4 #include <linux/config.h>
5 #include <linux/kernel.h>
6 #include <asm/segment.h>
7 #include <asm/cpufeature.h>
8 #include <linux/bitops.h> /* for LOCK_PREFIX */
12 struct task_struct
; /* one of the stranger aspects of C forward declarations.. */
13 extern struct task_struct
* FASTCALL(__switch_to(struct task_struct
*prev
, struct task_struct
*next
));
15 #define switch_to(prev,next,last) do { \
16 unsigned long esi,edi; \
17 asm volatile("pushl %%ebp\n\t" \
18 "movl %%esp,%0\n\t" /* save ESP */ \
19 "movl %5,%%esp\n\t" /* restore ESP */ \
20 "movl $1f,%1\n\t" /* save EIP */ \
21 "pushl %6\n\t" /* restore EIP */ \
25 :"=m" (prev->thread.esp),"=m" (prev->thread.eip), \
26 "=a" (last),"=S" (esi),"=D" (edi) \
27 :"m" (next->thread.esp),"m" (next->thread.eip), \
28 "2" (prev), "d" (next)); \
31 #define _set_base(addr,base) do { unsigned long __pr; \
32 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
33 "rorl $16,%%edx\n\t" \
43 #define _set_limit(addr,limit) do { unsigned long __lr; \
44 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
45 "rorl $16,%%edx\n\t" \
47 "andb $0xf0,%%dh\n\t" \
56 #define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) )
57 #define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1)>>12 )
59 static inline unsigned long _get_base(char * addr
)
62 __asm__("movb %3,%%dh\n\t"
73 #define get_base(ldt) _get_base( ((char *)&(ldt)) )
76 * Load a segment. Fall back on loading the zero
77 * segment if something goes wrong..
79 #define loadsegment(seg,value) \
82 "mov %0,%%" #seg "\n" \
84 ".section .fixup,\"ax\"\n" \
87 "popl %%" #seg "\n\t" \
90 ".section __ex_table,\"a\"\n\t" \
97 * Save a segment register away
99 #define savesegment(seg, value) \
100 asm volatile("mov %%" #seg ",%0":"=rm" (value))
103 * Clear and set 'TS' bit respectively
105 #define clts() __asm__ __volatile__ ("clts")
106 #define read_cr0() ({ \
107 unsigned int __dummy; \
108 __asm__ __volatile__( \
109 "movl %%cr0,%0\n\t" \
113 #define write_cr0(x) \
114 __asm__ __volatile__("movl %0,%%cr0": :"r" (x));
116 #define read_cr2() ({ \
117 unsigned int __dummy; \
118 __asm__ __volatile__( \
119 "movl %%cr2,%0\n\t" \
123 #define write_cr2(x) \
124 __asm__ __volatile__("movl %0,%%cr2": :"r" (x));
126 #define read_cr3() ({ \
127 unsigned int __dummy; \
129 "movl %%cr3,%0\n\t" \
133 #define write_cr3(x) \
134 __asm__ __volatile__("movl %0,%%cr3": :"r" (x));
136 #define read_cr4() ({ \
137 unsigned int __dummy; \
139 "movl %%cr4,%0\n\t" \
143 #define write_cr4(x) \
144 __asm__ __volatile__("movl %0,%%cr4": :"r" (x));
145 #define stts() write_cr0(8 | read_cr0())
147 #endif /* __KERNEL__ */
150 __asm__ __volatile__ ("wbinvd": : :"memory");
152 static inline unsigned long get_limit(unsigned long segment
)
154 unsigned long __limit
;
156 :"=r" (__limit
):"r" (segment
));
160 #define nop() __asm__ __volatile__ ("nop")
162 #define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr))))
164 #define tas(ptr) (xchg((ptr),1))
166 struct __xchg_dummy
{ unsigned long a
[100]; };
167 #define __xg(x) ((struct __xchg_dummy *)(x))
171 * The semantics of XCHGCMP8B are a bit strange, this is why
172 * there is a loop and the loading of %%eax and %%edx has to
173 * be inside. This inlines well in most cases, the cached
174 * cost is around ~38 cycles. (in the future we might want
175 * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that
176 * might have an implicit FPU-save as a cost, so it's not
177 * clear which path to go.)
179 * cmpxchg8b must be used with the lock prefix here to allow
180 * the instruction to be executed atomically, see page 3-102
181 * of the instruction set reference 24319102.pdf. We need
182 * the reader side to see the coherent 64bit value.
184 static inline void __set_64bit (unsigned long long * ptr
,
185 unsigned int low
, unsigned int high
)
187 __asm__
__volatile__ (
189 "movl (%0), %%eax\n\t"
190 "movl 4(%0), %%edx\n\t"
191 "lock cmpxchg8b (%0)\n\t"
197 : "ax","dx","memory");
200 static inline void __set_64bit_constant (unsigned long long *ptr
,
201 unsigned long long value
)
203 __set_64bit(ptr
,(unsigned int)(value
), (unsigned int)((value
)>>32ULL));
205 #define ll_low(x) *(((unsigned int*)&(x))+0)
206 #define ll_high(x) *(((unsigned int*)&(x))+1)
208 static inline void __set_64bit_var (unsigned long long *ptr
,
209 unsigned long long value
)
211 __set_64bit(ptr
,ll_low(value
), ll_high(value
));
214 #define set_64bit(ptr,value) \
215 (__builtin_constant_p(value) ? \
216 __set_64bit_constant(ptr, value) : \
217 __set_64bit_var(ptr, value) )
219 #define _set_64bit(ptr,value) \
220 (__builtin_constant_p(value) ? \
221 __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \
222 __set_64bit(ptr, ll_low(value), ll_high(value)) )
225 * Note: no "lock" prefix even on SMP: xchg always implies lock anyway
226 * Note 2: xchg has side effect, so that attribute volatile is necessary,
227 * but generally the primitive is invalid, *ptr is output argument. --ANK
229 static inline unsigned long __xchg(unsigned long x
, volatile void * ptr
, int size
)
233 __asm__
__volatile__("xchgb %b0,%1"
235 :"m" (*__xg(ptr
)), "0" (x
)
239 __asm__
__volatile__("xchgw %w0,%1"
241 :"m" (*__xg(ptr
)), "0" (x
)
245 __asm__
__volatile__("xchgl %0,%1"
247 :"m" (*__xg(ptr
)), "0" (x
)
255 * Atomic compare and exchange. Compare OLD with MEM, if identical,
256 * store NEW in MEM. Return the initial value in MEM. Success is
257 * indicated by comparing RETURN with OLD.
260 #ifdef CONFIG_X86_CMPXCHG
261 #define __HAVE_ARCH_CMPXCHG 1
264 static inline unsigned long __cmpxchg(volatile void *ptr
, unsigned long old
,
265 unsigned long new, int size
)
270 __asm__
__volatile__(LOCK_PREFIX
"cmpxchgb %b1,%2"
272 : "q"(new), "m"(*__xg(ptr
)), "0"(old
)
276 __asm__
__volatile__(LOCK_PREFIX
"cmpxchgw %w1,%2"
278 : "q"(new), "m"(*__xg(ptr
)), "0"(old
)
282 __asm__
__volatile__(LOCK_PREFIX
"cmpxchgl %1,%2"
284 : "q"(new), "m"(*__xg(ptr
)), "0"(old
)
291 #define cmpxchg(ptr,o,n)\
292 ((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\
293 (unsigned long)(n),sizeof(*(ptr))))
297 __u8
*instr
; /* original instruction */
299 __u8 cpuid
; /* cpuid bit set for replacement */
300 __u8 instrlen
; /* length of original instruction */
301 __u8 replacementlen
; /* length of new instruction, <= instrlen */
307 * Alternative instructions for different CPU types or capabilities.
309 * This allows to use optimized instructions even on generic binary
312 * length of oldinstr must be longer or equal the length of newinstr
313 * It can be padded with nops as needed.
315 * For non barrier like inlines please define new variants
316 * without volatile and memory clobber.
318 #define alternative(oldinstr, newinstr, feature) \
319 asm volatile ("661:\n\t" oldinstr "\n662:\n" \
320 ".section .altinstructions,\"a\"\n" \
322 " .long 661b\n" /* label */ \
323 " .long 663f\n" /* new instruction */ \
324 " .byte %c0\n" /* feature bit */ \
325 " .byte 662b-661b\n" /* sourcelen */ \
326 " .byte 664f-663f\n" /* replacementlen */ \
328 ".section .altinstr_replacement,\"ax\"\n" \
329 "663:\n\t" newinstr "\n664:\n" /* replacement */ \
330 ".previous" :: "i" (feature) : "memory")
333 * Alternative inline assembly with input.
336 * No memory clobber here.
337 * Argument numbers start with 1.
338 * Best is to use constraints that are fixed size (like (%1) ... "r")
339 * If you use variable sized constraints like "m" or "g" in the
340 * replacement maake sure to pad to the worst case length.
342 #define alternative_input(oldinstr, newinstr, feature, input...) \
343 asm volatile ("661:\n\t" oldinstr "\n662:\n" \
344 ".section .altinstructions,\"a\"\n" \
346 " .long 661b\n" /* label */ \
347 " .long 663f\n" /* new instruction */ \
348 " .byte %c0\n" /* feature bit */ \
349 " .byte 662b-661b\n" /* sourcelen */ \
350 " .byte 664f-663f\n" /* replacementlen */ \
352 ".section .altinstr_replacement,\"ax\"\n" \
353 "663:\n\t" newinstr "\n664:\n" /* replacement */ \
354 ".previous" :: "i" (feature), ##input)
357 * Force strict CPU ordering.
358 * And yes, this is required on UP too when we're talking
361 * For now, "wmb()" doesn't actually do anything, as all
362 * Intel CPU's follow what Intel calls a *Processor Order*,
363 * in which all writes are seen in the program order even
366 * I expect future Intel CPU's to have a weaker ordering,
367 * but I'd also expect them to finally get their act together
368 * and add some real memory barriers if so.
370 * Some non intel clones support out of order store. wmb() ceases to be a
376 * Actually only lfence would be needed for mb() because all stores done
377 * by the kernel should be already ordered. But keep a full barrier for now.
380 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
381 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
384 * read_barrier_depends - Flush all pending reads that subsequents reads
387 * No data-dependent reads from memory-like regions are ever reordered
388 * over this barrier. All reads preceding this primitive are guaranteed
389 * to access memory (but not necessarily other CPUs' caches) before any
390 * reads following this primitive that depend on the data return by
391 * any of the preceding reads. This primitive is much lighter weight than
392 * rmb() on most CPUs, and is never heavier weight than is
395 * These ordering constraints are respected by both the local CPU
398 * Ordering is not guaranteed by anything other than these primitives,
399 * not even by data dependencies. See the documentation for
400 * memory_barrier() for examples and URLs to more information.
402 * For example, the following code would force ordering (the initial
403 * value of "a" is zero, "b" is one, and "p" is "&a"):
411 * read_barrier_depends();
415 * because the read of "*q" depends on the read of "p" and these
416 * two reads are separated by a read_barrier_depends(). However,
417 * the following code, with the same initial values for "a" and "b":
425 * read_barrier_depends();
429 * does not enforce ordering, since there is no data dependency between
430 * the read of "a" and the read of "b". Therefore, on some CPUs, such
431 * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
432 * in cases like thiswhere there are no data dependencies.
435 #define read_barrier_depends() do { } while(0)
437 #ifdef CONFIG_X86_OOSTORE
438 /* Actually there are no OOO store capable CPUs for now that do SSE,
439 but make it already an possibility. */
440 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
442 #define wmb() __asm__ __volatile__ ("": : :"memory")
446 #define smp_mb() mb()
447 #define smp_rmb() rmb()
448 #define smp_wmb() wmb()
449 #define smp_read_barrier_depends() read_barrier_depends()
450 #define set_mb(var, value) do { xchg(&var, value); } while (0)
452 #define smp_mb() barrier()
453 #define smp_rmb() barrier()
454 #define smp_wmb() barrier()
455 #define smp_read_barrier_depends() do { } while(0)
456 #define set_mb(var, value) do { var = value; barrier(); } while (0)
459 #define set_wmb(var, value) do { var = value; wmb(); } while (0)
461 /* interrupt control.. */
462 #define local_save_flags(x) do { typecheck(unsigned long,x); __asm__ __volatile__("pushfl ; popl %0":"=g" (x): /* no input */); } while (0)
463 #define local_irq_restore(x) do { typecheck(unsigned long,x); __asm__ __volatile__("pushl %0 ; popfl": /* no output */ :"g" (x):"memory", "cc"); } while (0)
464 #define local_irq_disable() __asm__ __volatile__("cli": : :"memory")
465 #define local_irq_enable() __asm__ __volatile__("sti": : :"memory")
466 /* used in the idle loop; sti takes one instruction cycle to complete */
467 #define safe_halt() __asm__ __volatile__("sti; hlt": : :"memory")
468 /* used when interrupts are already enabled or to shutdown the processor */
469 #define halt() __asm__ __volatile__("hlt": : :"memory")
471 #define irqs_disabled() \
473 unsigned long flags; \
474 local_save_flags(flags); \
478 /* For spinlocks etc */
479 #define local_irq_save(x) __asm__ __volatile__("pushfl ; popl %0 ; cli":"=g" (x): /* no input */ :"memory")
482 * disable hlt during certain critical i/o operations
484 #define HAVE_DISABLE_HLT
485 void disable_hlt(void);
486 void enable_hlt(void);
488 extern int es7000_plat
;
489 void cpu_idle_wait(void);
491 extern unsigned long arch_align_stack(unsigned long sp
);