
518 return -ETIMEDOUT;
519 } else {
520 return 0;
524 * If the user does not want a response than return success otherwise
525 * return pending
527 if (reply)
528 return -EINPROGRESS;
529 else
530 return 0;
533 /**
534 * aac_consumer_get - get the top of the queue
535 * @dev: Adapter
536 * @q: Queue
537 * @entry: Return entry
539 * Will return a pointer to the entry on the top of the queue requested that
540 * we are a consumer of, and return the address of the queue entry. It does
541 * not change the state of the queue.
544 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
546 u32 index;
547 int status;
548 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
549 status = 0;
550 } else {
552 * The consumer index must be wrapped if we have reached
553 * the end of the queue, else we just use the entry
554 * pointed to by the header index
556 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
557 index = 0;
558 else
559 index = le32_to_cpu(*q->headers.consumer);
560 *entry = q->base + index;
561 status = 1;
563 return(status);
567 * aac_consumer_free - free consumer entry
568 * @dev: Adapter
569 * @q: Queue
570 * @qid: Queue ident
572 * Frees up the current top of the queue we are a consumer of. If the
573 * queue was full notify the producer that the queue is no longer full.
576 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
578 int wasfull = 0;
579 u32 notify;
581 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
582 wasfull = 1;
584 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
585 *q->headers.consumer = cpu_to_le32(1);
586 else
587 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
589 if (wasfull) {
590 switch (qid) {
592 case HostNormCmdQueue:
593 notify = HostNormCmdNotFull;
594 break;
595 case HostNormRespQueue:
596 notify = HostNormRespNotFull;
597 break;
598 default:
599 BUG();
600 return;
602 aac_adapter_notify(dev, notify);
607 * fib_adapter_complete - complete adapter issued fib
608 * @fibptr: fib to complete
609 * @size: size of fib
611 * Will do all necessary work to complete a FIB that was sent from
612 * the adapter.
615 int fib_adapter_complete(struct fib * fibptr, unsigned short size)
617 struct hw_fib * hw_fib = fibptr->hw_fib;
618 struct aac_dev * dev = fibptr->dev;
619 struct aac_queue * q;
620 unsigned long nointr = 0;
621 unsigned long qflags;
623 if (hw_fib->header.XferState == 0) {
624 return 0;
627 * If we plan to do anything check the structure type first.
629 if ( hw_fib->header.StructType != FIB_MAGIC ) {
630 return -EINVAL;
633 * This block handles the case where the adapter had sent us a
634 * command and we have finished processing the command. We
635 * call completeFib when we are done processing the command
636 * and want to send a response back to the adapter. This will
637 * send the completed cdb to the adapter.
639 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
640 u32 index;
641 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
642 if (size) {
643 size += sizeof(struct aac_fibhdr);
644 if (size > le16_to_cpu(hw_fib->header.SenderSize))
645 return -EMSGSIZE;
646 hw_fib->header.Size = cpu_to_le16(size);
648 q = &dev->queues->queue[AdapNormRespQueue];
649 spin_lock_irqsave(q->lock, qflags);
650 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
651 *(q->headers.producer) = cpu_to_le32(index + 1);
652 spin_unlock_irqrestore(q->lock, qflags);
653 if (!(nointr & (int)aac_config.irq_mod))
654 aac_adapter_notify(dev, AdapNormRespQueue);
656 else
658 printk(KERN_WARNING "fib_adapter_complete: Unknown xferstate detected.\n");
659 BUG();
661 return 0;
665 * fib_complete - fib completion handler
666 * @fib: FIB to complete
668 * Will do all necessary work to complete a FIB.
671 int fib_complete(struct fib * fibptr)
673 struct hw_fib * hw_fib = fibptr->hw_fib;
676 * Check for a fib which has already been completed
679 if (hw_fib->header.XferState == 0)
680 return 0;
682 * If we plan to do anything check the structure type first.
685 if (hw_fib->header.StructType != FIB_MAGIC)
686 return -EINVAL;
688 * This block completes a cdb which orginated on the host and we
689 * just need to deallocate the cdb or reinit it. At this point the
690 * command is complete that we had sent to the adapter and this
691 * cdb could be reused.
693 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
694 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
696 fib_dealloc(fibptr);
698 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
701 * This handles the case when the host has aborted the I/O
702 * to the adapter because the adapter is not responding
704 fib_dealloc(fibptr);
705 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
706 fib_dealloc(fibptr);
707 } else {
708 BUG();
710 return 0;
714 * aac_printf - handle printf from firmware
715 * @dev: Adapter
716 * @val: Message info
718 * Print a message passed to us by the controller firmware on the
719 * Adaptec board
722 void aac_printf(struct aac_dev *dev, u32 val)
724 char *cp = dev->printfbuf;
725 if (dev->printf_enabled)
727 int length = val & 0xffff;
728 int level = (val >> 16) & 0xffff;
731 * The size of the printfbuf is set in port.c
732 * There is no variable or define for it
734 if (length > 255)
735 length = 255;
736 if (cp[length] != 0)
737 cp[length] = 0;
738 if (level == LOG_AAC_HIGH_ERROR)
739 printk(KERN_WARNING "aacraid:%s", cp);
740 else
741 printk(KERN_INFO "aacraid:%s", cp);
743 memset(cp, 0, 256);
748 * aac_handle_aif - Handle a message from the firmware
749 * @dev: Which adapter this fib is from
750 * @fibptr: Pointer to fibptr from adapter
752 * This routine handles a driver notify fib from the adapter and
753 * dispatches it to the appropriate routine for handling.
756 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
758 struct hw_fib * hw_fib = fibptr->hw_fib;
759 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
760 int busy;
761 u32 container;
762 struct scsi_device *device;
763 enum {
764 NOTHING,
765 DELETE,
766 ADD,
767 CHANGE
768 } device_config_needed;
770 /* Sniff for container changes */
772 if (!dev)
773 return;
774 container = (u32)-1;
777 * We have set this up to try and minimize the number of
778 * re-configures that take place. As a result of this when
779 * certain AIF's come in we will set a flag waiting for another
780 * type of AIF before setting the re-config flag.
782 switch (le32_to_cpu(aifcmd->command)) {
783 case AifCmdDriverNotify:
784 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
786 * Morph or Expand complete
788 case AifDenMorphComplete:
789 case AifDenVolumeExtendComplete:
790 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
791 if (container >= dev->maximum_num_containers)
792 break;
795 * Find the Scsi_Device associated with the SCSI
796 * address. Make sure we have the right array, and if
797 * so set the flag to initiate a new re-config once we
798 * see an AifEnConfigChange AIF come through.
801 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
802 device = scsi_device_lookup(dev->scsi_host_ptr,
803 CONTAINER_TO_CHANNEL(container),
804 CONTAINER_TO_ID(container),
805 CONTAINER_TO_LUN(container));
806 if (device) {
807 dev->fsa_dev[container].config_needed = CHANGE;
808 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
809 scsi_device_put(device);
815 * If we are waiting on something and this happens to be
816 * that thing then set the re-configure flag.
818 if (container != (u32)-1) {
819 if (container >= dev->maximum_num_containers)
820 break;
821 if (dev->fsa_dev[container].config_waiting_on ==
822 le32_to_cpu(*(u32 *)aifcmd->data))
823 dev->fsa_dev[container].config_waiting_on = 0;
824 } else for (container = 0;
825 container < dev->maximum_num_containers; ++container) {
826 if (dev->fsa_dev[container].config_waiting_on ==
827 le32_to_cpu(*(u32 *)aifcmd->data))
828 dev->fsa_dev[container].config_waiting_on = 0;
830 break;
832 case AifCmdEventNotify:
833 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
835 * Add an Array.
837 case AifEnAddContainer:
838 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
839 if (container >= dev->maximum_num_containers)
840 break;
841 dev->fsa_dev[container].config_needed = ADD;
842 dev->fsa_dev[container].config_waiting_on =
843 AifEnConfigChange;
844 break;
847 * Delete an Array.
849 case AifEnDeleteContainer:
850 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
851 if (container >= dev->maximum_num_containers)
852 break;
853 dev->fsa_dev[container].config_needed = DELETE;
854 dev->fsa_dev[container].config_waiting_on =
855 AifEnConfigChange;
856 break;
859 * Container change detected. If we currently are not
860 * waiting on something else, setup to wait on a Config Change.
862 case AifEnContainerChange:
863 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
864 if (container >= dev->maximum_num_containers)
865 break;
866 if (dev->fsa_dev[container].config_waiting_on)
867 break;
868 dev->fsa_dev[container].config_needed = CHANGE;
869 dev->fsa_dev[container].config_waiting_on =
870 AifEnConfigChange;
871 break;
873 case AifEnConfigChange:
874 break;
879 * If we are waiting on something and this happens to be
880 * that thing then set the re-configure flag.
882 if (container != (u32)-1) {
883 if (container >= dev->maximum_num_containers)
884 break;
885 if (dev->fsa_dev[container].config_waiting_on ==
886 le32_to_cpu(*(u32 *)aifcmd->data))
887 dev->fsa_dev[container].config_waiting_on = 0;
888 } else for (container = 0;
889 container < dev->maximum_num_containers; ++container) {
890 if (dev->fsa_dev[container].config_waiting_on ==
891 le32_to_cpu(*(u32 *)aifcmd->data))
892 dev->fsa_dev[container].config_waiting_on = 0;
894 break;
896 case AifCmdJobProgress:
898 * These are job progress AIF's. When a Clear is being
899 * done on a container it is initially created then hidden from
900 * the OS. When the clear completes we don't get a config
901 * change so we monitor the job status complete on a clear then
902 * wait for a container change.
905 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
906 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
907 || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
908 for (container = 0;
909 container < dev->maximum_num_containers;
910 ++container) {
912 * Stomp on all config sequencing for all
913 * containers?
915 dev->fsa_dev[container].config_waiting_on =
916 AifEnContainerChange;
917 dev->fsa_dev[container].config_needed = ADD;
920 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
921 && (((u32 *)aifcmd->data)[6] == 0)
922 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
923 for (container = 0;
924 container < dev->maximum_num_containers;
925 ++container) {
927 * Stomp on all config sequencing for all
928 * containers?
930 dev->fsa_dev[container].config_waiting_on =
931 AifEnContainerChange;
932 dev->fsa_dev[container].config_needed = DELETE;
935 break;
938 device_config_needed = NOTHING;
939 for (container = 0; container < dev->maximum_num_containers;
940 ++container) {
941 if ((dev->fsa_dev[container].config_waiting_on == 0)
942 && (dev->fsa_dev[container].config_needed != NOTHING)) {
943 device_config_needed =
944 dev->fsa_dev[container].config_needed;
945 dev->fsa_dev[container].config_needed = NOTHING;
946 break;
949 if (device_config_needed == NOTHING)
950 return;
953 * If we decided that a re-configuration needs to be done,
954 * schedule it here on the way out the door, please close the door
955 * behind you.
958 busy = 0;
962 * Find the Scsi_Device associated with the SCSI address,
963 * and mark it as changed, invalidating the cache. This deals
964 * with changes to existing device IDs.
967 if (!dev || !dev->scsi_host_ptr)
968 return;
970 * force reload of disk info via probe_container
972 if ((device_config_needed == CHANGE)
973 && (dev->fsa_dev[container].valid == 1))
974 dev->fsa_dev[container].valid = 2;
975 if ((device_config_needed == CHANGE) ||
976 (device_config_needed == ADD))
977 probe_container(dev, container);
978 device = scsi_device_lookup(dev->scsi_host_ptr,
979 CONTAINER_TO_CHANNEL(container),
980 CONTAINER_TO_ID(container),
981 CONTAINER_TO_LUN(container));
982 if (device) {
983 switch (device_config_needed) {
984 case DELETE:
985 scsi_remove_device(device);
986 break;
987 case CHANGE:
988 if (!dev->fsa_dev[container].valid) {
989 scsi_remove_device(device);
990 break;
992 scsi_rescan_device(&device->sdev_gendev);
994 default:
995 break;
997 scsi_device_put(device);
999 if (device_config_needed == ADD) {
1000 scsi_add_device(dev->scsi_host_ptr,
1001 CONTAINER_TO_CHANNEL(container),
1002 CONTAINER_TO_ID(container),
1003 CONTAINER_TO_LUN(container));
1009 * aac_command_thread - command processing thread
1010 * @dev: Adapter to monitor
1012 * Waits on the commandready event in it's queue. When the event gets set
1013 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1014 * until the queue is empty. When the queue is empty it will wait for
1015 * more FIBs.
1018 int aac_command_thread(struct aac_dev * dev)
1020 struct hw_fib *hw_fib, *hw_newfib;
1021 struct fib *fib, *newfib;
1022 struct aac_fib_context *fibctx;
1023 unsigned long flags;
1024 DECLARE_WAITQUEUE(wait, current);
1027 * We can only have one thread per adapter for AIF's.
1029 if (dev->aif_thread)
1030 return -EINVAL;
1032 * Set up the name that will appear in 'ps'
1033 * stored in task_struct.comm[16].
1035 daemonize("aacraid");
1036 allow_signal(SIGKILL);
1038 * Let the DPC know it has a place to send the AIF's to.
1040 dev->aif_thread = 1;
1041 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1042 set_current_state(TASK_INTERRUPTIBLE);
1043 dprintk ((KERN_INFO "aac_command_thread start\n"));
1044 while(1)
1046 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1047 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1048 struct list_head *entry;
1049 struct aac_aifcmd * aifcmd;
1051 set_current_state(TASK_RUNNING);
1053 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1054 list_del(entry);
1056 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1057 fib = list_entry(entry, struct fib, fiblink);
1059 * We will process the FIB here or pass it to a
1060 * worker thread that is TBD. We Really can't
1061 * do anything at this point since we don't have
1062 * anything defined for this thread to do.
1064 hw_fib = fib->hw_fib;
1065 memset(fib, 0, sizeof(struct fib));
1066 fib->type = FSAFS_NTC_FIB_CONTEXT;
1067 fib->size = sizeof( struct fib );
1068 fib->hw_fib = hw_fib;
1069 fib->data = hw_fib->data;
1070 fib->dev = dev;
1072 * We only handle AifRequest fibs from the adapter.
1074 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1075 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1076 /* Handle Driver Notify Events */
1077 aac_handle_aif(dev, fib);
1078 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1079 fib_adapter_complete(fib, (u16)sizeof(u32));
1080 } else {
1081 struct list_head *entry;
1082 /* The u32 here is important and intended. We are using
1083 32bit wrapping time to fit the adapter field */
1085 u32 time_now, time_last;
1086 unsigned long flagv;
1087 unsigned num;
1088 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1089 struct fib ** fib_pool, ** fib_p;
1091 /* Sniff events */
1092 if ((aifcmd->command ==
1093 cpu_to_le32(AifCmdEventNotify)) ||
1094 (aifcmd->command ==
1095 cpu_to_le32(AifCmdJobProgress))) {
1096 aac_handle_aif(dev, fib);
1099 time_now = jiffies/HZ;
1102 * Warning: no sleep allowed while
1103 * holding spinlock. We take the estimate
1104 * and pre-allocate a set of fibs outside the
1105 * lock.
1107 num = le32_to_cpu(dev->init->AdapterFibsSize)
1108 / sizeof(struct hw_fib); /* some extra */
1109 spin_lock_irqsave(&dev->fib_lock, flagv);
1110 entry = dev->fib_list.next;
1111 while (entry != &dev->fib_list) {
1112 entry = entry->next;
1113 ++num;
1115 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1116 hw_fib_pool = NULL;
1117 fib_pool = NULL;
1118 if (num
1119 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1120 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1121 hw_fib_p = hw_fib_pool;
1122 fib_p = fib_pool;
1123 while (hw_fib_p < &hw_fib_pool[num]) {
1124 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1125 --hw_fib_p;
1126 break;
1128 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1129 kfree(*(--hw_fib_p));
1130 break;
1133 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1134 kfree(fib_pool);
1135 fib_pool = NULL;
1136 kfree(hw_fib_pool);
1137 hw_fib_pool = NULL;
1139 } else if (hw_fib_pool) {
1140 kfree(hw_fib_pool);
1141 hw_fib_pool = NULL;
1143 spin_lock_irqsave(&dev->fib_lock, flagv);
1144 entry = dev->fib_list.next;
1146 * For each Context that is on the
1147 * fibctxList, make a copy of the
1148 * fib, and then set the event to wake up the
1149 * thread that is waiting for it.
1151 hw_fib_p = hw_fib_pool;
1152 fib_p = fib_pool;
1153 while (entry != &dev->fib_list) {
1155 * Extract the fibctx
1157 fibctx = list_entry(entry, struct aac_fib_context, next);
1159 * Check if the queue is getting
1160 * backlogged
1162 if (fibctx->count > 20)
1165 * It's *not* jiffies folks,
1166 * but jiffies / HZ so do not
1167 * panic ...
1169 time_last = fibctx->jiffies;
1171 * Has it been > 2 minutes
1172 * since the last read off
1173 * the queue?
1175 if ((time_now - time_last) > 120) {
1176 entry = entry->next;
1177 aac_close_fib_context(dev, fibctx);
1178 continue;
1182 * Warning: no sleep allowed while
1183 * holding spinlock
1185 if (hw_fib_p < &hw_fib_pool[num]) {
1186 hw_newfib = *hw_fib_p;
1187 *(hw_fib_p++) = NULL;
1188 newfib = *fib_p;
1189 *(fib_p++) = NULL;
1191 * Make the copy of the FIB
1193 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1194 memcpy(newfib, fib, sizeof(struct fib));
1195 newfib->hw_fib = hw_newfib;
1197 * Put the FIB onto the
1198 * fibctx's fibs
1200 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1201 fibctx->count++;
1203 * Set the event to wake up the
1204 * thread that is waiting.
1206 up(&fibctx->wait_sem);
1207 } else {
1208 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1210 entry = entry->next;
1213 * Set the status of this FIB
1215 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1216 fib_adapter_complete(fib, sizeof(u32));
1217 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1218 /* Free up the remaining resources */
1219 hw_fib_p = hw_fib_pool;
1220 fib_p = fib_pool;
1221 while (hw_fib_p < &hw_fib_pool[num]) {
1222 if (*hw_fib_p)
1223 kfree(*hw_fib_p);
1224 if (*fib_p)
1225 kfree(*fib_p);
1226 ++fib_p;
1227 ++hw_fib_p;
1229 if (hw_fib_pool)
1230 kfree(hw_fib_pool);
1231 if (fib_pool)
1232 kfree(fib_pool);
1234 kfree(fib);
1235 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1238 * There are no more AIF's
1240 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1241 schedule();
1243 if(signal_pending(current))
1244 break;
1245 set_current_state(TASK_INTERRUPTIBLE);
1247 if (dev->queues)
1248 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1249 dev->aif_thread = 0;
1250 complete_and_exit(&dev->aif_completion, 0);
1251 return 0;