[CONNECTOR]: Update documentation to match reality.
[linux-2.6/verdex.git] / net / sunrpc / xdr.c
blobfde16f40a581dfb64e725e694afb4df5090693ed
1 /*
2 * linux/net/sunrpc/xdr.c
4 * Generic XDR support.
6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
7 */
9 #include <linux/types.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/pagemap.h>
14 #include <linux/errno.h>
15 #include <linux/in.h>
16 #include <linux/net.h>
17 #include <net/sock.h>
18 #include <linux/sunrpc/xdr.h>
19 #include <linux/sunrpc/msg_prot.h>
22 * XDR functions for basic NFS types
24 u32 *
25 xdr_encode_netobj(u32 *p, const struct xdr_netobj *obj)
27 unsigned int quadlen = XDR_QUADLEN(obj->len);
29 p[quadlen] = 0; /* zero trailing bytes */
30 *p++ = htonl(obj->len);
31 memcpy(p, obj->data, obj->len);
32 return p + XDR_QUADLEN(obj->len);
35 u32 *
36 xdr_decode_netobj(u32 *p, struct xdr_netobj *obj)
38 unsigned int len;
40 if ((len = ntohl(*p++)) > XDR_MAX_NETOBJ)
41 return NULL;
42 obj->len = len;
43 obj->data = (u8 *) p;
44 return p + XDR_QUADLEN(len);
47 /**
48 * xdr_encode_opaque_fixed - Encode fixed length opaque data
49 * @p: pointer to current position in XDR buffer.
50 * @ptr: pointer to data to encode (or NULL)
51 * @nbytes: size of data.
53 * Copy the array of data of length nbytes at ptr to the XDR buffer
54 * at position p, then align to the next 32-bit boundary by padding
55 * with zero bytes (see RFC1832).
56 * Note: if ptr is NULL, only the padding is performed.
58 * Returns the updated current XDR buffer position
61 u32 *xdr_encode_opaque_fixed(u32 *p, const void *ptr, unsigned int nbytes)
63 if (likely(nbytes != 0)) {
64 unsigned int quadlen = XDR_QUADLEN(nbytes);
65 unsigned int padding = (quadlen << 2) - nbytes;
67 if (ptr != NULL)
68 memcpy(p, ptr, nbytes);
69 if (padding != 0)
70 memset((char *)p + nbytes, 0, padding);
71 p += quadlen;
73 return p;
75 EXPORT_SYMBOL(xdr_encode_opaque_fixed);
77 /**
78 * xdr_encode_opaque - Encode variable length opaque data
79 * @p: pointer to current position in XDR buffer.
80 * @ptr: pointer to data to encode (or NULL)
81 * @nbytes: size of data.
83 * Returns the updated current XDR buffer position
85 u32 *xdr_encode_opaque(u32 *p, const void *ptr, unsigned int nbytes)
87 *p++ = htonl(nbytes);
88 return xdr_encode_opaque_fixed(p, ptr, nbytes);
90 EXPORT_SYMBOL(xdr_encode_opaque);
92 u32 *
93 xdr_encode_string(u32 *p, const char *string)
95 return xdr_encode_array(p, string, strlen(string));
98 u32 *
99 xdr_decode_string(u32 *p, char **sp, int *lenp, int maxlen)
101 unsigned int len;
102 char *string;
104 if ((len = ntohl(*p++)) > maxlen)
105 return NULL;
106 if (lenp)
107 *lenp = len;
108 if ((len % 4) != 0) {
109 string = (char *) p;
110 } else {
111 string = (char *) (p - 1);
112 memmove(string, p, len);
114 string[len] = '\0';
115 *sp = string;
116 return p + XDR_QUADLEN(len);
119 u32 *
120 xdr_decode_string_inplace(u32 *p, char **sp, int *lenp, int maxlen)
122 unsigned int len;
124 if ((len = ntohl(*p++)) > maxlen)
125 return NULL;
126 *lenp = len;
127 *sp = (char *) p;
128 return p + XDR_QUADLEN(len);
131 void
132 xdr_encode_pages(struct xdr_buf *xdr, struct page **pages, unsigned int base,
133 unsigned int len)
135 struct kvec *tail = xdr->tail;
136 u32 *p;
138 xdr->pages = pages;
139 xdr->page_base = base;
140 xdr->page_len = len;
142 p = (u32 *)xdr->head[0].iov_base + XDR_QUADLEN(xdr->head[0].iov_len);
143 tail->iov_base = p;
144 tail->iov_len = 0;
146 if (len & 3) {
147 unsigned int pad = 4 - (len & 3);
149 *p = 0;
150 tail->iov_base = (char *)p + (len & 3);
151 tail->iov_len = pad;
152 len += pad;
154 xdr->buflen += len;
155 xdr->len += len;
158 void
159 xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset,
160 struct page **pages, unsigned int base, unsigned int len)
162 struct kvec *head = xdr->head;
163 struct kvec *tail = xdr->tail;
164 char *buf = (char *)head->iov_base;
165 unsigned int buflen = head->iov_len;
167 head->iov_len = offset;
169 xdr->pages = pages;
170 xdr->page_base = base;
171 xdr->page_len = len;
173 tail->iov_base = buf + offset;
174 tail->iov_len = buflen - offset;
176 xdr->buflen += len;
179 ssize_t
180 xdr_partial_copy_from_skb(struct xdr_buf *xdr, unsigned int base,
181 skb_reader_t *desc,
182 skb_read_actor_t copy_actor)
184 struct page **ppage = xdr->pages;
185 unsigned int len, pglen = xdr->page_len;
186 ssize_t copied = 0;
187 int ret;
189 len = xdr->head[0].iov_len;
190 if (base < len) {
191 len -= base;
192 ret = copy_actor(desc, (char *)xdr->head[0].iov_base + base, len);
193 copied += ret;
194 if (ret != len || !desc->count)
195 goto out;
196 base = 0;
197 } else
198 base -= len;
200 if (pglen == 0)
201 goto copy_tail;
202 if (base >= pglen) {
203 base -= pglen;
204 goto copy_tail;
206 if (base || xdr->page_base) {
207 pglen -= base;
208 base += xdr->page_base;
209 ppage += base >> PAGE_CACHE_SHIFT;
210 base &= ~PAGE_CACHE_MASK;
212 do {
213 char *kaddr;
215 /* ACL likes to be lazy in allocating pages - ACLs
216 * are small by default but can get huge. */
217 if (unlikely(*ppage == NULL)) {
218 *ppage = alloc_page(GFP_ATOMIC);
219 if (unlikely(*ppage == NULL)) {
220 if (copied == 0)
221 copied = -ENOMEM;
222 goto out;
226 len = PAGE_CACHE_SIZE;
227 kaddr = kmap_atomic(*ppage, KM_SKB_SUNRPC_DATA);
228 if (base) {
229 len -= base;
230 if (pglen < len)
231 len = pglen;
232 ret = copy_actor(desc, kaddr + base, len);
233 base = 0;
234 } else {
235 if (pglen < len)
236 len = pglen;
237 ret = copy_actor(desc, kaddr, len);
239 flush_dcache_page(*ppage);
240 kunmap_atomic(kaddr, KM_SKB_SUNRPC_DATA);
241 copied += ret;
242 if (ret != len || !desc->count)
243 goto out;
244 ppage++;
245 } while ((pglen -= len) != 0);
246 copy_tail:
247 len = xdr->tail[0].iov_len;
248 if (base < len)
249 copied += copy_actor(desc, (char *)xdr->tail[0].iov_base + base, len - base);
250 out:
251 return copied;
256 xdr_sendpages(struct socket *sock, struct sockaddr *addr, int addrlen,
257 struct xdr_buf *xdr, unsigned int base, int msgflags)
259 struct page **ppage = xdr->pages;
260 unsigned int len, pglen = xdr->page_len;
261 int err, ret = 0;
262 ssize_t (*sendpage)(struct socket *, struct page *, int, size_t, int);
264 len = xdr->head[0].iov_len;
265 if (base < len || (addr != NULL && base == 0)) {
266 struct kvec iov = {
267 .iov_base = xdr->head[0].iov_base + base,
268 .iov_len = len - base,
270 struct msghdr msg = {
271 .msg_name = addr,
272 .msg_namelen = addrlen,
273 .msg_flags = msgflags,
275 if (xdr->len > len)
276 msg.msg_flags |= MSG_MORE;
278 if (iov.iov_len != 0)
279 err = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
280 else
281 err = kernel_sendmsg(sock, &msg, NULL, 0, 0);
282 if (ret == 0)
283 ret = err;
284 else if (err > 0)
285 ret += err;
286 if (err != iov.iov_len)
287 goto out;
288 base = 0;
289 } else
290 base -= len;
292 if (pglen == 0)
293 goto copy_tail;
294 if (base >= pglen) {
295 base -= pglen;
296 goto copy_tail;
298 if (base || xdr->page_base) {
299 pglen -= base;
300 base += xdr->page_base;
301 ppage += base >> PAGE_CACHE_SHIFT;
302 base &= ~PAGE_CACHE_MASK;
305 sendpage = sock->ops->sendpage ? : sock_no_sendpage;
306 do {
307 int flags = msgflags;
309 len = PAGE_CACHE_SIZE;
310 if (base)
311 len -= base;
312 if (pglen < len)
313 len = pglen;
315 if (pglen != len || xdr->tail[0].iov_len != 0)
316 flags |= MSG_MORE;
318 /* Hmm... We might be dealing with highmem pages */
319 if (PageHighMem(*ppage))
320 sendpage = sock_no_sendpage;
321 err = sendpage(sock, *ppage, base, len, flags);
322 if (ret == 0)
323 ret = err;
324 else if (err > 0)
325 ret += err;
326 if (err != len)
327 goto out;
328 base = 0;
329 ppage++;
330 } while ((pglen -= len) != 0);
331 copy_tail:
332 len = xdr->tail[0].iov_len;
333 if (base < len) {
334 struct kvec iov = {
335 .iov_base = xdr->tail[0].iov_base + base,
336 .iov_len = len - base,
338 struct msghdr msg = {
339 .msg_flags = msgflags,
341 err = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
342 if (ret == 0)
343 ret = err;
344 else if (err > 0)
345 ret += err;
347 out:
348 return ret;
353 * Helper routines for doing 'memmove' like operations on a struct xdr_buf
355 * _shift_data_right_pages
356 * @pages: vector of pages containing both the source and dest memory area.
357 * @pgto_base: page vector address of destination
358 * @pgfrom_base: page vector address of source
359 * @len: number of bytes to copy
361 * Note: the addresses pgto_base and pgfrom_base are both calculated in
362 * the same way:
363 * if a memory area starts at byte 'base' in page 'pages[i]',
364 * then its address is given as (i << PAGE_CACHE_SHIFT) + base
365 * Also note: pgfrom_base must be < pgto_base, but the memory areas
366 * they point to may overlap.
368 static void
369 _shift_data_right_pages(struct page **pages, size_t pgto_base,
370 size_t pgfrom_base, size_t len)
372 struct page **pgfrom, **pgto;
373 char *vfrom, *vto;
374 size_t copy;
376 BUG_ON(pgto_base <= pgfrom_base);
378 pgto_base += len;
379 pgfrom_base += len;
381 pgto = pages + (pgto_base >> PAGE_CACHE_SHIFT);
382 pgfrom = pages + (pgfrom_base >> PAGE_CACHE_SHIFT);
384 pgto_base &= ~PAGE_CACHE_MASK;
385 pgfrom_base &= ~PAGE_CACHE_MASK;
387 do {
388 /* Are any pointers crossing a page boundary? */
389 if (pgto_base == 0) {
390 flush_dcache_page(*pgto);
391 pgto_base = PAGE_CACHE_SIZE;
392 pgto--;
394 if (pgfrom_base == 0) {
395 pgfrom_base = PAGE_CACHE_SIZE;
396 pgfrom--;
399 copy = len;
400 if (copy > pgto_base)
401 copy = pgto_base;
402 if (copy > pgfrom_base)
403 copy = pgfrom_base;
404 pgto_base -= copy;
405 pgfrom_base -= copy;
407 vto = kmap_atomic(*pgto, KM_USER0);
408 vfrom = kmap_atomic(*pgfrom, KM_USER1);
409 memmove(vto + pgto_base, vfrom + pgfrom_base, copy);
410 kunmap_atomic(vfrom, KM_USER1);
411 kunmap_atomic(vto, KM_USER0);
413 } while ((len -= copy) != 0);
414 flush_dcache_page(*pgto);
418 * _copy_to_pages
419 * @pages: array of pages
420 * @pgbase: page vector address of destination
421 * @p: pointer to source data
422 * @len: length
424 * Copies data from an arbitrary memory location into an array of pages
425 * The copy is assumed to be non-overlapping.
427 static void
428 _copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len)
430 struct page **pgto;
431 char *vto;
432 size_t copy;
434 pgto = pages + (pgbase >> PAGE_CACHE_SHIFT);
435 pgbase &= ~PAGE_CACHE_MASK;
437 do {
438 copy = PAGE_CACHE_SIZE - pgbase;
439 if (copy > len)
440 copy = len;
442 vto = kmap_atomic(*pgto, KM_USER0);
443 memcpy(vto + pgbase, p, copy);
444 kunmap_atomic(vto, KM_USER0);
446 pgbase += copy;
447 if (pgbase == PAGE_CACHE_SIZE) {
448 flush_dcache_page(*pgto);
449 pgbase = 0;
450 pgto++;
452 p += copy;
454 } while ((len -= copy) != 0);
455 flush_dcache_page(*pgto);
459 * _copy_from_pages
460 * @p: pointer to destination
461 * @pages: array of pages
462 * @pgbase: offset of source data
463 * @len: length
465 * Copies data into an arbitrary memory location from an array of pages
466 * The copy is assumed to be non-overlapping.
468 static void
469 _copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len)
471 struct page **pgfrom;
472 char *vfrom;
473 size_t copy;
475 pgfrom = pages + (pgbase >> PAGE_CACHE_SHIFT);
476 pgbase &= ~PAGE_CACHE_MASK;
478 do {
479 copy = PAGE_CACHE_SIZE - pgbase;
480 if (copy > len)
481 copy = len;
483 vfrom = kmap_atomic(*pgfrom, KM_USER0);
484 memcpy(p, vfrom + pgbase, copy);
485 kunmap_atomic(vfrom, KM_USER0);
487 pgbase += copy;
488 if (pgbase == PAGE_CACHE_SIZE) {
489 pgbase = 0;
490 pgfrom++;
492 p += copy;
494 } while ((len -= copy) != 0);
498 * xdr_shrink_bufhead
499 * @buf: xdr_buf
500 * @len: bytes to remove from buf->head[0]
502 * Shrinks XDR buffer's header kvec buf->head[0] by
503 * 'len' bytes. The extra data is not lost, but is instead
504 * moved into the inlined pages and/or the tail.
506 static void
507 xdr_shrink_bufhead(struct xdr_buf *buf, size_t len)
509 struct kvec *head, *tail;
510 size_t copy, offs;
511 unsigned int pglen = buf->page_len;
513 tail = buf->tail;
514 head = buf->head;
515 BUG_ON (len > head->iov_len);
517 /* Shift the tail first */
518 if (tail->iov_len != 0) {
519 if (tail->iov_len > len) {
520 copy = tail->iov_len - len;
521 memmove((char *)tail->iov_base + len,
522 tail->iov_base, copy);
524 /* Copy from the inlined pages into the tail */
525 copy = len;
526 if (copy > pglen)
527 copy = pglen;
528 offs = len - copy;
529 if (offs >= tail->iov_len)
530 copy = 0;
531 else if (copy > tail->iov_len - offs)
532 copy = tail->iov_len - offs;
533 if (copy != 0)
534 _copy_from_pages((char *)tail->iov_base + offs,
535 buf->pages,
536 buf->page_base + pglen + offs - len,
537 copy);
538 /* Do we also need to copy data from the head into the tail ? */
539 if (len > pglen) {
540 offs = copy = len - pglen;
541 if (copy > tail->iov_len)
542 copy = tail->iov_len;
543 memcpy(tail->iov_base,
544 (char *)head->iov_base +
545 head->iov_len - offs,
546 copy);
549 /* Now handle pages */
550 if (pglen != 0) {
551 if (pglen > len)
552 _shift_data_right_pages(buf->pages,
553 buf->page_base + len,
554 buf->page_base,
555 pglen - len);
556 copy = len;
557 if (len > pglen)
558 copy = pglen;
559 _copy_to_pages(buf->pages, buf->page_base,
560 (char *)head->iov_base + head->iov_len - len,
561 copy);
563 head->iov_len -= len;
564 buf->buflen -= len;
565 /* Have we truncated the message? */
566 if (buf->len > buf->buflen)
567 buf->len = buf->buflen;
571 * xdr_shrink_pagelen
572 * @buf: xdr_buf
573 * @len: bytes to remove from buf->pages
575 * Shrinks XDR buffer's page array buf->pages by
576 * 'len' bytes. The extra data is not lost, but is instead
577 * moved into the tail.
579 static void
580 xdr_shrink_pagelen(struct xdr_buf *buf, size_t len)
582 struct kvec *tail;
583 size_t copy;
584 char *p;
585 unsigned int pglen = buf->page_len;
587 tail = buf->tail;
588 BUG_ON (len > pglen);
590 /* Shift the tail first */
591 if (tail->iov_len != 0) {
592 p = (char *)tail->iov_base + len;
593 if (tail->iov_len > len) {
594 copy = tail->iov_len - len;
595 memmove(p, tail->iov_base, copy);
596 } else
597 buf->buflen -= len;
598 /* Copy from the inlined pages into the tail */
599 copy = len;
600 if (copy > tail->iov_len)
601 copy = tail->iov_len;
602 _copy_from_pages((char *)tail->iov_base,
603 buf->pages, buf->page_base + pglen - len,
604 copy);
606 buf->page_len -= len;
607 buf->buflen -= len;
608 /* Have we truncated the message? */
609 if (buf->len > buf->buflen)
610 buf->len = buf->buflen;
613 void
614 xdr_shift_buf(struct xdr_buf *buf, size_t len)
616 xdr_shrink_bufhead(buf, len);
620 * xdr_init_encode - Initialize a struct xdr_stream for sending data.
621 * @xdr: pointer to xdr_stream struct
622 * @buf: pointer to XDR buffer in which to encode data
623 * @p: current pointer inside XDR buffer
625 * Note: at the moment the RPC client only passes the length of our
626 * scratch buffer in the xdr_buf's header kvec. Previously this
627 * meant we needed to call xdr_adjust_iovec() after encoding the
628 * data. With the new scheme, the xdr_stream manages the details
629 * of the buffer length, and takes care of adjusting the kvec
630 * length for us.
632 void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, uint32_t *p)
634 struct kvec *iov = buf->head;
635 int scratch_len = buf->buflen - buf->page_len - buf->tail[0].iov_len;
637 BUG_ON(scratch_len < 0);
638 xdr->buf = buf;
639 xdr->iov = iov;
640 xdr->p = (uint32_t *)((char *)iov->iov_base + iov->iov_len);
641 xdr->end = (uint32_t *)((char *)iov->iov_base + scratch_len);
642 BUG_ON(iov->iov_len > scratch_len);
644 if (p != xdr->p && p != NULL) {
645 size_t len;
647 BUG_ON(p < xdr->p || p > xdr->end);
648 len = (char *)p - (char *)xdr->p;
649 xdr->p = p;
650 buf->len += len;
651 iov->iov_len += len;
654 EXPORT_SYMBOL(xdr_init_encode);
657 * xdr_reserve_space - Reserve buffer space for sending
658 * @xdr: pointer to xdr_stream
659 * @nbytes: number of bytes to reserve
661 * Checks that we have enough buffer space to encode 'nbytes' more
662 * bytes of data. If so, update the total xdr_buf length, and
663 * adjust the length of the current kvec.
665 uint32_t * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes)
667 uint32_t *p = xdr->p;
668 uint32_t *q;
670 /* align nbytes on the next 32-bit boundary */
671 nbytes += 3;
672 nbytes &= ~3;
673 q = p + (nbytes >> 2);
674 if (unlikely(q > xdr->end || q < p))
675 return NULL;
676 xdr->p = q;
677 xdr->iov->iov_len += nbytes;
678 xdr->buf->len += nbytes;
679 return p;
681 EXPORT_SYMBOL(xdr_reserve_space);
684 * xdr_write_pages - Insert a list of pages into an XDR buffer for sending
685 * @xdr: pointer to xdr_stream
686 * @pages: list of pages
687 * @base: offset of first byte
688 * @len: length of data in bytes
691 void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base,
692 unsigned int len)
694 struct xdr_buf *buf = xdr->buf;
695 struct kvec *iov = buf->tail;
696 buf->pages = pages;
697 buf->page_base = base;
698 buf->page_len = len;
700 iov->iov_base = (char *)xdr->p;
701 iov->iov_len = 0;
702 xdr->iov = iov;
704 if (len & 3) {
705 unsigned int pad = 4 - (len & 3);
707 BUG_ON(xdr->p >= xdr->end);
708 iov->iov_base = (char *)xdr->p + (len & 3);
709 iov->iov_len += pad;
710 len += pad;
711 *xdr->p++ = 0;
713 buf->buflen += len;
714 buf->len += len;
716 EXPORT_SYMBOL(xdr_write_pages);
719 * xdr_init_decode - Initialize an xdr_stream for decoding data.
720 * @xdr: pointer to xdr_stream struct
721 * @buf: pointer to XDR buffer from which to decode data
722 * @p: current pointer inside XDR buffer
724 void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, uint32_t *p)
726 struct kvec *iov = buf->head;
727 unsigned int len = iov->iov_len;
729 if (len > buf->len)
730 len = buf->len;
731 xdr->buf = buf;
732 xdr->iov = iov;
733 xdr->p = p;
734 xdr->end = (uint32_t *)((char *)iov->iov_base + len);
736 EXPORT_SYMBOL(xdr_init_decode);
739 * xdr_inline_decode - Retrieve non-page XDR data to decode
740 * @xdr: pointer to xdr_stream struct
741 * @nbytes: number of bytes of data to decode
743 * Check if the input buffer is long enough to enable us to decode
744 * 'nbytes' more bytes of data starting at the current position.
745 * If so return the current pointer, then update the current
746 * pointer position.
748 uint32_t * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes)
750 uint32_t *p = xdr->p;
751 uint32_t *q = p + XDR_QUADLEN(nbytes);
753 if (unlikely(q > xdr->end || q < p))
754 return NULL;
755 xdr->p = q;
756 return p;
758 EXPORT_SYMBOL(xdr_inline_decode);
761 * xdr_read_pages - Ensure page-based XDR data to decode is aligned at current pointer position
762 * @xdr: pointer to xdr_stream struct
763 * @len: number of bytes of page data
765 * Moves data beyond the current pointer position from the XDR head[] buffer
766 * into the page list. Any data that lies beyond current position + "len"
767 * bytes is moved into the XDR tail[]. The current pointer is then
768 * repositioned at the beginning of the XDR tail.
770 void xdr_read_pages(struct xdr_stream *xdr, unsigned int len)
772 struct xdr_buf *buf = xdr->buf;
773 struct kvec *iov;
774 ssize_t shift;
775 unsigned int end;
776 int padding;
778 /* Realign pages to current pointer position */
779 iov = buf->head;
780 shift = iov->iov_len + (char *)iov->iov_base - (char *)xdr->p;
781 if (shift > 0)
782 xdr_shrink_bufhead(buf, shift);
784 /* Truncate page data and move it into the tail */
785 if (buf->page_len > len)
786 xdr_shrink_pagelen(buf, buf->page_len - len);
787 padding = (XDR_QUADLEN(len) << 2) - len;
788 xdr->iov = iov = buf->tail;
789 /* Compute remaining message length. */
790 end = iov->iov_len;
791 shift = buf->buflen - buf->len;
792 if (shift < end)
793 end -= shift;
794 else if (shift > 0)
795 end = 0;
797 * Position current pointer at beginning of tail, and
798 * set remaining message length.
800 xdr->p = (uint32_t *)((char *)iov->iov_base + padding);
801 xdr->end = (uint32_t *)((char *)iov->iov_base + end);
803 EXPORT_SYMBOL(xdr_read_pages);
805 static struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0};
807 void
808 xdr_buf_from_iov(struct kvec *iov, struct xdr_buf *buf)
810 buf->head[0] = *iov;
811 buf->tail[0] = empty_iov;
812 buf->page_len = 0;
813 buf->buflen = buf->len = iov->iov_len;
816 /* Sets subiov to the intersection of iov with the buffer of length len
817 * starting base bytes after iov. Indicates empty intersection by setting
818 * length of subiov to zero. Decrements len by length of subiov, sets base
819 * to zero (or decrements it by length of iov if subiov is empty). */
820 static void
821 iov_subsegment(struct kvec *iov, struct kvec *subiov, int *base, int *len)
823 if (*base > iov->iov_len) {
824 subiov->iov_base = NULL;
825 subiov->iov_len = 0;
826 *base -= iov->iov_len;
827 } else {
828 subiov->iov_base = iov->iov_base + *base;
829 subiov->iov_len = min(*len, (int)iov->iov_len - *base);
830 *base = 0;
832 *len -= subiov->iov_len;
835 /* Sets subbuf to the portion of buf of length len beginning base bytes
836 * from the start of buf. Returns -1 if base of length are out of bounds. */
838 xdr_buf_subsegment(struct xdr_buf *buf, struct xdr_buf *subbuf,
839 int base, int len)
841 int i;
843 subbuf->buflen = subbuf->len = len;
844 iov_subsegment(buf->head, subbuf->head, &base, &len);
846 if (base < buf->page_len) {
847 i = (base + buf->page_base) >> PAGE_CACHE_SHIFT;
848 subbuf->pages = &buf->pages[i];
849 subbuf->page_base = (base + buf->page_base) & ~PAGE_CACHE_MASK;
850 subbuf->page_len = min((int)buf->page_len - base, len);
851 len -= subbuf->page_len;
852 base = 0;
853 } else {
854 base -= buf->page_len;
855 subbuf->page_len = 0;
858 iov_subsegment(buf->tail, subbuf->tail, &base, &len);
859 if (base || len)
860 return -1;
861 return 0;
864 /* obj is assumed to point to allocated memory of size at least len: */
866 read_bytes_from_xdr_buf(struct xdr_buf *buf, int base, void *obj, int len)
868 struct xdr_buf subbuf;
869 int this_len;
870 int status;
872 status = xdr_buf_subsegment(buf, &subbuf, base, len);
873 if (status)
874 goto out;
875 this_len = min(len, (int)subbuf.head[0].iov_len);
876 memcpy(obj, subbuf.head[0].iov_base, this_len);
877 len -= this_len;
878 obj += this_len;
879 this_len = min(len, (int)subbuf.page_len);
880 if (this_len)
881 _copy_from_pages(obj, subbuf.pages, subbuf.page_base, this_len);
882 len -= this_len;
883 obj += this_len;
884 this_len = min(len, (int)subbuf.tail[0].iov_len);
885 memcpy(obj, subbuf.tail[0].iov_base, this_len);
886 out:
887 return status;
890 /* obj is assumed to point to allocated memory of size at least len: */
892 write_bytes_to_xdr_buf(struct xdr_buf *buf, int base, void *obj, int len)
894 struct xdr_buf subbuf;
895 int this_len;
896 int status;
898 status = xdr_buf_subsegment(buf, &subbuf, base, len);
899 if (status)
900 goto out;
901 this_len = min(len, (int)subbuf.head[0].iov_len);
902 memcpy(subbuf.head[0].iov_base, obj, this_len);
903 len -= this_len;
904 obj += this_len;
905 this_len = min(len, (int)subbuf.page_len);
906 if (this_len)
907 _copy_to_pages(subbuf.pages, subbuf.page_base, obj, this_len);
908 len -= this_len;
909 obj += this_len;
910 this_len = min(len, (int)subbuf.tail[0].iov_len);
911 memcpy(subbuf.tail[0].iov_base, obj, this_len);
912 out:
913 return status;
917 xdr_decode_word(struct xdr_buf *buf, int base, u32 *obj)
919 u32 raw;
920 int status;
922 status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj));
923 if (status)
924 return status;
925 *obj = ntohl(raw);
926 return 0;
930 xdr_encode_word(struct xdr_buf *buf, int base, u32 obj)
932 u32 raw = htonl(obj);
934 return write_bytes_to_xdr_buf(buf, base, &raw, sizeof(obj));
937 /* If the netobj starting offset bytes from the start of xdr_buf is contained
938 * entirely in the head or the tail, set object to point to it; otherwise
939 * try to find space for it at the end of the tail, copy it there, and
940 * set obj to point to it. */
942 xdr_buf_read_netobj(struct xdr_buf *buf, struct xdr_netobj *obj, int offset)
944 u32 tail_offset = buf->head[0].iov_len + buf->page_len;
945 u32 obj_end_offset;
947 if (xdr_decode_word(buf, offset, &obj->len))
948 goto out;
949 obj_end_offset = offset + 4 + obj->len;
951 if (obj_end_offset <= buf->head[0].iov_len) {
952 /* The obj is contained entirely in the head: */
953 obj->data = buf->head[0].iov_base + offset + 4;
954 } else if (offset + 4 >= tail_offset) {
955 if (obj_end_offset - tail_offset
956 > buf->tail[0].iov_len)
957 goto out;
958 /* The obj is contained entirely in the tail: */
959 obj->data = buf->tail[0].iov_base
960 + offset - tail_offset + 4;
961 } else {
962 /* use end of tail as storage for obj:
963 * (We don't copy to the beginning because then we'd have
964 * to worry about doing a potentially overlapping copy.
965 * This assumes the object is at most half the length of the
966 * tail.) */
967 if (obj->len > buf->tail[0].iov_len)
968 goto out;
969 obj->data = buf->tail[0].iov_base + buf->tail[0].iov_len -
970 obj->len;
971 if (read_bytes_from_xdr_buf(buf, offset + 4,
972 obj->data, obj->len))
973 goto out;
976 return 0;
977 out:
978 return -1;
981 /* Returns 0 on success, or else a negative error code. */
982 static int
983 xdr_xcode_array2(struct xdr_buf *buf, unsigned int base,
984 struct xdr_array2_desc *desc, int encode)
986 char *elem = NULL, *c;
987 unsigned int copied = 0, todo, avail_here;
988 struct page **ppages = NULL;
989 int err;
991 if (encode) {
992 if (xdr_encode_word(buf, base, desc->array_len) != 0)
993 return -EINVAL;
994 } else {
995 if (xdr_decode_word(buf, base, &desc->array_len) != 0 ||
996 desc->array_len > desc->array_maxlen ||
997 (unsigned long) base + 4 + desc->array_len *
998 desc->elem_size > buf->len)
999 return -EINVAL;
1001 base += 4;
1003 if (!desc->xcode)
1004 return 0;
1006 todo = desc->array_len * desc->elem_size;
1008 /* process head */
1009 if (todo && base < buf->head->iov_len) {
1010 c = buf->head->iov_base + base;
1011 avail_here = min_t(unsigned int, todo,
1012 buf->head->iov_len - base);
1013 todo -= avail_here;
1015 while (avail_here >= desc->elem_size) {
1016 err = desc->xcode(desc, c);
1017 if (err)
1018 goto out;
1019 c += desc->elem_size;
1020 avail_here -= desc->elem_size;
1022 if (avail_here) {
1023 if (!elem) {
1024 elem = kmalloc(desc->elem_size, GFP_KERNEL);
1025 err = -ENOMEM;
1026 if (!elem)
1027 goto out;
1029 if (encode) {
1030 err = desc->xcode(desc, elem);
1031 if (err)
1032 goto out;
1033 memcpy(c, elem, avail_here);
1034 } else
1035 memcpy(elem, c, avail_here);
1036 copied = avail_here;
1038 base = buf->head->iov_len; /* align to start of pages */
1041 /* process pages array */
1042 base -= buf->head->iov_len;
1043 if (todo && base < buf->page_len) {
1044 unsigned int avail_page;
1046 avail_here = min(todo, buf->page_len - base);
1047 todo -= avail_here;
1049 base += buf->page_base;
1050 ppages = buf->pages + (base >> PAGE_CACHE_SHIFT);
1051 base &= ~PAGE_CACHE_MASK;
1052 avail_page = min_t(unsigned int, PAGE_CACHE_SIZE - base,
1053 avail_here);
1054 c = kmap(*ppages) + base;
1056 while (avail_here) {
1057 avail_here -= avail_page;
1058 if (copied || avail_page < desc->elem_size) {
1059 unsigned int l = min(avail_page,
1060 desc->elem_size - copied);
1061 if (!elem) {
1062 elem = kmalloc(desc->elem_size,
1063 GFP_KERNEL);
1064 err = -ENOMEM;
1065 if (!elem)
1066 goto out;
1068 if (encode) {
1069 if (!copied) {
1070 err = desc->xcode(desc, elem);
1071 if (err)
1072 goto out;
1074 memcpy(c, elem + copied, l);
1075 copied += l;
1076 if (copied == desc->elem_size)
1077 copied = 0;
1078 } else {
1079 memcpy(elem + copied, c, l);
1080 copied += l;
1081 if (copied == desc->elem_size) {
1082 err = desc->xcode(desc, elem);
1083 if (err)
1084 goto out;
1085 copied = 0;
1088 avail_page -= l;
1089 c += l;
1091 while (avail_page >= desc->elem_size) {
1092 err = desc->xcode(desc, c);
1093 if (err)
1094 goto out;
1095 c += desc->elem_size;
1096 avail_page -= desc->elem_size;
1098 if (avail_page) {
1099 unsigned int l = min(avail_page,
1100 desc->elem_size - copied);
1101 if (!elem) {
1102 elem = kmalloc(desc->elem_size,
1103 GFP_KERNEL);
1104 err = -ENOMEM;
1105 if (!elem)
1106 goto out;
1108 if (encode) {
1109 if (!copied) {
1110 err = desc->xcode(desc, elem);
1111 if (err)
1112 goto out;
1114 memcpy(c, elem + copied, l);
1115 copied += l;
1116 if (copied == desc->elem_size)
1117 copied = 0;
1118 } else {
1119 memcpy(elem + copied, c, l);
1120 copied += l;
1121 if (copied == desc->elem_size) {
1122 err = desc->xcode(desc, elem);
1123 if (err)
1124 goto out;
1125 copied = 0;
1129 if (avail_here) {
1130 kunmap(*ppages);
1131 ppages++;
1132 c = kmap(*ppages);
1135 avail_page = min(avail_here,
1136 (unsigned int) PAGE_CACHE_SIZE);
1138 base = buf->page_len; /* align to start of tail */
1141 /* process tail */
1142 base -= buf->page_len;
1143 if (todo) {
1144 c = buf->tail->iov_base + base;
1145 if (copied) {
1146 unsigned int l = desc->elem_size - copied;
1148 if (encode)
1149 memcpy(c, elem + copied, l);
1150 else {
1151 memcpy(elem + copied, c, l);
1152 err = desc->xcode(desc, elem);
1153 if (err)
1154 goto out;
1156 todo -= l;
1157 c += l;
1159 while (todo) {
1160 err = desc->xcode(desc, c);
1161 if (err)
1162 goto out;
1163 c += desc->elem_size;
1164 todo -= desc->elem_size;
1167 err = 0;
1169 out:
1170 if (elem)
1171 kfree(elem);
1172 if (ppages)
1173 kunmap(*ppages);
1174 return err;
1178 xdr_decode_array2(struct xdr_buf *buf, unsigned int base,
1179 struct xdr_array2_desc *desc)
1181 if (base >= buf->len)
1182 return -EINVAL;
1184 return xdr_xcode_array2(buf, base, desc, 0);
1188 xdr_encode_array2(struct xdr_buf *buf, unsigned int base,
1189 struct xdr_array2_desc *desc)
1191 if ((unsigned long) base + 4 + desc->array_len * desc->elem_size >
1192 buf->head->iov_len + buf->page_len + buf->tail->iov_len)
1193 return -EINVAL;
1195 return xdr_xcode_array2(buf, base, desc, 1);