[CONNECTOR]: Update documentation to match reality.
[linux-2.6/verdex.git] / net / ipv4 / tcp_htcp.c
blobe47b37984e951e087cc2185b97336a5e3dadc21f
1 /*
2 * H-TCP congestion control. The algorithm is detailed in:
3 * R.N.Shorten, D.J.Leith:
4 * "H-TCP: TCP for high-speed and long-distance networks"
5 * Proc. PFLDnet, Argonne, 2004.
6 * http://www.hamilton.ie/net/htcp3.pdf
7 */
9 #include <linux/config.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <net/tcp.h>
14 #define ALPHA_BASE (1<<7) /* 1.0 with shift << 7 */
15 #define BETA_MIN (1<<6) /* 0.5 with shift << 7 */
16 #define BETA_MAX 102 /* 0.8 with shift << 7 */
18 static int use_rtt_scaling = 1;
19 module_param(use_rtt_scaling, int, 0644);
20 MODULE_PARM_DESC(use_rtt_scaling, "turn on/off RTT scaling");
22 static int use_bandwidth_switch = 1;
23 module_param(use_bandwidth_switch, int, 0644);
24 MODULE_PARM_DESC(use_bandwidth_switch, "turn on/off bandwidth switcher");
26 struct htcp {
27 u16 alpha; /* Fixed point arith, << 7 */
28 u8 beta; /* Fixed point arith, << 7 */
29 u8 modeswitch; /* Delay modeswitch until we had at least one congestion event */
30 u8 ccount; /* Number of RTTs since last congestion event */
31 u8 undo_ccount;
32 u16 packetcount;
33 u32 minRTT;
34 u32 maxRTT;
35 u32 snd_cwnd_cnt2;
37 u32 undo_maxRTT;
38 u32 undo_old_maxB;
40 /* Bandwidth estimation */
41 u32 minB;
42 u32 maxB;
43 u32 old_maxB;
44 u32 Bi;
45 u32 lasttime;
48 static inline void htcp_reset(struct htcp *ca)
50 ca->undo_ccount = ca->ccount;
51 ca->undo_maxRTT = ca->maxRTT;
52 ca->undo_old_maxB = ca->old_maxB;
54 ca->ccount = 0;
55 ca->snd_cwnd_cnt2 = 0;
58 static u32 htcp_cwnd_undo(struct sock *sk)
60 const struct tcp_sock *tp = tcp_sk(sk);
61 struct htcp *ca = inet_csk_ca(sk);
62 ca->ccount = ca->undo_ccount;
63 ca->maxRTT = ca->undo_maxRTT;
64 ca->old_maxB = ca->undo_old_maxB;
65 return max(tp->snd_cwnd, (tp->snd_ssthresh<<7)/ca->beta);
68 static inline void measure_rtt(struct sock *sk)
70 const struct inet_connection_sock *icsk = inet_csk(sk);
71 const struct tcp_sock *tp = tcp_sk(sk);
72 struct htcp *ca = inet_csk_ca(sk);
73 u32 srtt = tp->srtt>>3;
75 /* keep track of minimum RTT seen so far, minRTT is zero at first */
76 if (ca->minRTT > srtt || !ca->minRTT)
77 ca->minRTT = srtt;
79 /* max RTT */
80 if (icsk->icsk_ca_state == TCP_CA_Open && tp->snd_ssthresh < 0xFFFF && ca->ccount > 3) {
81 if (ca->maxRTT < ca->minRTT)
82 ca->maxRTT = ca->minRTT;
83 if (ca->maxRTT < srtt && srtt <= ca->maxRTT+HZ/50)
84 ca->maxRTT = srtt;
88 static void measure_achieved_throughput(struct sock *sk, u32 pkts_acked)
90 const struct inet_connection_sock *icsk = inet_csk(sk);
91 const struct tcp_sock *tp = tcp_sk(sk);
92 struct htcp *ca = inet_csk_ca(sk);
93 u32 now = tcp_time_stamp;
95 /* achieved throughput calculations */
96 if (icsk->icsk_ca_state != TCP_CA_Open &&
97 icsk->icsk_ca_state != TCP_CA_Disorder) {
98 ca->packetcount = 0;
99 ca->lasttime = now;
100 return;
103 ca->packetcount += pkts_acked;
105 if (ca->packetcount >= tp->snd_cwnd - (ca->alpha>>7? : 1)
106 && now - ca->lasttime >= ca->minRTT
107 && ca->minRTT > 0) {
108 __u32 cur_Bi = ca->packetcount*HZ/(now - ca->lasttime);
109 if (ca->ccount <= 3) {
110 /* just after backoff */
111 ca->minB = ca->maxB = ca->Bi = cur_Bi;
112 } else {
113 ca->Bi = (3*ca->Bi + cur_Bi)/4;
114 if (ca->Bi > ca->maxB)
115 ca->maxB = ca->Bi;
116 if (ca->minB > ca->maxB)
117 ca->minB = ca->maxB;
119 ca->packetcount = 0;
120 ca->lasttime = now;
124 static inline void htcp_beta_update(struct htcp *ca, u32 minRTT, u32 maxRTT)
126 if (use_bandwidth_switch) {
127 u32 maxB = ca->maxB;
128 u32 old_maxB = ca->old_maxB;
129 ca->old_maxB = ca->maxB;
131 if (!between(5*maxB, 4*old_maxB, 6*old_maxB)) {
132 ca->beta = BETA_MIN;
133 ca->modeswitch = 0;
134 return;
138 if (ca->modeswitch && minRTT > max(HZ/100, 1) && maxRTT) {
139 ca->beta = (minRTT<<7)/maxRTT;
140 if (ca->beta < BETA_MIN)
141 ca->beta = BETA_MIN;
142 else if (ca->beta > BETA_MAX)
143 ca->beta = BETA_MAX;
144 } else {
145 ca->beta = BETA_MIN;
146 ca->modeswitch = 1;
150 static inline void htcp_alpha_update(struct htcp *ca)
152 u32 minRTT = ca->minRTT;
153 u32 factor = 1;
154 u32 diff = ca->ccount * minRTT; /* time since last backoff */
156 if (diff > HZ) {
157 diff -= HZ;
158 factor = 1+ ( 10*diff + ((diff/2)*(diff/2)/HZ) )/HZ;
161 if (use_rtt_scaling && minRTT) {
162 u32 scale = (HZ<<3)/(10*minRTT);
163 scale = min(max(scale, 1U<<2), 10U<<3); /* clamping ratio to interval [0.5,10]<<3 */
164 factor = (factor<<3)/scale;
165 if (!factor)
166 factor = 1;
169 ca->alpha = 2*factor*((1<<7)-ca->beta);
170 if (!ca->alpha)
171 ca->alpha = ALPHA_BASE;
174 /* After we have the rtt data to calculate beta, we'd still prefer to wait one
175 * rtt before we adjust our beta to ensure we are working from a consistent
176 * data.
178 * This function should be called when we hit a congestion event since only at
179 * that point do we really have a real sense of maxRTT (the queues en route
180 * were getting just too full now).
182 static void htcp_param_update(struct sock *sk)
184 struct htcp *ca = inet_csk_ca(sk);
185 u32 minRTT = ca->minRTT;
186 u32 maxRTT = ca->maxRTT;
188 htcp_beta_update(ca, minRTT, maxRTT);
189 htcp_alpha_update(ca);
191 /* add slowly fading memory for maxRTT to accommodate routing changes etc */
192 if (minRTT > 0 && maxRTT > minRTT)
193 ca->maxRTT = minRTT + ((maxRTT-minRTT)*95)/100;
196 static u32 htcp_recalc_ssthresh(struct sock *sk)
198 const struct tcp_sock *tp = tcp_sk(sk);
199 const struct htcp *ca = inet_csk_ca(sk);
200 htcp_param_update(sk);
201 return max((tp->snd_cwnd * ca->beta) >> 7, 2U);
204 static void htcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
205 u32 in_flight, int data_acked)
207 struct tcp_sock *tp = tcp_sk(sk);
208 struct htcp *ca = inet_csk_ca(sk);
210 if (in_flight < tp->snd_cwnd)
211 return;
213 if (tp->snd_cwnd <= tp->snd_ssthresh) {
214 /* In "safe" area, increase. */
215 if (tp->snd_cwnd < tp->snd_cwnd_clamp)
216 tp->snd_cwnd++;
217 } else {
218 measure_rtt(sk);
220 /* keep track of number of round-trip times since last backoff event */
221 if (ca->snd_cwnd_cnt2++ > tp->snd_cwnd) {
222 ca->ccount++;
223 ca->snd_cwnd_cnt2 = 0;
224 htcp_alpha_update(ca);
227 /* In dangerous area, increase slowly.
228 * In theory this is tp->snd_cwnd += alpha / tp->snd_cwnd
230 if ((tp->snd_cwnd_cnt++ * ca->alpha)>>7 >= tp->snd_cwnd) {
231 if (tp->snd_cwnd < tp->snd_cwnd_clamp)
232 tp->snd_cwnd++;
233 tp->snd_cwnd_cnt = 0;
234 ca->ccount++;
239 /* Lower bound on congestion window. */
240 static u32 htcp_min_cwnd(struct sock *sk)
242 const struct tcp_sock *tp = tcp_sk(sk);
243 return tp->snd_ssthresh;
247 static void htcp_init(struct sock *sk)
249 struct htcp *ca = inet_csk_ca(sk);
251 memset(ca, 0, sizeof(struct htcp));
252 ca->alpha = ALPHA_BASE;
253 ca->beta = BETA_MIN;
256 static void htcp_state(struct sock *sk, u8 new_state)
258 switch (new_state) {
259 case TCP_CA_CWR:
260 case TCP_CA_Recovery:
261 case TCP_CA_Loss:
262 htcp_reset(inet_csk_ca(sk));
263 break;
267 static struct tcp_congestion_ops htcp = {
268 .init = htcp_init,
269 .ssthresh = htcp_recalc_ssthresh,
270 .min_cwnd = htcp_min_cwnd,
271 .cong_avoid = htcp_cong_avoid,
272 .set_state = htcp_state,
273 .undo_cwnd = htcp_cwnd_undo,
274 .pkts_acked = measure_achieved_throughput,
275 .owner = THIS_MODULE,
276 .name = "htcp",
279 static int __init htcp_register(void)
281 BUG_ON(sizeof(struct htcp) > ICSK_CA_PRIV_SIZE);
282 BUILD_BUG_ON(BETA_MIN >= BETA_MAX);
283 if (!use_bandwidth_switch)
284 htcp.pkts_acked = NULL;
285 return tcp_register_congestion_control(&htcp);
288 static void __exit htcp_unregister(void)
290 tcp_unregister_congestion_control(&htcp);
293 module_init(htcp_register);
294 module_exit(htcp_unregister);
296 MODULE_AUTHOR("Baruch Even");
297 MODULE_LICENSE("GPL");
298 MODULE_DESCRIPTION("H-TCP");