2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
39 #include <asm/tlbflush.h>
43 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 nodemask_t node_online_map __read_mostly
= { { [0] = 1UL } };
47 EXPORT_SYMBOL(node_online_map
);
48 nodemask_t node_possible_map __read_mostly
= NODE_MASK_ALL
;
49 EXPORT_SYMBOL(node_possible_map
);
50 struct pglist_data
*pgdat_list __read_mostly
;
51 unsigned long totalram_pages __read_mostly
;
52 unsigned long totalhigh_pages __read_mostly
;
56 * results with 256, 32 in the lowmem_reserve sysctl:
57 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
58 * 1G machine -> (16M dma, 784M normal, 224M high)
59 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
60 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
61 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
63 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = { 256, 32 };
65 EXPORT_SYMBOL(totalram_pages
);
66 EXPORT_SYMBOL(nr_swap_pages
);
69 * Used by page_zone() to look up the address of the struct zone whose
70 * id is encoded in the upper bits of page->flags
72 struct zone
*zone_table
[1 << ZONETABLE_SHIFT
] __read_mostly
;
73 EXPORT_SYMBOL(zone_table
);
75 static char *zone_names
[MAX_NR_ZONES
] = { "DMA", "Normal", "HighMem" };
76 int min_free_kbytes
= 1024;
78 unsigned long __initdata nr_kernel_pages
;
79 unsigned long __initdata nr_all_pages
;
82 * Temporary debugging check for pages not lying within a given zone.
84 static int bad_range(struct zone
*zone
, struct page
*page
)
86 if (page_to_pfn(page
) >= zone
->zone_start_pfn
+ zone
->spanned_pages
)
88 if (page_to_pfn(page
) < zone
->zone_start_pfn
)
90 #ifdef CONFIG_HOLES_IN_ZONE
91 if (!pfn_valid(page_to_pfn(page
)))
94 if (zone
!= page_zone(page
))
99 static void bad_page(const char *function
, struct page
*page
)
101 printk(KERN_EMERG
"Bad page state at %s (in process '%s', page %p)\n",
102 function
, current
->comm
, page
);
103 printk(KERN_EMERG
"flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
104 (int)(2*sizeof(page_flags_t
)), (unsigned long)page
->flags
,
105 page
->mapping
, page_mapcount(page
), page_count(page
));
106 printk(KERN_EMERG
"Backtrace:\n");
108 printk(KERN_EMERG
"Trying to fix it up, but a reboot is needed\n");
109 page
->flags
&= ~(1 << PG_lru
|
118 set_page_count(page
, 0);
119 reset_page_mapcount(page
);
120 page
->mapping
= NULL
;
121 add_taint(TAINT_BAD_PAGE
);
124 #ifndef CONFIG_HUGETLB_PAGE
125 #define prep_compound_page(page, order) do { } while (0)
126 #define destroy_compound_page(page, order) do { } while (0)
129 * Higher-order pages are called "compound pages". They are structured thusly:
131 * The first PAGE_SIZE page is called the "head page".
133 * The remaining PAGE_SIZE pages are called "tail pages".
135 * All pages have PG_compound set. All pages have their ->private pointing at
136 * the head page (even the head page has this).
138 * The first tail page's ->mapping, if non-zero, holds the address of the
139 * compound page's put_page() function.
141 * The order of the allocation is stored in the first tail page's ->index
142 * This is only for debug at present. This usage means that zero-order pages
143 * may not be compound.
145 static void prep_compound_page(struct page
*page
, unsigned long order
)
148 int nr_pages
= 1 << order
;
150 page
[1].mapping
= NULL
;
151 page
[1].index
= order
;
152 for (i
= 0; i
< nr_pages
; i
++) {
153 struct page
*p
= page
+ i
;
156 p
->private = (unsigned long)page
;
160 static void destroy_compound_page(struct page
*page
, unsigned long order
)
163 int nr_pages
= 1 << order
;
165 if (!PageCompound(page
))
168 if (page
[1].index
!= order
)
169 bad_page(__FUNCTION__
, page
);
171 for (i
= 0; i
< nr_pages
; i
++) {
172 struct page
*p
= page
+ i
;
174 if (!PageCompound(p
))
175 bad_page(__FUNCTION__
, page
);
176 if (p
->private != (unsigned long)page
)
177 bad_page(__FUNCTION__
, page
);
178 ClearPageCompound(p
);
181 #endif /* CONFIG_HUGETLB_PAGE */
184 * function for dealing with page's order in buddy system.
185 * zone->lock is already acquired when we use these.
186 * So, we don't need atomic page->flags operations here.
188 static inline unsigned long page_order(struct page
*page
) {
189 return page
->private;
192 static inline void set_page_order(struct page
*page
, int order
) {
193 page
->private = order
;
194 __SetPagePrivate(page
);
197 static inline void rmv_page_order(struct page
*page
)
199 __ClearPagePrivate(page
);
204 * Locate the struct page for both the matching buddy in our
205 * pair (buddy1) and the combined O(n+1) page they form (page).
207 * 1) Any buddy B1 will have an order O twin B2 which satisfies
208 * the following equation:
210 * For example, if the starting buddy (buddy2) is #8 its order
212 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
214 * 2) Any buddy B will have an order O+1 parent P which
215 * satisfies the following equation:
218 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
220 static inline struct page
*
221 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
223 unsigned long buddy_idx
= page_idx
^ (1 << order
);
225 return page
+ (buddy_idx
- page_idx
);
228 static inline unsigned long
229 __find_combined_index(unsigned long page_idx
, unsigned int order
)
231 return (page_idx
& ~(1 << order
));
235 * This function checks whether a page is free && is the buddy
236 * we can do coalesce a page and its buddy if
237 * (a) the buddy is free &&
238 * (b) the buddy is on the buddy system &&
239 * (c) a page and its buddy have the same order.
240 * for recording page's order, we use page->private and PG_private.
243 static inline int page_is_buddy(struct page
*page
, int order
)
245 if (PagePrivate(page
) &&
246 (page_order(page
) == order
) &&
247 !PageReserved(page
) &&
248 page_count(page
) == 0)
254 * Freeing function for a buddy system allocator.
256 * The concept of a buddy system is to maintain direct-mapped table
257 * (containing bit values) for memory blocks of various "orders".
258 * The bottom level table contains the map for the smallest allocatable
259 * units of memory (here, pages), and each level above it describes
260 * pairs of units from the levels below, hence, "buddies".
261 * At a high level, all that happens here is marking the table entry
262 * at the bottom level available, and propagating the changes upward
263 * as necessary, plus some accounting needed to play nicely with other
264 * parts of the VM system.
265 * At each level, we keep a list of pages, which are heads of continuous
266 * free pages of length of (1 << order) and marked with PG_Private.Page's
267 * order is recorded in page->private field.
268 * So when we are allocating or freeing one, we can derive the state of the
269 * other. That is, if we allocate a small block, and both were
270 * free, the remainder of the region must be split into blocks.
271 * If a block is freed, and its buddy is also free, then this
272 * triggers coalescing into a block of larger size.
277 static inline void __free_pages_bulk (struct page
*page
,
278 struct zone
*zone
, unsigned int order
)
280 unsigned long page_idx
;
281 int order_size
= 1 << order
;
284 destroy_compound_page(page
, order
);
286 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
288 BUG_ON(page_idx
& (order_size
- 1));
289 BUG_ON(bad_range(zone
, page
));
291 zone
->free_pages
+= order_size
;
292 while (order
< MAX_ORDER
-1) {
293 unsigned long combined_idx
;
294 struct free_area
*area
;
297 combined_idx
= __find_combined_index(page_idx
, order
);
298 buddy
= __page_find_buddy(page
, page_idx
, order
);
300 if (bad_range(zone
, buddy
))
302 if (!page_is_buddy(buddy
, order
))
303 break; /* Move the buddy up one level. */
304 list_del(&buddy
->lru
);
305 area
= zone
->free_area
+ order
;
307 rmv_page_order(buddy
);
308 page
= page
+ (combined_idx
- page_idx
);
309 page_idx
= combined_idx
;
312 set_page_order(page
, order
);
313 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
);
314 zone
->free_area
[order
].nr_free
++;
317 static inline void free_pages_check(const char *function
, struct page
*page
)
319 if ( page_mapcount(page
) ||
320 page
->mapping
!= NULL
||
321 page_count(page
) != 0 ||
330 1 << PG_writeback
)))
331 bad_page(function
, page
);
333 __ClearPageDirty(page
);
337 * Frees a list of pages.
338 * Assumes all pages on list are in same zone, and of same order.
339 * count is the number of pages to free.
341 * If the zone was previously in an "all pages pinned" state then look to
342 * see if this freeing clears that state.
344 * And clear the zone's pages_scanned counter, to hold off the "all pages are
345 * pinned" detection logic.
348 free_pages_bulk(struct zone
*zone
, int count
,
349 struct list_head
*list
, unsigned int order
)
352 struct page
*page
= NULL
;
355 spin_lock_irqsave(&zone
->lock
, flags
);
356 zone
->all_unreclaimable
= 0;
357 zone
->pages_scanned
= 0;
358 while (!list_empty(list
) && count
--) {
359 page
= list_entry(list
->prev
, struct page
, lru
);
360 /* have to delete it as __free_pages_bulk list manipulates */
361 list_del(&page
->lru
);
362 __free_pages_bulk(page
, zone
, order
);
365 spin_unlock_irqrestore(&zone
->lock
, flags
);
369 void __free_pages_ok(struct page
*page
, unsigned int order
)
374 arch_free_page(page
, order
);
376 mod_page_state(pgfree
, 1 << order
);
380 for (i
= 1 ; i
< (1 << order
) ; ++i
)
381 __put_page(page
+ i
);
384 for (i
= 0 ; i
< (1 << order
) ; ++i
)
385 free_pages_check(__FUNCTION__
, page
+ i
);
386 list_add(&page
->lru
, &list
);
387 kernel_map_pages(page
, 1<<order
, 0);
388 free_pages_bulk(page_zone(page
), 1, &list
, order
);
393 * The order of subdivision here is critical for the IO subsystem.
394 * Please do not alter this order without good reasons and regression
395 * testing. Specifically, as large blocks of memory are subdivided,
396 * the order in which smaller blocks are delivered depends on the order
397 * they're subdivided in this function. This is the primary factor
398 * influencing the order in which pages are delivered to the IO
399 * subsystem according to empirical testing, and this is also justified
400 * by considering the behavior of a buddy system containing a single
401 * large block of memory acted on by a series of small allocations.
402 * This behavior is a critical factor in sglist merging's success.
406 static inline struct page
*
407 expand(struct zone
*zone
, struct page
*page
,
408 int low
, int high
, struct free_area
*area
)
410 unsigned long size
= 1 << high
;
416 BUG_ON(bad_range(zone
, &page
[size
]));
417 list_add(&page
[size
].lru
, &area
->free_list
);
419 set_page_order(&page
[size
], high
);
424 void set_page_refs(struct page
*page
, int order
)
427 set_page_count(page
, 1);
432 * We need to reference all the pages for this order, otherwise if
433 * anyone accesses one of the pages with (get/put) it will be freed.
434 * - eg: access_process_vm()
436 for (i
= 0; i
< (1 << order
); i
++)
437 set_page_count(page
+ i
, 1);
438 #endif /* CONFIG_MMU */
442 * This page is about to be returned from the page allocator
444 static void prep_new_page(struct page
*page
, int order
)
446 if ( page_mapcount(page
) ||
447 page
->mapping
!= NULL
||
448 page_count(page
) != 0 ||
458 1 << PG_writeback
)))
459 bad_page(__FUNCTION__
, page
);
461 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
|
462 1 << PG_referenced
| 1 << PG_arch_1
|
463 1 << PG_checked
| 1 << PG_mappedtodisk
);
465 set_page_refs(page
, order
);
466 kernel_map_pages(page
, 1 << order
, 1);
470 * Do the hard work of removing an element from the buddy allocator.
471 * Call me with the zone->lock already held.
473 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
)
475 struct free_area
* area
;
476 unsigned int current_order
;
479 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
480 area
= zone
->free_area
+ current_order
;
481 if (list_empty(&area
->free_list
))
484 page
= list_entry(area
->free_list
.next
, struct page
, lru
);
485 list_del(&page
->lru
);
486 rmv_page_order(page
);
488 zone
->free_pages
-= 1UL << order
;
489 return expand(zone
, page
, order
, current_order
, area
);
496 * Obtain a specified number of elements from the buddy allocator, all under
497 * a single hold of the lock, for efficiency. Add them to the supplied list.
498 * Returns the number of new pages which were placed at *list.
500 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
501 unsigned long count
, struct list_head
*list
)
508 spin_lock_irqsave(&zone
->lock
, flags
);
509 for (i
= 0; i
< count
; ++i
) {
510 page
= __rmqueue(zone
, order
);
514 list_add_tail(&page
->lru
, list
);
516 spin_unlock_irqrestore(&zone
->lock
, flags
);
521 /* Called from the slab reaper to drain remote pagesets */
522 void drain_remote_pages(void)
528 local_irq_save(flags
);
529 for_each_zone(zone
) {
530 struct per_cpu_pageset
*pset
;
532 /* Do not drain local pagesets */
533 if (zone
->zone_pgdat
->node_id
== numa_node_id())
536 pset
= zone
->pageset
[smp_processor_id()];
537 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
538 struct per_cpu_pages
*pcp
;
542 pcp
->count
-= free_pages_bulk(zone
, pcp
->count
,
546 local_irq_restore(flags
);
550 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
551 static void __drain_pages(unsigned int cpu
)
556 for_each_zone(zone
) {
557 struct per_cpu_pageset
*pset
;
559 pset
= zone_pcp(zone
, cpu
);
560 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
561 struct per_cpu_pages
*pcp
;
564 pcp
->count
-= free_pages_bulk(zone
, pcp
->count
,
569 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
573 void mark_free_pages(struct zone
*zone
)
575 unsigned long zone_pfn
, flags
;
577 struct list_head
*curr
;
579 if (!zone
->spanned_pages
)
582 spin_lock_irqsave(&zone
->lock
, flags
);
583 for (zone_pfn
= 0; zone_pfn
< zone
->spanned_pages
; ++zone_pfn
)
584 ClearPageNosaveFree(pfn_to_page(zone_pfn
+ zone
->zone_start_pfn
));
586 for (order
= MAX_ORDER
- 1; order
>= 0; --order
)
587 list_for_each(curr
, &zone
->free_area
[order
].free_list
) {
588 unsigned long start_pfn
, i
;
590 start_pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
592 for (i
=0; i
< (1<<order
); i
++)
593 SetPageNosaveFree(pfn_to_page(start_pfn
+i
));
595 spin_unlock_irqrestore(&zone
->lock
, flags
);
599 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
601 void drain_local_pages(void)
605 local_irq_save(flags
);
606 __drain_pages(smp_processor_id());
607 local_irq_restore(flags
);
609 #endif /* CONFIG_PM */
611 static void zone_statistics(struct zonelist
*zonelist
, struct zone
*z
)
616 pg_data_t
*pg
= z
->zone_pgdat
;
617 pg_data_t
*orig
= zonelist
->zones
[0]->zone_pgdat
;
618 struct per_cpu_pageset
*p
;
620 local_irq_save(flags
);
621 cpu
= smp_processor_id();
627 zone_pcp(zonelist
->zones
[0], cpu
)->numa_foreign
++;
629 if (pg
== NODE_DATA(numa_node_id()))
633 local_irq_restore(flags
);
638 * Free a 0-order page
640 static void FASTCALL(free_hot_cold_page(struct page
*page
, int cold
));
641 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
643 struct zone
*zone
= page_zone(page
);
644 struct per_cpu_pages
*pcp
;
647 arch_free_page(page
, 0);
649 kernel_map_pages(page
, 1, 0);
650 inc_page_state(pgfree
);
652 page
->mapping
= NULL
;
653 free_pages_check(__FUNCTION__
, page
);
654 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
655 local_irq_save(flags
);
656 list_add(&page
->lru
, &pcp
->list
);
658 if (pcp
->count
>= pcp
->high
)
659 pcp
->count
-= free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
660 local_irq_restore(flags
);
664 void fastcall
free_hot_page(struct page
*page
)
666 free_hot_cold_page(page
, 0);
669 void fastcall
free_cold_page(struct page
*page
)
671 free_hot_cold_page(page
, 1);
674 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
678 BUG_ON((gfp_flags
& (__GFP_WAIT
| __GFP_HIGHMEM
)) == __GFP_HIGHMEM
);
679 for(i
= 0; i
< (1 << order
); i
++)
680 clear_highpage(page
+ i
);
684 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
685 * we cheat by calling it from here, in the order > 0 path. Saves a branch
689 buffered_rmqueue(struct zone
*zone
, int order
, gfp_t gfp_flags
)
692 struct page
*page
= NULL
;
693 int cold
= !!(gfp_flags
& __GFP_COLD
);
696 struct per_cpu_pages
*pcp
;
698 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
699 local_irq_save(flags
);
700 if (pcp
->count
<= pcp
->low
)
701 pcp
->count
+= rmqueue_bulk(zone
, 0,
702 pcp
->batch
, &pcp
->list
);
704 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
705 list_del(&page
->lru
);
708 local_irq_restore(flags
);
713 spin_lock_irqsave(&zone
->lock
, flags
);
714 page
= __rmqueue(zone
, order
);
715 spin_unlock_irqrestore(&zone
->lock
, flags
);
719 BUG_ON(bad_range(zone
, page
));
720 mod_page_state_zone(zone
, pgalloc
, 1 << order
);
721 prep_new_page(page
, order
);
723 if (gfp_flags
& __GFP_ZERO
)
724 prep_zero_page(page
, order
, gfp_flags
);
726 if (order
&& (gfp_flags
& __GFP_COMP
))
727 prep_compound_page(page
, order
);
733 * Return 1 if free pages are above 'mark'. This takes into account the order
736 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
737 int classzone_idx
, int can_try_harder
, int gfp_high
)
739 /* free_pages my go negative - that's OK */
740 long min
= mark
, free_pages
= z
->free_pages
- (1 << order
) + 1;
748 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
750 for (o
= 0; o
< order
; o
++) {
751 /* At the next order, this order's pages become unavailable */
752 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
754 /* Require fewer higher order pages to be free */
757 if (free_pages
<= min
)
764 should_reclaim_zone(struct zone
*z
, gfp_t gfp_mask
)
766 if (!z
->reclaim_pages
)
768 if (gfp_mask
& __GFP_NORECLAIM
)
774 * This is the 'heart' of the zoned buddy allocator.
776 struct page
* fastcall
777 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
778 struct zonelist
*zonelist
)
780 const int wait
= gfp_mask
& __GFP_WAIT
;
781 struct zone
**zones
, *z
;
783 struct reclaim_state reclaim_state
;
784 struct task_struct
*p
= current
;
789 int did_some_progress
;
791 might_sleep_if(wait
);
794 * The caller may dip into page reserves a bit more if the caller
795 * cannot run direct reclaim, or is the caller has realtime scheduling
798 can_try_harder
= (unlikely(rt_task(p
)) && !in_interrupt()) || !wait
;
800 zones
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
802 if (unlikely(zones
[0] == NULL
)) {
803 /* Should this ever happen?? */
807 classzone_idx
= zone_idx(zones
[0]);
811 * Go through the zonelist once, looking for a zone with enough free.
812 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
814 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
815 int do_reclaim
= should_reclaim_zone(z
, gfp_mask
);
817 if (!cpuset_zone_allowed(z
, __GFP_HARDWALL
))
821 * If the zone is to attempt early page reclaim then this loop
822 * will try to reclaim pages and check the watermark a second
823 * time before giving up and falling back to the next zone.
826 if (!zone_watermark_ok(z
, order
, z
->pages_low
,
827 classzone_idx
, 0, 0)) {
831 zone_reclaim(z
, gfp_mask
, order
);
832 /* Only try reclaim once */
834 goto zone_reclaim_retry
;
838 page
= buffered_rmqueue(z
, order
, gfp_mask
);
843 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++)
844 wakeup_kswapd(z
, order
);
847 * Go through the zonelist again. Let __GFP_HIGH and allocations
848 * coming from realtime tasks to go deeper into reserves
850 * This is the last chance, in general, before the goto nopage.
851 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
852 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
854 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
855 if (!zone_watermark_ok(z
, order
, z
->pages_min
,
856 classzone_idx
, can_try_harder
,
857 gfp_mask
& __GFP_HIGH
))
860 if (wait
&& !cpuset_zone_allowed(z
, gfp_mask
))
863 page
= buffered_rmqueue(z
, order
, gfp_mask
);
868 /* This allocation should allow future memory freeing. */
870 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
871 && !in_interrupt()) {
872 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
873 /* go through the zonelist yet again, ignoring mins */
874 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
875 if (!cpuset_zone_allowed(z
, gfp_mask
))
877 page
= buffered_rmqueue(z
, order
, gfp_mask
);
885 /* Atomic allocations - we can't balance anything */
892 /* We now go into synchronous reclaim */
893 p
->flags
|= PF_MEMALLOC
;
894 reclaim_state
.reclaimed_slab
= 0;
895 p
->reclaim_state
= &reclaim_state
;
897 did_some_progress
= try_to_free_pages(zones
, gfp_mask
);
899 p
->reclaim_state
= NULL
;
900 p
->flags
&= ~PF_MEMALLOC
;
904 if (likely(did_some_progress
)) {
905 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
906 if (!zone_watermark_ok(z
, order
, z
->pages_min
,
907 classzone_idx
, can_try_harder
,
908 gfp_mask
& __GFP_HIGH
))
911 if (!cpuset_zone_allowed(z
, gfp_mask
))
914 page
= buffered_rmqueue(z
, order
, gfp_mask
);
918 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
920 * Go through the zonelist yet one more time, keep
921 * very high watermark here, this is only to catch
922 * a parallel oom killing, we must fail if we're still
923 * under heavy pressure.
925 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
926 if (!zone_watermark_ok(z
, order
, z
->pages_high
,
927 classzone_idx
, 0, 0))
930 if (!cpuset_zone_allowed(z
, __GFP_HARDWALL
))
933 page
= buffered_rmqueue(z
, order
, gfp_mask
);
938 out_of_memory(gfp_mask
, order
);
943 * Don't let big-order allocations loop unless the caller explicitly
944 * requests that. Wait for some write requests to complete then retry.
946 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
947 * <= 3, but that may not be true in other implementations.
950 if (!(gfp_mask
& __GFP_NORETRY
)) {
951 if ((order
<= 3) || (gfp_mask
& __GFP_REPEAT
))
953 if (gfp_mask
& __GFP_NOFAIL
)
957 blk_congestion_wait(WRITE
, HZ
/50);
962 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
963 printk(KERN_WARNING
"%s: page allocation failure."
964 " order:%d, mode:0x%x\n",
965 p
->comm
, order
, gfp_mask
);
971 zone_statistics(zonelist
, z
);
975 EXPORT_SYMBOL(__alloc_pages
);
978 * Common helper functions.
980 fastcall
unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
983 page
= alloc_pages(gfp_mask
, order
);
986 return (unsigned long) page_address(page
);
989 EXPORT_SYMBOL(__get_free_pages
);
991 fastcall
unsigned long get_zeroed_page(gfp_t gfp_mask
)
996 * get_zeroed_page() returns a 32-bit address, which cannot represent
999 BUG_ON(gfp_mask
& __GFP_HIGHMEM
);
1001 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1003 return (unsigned long) page_address(page
);
1007 EXPORT_SYMBOL(get_zeroed_page
);
1009 void __pagevec_free(struct pagevec
*pvec
)
1011 int i
= pagevec_count(pvec
);
1014 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1017 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
1019 if (!PageReserved(page
) && put_page_testzero(page
)) {
1021 free_hot_page(page
);
1023 __free_pages_ok(page
, order
);
1027 EXPORT_SYMBOL(__free_pages
);
1029 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
1032 BUG_ON(!virt_addr_valid((void *)addr
));
1033 __free_pages(virt_to_page((void *)addr
), order
);
1037 EXPORT_SYMBOL(free_pages
);
1040 * Total amount of free (allocatable) RAM:
1042 unsigned int nr_free_pages(void)
1044 unsigned int sum
= 0;
1048 sum
+= zone
->free_pages
;
1053 EXPORT_SYMBOL(nr_free_pages
);
1056 unsigned int nr_free_pages_pgdat(pg_data_t
*pgdat
)
1058 unsigned int i
, sum
= 0;
1060 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1061 sum
+= pgdat
->node_zones
[i
].free_pages
;
1067 static unsigned int nr_free_zone_pages(int offset
)
1069 /* Just pick one node, since fallback list is circular */
1070 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1071 unsigned int sum
= 0;
1073 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1074 struct zone
**zonep
= zonelist
->zones
;
1077 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1078 unsigned long size
= zone
->present_pages
;
1079 unsigned long high
= zone
->pages_high
;
1088 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1090 unsigned int nr_free_buffer_pages(void)
1092 return nr_free_zone_pages(GFP_USER
& GFP_ZONEMASK
);
1096 * Amount of free RAM allocatable within all zones
1098 unsigned int nr_free_pagecache_pages(void)
1100 return nr_free_zone_pages(GFP_HIGHUSER
& GFP_ZONEMASK
);
1103 #ifdef CONFIG_HIGHMEM
1104 unsigned int nr_free_highpages (void)
1107 unsigned int pages
= 0;
1109 for_each_pgdat(pgdat
)
1110 pages
+= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1117 static void show_node(struct zone
*zone
)
1119 printk("Node %d ", zone
->zone_pgdat
->node_id
);
1122 #define show_node(zone) do { } while (0)
1126 * Accumulate the page_state information across all CPUs.
1127 * The result is unavoidably approximate - it can change
1128 * during and after execution of this function.
1130 static DEFINE_PER_CPU(struct page_state
, page_states
) = {0};
1132 atomic_t nr_pagecache
= ATOMIC_INIT(0);
1133 EXPORT_SYMBOL(nr_pagecache
);
1135 DEFINE_PER_CPU(long, nr_pagecache_local
) = 0;
1138 void __get_page_state(struct page_state
*ret
, int nr
, cpumask_t
*cpumask
)
1142 memset(ret
, 0, sizeof(*ret
));
1143 cpus_and(*cpumask
, *cpumask
, cpu_online_map
);
1145 cpu
= first_cpu(*cpumask
);
1146 while (cpu
< NR_CPUS
) {
1147 unsigned long *in
, *out
, off
;
1149 in
= (unsigned long *)&per_cpu(page_states
, cpu
);
1151 cpu
= next_cpu(cpu
, *cpumask
);
1154 prefetch(&per_cpu(page_states
, cpu
));
1156 out
= (unsigned long *)ret
;
1157 for (off
= 0; off
< nr
; off
++)
1162 void get_page_state_node(struct page_state
*ret
, int node
)
1165 cpumask_t mask
= node_to_cpumask(node
);
1167 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1168 nr
/= sizeof(unsigned long);
1170 __get_page_state(ret
, nr
+1, &mask
);
1173 void get_page_state(struct page_state
*ret
)
1176 cpumask_t mask
= CPU_MASK_ALL
;
1178 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1179 nr
/= sizeof(unsigned long);
1181 __get_page_state(ret
, nr
+ 1, &mask
);
1184 void get_full_page_state(struct page_state
*ret
)
1186 cpumask_t mask
= CPU_MASK_ALL
;
1188 __get_page_state(ret
, sizeof(*ret
) / sizeof(unsigned long), &mask
);
1191 unsigned long __read_page_state(unsigned long offset
)
1193 unsigned long ret
= 0;
1196 for_each_online_cpu(cpu
) {
1199 in
= (unsigned long)&per_cpu(page_states
, cpu
) + offset
;
1200 ret
+= *((unsigned long *)in
);
1205 void __mod_page_state(unsigned long offset
, unsigned long delta
)
1207 unsigned long flags
;
1210 local_irq_save(flags
);
1211 ptr
= &__get_cpu_var(page_states
);
1212 *(unsigned long*)(ptr
+ offset
) += delta
;
1213 local_irq_restore(flags
);
1216 EXPORT_SYMBOL(__mod_page_state
);
1218 void __get_zone_counts(unsigned long *active
, unsigned long *inactive
,
1219 unsigned long *free
, struct pglist_data
*pgdat
)
1221 struct zone
*zones
= pgdat
->node_zones
;
1227 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1228 *active
+= zones
[i
].nr_active
;
1229 *inactive
+= zones
[i
].nr_inactive
;
1230 *free
+= zones
[i
].free_pages
;
1234 void get_zone_counts(unsigned long *active
,
1235 unsigned long *inactive
, unsigned long *free
)
1237 struct pglist_data
*pgdat
;
1242 for_each_pgdat(pgdat
) {
1243 unsigned long l
, m
, n
;
1244 __get_zone_counts(&l
, &m
, &n
, pgdat
);
1251 void si_meminfo(struct sysinfo
*val
)
1253 val
->totalram
= totalram_pages
;
1255 val
->freeram
= nr_free_pages();
1256 val
->bufferram
= nr_blockdev_pages();
1257 #ifdef CONFIG_HIGHMEM
1258 val
->totalhigh
= totalhigh_pages
;
1259 val
->freehigh
= nr_free_highpages();
1264 val
->mem_unit
= PAGE_SIZE
;
1267 EXPORT_SYMBOL(si_meminfo
);
1270 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1272 pg_data_t
*pgdat
= NODE_DATA(nid
);
1274 val
->totalram
= pgdat
->node_present_pages
;
1275 val
->freeram
= nr_free_pages_pgdat(pgdat
);
1276 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1277 val
->freehigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1278 val
->mem_unit
= PAGE_SIZE
;
1282 #define K(x) ((x) << (PAGE_SHIFT-10))
1285 * Show free area list (used inside shift_scroll-lock stuff)
1286 * We also calculate the percentage fragmentation. We do this by counting the
1287 * memory on each free list with the exception of the first item on the list.
1289 void show_free_areas(void)
1291 struct page_state ps
;
1292 int cpu
, temperature
;
1293 unsigned long active
;
1294 unsigned long inactive
;
1298 for_each_zone(zone
) {
1300 printk("%s per-cpu:", zone
->name
);
1302 if (!zone
->present_pages
) {
1308 for (cpu
= 0; cpu
< NR_CPUS
; ++cpu
) {
1309 struct per_cpu_pageset
*pageset
;
1311 if (!cpu_possible(cpu
))
1314 pageset
= zone_pcp(zone
, cpu
);
1316 for (temperature
= 0; temperature
< 2; temperature
++)
1317 printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1319 temperature
? "cold" : "hot",
1320 pageset
->pcp
[temperature
].low
,
1321 pageset
->pcp
[temperature
].high
,
1322 pageset
->pcp
[temperature
].batch
,
1323 pageset
->pcp
[temperature
].count
);
1327 get_page_state(&ps
);
1328 get_zone_counts(&active
, &inactive
, &free
);
1330 printk("Free pages: %11ukB (%ukB HighMem)\n",
1332 K(nr_free_highpages()));
1334 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1335 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1344 ps
.nr_page_table_pages
);
1346 for_each_zone(zone
) {
1358 " pages_scanned:%lu"
1359 " all_unreclaimable? %s"
1362 K(zone
->free_pages
),
1365 K(zone
->pages_high
),
1367 K(zone
->nr_inactive
),
1368 K(zone
->present_pages
),
1369 zone
->pages_scanned
,
1370 (zone
->all_unreclaimable
? "yes" : "no")
1372 printk("lowmem_reserve[]:");
1373 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1374 printk(" %lu", zone
->lowmem_reserve
[i
]);
1378 for_each_zone(zone
) {
1379 unsigned long nr
, flags
, order
, total
= 0;
1382 printk("%s: ", zone
->name
);
1383 if (!zone
->present_pages
) {
1388 spin_lock_irqsave(&zone
->lock
, flags
);
1389 for (order
= 0; order
< MAX_ORDER
; order
++) {
1390 nr
= zone
->free_area
[order
].nr_free
;
1391 total
+= nr
<< order
;
1392 printk("%lu*%lukB ", nr
, K(1UL) << order
);
1394 spin_unlock_irqrestore(&zone
->lock
, flags
);
1395 printk("= %lukB\n", K(total
));
1398 show_swap_cache_info();
1402 * Builds allocation fallback zone lists.
1404 static int __init
build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
, int j
, int k
)
1411 zone
= pgdat
->node_zones
+ ZONE_HIGHMEM
;
1412 if (zone
->present_pages
) {
1413 #ifndef CONFIG_HIGHMEM
1416 zonelist
->zones
[j
++] = zone
;
1419 zone
= pgdat
->node_zones
+ ZONE_NORMAL
;
1420 if (zone
->present_pages
)
1421 zonelist
->zones
[j
++] = zone
;
1423 zone
= pgdat
->node_zones
+ ZONE_DMA
;
1424 if (zone
->present_pages
)
1425 zonelist
->zones
[j
++] = zone
;
1432 #define MAX_NODE_LOAD (num_online_nodes())
1433 static int __initdata node_load
[MAX_NUMNODES
];
1435 * find_next_best_node - find the next node that should appear in a given node's fallback list
1436 * @node: node whose fallback list we're appending
1437 * @used_node_mask: nodemask_t of already used nodes
1439 * We use a number of factors to determine which is the next node that should
1440 * appear on a given node's fallback list. The node should not have appeared
1441 * already in @node's fallback list, and it should be the next closest node
1442 * according to the distance array (which contains arbitrary distance values
1443 * from each node to each node in the system), and should also prefer nodes
1444 * with no CPUs, since presumably they'll have very little allocation pressure
1445 * on them otherwise.
1446 * It returns -1 if no node is found.
1448 static int __init
find_next_best_node(int node
, nodemask_t
*used_node_mask
)
1451 int min_val
= INT_MAX
;
1454 for_each_online_node(i
) {
1457 /* Start from local node */
1458 n
= (node
+i
) % num_online_nodes();
1460 /* Don't want a node to appear more than once */
1461 if (node_isset(n
, *used_node_mask
))
1464 /* Use the local node if we haven't already */
1465 if (!node_isset(node
, *used_node_mask
)) {
1470 /* Use the distance array to find the distance */
1471 val
= node_distance(node
, n
);
1473 /* Give preference to headless and unused nodes */
1474 tmp
= node_to_cpumask(n
);
1475 if (!cpus_empty(tmp
))
1476 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
1478 /* Slight preference for less loaded node */
1479 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
1480 val
+= node_load
[n
];
1482 if (val
< min_val
) {
1489 node_set(best_node
, *used_node_mask
);
1494 static void __init
build_zonelists(pg_data_t
*pgdat
)
1496 int i
, j
, k
, node
, local_node
;
1497 int prev_node
, load
;
1498 struct zonelist
*zonelist
;
1499 nodemask_t used_mask
;
1501 /* initialize zonelists */
1502 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1503 zonelist
= pgdat
->node_zonelists
+ i
;
1504 zonelist
->zones
[0] = NULL
;
1507 /* NUMA-aware ordering of nodes */
1508 local_node
= pgdat
->node_id
;
1509 load
= num_online_nodes();
1510 prev_node
= local_node
;
1511 nodes_clear(used_mask
);
1512 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
1514 * We don't want to pressure a particular node.
1515 * So adding penalty to the first node in same
1516 * distance group to make it round-robin.
1518 if (node_distance(local_node
, node
) !=
1519 node_distance(local_node
, prev_node
))
1520 node_load
[node
] += load
;
1523 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1524 zonelist
= pgdat
->node_zonelists
+ i
;
1525 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++);
1528 if (i
& __GFP_HIGHMEM
)
1533 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1534 zonelist
->zones
[j
] = NULL
;
1539 #else /* CONFIG_NUMA */
1541 static void __init
build_zonelists(pg_data_t
*pgdat
)
1543 int i
, j
, k
, node
, local_node
;
1545 local_node
= pgdat
->node_id
;
1546 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1547 struct zonelist
*zonelist
;
1549 zonelist
= pgdat
->node_zonelists
+ i
;
1553 if (i
& __GFP_HIGHMEM
)
1558 j
= build_zonelists_node(pgdat
, zonelist
, j
, k
);
1560 * Now we build the zonelist so that it contains the zones
1561 * of all the other nodes.
1562 * We don't want to pressure a particular node, so when
1563 * building the zones for node N, we make sure that the
1564 * zones coming right after the local ones are those from
1565 * node N+1 (modulo N)
1567 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
1568 if (!node_online(node
))
1570 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1572 for (node
= 0; node
< local_node
; node
++) {
1573 if (!node_online(node
))
1575 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1578 zonelist
->zones
[j
] = NULL
;
1582 #endif /* CONFIG_NUMA */
1584 void __init
build_all_zonelists(void)
1588 for_each_online_node(i
)
1589 build_zonelists(NODE_DATA(i
));
1590 printk("Built %i zonelists\n", num_online_nodes());
1591 cpuset_init_current_mems_allowed();
1595 * Helper functions to size the waitqueue hash table.
1596 * Essentially these want to choose hash table sizes sufficiently
1597 * large so that collisions trying to wait on pages are rare.
1598 * But in fact, the number of active page waitqueues on typical
1599 * systems is ridiculously low, less than 200. So this is even
1600 * conservative, even though it seems large.
1602 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1603 * waitqueues, i.e. the size of the waitq table given the number of pages.
1605 #define PAGES_PER_WAITQUEUE 256
1607 static inline unsigned long wait_table_size(unsigned long pages
)
1609 unsigned long size
= 1;
1611 pages
/= PAGES_PER_WAITQUEUE
;
1613 while (size
< pages
)
1617 * Once we have dozens or even hundreds of threads sleeping
1618 * on IO we've got bigger problems than wait queue collision.
1619 * Limit the size of the wait table to a reasonable size.
1621 size
= min(size
, 4096UL);
1623 return max(size
, 4UL);
1627 * This is an integer logarithm so that shifts can be used later
1628 * to extract the more random high bits from the multiplicative
1629 * hash function before the remainder is taken.
1631 static inline unsigned long wait_table_bits(unsigned long size
)
1636 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1638 static void __init
calculate_zone_totalpages(struct pglist_data
*pgdat
,
1639 unsigned long *zones_size
, unsigned long *zholes_size
)
1641 unsigned long realtotalpages
, totalpages
= 0;
1644 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1645 totalpages
+= zones_size
[i
];
1646 pgdat
->node_spanned_pages
= totalpages
;
1648 realtotalpages
= totalpages
;
1650 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1651 realtotalpages
-= zholes_size
[i
];
1652 pgdat
->node_present_pages
= realtotalpages
;
1653 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
, realtotalpages
);
1658 * Initially all pages are reserved - free ones are freed
1659 * up by free_all_bootmem() once the early boot process is
1660 * done. Non-atomic initialization, single-pass.
1662 void __init
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
1663 unsigned long start_pfn
)
1666 unsigned long end_pfn
= start_pfn
+ size
;
1669 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++, page
++) {
1670 if (!early_pfn_valid(pfn
))
1672 if (!early_pfn_in_nid(pfn
, nid
))
1674 page
= pfn_to_page(pfn
);
1675 set_page_links(page
, zone
, nid
, pfn
);
1676 set_page_count(page
, 0);
1677 reset_page_mapcount(page
);
1678 SetPageReserved(page
);
1679 INIT_LIST_HEAD(&page
->lru
);
1680 #ifdef WANT_PAGE_VIRTUAL
1681 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1682 if (!is_highmem_idx(zone
))
1683 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1688 void zone_init_free_lists(struct pglist_data
*pgdat
, struct zone
*zone
,
1692 for (order
= 0; order
< MAX_ORDER
; order
++) {
1693 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
);
1694 zone
->free_area
[order
].nr_free
= 0;
1698 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1699 void zonetable_add(struct zone
*zone
, int nid
, int zid
, unsigned long pfn
,
1702 unsigned long snum
= pfn_to_section_nr(pfn
);
1703 unsigned long end
= pfn_to_section_nr(pfn
+ size
);
1706 zone_table
[ZONETABLE_INDEX(nid
, zid
)] = zone
;
1708 for (; snum
<= end
; snum
++)
1709 zone_table
[ZONETABLE_INDEX(snum
, zid
)] = zone
;
1712 #ifndef __HAVE_ARCH_MEMMAP_INIT
1713 #define memmap_init(size, nid, zone, start_pfn) \
1714 memmap_init_zone((size), (nid), (zone), (start_pfn))
1717 static int __devinit
zone_batchsize(struct zone
*zone
)
1722 * The per-cpu-pages pools are set to around 1000th of the
1723 * size of the zone. But no more than 1/4 of a meg - there's
1724 * no point in going beyond the size of L2 cache.
1726 * OK, so we don't know how big the cache is. So guess.
1728 batch
= zone
->present_pages
/ 1024;
1729 if (batch
* PAGE_SIZE
> 256 * 1024)
1730 batch
= (256 * 1024) / PAGE_SIZE
;
1731 batch
/= 4; /* We effectively *= 4 below */
1736 * Clamp the batch to a 2^n - 1 value. Having a power
1737 * of 2 value was found to be more likely to have
1738 * suboptimal cache aliasing properties in some cases.
1740 * For example if 2 tasks are alternately allocating
1741 * batches of pages, one task can end up with a lot
1742 * of pages of one half of the possible page colors
1743 * and the other with pages of the other colors.
1745 batch
= (1 << fls(batch
+ batch
/2)) - 1;
1749 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
1751 struct per_cpu_pages
*pcp
;
1753 pcp
= &p
->pcp
[0]; /* hot */
1755 pcp
->low
= 2 * batch
;
1756 pcp
->high
= 6 * batch
;
1757 pcp
->batch
= max(1UL, 1 * batch
);
1758 INIT_LIST_HEAD(&pcp
->list
);
1760 pcp
= &p
->pcp
[1]; /* cold*/
1763 pcp
->high
= 2 * batch
;
1764 pcp
->batch
= max(1UL, 1 * batch
);
1765 INIT_LIST_HEAD(&pcp
->list
);
1770 * Boot pageset table. One per cpu which is going to be used for all
1771 * zones and all nodes. The parameters will be set in such a way
1772 * that an item put on a list will immediately be handed over to
1773 * the buddy list. This is safe since pageset manipulation is done
1774 * with interrupts disabled.
1776 * Some NUMA counter updates may also be caught by the boot pagesets.
1778 * The boot_pagesets must be kept even after bootup is complete for
1779 * unused processors and/or zones. They do play a role for bootstrapping
1780 * hotplugged processors.
1782 * zoneinfo_show() and maybe other functions do
1783 * not check if the processor is online before following the pageset pointer.
1784 * Other parts of the kernel may not check if the zone is available.
1786 static struct per_cpu_pageset
1787 boot_pageset
[NR_CPUS
];
1790 * Dynamically allocate memory for the
1791 * per cpu pageset array in struct zone.
1793 static int __devinit
process_zones(int cpu
)
1795 struct zone
*zone
, *dzone
;
1797 for_each_zone(zone
) {
1799 zone
->pageset
[cpu
] = kmalloc_node(sizeof(struct per_cpu_pageset
),
1800 GFP_KERNEL
, cpu_to_node(cpu
));
1801 if (!zone
->pageset
[cpu
])
1804 setup_pageset(zone
->pageset
[cpu
], zone_batchsize(zone
));
1809 for_each_zone(dzone
) {
1812 kfree(dzone
->pageset
[cpu
]);
1813 dzone
->pageset
[cpu
] = NULL
;
1818 static inline void free_zone_pagesets(int cpu
)
1823 for_each_zone(zone
) {
1824 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
1826 zone_pcp(zone
, cpu
) = NULL
;
1832 static int __devinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
1833 unsigned long action
,
1836 int cpu
= (long)hcpu
;
1837 int ret
= NOTIFY_OK
;
1840 case CPU_UP_PREPARE
:
1841 if (process_zones(cpu
))
1844 #ifdef CONFIG_HOTPLUG_CPU
1846 free_zone_pagesets(cpu
);
1855 static struct notifier_block pageset_notifier
=
1856 { &pageset_cpuup_callback
, NULL
, 0 };
1858 void __init
setup_per_cpu_pageset()
1862 /* Initialize per_cpu_pageset for cpu 0.
1863 * A cpuup callback will do this for every cpu
1864 * as it comes online
1866 err
= process_zones(smp_processor_id());
1868 register_cpu_notifier(&pageset_notifier
);
1874 * Set up the zone data structures:
1875 * - mark all pages reserved
1876 * - mark all memory queues empty
1877 * - clear the memory bitmaps
1879 static void __init
free_area_init_core(struct pglist_data
*pgdat
,
1880 unsigned long *zones_size
, unsigned long *zholes_size
)
1883 int cpu
, nid
= pgdat
->node_id
;
1884 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
1886 pgdat
->nr_zones
= 0;
1887 init_waitqueue_head(&pgdat
->kswapd_wait
);
1888 pgdat
->kswapd_max_order
= 0;
1890 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
1891 struct zone
*zone
= pgdat
->node_zones
+ j
;
1892 unsigned long size
, realsize
;
1893 unsigned long batch
;
1895 realsize
= size
= zones_size
[j
];
1897 realsize
-= zholes_size
[j
];
1899 if (j
== ZONE_DMA
|| j
== ZONE_NORMAL
)
1900 nr_kernel_pages
+= realsize
;
1901 nr_all_pages
+= realsize
;
1903 zone
->spanned_pages
= size
;
1904 zone
->present_pages
= realsize
;
1905 zone
->name
= zone_names
[j
];
1906 spin_lock_init(&zone
->lock
);
1907 spin_lock_init(&zone
->lru_lock
);
1908 zone
->zone_pgdat
= pgdat
;
1909 zone
->free_pages
= 0;
1911 zone
->temp_priority
= zone
->prev_priority
= DEF_PRIORITY
;
1913 batch
= zone_batchsize(zone
);
1915 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
1917 /* Early boot. Slab allocator not functional yet */
1918 zone
->pageset
[cpu
] = &boot_pageset
[cpu
];
1919 setup_pageset(&boot_pageset
[cpu
],0);
1921 setup_pageset(zone_pcp(zone
,cpu
), batch
);
1924 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
1925 zone_names
[j
], realsize
, batch
);
1926 INIT_LIST_HEAD(&zone
->active_list
);
1927 INIT_LIST_HEAD(&zone
->inactive_list
);
1928 zone
->nr_scan_active
= 0;
1929 zone
->nr_scan_inactive
= 0;
1930 zone
->nr_active
= 0;
1931 zone
->nr_inactive
= 0;
1932 atomic_set(&zone
->reclaim_in_progress
, 0);
1937 * The per-page waitqueue mechanism uses hashed waitqueues
1940 zone
->wait_table_size
= wait_table_size(size
);
1941 zone
->wait_table_bits
=
1942 wait_table_bits(zone
->wait_table_size
);
1943 zone
->wait_table
= (wait_queue_head_t
*)
1944 alloc_bootmem_node(pgdat
, zone
->wait_table_size
1945 * sizeof(wait_queue_head_t
));
1947 for(i
= 0; i
< zone
->wait_table_size
; ++i
)
1948 init_waitqueue_head(zone
->wait_table
+ i
);
1950 pgdat
->nr_zones
= j
+1;
1952 zone
->zone_mem_map
= pfn_to_page(zone_start_pfn
);
1953 zone
->zone_start_pfn
= zone_start_pfn
;
1955 memmap_init(size
, nid
, j
, zone_start_pfn
);
1957 zonetable_add(zone
, nid
, j
, zone_start_pfn
, size
);
1959 zone_start_pfn
+= size
;
1961 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
1965 static void __init
alloc_node_mem_map(struct pglist_data
*pgdat
)
1967 /* Skip empty nodes */
1968 if (!pgdat
->node_spanned_pages
)
1971 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1972 /* ia64 gets its own node_mem_map, before this, without bootmem */
1973 if (!pgdat
->node_mem_map
) {
1977 size
= (pgdat
->node_spanned_pages
+ 1) * sizeof(struct page
);
1978 map
= alloc_remap(pgdat
->node_id
, size
);
1980 map
= alloc_bootmem_node(pgdat
, size
);
1981 pgdat
->node_mem_map
= map
;
1983 #ifdef CONFIG_FLATMEM
1985 * With no DISCONTIG, the global mem_map is just set as node 0's
1987 if (pgdat
== NODE_DATA(0))
1988 mem_map
= NODE_DATA(0)->node_mem_map
;
1990 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
1993 void __init
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
1994 unsigned long *zones_size
, unsigned long node_start_pfn
,
1995 unsigned long *zholes_size
)
1997 pgdat
->node_id
= nid
;
1998 pgdat
->node_start_pfn
= node_start_pfn
;
1999 calculate_zone_totalpages(pgdat
, zones_size
, zholes_size
);
2001 alloc_node_mem_map(pgdat
);
2003 free_area_init_core(pgdat
, zones_size
, zholes_size
);
2006 #ifndef CONFIG_NEED_MULTIPLE_NODES
2007 static bootmem_data_t contig_bootmem_data
;
2008 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
2010 EXPORT_SYMBOL(contig_page_data
);
2013 void __init
free_area_init(unsigned long *zones_size
)
2015 free_area_init_node(0, NODE_DATA(0), zones_size
,
2016 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
2019 #ifdef CONFIG_PROC_FS
2021 #include <linux/seq_file.h>
2023 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
2028 for (pgdat
= pgdat_list
; pgdat
&& node
; pgdat
= pgdat
->pgdat_next
)
2034 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2036 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2039 return pgdat
->pgdat_next
;
2042 static void frag_stop(struct seq_file
*m
, void *arg
)
2047 * This walks the free areas for each zone.
2049 static int frag_show(struct seq_file
*m
, void *arg
)
2051 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2053 struct zone
*node_zones
= pgdat
->node_zones
;
2054 unsigned long flags
;
2057 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2058 if (!zone
->present_pages
)
2061 spin_lock_irqsave(&zone
->lock
, flags
);
2062 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
2063 for (order
= 0; order
< MAX_ORDER
; ++order
)
2064 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
2065 spin_unlock_irqrestore(&zone
->lock
, flags
);
2071 struct seq_operations fragmentation_op
= {
2072 .start
= frag_start
,
2079 * Output information about zones in @pgdat.
2081 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
2083 pg_data_t
*pgdat
= arg
;
2085 struct zone
*node_zones
= pgdat
->node_zones
;
2086 unsigned long flags
;
2088 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; zone
++) {
2091 if (!zone
->present_pages
)
2094 spin_lock_irqsave(&zone
->lock
, flags
);
2095 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
2103 "\n scanned %lu (a: %lu i: %lu)"
2112 zone
->pages_scanned
,
2113 zone
->nr_scan_active
, zone
->nr_scan_inactive
,
2114 zone
->spanned_pages
,
2115 zone
->present_pages
);
2117 "\n protection: (%lu",
2118 zone
->lowmem_reserve
[0]);
2119 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
2120 seq_printf(m
, ", %lu", zone
->lowmem_reserve
[i
]);
2124 for (i
= 0; i
< ARRAY_SIZE(zone
->pageset
); i
++) {
2125 struct per_cpu_pageset
*pageset
;
2128 pageset
= zone_pcp(zone
, i
);
2129 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2130 if (pageset
->pcp
[j
].count
)
2133 if (j
== ARRAY_SIZE(pageset
->pcp
))
2135 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2137 "\n cpu: %i pcp: %i"
2143 pageset
->pcp
[j
].count
,
2144 pageset
->pcp
[j
].low
,
2145 pageset
->pcp
[j
].high
,
2146 pageset
->pcp
[j
].batch
);
2152 "\n numa_foreign: %lu"
2153 "\n interleave_hit: %lu"
2154 "\n local_node: %lu"
2155 "\n other_node: %lu",
2158 pageset
->numa_foreign
,
2159 pageset
->interleave_hit
,
2160 pageset
->local_node
,
2161 pageset
->other_node
);
2165 "\n all_unreclaimable: %u"
2166 "\n prev_priority: %i"
2167 "\n temp_priority: %i"
2168 "\n start_pfn: %lu",
2169 zone
->all_unreclaimable
,
2170 zone
->prev_priority
,
2171 zone
->temp_priority
,
2172 zone
->zone_start_pfn
);
2173 spin_unlock_irqrestore(&zone
->lock
, flags
);
2179 struct seq_operations zoneinfo_op
= {
2180 .start
= frag_start
, /* iterate over all zones. The same as in
2184 .show
= zoneinfo_show
,
2187 static char *vmstat_text
[] = {
2191 "nr_page_table_pages",
2216 "pgscan_kswapd_high",
2217 "pgscan_kswapd_normal",
2219 "pgscan_kswapd_dma",
2220 "pgscan_direct_high",
2221 "pgscan_direct_normal",
2222 "pgscan_direct_dma",
2227 "kswapd_inodesteal",
2235 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
2237 struct page_state
*ps
;
2239 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2242 ps
= kmalloc(sizeof(*ps
), GFP_KERNEL
);
2245 return ERR_PTR(-ENOMEM
);
2246 get_full_page_state(ps
);
2247 ps
->pgpgin
/= 2; /* sectors -> kbytes */
2249 return (unsigned long *)ps
+ *pos
;
2252 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2255 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2257 return (unsigned long *)m
->private + *pos
;
2260 static int vmstat_show(struct seq_file
*m
, void *arg
)
2262 unsigned long *l
= arg
;
2263 unsigned long off
= l
- (unsigned long *)m
->private;
2265 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
2269 static void vmstat_stop(struct seq_file
*m
, void *arg
)
2275 struct seq_operations vmstat_op
= {
2276 .start
= vmstat_start
,
2277 .next
= vmstat_next
,
2278 .stop
= vmstat_stop
,
2279 .show
= vmstat_show
,
2282 #endif /* CONFIG_PROC_FS */
2284 #ifdef CONFIG_HOTPLUG_CPU
2285 static int page_alloc_cpu_notify(struct notifier_block
*self
,
2286 unsigned long action
, void *hcpu
)
2288 int cpu
= (unsigned long)hcpu
;
2290 unsigned long *src
, *dest
;
2292 if (action
== CPU_DEAD
) {
2295 /* Drain local pagecache count. */
2296 count
= &per_cpu(nr_pagecache_local
, cpu
);
2297 atomic_add(*count
, &nr_pagecache
);
2299 local_irq_disable();
2302 /* Add dead cpu's page_states to our own. */
2303 dest
= (unsigned long *)&__get_cpu_var(page_states
);
2304 src
= (unsigned long *)&per_cpu(page_states
, cpu
);
2306 for (i
= 0; i
< sizeof(struct page_state
)/sizeof(unsigned long);
2316 #endif /* CONFIG_HOTPLUG_CPU */
2318 void __init
page_alloc_init(void)
2320 hotcpu_notifier(page_alloc_cpu_notify
, 0);
2324 * setup_per_zone_lowmem_reserve - called whenever
2325 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2326 * has a correct pages reserved value, so an adequate number of
2327 * pages are left in the zone after a successful __alloc_pages().
2329 static void setup_per_zone_lowmem_reserve(void)
2331 struct pglist_data
*pgdat
;
2334 for_each_pgdat(pgdat
) {
2335 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2336 struct zone
*zone
= pgdat
->node_zones
+ j
;
2337 unsigned long present_pages
= zone
->present_pages
;
2339 zone
->lowmem_reserve
[j
] = 0;
2341 for (idx
= j
-1; idx
>= 0; idx
--) {
2342 struct zone
*lower_zone
;
2344 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
2345 sysctl_lowmem_reserve_ratio
[idx
] = 1;
2347 lower_zone
= pgdat
->node_zones
+ idx
;
2348 lower_zone
->lowmem_reserve
[j
] = present_pages
/
2349 sysctl_lowmem_reserve_ratio
[idx
];
2350 present_pages
+= lower_zone
->present_pages
;
2357 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2358 * that the pages_{min,low,high} values for each zone are set correctly
2359 * with respect to min_free_kbytes.
2361 static void setup_per_zone_pages_min(void)
2363 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
2364 unsigned long lowmem_pages
= 0;
2366 unsigned long flags
;
2368 /* Calculate total number of !ZONE_HIGHMEM pages */
2369 for_each_zone(zone
) {
2370 if (!is_highmem(zone
))
2371 lowmem_pages
+= zone
->present_pages
;
2374 for_each_zone(zone
) {
2375 spin_lock_irqsave(&zone
->lru_lock
, flags
);
2376 if (is_highmem(zone
)) {
2378 * Often, highmem doesn't need to reserve any pages.
2379 * But the pages_min/low/high values are also used for
2380 * batching up page reclaim activity so we need a
2381 * decent value here.
2385 min_pages
= zone
->present_pages
/ 1024;
2386 if (min_pages
< SWAP_CLUSTER_MAX
)
2387 min_pages
= SWAP_CLUSTER_MAX
;
2388 if (min_pages
> 128)
2390 zone
->pages_min
= min_pages
;
2392 /* if it's a lowmem zone, reserve a number of pages
2393 * proportionate to the zone's size.
2395 zone
->pages_min
= (pages_min
* zone
->present_pages
) /
2400 * When interpreting these watermarks, just keep in mind that:
2401 * zone->pages_min == (zone->pages_min * 4) / 4;
2403 zone
->pages_low
= (zone
->pages_min
* 5) / 4;
2404 zone
->pages_high
= (zone
->pages_min
* 6) / 4;
2405 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2410 * Initialise min_free_kbytes.
2412 * For small machines we want it small (128k min). For large machines
2413 * we want it large (64MB max). But it is not linear, because network
2414 * bandwidth does not increase linearly with machine size. We use
2416 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2417 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2433 static int __init
init_per_zone_pages_min(void)
2435 unsigned long lowmem_kbytes
;
2437 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
2439 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
2440 if (min_free_kbytes
< 128)
2441 min_free_kbytes
= 128;
2442 if (min_free_kbytes
> 65536)
2443 min_free_kbytes
= 65536;
2444 setup_per_zone_pages_min();
2445 setup_per_zone_lowmem_reserve();
2448 module_init(init_per_zone_pages_min
)
2451 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2452 * that we can call two helper functions whenever min_free_kbytes
2455 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
2456 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2458 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
2459 setup_per_zone_pages_min();
2464 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2465 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2466 * whenever sysctl_lowmem_reserve_ratio changes.
2468 * The reserve ratio obviously has absolutely no relation with the
2469 * pages_min watermarks. The lowmem reserve ratio can only make sense
2470 * if in function of the boot time zone sizes.
2472 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
2473 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2475 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2476 setup_per_zone_lowmem_reserve();
2480 __initdata
int hashdist
= HASHDIST_DEFAULT
;
2483 static int __init
set_hashdist(char *str
)
2487 hashdist
= simple_strtoul(str
, &str
, 0);
2490 __setup("hashdist=", set_hashdist
);
2494 * allocate a large system hash table from bootmem
2495 * - it is assumed that the hash table must contain an exact power-of-2
2496 * quantity of entries
2497 * - limit is the number of hash buckets, not the total allocation size
2499 void *__init
alloc_large_system_hash(const char *tablename
,
2500 unsigned long bucketsize
,
2501 unsigned long numentries
,
2504 unsigned int *_hash_shift
,
2505 unsigned int *_hash_mask
,
2506 unsigned long limit
)
2508 unsigned long long max
= limit
;
2509 unsigned long log2qty
, size
;
2512 /* allow the kernel cmdline to have a say */
2514 /* round applicable memory size up to nearest megabyte */
2515 numentries
= (flags
& HASH_HIGHMEM
) ? nr_all_pages
: nr_kernel_pages
;
2516 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
2517 numentries
>>= 20 - PAGE_SHIFT
;
2518 numentries
<<= 20 - PAGE_SHIFT
;
2520 /* limit to 1 bucket per 2^scale bytes of low memory */
2521 if (scale
> PAGE_SHIFT
)
2522 numentries
>>= (scale
- PAGE_SHIFT
);
2524 numentries
<<= (PAGE_SHIFT
- scale
);
2526 /* rounded up to nearest power of 2 in size */
2527 numentries
= 1UL << (long_log2(numentries
) + 1);
2529 /* limit allocation size to 1/16 total memory by default */
2531 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
2532 do_div(max
, bucketsize
);
2535 if (numentries
> max
)
2538 log2qty
= long_log2(numentries
);
2541 size
= bucketsize
<< log2qty
;
2542 if (flags
& HASH_EARLY
)
2543 table
= alloc_bootmem(size
);
2545 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
2547 unsigned long order
;
2548 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
2550 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
2552 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
2555 panic("Failed to allocate %s hash table\n", tablename
);
2557 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2560 long_log2(size
) - PAGE_SHIFT
,
2564 *_hash_shift
= log2qty
;
2566 *_hash_mask
= (1 << log2qty
) - 1;