[ARM] pxa: Gumstix Verdex PCMCIA support
[linux-2.6/verdex.git] / drivers / ata / libata-core.c
blobb525a0981348dfd16aa04ac2db5077a00c84a9a8
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/byteorder.h>
66 #include <linux/cdrom.h>
68 #include "libata.h"
71 /* debounce timing parameters in msecs { interval, duration, timeout } */
72 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
73 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
74 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
76 const struct ata_port_operations ata_base_port_ops = {
77 .prereset = ata_std_prereset,
78 .postreset = ata_std_postreset,
79 .error_handler = ata_std_error_handler,
82 const struct ata_port_operations sata_port_ops = {
83 .inherits = &ata_base_port_ops,
85 .qc_defer = ata_std_qc_defer,
86 .hardreset = sata_std_hardreset,
89 static unsigned int ata_dev_init_params(struct ata_device *dev,
90 u16 heads, u16 sectors);
91 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
92 static unsigned int ata_dev_set_feature(struct ata_device *dev,
93 u8 enable, u8 feature);
94 static void ata_dev_xfermask(struct ata_device *dev);
95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
97 unsigned int ata_print_id = 1;
98 static struct workqueue_struct *ata_wq;
100 struct workqueue_struct *ata_aux_wq;
102 struct ata_force_param {
103 const char *name;
104 unsigned int cbl;
105 int spd_limit;
106 unsigned long xfer_mask;
107 unsigned int horkage_on;
108 unsigned int horkage_off;
109 unsigned int lflags;
112 struct ata_force_ent {
113 int port;
114 int device;
115 struct ata_force_param param;
118 static struct ata_force_ent *ata_force_tbl;
119 static int ata_force_tbl_size;
121 static char ata_force_param_buf[PAGE_SIZE] __initdata;
122 /* param_buf is thrown away after initialization, disallow read */
123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126 static int atapi_enabled = 1;
127 module_param(atapi_enabled, int, 0444);
128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
130 static int atapi_dmadir = 0;
131 module_param(atapi_dmadir, int, 0444);
132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
134 int atapi_passthru16 = 1;
135 module_param(atapi_passthru16, int, 0444);
136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
138 int libata_fua = 0;
139 module_param_named(fua, libata_fua, int, 0444);
140 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
142 static int ata_ignore_hpa;
143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
147 module_param_named(dma, libata_dma_mask, int, 0444);
148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150 static int ata_probe_timeout;
151 module_param(ata_probe_timeout, int, 0444);
152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154 int libata_noacpi = 0;
155 module_param_named(noacpi, libata_noacpi, int, 0444);
156 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
158 int libata_allow_tpm = 0;
159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
162 MODULE_AUTHOR("Jeff Garzik");
163 MODULE_DESCRIPTION("Library module for ATA devices");
164 MODULE_LICENSE("GPL");
165 MODULE_VERSION(DRV_VERSION);
168 static bool ata_sstatus_online(u32 sstatus)
170 return (sstatus & 0xf) == 0x3;
174 * ata_link_next - link iteration helper
175 * @link: the previous link, NULL to start
176 * @ap: ATA port containing links to iterate
177 * @mode: iteration mode, one of ATA_LITER_*
179 * LOCKING:
180 * Host lock or EH context.
182 * RETURNS:
183 * Pointer to the next link.
185 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
186 enum ata_link_iter_mode mode)
188 BUG_ON(mode != ATA_LITER_EDGE &&
189 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191 /* NULL link indicates start of iteration */
192 if (!link)
193 switch (mode) {
194 case ATA_LITER_EDGE:
195 case ATA_LITER_PMP_FIRST:
196 if (sata_pmp_attached(ap))
197 return ap->pmp_link;
198 /* fall through */
199 case ATA_LITER_HOST_FIRST:
200 return &ap->link;
203 /* we just iterated over the host link, what's next? */
204 if (link == &ap->link)
205 switch (mode) {
206 case ATA_LITER_HOST_FIRST:
207 if (sata_pmp_attached(ap))
208 return ap->pmp_link;
209 /* fall through */
210 case ATA_LITER_PMP_FIRST:
211 if (unlikely(ap->slave_link))
212 return ap->slave_link;
213 /* fall through */
214 case ATA_LITER_EDGE:
215 return NULL;
218 /* slave_link excludes PMP */
219 if (unlikely(link == ap->slave_link))
220 return NULL;
222 /* we were over a PMP link */
223 if (++link < ap->pmp_link + ap->nr_pmp_links)
224 return link;
226 if (mode == ATA_LITER_PMP_FIRST)
227 return &ap->link;
229 return NULL;
233 * ata_dev_next - device iteration helper
234 * @dev: the previous device, NULL to start
235 * @link: ATA link containing devices to iterate
236 * @mode: iteration mode, one of ATA_DITER_*
238 * LOCKING:
239 * Host lock or EH context.
241 * RETURNS:
242 * Pointer to the next device.
244 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
245 enum ata_dev_iter_mode mode)
247 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
248 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
250 /* NULL dev indicates start of iteration */
251 if (!dev)
252 switch (mode) {
253 case ATA_DITER_ENABLED:
254 case ATA_DITER_ALL:
255 dev = link->device;
256 goto check;
257 case ATA_DITER_ENABLED_REVERSE:
258 case ATA_DITER_ALL_REVERSE:
259 dev = link->device + ata_link_max_devices(link) - 1;
260 goto check;
263 next:
264 /* move to the next one */
265 switch (mode) {
266 case ATA_DITER_ENABLED:
267 case ATA_DITER_ALL:
268 if (++dev < link->device + ata_link_max_devices(link))
269 goto check;
270 return NULL;
271 case ATA_DITER_ENABLED_REVERSE:
272 case ATA_DITER_ALL_REVERSE:
273 if (--dev >= link->device)
274 goto check;
275 return NULL;
278 check:
279 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
280 !ata_dev_enabled(dev))
281 goto next;
282 return dev;
286 * ata_dev_phys_link - find physical link for a device
287 * @dev: ATA device to look up physical link for
289 * Look up physical link which @dev is attached to. Note that
290 * this is different from @dev->link only when @dev is on slave
291 * link. For all other cases, it's the same as @dev->link.
293 * LOCKING:
294 * Don't care.
296 * RETURNS:
297 * Pointer to the found physical link.
299 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
301 struct ata_port *ap = dev->link->ap;
303 if (!ap->slave_link)
304 return dev->link;
305 if (!dev->devno)
306 return &ap->link;
307 return ap->slave_link;
311 * ata_force_cbl - force cable type according to libata.force
312 * @ap: ATA port of interest
314 * Force cable type according to libata.force and whine about it.
315 * The last entry which has matching port number is used, so it
316 * can be specified as part of device force parameters. For
317 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
318 * same effect.
320 * LOCKING:
321 * EH context.
323 void ata_force_cbl(struct ata_port *ap)
325 int i;
327 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
328 const struct ata_force_ent *fe = &ata_force_tbl[i];
330 if (fe->port != -1 && fe->port != ap->print_id)
331 continue;
333 if (fe->param.cbl == ATA_CBL_NONE)
334 continue;
336 ap->cbl = fe->param.cbl;
337 ata_port_printk(ap, KERN_NOTICE,
338 "FORCE: cable set to %s\n", fe->param.name);
339 return;
344 * ata_force_link_limits - force link limits according to libata.force
345 * @link: ATA link of interest
347 * Force link flags and SATA spd limit according to libata.force
348 * and whine about it. When only the port part is specified
349 * (e.g. 1:), the limit applies to all links connected to both
350 * the host link and all fan-out ports connected via PMP. If the
351 * device part is specified as 0 (e.g. 1.00:), it specifies the
352 * first fan-out link not the host link. Device number 15 always
353 * points to the host link whether PMP is attached or not. If the
354 * controller has slave link, device number 16 points to it.
356 * LOCKING:
357 * EH context.
359 static void ata_force_link_limits(struct ata_link *link)
361 bool did_spd = false;
362 int linkno = link->pmp;
363 int i;
365 if (ata_is_host_link(link))
366 linkno += 15;
368 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
369 const struct ata_force_ent *fe = &ata_force_tbl[i];
371 if (fe->port != -1 && fe->port != link->ap->print_id)
372 continue;
374 if (fe->device != -1 && fe->device != linkno)
375 continue;
377 /* only honor the first spd limit */
378 if (!did_spd && fe->param.spd_limit) {
379 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
380 ata_link_printk(link, KERN_NOTICE,
381 "FORCE: PHY spd limit set to %s\n",
382 fe->param.name);
383 did_spd = true;
386 /* let lflags stack */
387 if (fe->param.lflags) {
388 link->flags |= fe->param.lflags;
389 ata_link_printk(link, KERN_NOTICE,
390 "FORCE: link flag 0x%x forced -> 0x%x\n",
391 fe->param.lflags, link->flags);
397 * ata_force_xfermask - force xfermask according to libata.force
398 * @dev: ATA device of interest
400 * Force xfer_mask according to libata.force and whine about it.
401 * For consistency with link selection, device number 15 selects
402 * the first device connected to the host link.
404 * LOCKING:
405 * EH context.
407 static void ata_force_xfermask(struct ata_device *dev)
409 int devno = dev->link->pmp + dev->devno;
410 int alt_devno = devno;
411 int i;
413 /* allow n.15/16 for devices attached to host port */
414 if (ata_is_host_link(dev->link))
415 alt_devno += 15;
417 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
418 const struct ata_force_ent *fe = &ata_force_tbl[i];
419 unsigned long pio_mask, mwdma_mask, udma_mask;
421 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
422 continue;
424 if (fe->device != -1 && fe->device != devno &&
425 fe->device != alt_devno)
426 continue;
428 if (!fe->param.xfer_mask)
429 continue;
431 ata_unpack_xfermask(fe->param.xfer_mask,
432 &pio_mask, &mwdma_mask, &udma_mask);
433 if (udma_mask)
434 dev->udma_mask = udma_mask;
435 else if (mwdma_mask) {
436 dev->udma_mask = 0;
437 dev->mwdma_mask = mwdma_mask;
438 } else {
439 dev->udma_mask = 0;
440 dev->mwdma_mask = 0;
441 dev->pio_mask = pio_mask;
444 ata_dev_printk(dev, KERN_NOTICE,
445 "FORCE: xfer_mask set to %s\n", fe->param.name);
446 return;
451 * ata_force_horkage - force horkage according to libata.force
452 * @dev: ATA device of interest
454 * Force horkage according to libata.force and whine about it.
455 * For consistency with link selection, device number 15 selects
456 * the first device connected to the host link.
458 * LOCKING:
459 * EH context.
461 static void ata_force_horkage(struct ata_device *dev)
463 int devno = dev->link->pmp + dev->devno;
464 int alt_devno = devno;
465 int i;
467 /* allow n.15/16 for devices attached to host port */
468 if (ata_is_host_link(dev->link))
469 alt_devno += 15;
471 for (i = 0; i < ata_force_tbl_size; i++) {
472 const struct ata_force_ent *fe = &ata_force_tbl[i];
474 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
475 continue;
477 if (fe->device != -1 && fe->device != devno &&
478 fe->device != alt_devno)
479 continue;
481 if (!(~dev->horkage & fe->param.horkage_on) &&
482 !(dev->horkage & fe->param.horkage_off))
483 continue;
485 dev->horkage |= fe->param.horkage_on;
486 dev->horkage &= ~fe->param.horkage_off;
488 ata_dev_printk(dev, KERN_NOTICE,
489 "FORCE: horkage modified (%s)\n", fe->param.name);
494 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
495 * @opcode: SCSI opcode
497 * Determine ATAPI command type from @opcode.
499 * LOCKING:
500 * None.
502 * RETURNS:
503 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505 int atapi_cmd_type(u8 opcode)
507 switch (opcode) {
508 case GPCMD_READ_10:
509 case GPCMD_READ_12:
510 return ATAPI_READ;
512 case GPCMD_WRITE_10:
513 case GPCMD_WRITE_12:
514 case GPCMD_WRITE_AND_VERIFY_10:
515 return ATAPI_WRITE;
517 case GPCMD_READ_CD:
518 case GPCMD_READ_CD_MSF:
519 return ATAPI_READ_CD;
521 case ATA_16:
522 case ATA_12:
523 if (atapi_passthru16)
524 return ATAPI_PASS_THRU;
525 /* fall thru */
526 default:
527 return ATAPI_MISC;
532 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
533 * @tf: Taskfile to convert
534 * @pmp: Port multiplier port
535 * @is_cmd: This FIS is for command
536 * @fis: Buffer into which data will output
538 * Converts a standard ATA taskfile to a Serial ATA
539 * FIS structure (Register - Host to Device).
541 * LOCKING:
542 * Inherited from caller.
544 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
546 fis[0] = 0x27; /* Register - Host to Device FIS */
547 fis[1] = pmp & 0xf; /* Port multiplier number*/
548 if (is_cmd)
549 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
551 fis[2] = tf->command;
552 fis[3] = tf->feature;
554 fis[4] = tf->lbal;
555 fis[5] = tf->lbam;
556 fis[6] = tf->lbah;
557 fis[7] = tf->device;
559 fis[8] = tf->hob_lbal;
560 fis[9] = tf->hob_lbam;
561 fis[10] = tf->hob_lbah;
562 fis[11] = tf->hob_feature;
564 fis[12] = tf->nsect;
565 fis[13] = tf->hob_nsect;
566 fis[14] = 0;
567 fis[15] = tf->ctl;
569 fis[16] = 0;
570 fis[17] = 0;
571 fis[18] = 0;
572 fis[19] = 0;
576 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
577 * @fis: Buffer from which data will be input
578 * @tf: Taskfile to output
580 * Converts a serial ATA FIS structure to a standard ATA taskfile.
582 * LOCKING:
583 * Inherited from caller.
586 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
588 tf->command = fis[2]; /* status */
589 tf->feature = fis[3]; /* error */
591 tf->lbal = fis[4];
592 tf->lbam = fis[5];
593 tf->lbah = fis[6];
594 tf->device = fis[7];
596 tf->hob_lbal = fis[8];
597 tf->hob_lbam = fis[9];
598 tf->hob_lbah = fis[10];
600 tf->nsect = fis[12];
601 tf->hob_nsect = fis[13];
604 static const u8 ata_rw_cmds[] = {
605 /* pio multi */
606 ATA_CMD_READ_MULTI,
607 ATA_CMD_WRITE_MULTI,
608 ATA_CMD_READ_MULTI_EXT,
609 ATA_CMD_WRITE_MULTI_EXT,
613 ATA_CMD_WRITE_MULTI_FUA_EXT,
614 /* pio */
615 ATA_CMD_PIO_READ,
616 ATA_CMD_PIO_WRITE,
617 ATA_CMD_PIO_READ_EXT,
618 ATA_CMD_PIO_WRITE_EXT,
623 /* dma */
624 ATA_CMD_READ,
625 ATA_CMD_WRITE,
626 ATA_CMD_READ_EXT,
627 ATA_CMD_WRITE_EXT,
631 ATA_CMD_WRITE_FUA_EXT
635 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
636 * @tf: command to examine and configure
637 * @dev: device tf belongs to
639 * Examine the device configuration and tf->flags to calculate
640 * the proper read/write commands and protocol to use.
642 * LOCKING:
643 * caller.
645 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
647 u8 cmd;
649 int index, fua, lba48, write;
651 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
652 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
653 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
655 if (dev->flags & ATA_DFLAG_PIO) {
656 tf->protocol = ATA_PROT_PIO;
657 index = dev->multi_count ? 0 : 8;
658 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
659 /* Unable to use DMA due to host limitation */
660 tf->protocol = ATA_PROT_PIO;
661 index = dev->multi_count ? 0 : 8;
662 } else {
663 tf->protocol = ATA_PROT_DMA;
664 index = 16;
667 cmd = ata_rw_cmds[index + fua + lba48 + write];
668 if (cmd) {
669 tf->command = cmd;
670 return 0;
672 return -1;
676 * ata_tf_read_block - Read block address from ATA taskfile
677 * @tf: ATA taskfile of interest
678 * @dev: ATA device @tf belongs to
680 * LOCKING:
681 * None.
683 * Read block address from @tf. This function can handle all
684 * three address formats - LBA, LBA48 and CHS. tf->protocol and
685 * flags select the address format to use.
687 * RETURNS:
688 * Block address read from @tf.
690 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
692 u64 block = 0;
694 if (tf->flags & ATA_TFLAG_LBA) {
695 if (tf->flags & ATA_TFLAG_LBA48) {
696 block |= (u64)tf->hob_lbah << 40;
697 block |= (u64)tf->hob_lbam << 32;
698 block |= (u64)tf->hob_lbal << 24;
699 } else
700 block |= (tf->device & 0xf) << 24;
702 block |= tf->lbah << 16;
703 block |= tf->lbam << 8;
704 block |= tf->lbal;
705 } else {
706 u32 cyl, head, sect;
708 cyl = tf->lbam | (tf->lbah << 8);
709 head = tf->device & 0xf;
710 sect = tf->lbal;
712 if (!sect) {
713 ata_dev_printk(dev, KERN_WARNING, "device reported "
714 "invalid CHS sector 0\n");
715 sect = 1; /* oh well */
718 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
721 return block;
725 * ata_build_rw_tf - Build ATA taskfile for given read/write request
726 * @tf: Target ATA taskfile
727 * @dev: ATA device @tf belongs to
728 * @block: Block address
729 * @n_block: Number of blocks
730 * @tf_flags: RW/FUA etc...
731 * @tag: tag
733 * LOCKING:
734 * None.
736 * Build ATA taskfile @tf for read/write request described by
737 * @block, @n_block, @tf_flags and @tag on @dev.
739 * RETURNS:
741 * 0 on success, -ERANGE if the request is too large for @dev,
742 * -EINVAL if the request is invalid.
744 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
745 u64 block, u32 n_block, unsigned int tf_flags,
746 unsigned int tag)
748 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
749 tf->flags |= tf_flags;
751 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
752 /* yay, NCQ */
753 if (!lba_48_ok(block, n_block))
754 return -ERANGE;
756 tf->protocol = ATA_PROT_NCQ;
757 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
759 if (tf->flags & ATA_TFLAG_WRITE)
760 tf->command = ATA_CMD_FPDMA_WRITE;
761 else
762 tf->command = ATA_CMD_FPDMA_READ;
764 tf->nsect = tag << 3;
765 tf->hob_feature = (n_block >> 8) & 0xff;
766 tf->feature = n_block & 0xff;
768 tf->hob_lbah = (block >> 40) & 0xff;
769 tf->hob_lbam = (block >> 32) & 0xff;
770 tf->hob_lbal = (block >> 24) & 0xff;
771 tf->lbah = (block >> 16) & 0xff;
772 tf->lbam = (block >> 8) & 0xff;
773 tf->lbal = block & 0xff;
775 tf->device = 1 << 6;
776 if (tf->flags & ATA_TFLAG_FUA)
777 tf->device |= 1 << 7;
778 } else if (dev->flags & ATA_DFLAG_LBA) {
779 tf->flags |= ATA_TFLAG_LBA;
781 if (lba_28_ok(block, n_block)) {
782 /* use LBA28 */
783 tf->device |= (block >> 24) & 0xf;
784 } else if (lba_48_ok(block, n_block)) {
785 if (!(dev->flags & ATA_DFLAG_LBA48))
786 return -ERANGE;
788 /* use LBA48 */
789 tf->flags |= ATA_TFLAG_LBA48;
791 tf->hob_nsect = (n_block >> 8) & 0xff;
793 tf->hob_lbah = (block >> 40) & 0xff;
794 tf->hob_lbam = (block >> 32) & 0xff;
795 tf->hob_lbal = (block >> 24) & 0xff;
796 } else
797 /* request too large even for LBA48 */
798 return -ERANGE;
800 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
801 return -EINVAL;
803 tf->nsect = n_block & 0xff;
805 tf->lbah = (block >> 16) & 0xff;
806 tf->lbam = (block >> 8) & 0xff;
807 tf->lbal = block & 0xff;
809 tf->device |= ATA_LBA;
810 } else {
811 /* CHS */
812 u32 sect, head, cyl, track;
814 /* The request -may- be too large for CHS addressing. */
815 if (!lba_28_ok(block, n_block))
816 return -ERANGE;
818 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
819 return -EINVAL;
821 /* Convert LBA to CHS */
822 track = (u32)block / dev->sectors;
823 cyl = track / dev->heads;
824 head = track % dev->heads;
825 sect = (u32)block % dev->sectors + 1;
827 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
828 (u32)block, track, cyl, head, sect);
830 /* Check whether the converted CHS can fit.
831 Cylinder: 0-65535
832 Head: 0-15
833 Sector: 1-255*/
834 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
835 return -ERANGE;
837 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
838 tf->lbal = sect;
839 tf->lbam = cyl;
840 tf->lbah = cyl >> 8;
841 tf->device |= head;
844 return 0;
848 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
849 * @pio_mask: pio_mask
850 * @mwdma_mask: mwdma_mask
851 * @udma_mask: udma_mask
853 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
854 * unsigned int xfer_mask.
856 * LOCKING:
857 * None.
859 * RETURNS:
860 * Packed xfer_mask.
862 unsigned long ata_pack_xfermask(unsigned long pio_mask,
863 unsigned long mwdma_mask,
864 unsigned long udma_mask)
866 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
867 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
868 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
872 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
873 * @xfer_mask: xfer_mask to unpack
874 * @pio_mask: resulting pio_mask
875 * @mwdma_mask: resulting mwdma_mask
876 * @udma_mask: resulting udma_mask
878 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
879 * Any NULL distination masks will be ignored.
881 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
882 unsigned long *mwdma_mask, unsigned long *udma_mask)
884 if (pio_mask)
885 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
886 if (mwdma_mask)
887 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
888 if (udma_mask)
889 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
892 static const struct ata_xfer_ent {
893 int shift, bits;
894 u8 base;
895 } ata_xfer_tbl[] = {
896 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
897 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
898 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
899 { -1, },
903 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
904 * @xfer_mask: xfer_mask of interest
906 * Return matching XFER_* value for @xfer_mask. Only the highest
907 * bit of @xfer_mask is considered.
909 * LOCKING:
910 * None.
912 * RETURNS:
913 * Matching XFER_* value, 0xff if no match found.
915 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
917 int highbit = fls(xfer_mask) - 1;
918 const struct ata_xfer_ent *ent;
920 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
921 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
922 return ent->base + highbit - ent->shift;
923 return 0xff;
927 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
928 * @xfer_mode: XFER_* of interest
930 * Return matching xfer_mask for @xfer_mode.
932 * LOCKING:
933 * None.
935 * RETURNS:
936 * Matching xfer_mask, 0 if no match found.
938 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
940 const struct ata_xfer_ent *ent;
942 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
943 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
944 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
945 & ~((1 << ent->shift) - 1);
946 return 0;
950 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
951 * @xfer_mode: XFER_* of interest
953 * Return matching xfer_shift for @xfer_mode.
955 * LOCKING:
956 * None.
958 * RETURNS:
959 * Matching xfer_shift, -1 if no match found.
961 int ata_xfer_mode2shift(unsigned long xfer_mode)
963 const struct ata_xfer_ent *ent;
965 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
966 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
967 return ent->shift;
968 return -1;
972 * ata_mode_string - convert xfer_mask to string
973 * @xfer_mask: mask of bits supported; only highest bit counts.
975 * Determine string which represents the highest speed
976 * (highest bit in @modemask).
978 * LOCKING:
979 * None.
981 * RETURNS:
982 * Constant C string representing highest speed listed in
983 * @mode_mask, or the constant C string "<n/a>".
985 const char *ata_mode_string(unsigned long xfer_mask)
987 static const char * const xfer_mode_str[] = {
988 "PIO0",
989 "PIO1",
990 "PIO2",
991 "PIO3",
992 "PIO4",
993 "PIO5",
994 "PIO6",
995 "MWDMA0",
996 "MWDMA1",
997 "MWDMA2",
998 "MWDMA3",
999 "MWDMA4",
1000 "UDMA/16",
1001 "UDMA/25",
1002 "UDMA/33",
1003 "UDMA/44",
1004 "UDMA/66",
1005 "UDMA/100",
1006 "UDMA/133",
1007 "UDMA7",
1009 int highbit;
1011 highbit = fls(xfer_mask) - 1;
1012 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1013 return xfer_mode_str[highbit];
1014 return "<n/a>";
1017 static const char *sata_spd_string(unsigned int spd)
1019 static const char * const spd_str[] = {
1020 "1.5 Gbps",
1021 "3.0 Gbps",
1022 "6.0 Gbps",
1025 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1026 return "<unknown>";
1027 return spd_str[spd - 1];
1030 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1032 struct ata_link *link = dev->link;
1033 struct ata_port *ap = link->ap;
1034 u32 scontrol;
1035 unsigned int err_mask;
1036 int rc;
1039 * disallow DIPM for drivers which haven't set
1040 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1041 * phy ready will be set in the interrupt status on
1042 * state changes, which will cause some drivers to
1043 * think there are errors - additionally drivers will
1044 * need to disable hot plug.
1046 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1047 ap->pm_policy = NOT_AVAILABLE;
1048 return -EINVAL;
1052 * For DIPM, we will only enable it for the
1053 * min_power setting.
1055 * Why? Because Disks are too stupid to know that
1056 * If the host rejects a request to go to SLUMBER
1057 * they should retry at PARTIAL, and instead it
1058 * just would give up. So, for medium_power to
1059 * work at all, we need to only allow HIPM.
1061 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1062 if (rc)
1063 return rc;
1065 switch (policy) {
1066 case MIN_POWER:
1067 /* no restrictions on IPM transitions */
1068 scontrol &= ~(0x3 << 8);
1069 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1070 if (rc)
1071 return rc;
1073 /* enable DIPM */
1074 if (dev->flags & ATA_DFLAG_DIPM)
1075 err_mask = ata_dev_set_feature(dev,
1076 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1077 break;
1078 case MEDIUM_POWER:
1079 /* allow IPM to PARTIAL */
1080 scontrol &= ~(0x1 << 8);
1081 scontrol |= (0x2 << 8);
1082 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1083 if (rc)
1084 return rc;
1087 * we don't have to disable DIPM since IPM flags
1088 * disallow transitions to SLUMBER, which effectively
1089 * disable DIPM if it does not support PARTIAL
1091 break;
1092 case NOT_AVAILABLE:
1093 case MAX_PERFORMANCE:
1094 /* disable all IPM transitions */
1095 scontrol |= (0x3 << 8);
1096 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1097 if (rc)
1098 return rc;
1101 * we don't have to disable DIPM since IPM flags
1102 * disallow all transitions which effectively
1103 * disable DIPM anyway.
1105 break;
1108 /* FIXME: handle SET FEATURES failure */
1109 (void) err_mask;
1111 return 0;
1115 * ata_dev_enable_pm - enable SATA interface power management
1116 * @dev: device to enable power management
1117 * @policy: the link power management policy
1119 * Enable SATA Interface power management. This will enable
1120 * Device Interface Power Management (DIPM) for min_power
1121 * policy, and then call driver specific callbacks for
1122 * enabling Host Initiated Power management.
1124 * Locking: Caller.
1125 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1127 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1129 int rc = 0;
1130 struct ata_port *ap = dev->link->ap;
1132 /* set HIPM first, then DIPM */
1133 if (ap->ops->enable_pm)
1134 rc = ap->ops->enable_pm(ap, policy);
1135 if (rc)
1136 goto enable_pm_out;
1137 rc = ata_dev_set_dipm(dev, policy);
1139 enable_pm_out:
1140 if (rc)
1141 ap->pm_policy = MAX_PERFORMANCE;
1142 else
1143 ap->pm_policy = policy;
1144 return /* rc */; /* hopefully we can use 'rc' eventually */
1147 #ifdef CONFIG_PM
1149 * ata_dev_disable_pm - disable SATA interface power management
1150 * @dev: device to disable power management
1152 * Disable SATA Interface power management. This will disable
1153 * Device Interface Power Management (DIPM) without changing
1154 * policy, call driver specific callbacks for disabling Host
1155 * Initiated Power management.
1157 * Locking: Caller.
1158 * Returns: void
1160 static void ata_dev_disable_pm(struct ata_device *dev)
1162 struct ata_port *ap = dev->link->ap;
1164 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1165 if (ap->ops->disable_pm)
1166 ap->ops->disable_pm(ap);
1168 #endif /* CONFIG_PM */
1170 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1172 ap->pm_policy = policy;
1173 ap->link.eh_info.action |= ATA_EH_LPM;
1174 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1175 ata_port_schedule_eh(ap);
1178 #ifdef CONFIG_PM
1179 static void ata_lpm_enable(struct ata_host *host)
1181 struct ata_link *link;
1182 struct ata_port *ap;
1183 struct ata_device *dev;
1184 int i;
1186 for (i = 0; i < host->n_ports; i++) {
1187 ap = host->ports[i];
1188 ata_for_each_link(link, ap, EDGE) {
1189 ata_for_each_dev(dev, link, ALL)
1190 ata_dev_disable_pm(dev);
1195 static void ata_lpm_disable(struct ata_host *host)
1197 int i;
1199 for (i = 0; i < host->n_ports; i++) {
1200 struct ata_port *ap = host->ports[i];
1201 ata_lpm_schedule(ap, ap->pm_policy);
1204 #endif /* CONFIG_PM */
1207 * ata_dev_classify - determine device type based on ATA-spec signature
1208 * @tf: ATA taskfile register set for device to be identified
1210 * Determine from taskfile register contents whether a device is
1211 * ATA or ATAPI, as per "Signature and persistence" section
1212 * of ATA/PI spec (volume 1, sect 5.14).
1214 * LOCKING:
1215 * None.
1217 * RETURNS:
1218 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1219 * %ATA_DEV_UNKNOWN the event of failure.
1221 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1223 /* Apple's open source Darwin code hints that some devices only
1224 * put a proper signature into the LBA mid/high registers,
1225 * So, we only check those. It's sufficient for uniqueness.
1227 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1228 * signatures for ATA and ATAPI devices attached on SerialATA,
1229 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1230 * spec has never mentioned about using different signatures
1231 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1232 * Multiplier specification began to use 0x69/0x96 to identify
1233 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1234 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1235 * 0x69/0x96 shortly and described them as reserved for
1236 * SerialATA.
1238 * We follow the current spec and consider that 0x69/0x96
1239 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1240 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1241 * SEMB signature. This is worked around in
1242 * ata_dev_read_id().
1244 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1245 DPRINTK("found ATA device by sig\n");
1246 return ATA_DEV_ATA;
1249 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1250 DPRINTK("found ATAPI device by sig\n");
1251 return ATA_DEV_ATAPI;
1254 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1255 DPRINTK("found PMP device by sig\n");
1256 return ATA_DEV_PMP;
1259 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1260 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1261 return ATA_DEV_SEMB;
1264 DPRINTK("unknown device\n");
1265 return ATA_DEV_UNKNOWN;
1269 * ata_id_string - Convert IDENTIFY DEVICE page into string
1270 * @id: IDENTIFY DEVICE results we will examine
1271 * @s: string into which data is output
1272 * @ofs: offset into identify device page
1273 * @len: length of string to return. must be an even number.
1275 * The strings in the IDENTIFY DEVICE page are broken up into
1276 * 16-bit chunks. Run through the string, and output each
1277 * 8-bit chunk linearly, regardless of platform.
1279 * LOCKING:
1280 * caller.
1283 void ata_id_string(const u16 *id, unsigned char *s,
1284 unsigned int ofs, unsigned int len)
1286 unsigned int c;
1288 BUG_ON(len & 1);
1290 while (len > 0) {
1291 c = id[ofs] >> 8;
1292 *s = c;
1293 s++;
1295 c = id[ofs] & 0xff;
1296 *s = c;
1297 s++;
1299 ofs++;
1300 len -= 2;
1305 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1306 * @id: IDENTIFY DEVICE results we will examine
1307 * @s: string into which data is output
1308 * @ofs: offset into identify device page
1309 * @len: length of string to return. must be an odd number.
1311 * This function is identical to ata_id_string except that it
1312 * trims trailing spaces and terminates the resulting string with
1313 * null. @len must be actual maximum length (even number) + 1.
1315 * LOCKING:
1316 * caller.
1318 void ata_id_c_string(const u16 *id, unsigned char *s,
1319 unsigned int ofs, unsigned int len)
1321 unsigned char *p;
1323 ata_id_string(id, s, ofs, len - 1);
1325 p = s + strnlen(s, len - 1);
1326 while (p > s && p[-1] == ' ')
1327 p--;
1328 *p = '\0';
1331 static u64 ata_id_n_sectors(const u16 *id)
1333 if (ata_id_has_lba(id)) {
1334 if (ata_id_has_lba48(id))
1335 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1336 else
1337 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1338 } else {
1339 if (ata_id_current_chs_valid(id))
1340 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1341 id[ATA_ID_CUR_SECTORS];
1342 else
1343 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1344 id[ATA_ID_SECTORS];
1348 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1350 u64 sectors = 0;
1352 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1353 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1354 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1355 sectors |= (tf->lbah & 0xff) << 16;
1356 sectors |= (tf->lbam & 0xff) << 8;
1357 sectors |= (tf->lbal & 0xff);
1359 return sectors;
1362 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1364 u64 sectors = 0;
1366 sectors |= (tf->device & 0x0f) << 24;
1367 sectors |= (tf->lbah & 0xff) << 16;
1368 sectors |= (tf->lbam & 0xff) << 8;
1369 sectors |= (tf->lbal & 0xff);
1371 return sectors;
1375 * ata_read_native_max_address - Read native max address
1376 * @dev: target device
1377 * @max_sectors: out parameter for the result native max address
1379 * Perform an LBA48 or LBA28 native size query upon the device in
1380 * question.
1382 * RETURNS:
1383 * 0 on success, -EACCES if command is aborted by the drive.
1384 * -EIO on other errors.
1386 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1388 unsigned int err_mask;
1389 struct ata_taskfile tf;
1390 int lba48 = ata_id_has_lba48(dev->id);
1392 ata_tf_init(dev, &tf);
1394 /* always clear all address registers */
1395 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1397 if (lba48) {
1398 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1399 tf.flags |= ATA_TFLAG_LBA48;
1400 } else
1401 tf.command = ATA_CMD_READ_NATIVE_MAX;
1403 tf.protocol |= ATA_PROT_NODATA;
1404 tf.device |= ATA_LBA;
1406 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1407 if (err_mask) {
1408 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1409 "max address (err_mask=0x%x)\n", err_mask);
1410 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1411 return -EACCES;
1412 return -EIO;
1415 if (lba48)
1416 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1417 else
1418 *max_sectors = ata_tf_to_lba(&tf) + 1;
1419 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1420 (*max_sectors)--;
1421 return 0;
1425 * ata_set_max_sectors - Set max sectors
1426 * @dev: target device
1427 * @new_sectors: new max sectors value to set for the device
1429 * Set max sectors of @dev to @new_sectors.
1431 * RETURNS:
1432 * 0 on success, -EACCES if command is aborted or denied (due to
1433 * previous non-volatile SET_MAX) by the drive. -EIO on other
1434 * errors.
1436 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1438 unsigned int err_mask;
1439 struct ata_taskfile tf;
1440 int lba48 = ata_id_has_lba48(dev->id);
1442 new_sectors--;
1444 ata_tf_init(dev, &tf);
1446 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1448 if (lba48) {
1449 tf.command = ATA_CMD_SET_MAX_EXT;
1450 tf.flags |= ATA_TFLAG_LBA48;
1452 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1453 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1454 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1455 } else {
1456 tf.command = ATA_CMD_SET_MAX;
1458 tf.device |= (new_sectors >> 24) & 0xf;
1461 tf.protocol |= ATA_PROT_NODATA;
1462 tf.device |= ATA_LBA;
1464 tf.lbal = (new_sectors >> 0) & 0xff;
1465 tf.lbam = (new_sectors >> 8) & 0xff;
1466 tf.lbah = (new_sectors >> 16) & 0xff;
1468 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1469 if (err_mask) {
1470 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1471 "max address (err_mask=0x%x)\n", err_mask);
1472 if (err_mask == AC_ERR_DEV &&
1473 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1474 return -EACCES;
1475 return -EIO;
1478 return 0;
1482 * ata_hpa_resize - Resize a device with an HPA set
1483 * @dev: Device to resize
1485 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1486 * it if required to the full size of the media. The caller must check
1487 * the drive has the HPA feature set enabled.
1489 * RETURNS:
1490 * 0 on success, -errno on failure.
1492 static int ata_hpa_resize(struct ata_device *dev)
1494 struct ata_eh_context *ehc = &dev->link->eh_context;
1495 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1496 u64 sectors = ata_id_n_sectors(dev->id);
1497 u64 native_sectors;
1498 int rc;
1500 /* do we need to do it? */
1501 if (dev->class != ATA_DEV_ATA ||
1502 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1503 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1504 return 0;
1506 /* read native max address */
1507 rc = ata_read_native_max_address(dev, &native_sectors);
1508 if (rc) {
1509 /* If device aborted the command or HPA isn't going to
1510 * be unlocked, skip HPA resizing.
1512 if (rc == -EACCES || !ata_ignore_hpa) {
1513 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1514 "broken, skipping HPA handling\n");
1515 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1517 /* we can continue if device aborted the command */
1518 if (rc == -EACCES)
1519 rc = 0;
1522 return rc;
1524 dev->n_native_sectors = native_sectors;
1526 /* nothing to do? */
1527 if (native_sectors <= sectors || !ata_ignore_hpa) {
1528 if (!print_info || native_sectors == sectors)
1529 return 0;
1531 if (native_sectors > sectors)
1532 ata_dev_printk(dev, KERN_INFO,
1533 "HPA detected: current %llu, native %llu\n",
1534 (unsigned long long)sectors,
1535 (unsigned long long)native_sectors);
1536 else if (native_sectors < sectors)
1537 ata_dev_printk(dev, KERN_WARNING,
1538 "native sectors (%llu) is smaller than "
1539 "sectors (%llu)\n",
1540 (unsigned long long)native_sectors,
1541 (unsigned long long)sectors);
1542 return 0;
1545 /* let's unlock HPA */
1546 rc = ata_set_max_sectors(dev, native_sectors);
1547 if (rc == -EACCES) {
1548 /* if device aborted the command, skip HPA resizing */
1549 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1550 "(%llu -> %llu), skipping HPA handling\n",
1551 (unsigned long long)sectors,
1552 (unsigned long long)native_sectors);
1553 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1554 return 0;
1555 } else if (rc)
1556 return rc;
1558 /* re-read IDENTIFY data */
1559 rc = ata_dev_reread_id(dev, 0);
1560 if (rc) {
1561 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1562 "data after HPA resizing\n");
1563 return rc;
1566 if (print_info) {
1567 u64 new_sectors = ata_id_n_sectors(dev->id);
1568 ata_dev_printk(dev, KERN_INFO,
1569 "HPA unlocked: %llu -> %llu, native %llu\n",
1570 (unsigned long long)sectors,
1571 (unsigned long long)new_sectors,
1572 (unsigned long long)native_sectors);
1575 return 0;
1579 * ata_dump_id - IDENTIFY DEVICE info debugging output
1580 * @id: IDENTIFY DEVICE page to dump
1582 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1583 * page.
1585 * LOCKING:
1586 * caller.
1589 static inline void ata_dump_id(const u16 *id)
1591 DPRINTK("49==0x%04x "
1592 "53==0x%04x "
1593 "63==0x%04x "
1594 "64==0x%04x "
1595 "75==0x%04x \n",
1596 id[49],
1597 id[53],
1598 id[63],
1599 id[64],
1600 id[75]);
1601 DPRINTK("80==0x%04x "
1602 "81==0x%04x "
1603 "82==0x%04x "
1604 "83==0x%04x "
1605 "84==0x%04x \n",
1606 id[80],
1607 id[81],
1608 id[82],
1609 id[83],
1610 id[84]);
1611 DPRINTK("88==0x%04x "
1612 "93==0x%04x\n",
1613 id[88],
1614 id[93]);
1618 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1619 * @id: IDENTIFY data to compute xfer mask from
1621 * Compute the xfermask for this device. This is not as trivial
1622 * as it seems if we must consider early devices correctly.
1624 * FIXME: pre IDE drive timing (do we care ?).
1626 * LOCKING:
1627 * None.
1629 * RETURNS:
1630 * Computed xfermask
1632 unsigned long ata_id_xfermask(const u16 *id)
1634 unsigned long pio_mask, mwdma_mask, udma_mask;
1636 /* Usual case. Word 53 indicates word 64 is valid */
1637 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1638 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1639 pio_mask <<= 3;
1640 pio_mask |= 0x7;
1641 } else {
1642 /* If word 64 isn't valid then Word 51 high byte holds
1643 * the PIO timing number for the maximum. Turn it into
1644 * a mask.
1646 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1647 if (mode < 5) /* Valid PIO range */
1648 pio_mask = (2 << mode) - 1;
1649 else
1650 pio_mask = 1;
1652 /* But wait.. there's more. Design your standards by
1653 * committee and you too can get a free iordy field to
1654 * process. However its the speeds not the modes that
1655 * are supported... Note drivers using the timing API
1656 * will get this right anyway
1660 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1662 if (ata_id_is_cfa(id)) {
1664 * Process compact flash extended modes
1666 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1667 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1669 if (pio)
1670 pio_mask |= (1 << 5);
1671 if (pio > 1)
1672 pio_mask |= (1 << 6);
1673 if (dma)
1674 mwdma_mask |= (1 << 3);
1675 if (dma > 1)
1676 mwdma_mask |= (1 << 4);
1679 udma_mask = 0;
1680 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1681 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1683 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1687 * ata_pio_queue_task - Queue port_task
1688 * @ap: The ata_port to queue port_task for
1689 * @data: data for @fn to use
1690 * @delay: delay time in msecs for workqueue function
1692 * Schedule @fn(@data) for execution after @delay jiffies using
1693 * port_task. There is one port_task per port and it's the
1694 * user(low level driver)'s responsibility to make sure that only
1695 * one task is active at any given time.
1697 * libata core layer takes care of synchronization between
1698 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1699 * synchronization.
1701 * LOCKING:
1702 * Inherited from caller.
1704 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1706 ap->port_task_data = data;
1708 /* may fail if ata_port_flush_task() in progress */
1709 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1713 * ata_port_flush_task - Flush port_task
1714 * @ap: The ata_port to flush port_task for
1716 * After this function completes, port_task is guranteed not to
1717 * be running or scheduled.
1719 * LOCKING:
1720 * Kernel thread context (may sleep)
1722 void ata_port_flush_task(struct ata_port *ap)
1724 DPRINTK("ENTER\n");
1726 cancel_rearming_delayed_work(&ap->port_task);
1728 if (ata_msg_ctl(ap))
1729 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1732 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1734 struct completion *waiting = qc->private_data;
1736 complete(waiting);
1740 * ata_exec_internal_sg - execute libata internal command
1741 * @dev: Device to which the command is sent
1742 * @tf: Taskfile registers for the command and the result
1743 * @cdb: CDB for packet command
1744 * @dma_dir: Data tranfer direction of the command
1745 * @sgl: sg list for the data buffer of the command
1746 * @n_elem: Number of sg entries
1747 * @timeout: Timeout in msecs (0 for default)
1749 * Executes libata internal command with timeout. @tf contains
1750 * command on entry and result on return. Timeout and error
1751 * conditions are reported via return value. No recovery action
1752 * is taken after a command times out. It's caller's duty to
1753 * clean up after timeout.
1755 * LOCKING:
1756 * None. Should be called with kernel context, might sleep.
1758 * RETURNS:
1759 * Zero on success, AC_ERR_* mask on failure
1761 unsigned ata_exec_internal_sg(struct ata_device *dev,
1762 struct ata_taskfile *tf, const u8 *cdb,
1763 int dma_dir, struct scatterlist *sgl,
1764 unsigned int n_elem, unsigned long timeout)
1766 struct ata_link *link = dev->link;
1767 struct ata_port *ap = link->ap;
1768 u8 command = tf->command;
1769 int auto_timeout = 0;
1770 struct ata_queued_cmd *qc;
1771 unsigned int tag, preempted_tag;
1772 u32 preempted_sactive, preempted_qc_active;
1773 int preempted_nr_active_links;
1774 DECLARE_COMPLETION_ONSTACK(wait);
1775 unsigned long flags;
1776 unsigned int err_mask;
1777 int rc;
1779 spin_lock_irqsave(ap->lock, flags);
1781 /* no internal command while frozen */
1782 if (ap->pflags & ATA_PFLAG_FROZEN) {
1783 spin_unlock_irqrestore(ap->lock, flags);
1784 return AC_ERR_SYSTEM;
1787 /* initialize internal qc */
1789 /* XXX: Tag 0 is used for drivers with legacy EH as some
1790 * drivers choke if any other tag is given. This breaks
1791 * ata_tag_internal() test for those drivers. Don't use new
1792 * EH stuff without converting to it.
1794 if (ap->ops->error_handler)
1795 tag = ATA_TAG_INTERNAL;
1796 else
1797 tag = 0;
1799 if (test_and_set_bit(tag, &ap->qc_allocated))
1800 BUG();
1801 qc = __ata_qc_from_tag(ap, tag);
1803 qc->tag = tag;
1804 qc->scsicmd = NULL;
1805 qc->ap = ap;
1806 qc->dev = dev;
1807 ata_qc_reinit(qc);
1809 preempted_tag = link->active_tag;
1810 preempted_sactive = link->sactive;
1811 preempted_qc_active = ap->qc_active;
1812 preempted_nr_active_links = ap->nr_active_links;
1813 link->active_tag = ATA_TAG_POISON;
1814 link->sactive = 0;
1815 ap->qc_active = 0;
1816 ap->nr_active_links = 0;
1818 /* prepare & issue qc */
1819 qc->tf = *tf;
1820 if (cdb)
1821 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1822 qc->flags |= ATA_QCFLAG_RESULT_TF;
1823 qc->dma_dir = dma_dir;
1824 if (dma_dir != DMA_NONE) {
1825 unsigned int i, buflen = 0;
1826 struct scatterlist *sg;
1828 for_each_sg(sgl, sg, n_elem, i)
1829 buflen += sg->length;
1831 ata_sg_init(qc, sgl, n_elem);
1832 qc->nbytes = buflen;
1835 qc->private_data = &wait;
1836 qc->complete_fn = ata_qc_complete_internal;
1838 ata_qc_issue(qc);
1840 spin_unlock_irqrestore(ap->lock, flags);
1842 if (!timeout) {
1843 if (ata_probe_timeout)
1844 timeout = ata_probe_timeout * 1000;
1845 else {
1846 timeout = ata_internal_cmd_timeout(dev, command);
1847 auto_timeout = 1;
1851 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1853 ata_port_flush_task(ap);
1855 if (!rc) {
1856 spin_lock_irqsave(ap->lock, flags);
1858 /* We're racing with irq here. If we lose, the
1859 * following test prevents us from completing the qc
1860 * twice. If we win, the port is frozen and will be
1861 * cleaned up by ->post_internal_cmd().
1863 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1864 qc->err_mask |= AC_ERR_TIMEOUT;
1866 if (ap->ops->error_handler)
1867 ata_port_freeze(ap);
1868 else
1869 ata_qc_complete(qc);
1871 if (ata_msg_warn(ap))
1872 ata_dev_printk(dev, KERN_WARNING,
1873 "qc timeout (cmd 0x%x)\n", command);
1876 spin_unlock_irqrestore(ap->lock, flags);
1879 /* do post_internal_cmd */
1880 if (ap->ops->post_internal_cmd)
1881 ap->ops->post_internal_cmd(qc);
1883 /* perform minimal error analysis */
1884 if (qc->flags & ATA_QCFLAG_FAILED) {
1885 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1886 qc->err_mask |= AC_ERR_DEV;
1888 if (!qc->err_mask)
1889 qc->err_mask |= AC_ERR_OTHER;
1891 if (qc->err_mask & ~AC_ERR_OTHER)
1892 qc->err_mask &= ~AC_ERR_OTHER;
1895 /* finish up */
1896 spin_lock_irqsave(ap->lock, flags);
1898 *tf = qc->result_tf;
1899 err_mask = qc->err_mask;
1901 ata_qc_free(qc);
1902 link->active_tag = preempted_tag;
1903 link->sactive = preempted_sactive;
1904 ap->qc_active = preempted_qc_active;
1905 ap->nr_active_links = preempted_nr_active_links;
1907 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1908 * Until those drivers are fixed, we detect the condition
1909 * here, fail the command with AC_ERR_SYSTEM and reenable the
1910 * port.
1912 * Note that this doesn't change any behavior as internal
1913 * command failure results in disabling the device in the
1914 * higher layer for LLDDs without new reset/EH callbacks.
1916 * Kill the following code as soon as those drivers are fixed.
1918 if (ap->flags & ATA_FLAG_DISABLED) {
1919 err_mask |= AC_ERR_SYSTEM;
1920 ata_port_probe(ap);
1923 spin_unlock_irqrestore(ap->lock, flags);
1925 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1926 ata_internal_cmd_timed_out(dev, command);
1928 return err_mask;
1932 * ata_exec_internal - execute libata internal command
1933 * @dev: Device to which the command is sent
1934 * @tf: Taskfile registers for the command and the result
1935 * @cdb: CDB for packet command
1936 * @dma_dir: Data tranfer direction of the command
1937 * @buf: Data buffer of the command
1938 * @buflen: Length of data buffer
1939 * @timeout: Timeout in msecs (0 for default)
1941 * Wrapper around ata_exec_internal_sg() which takes simple
1942 * buffer instead of sg list.
1944 * LOCKING:
1945 * None. Should be called with kernel context, might sleep.
1947 * RETURNS:
1948 * Zero on success, AC_ERR_* mask on failure
1950 unsigned ata_exec_internal(struct ata_device *dev,
1951 struct ata_taskfile *tf, const u8 *cdb,
1952 int dma_dir, void *buf, unsigned int buflen,
1953 unsigned long timeout)
1955 struct scatterlist *psg = NULL, sg;
1956 unsigned int n_elem = 0;
1958 if (dma_dir != DMA_NONE) {
1959 WARN_ON(!buf);
1960 sg_init_one(&sg, buf, buflen);
1961 psg = &sg;
1962 n_elem++;
1965 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1966 timeout);
1970 * ata_do_simple_cmd - execute simple internal command
1971 * @dev: Device to which the command is sent
1972 * @cmd: Opcode to execute
1974 * Execute a 'simple' command, that only consists of the opcode
1975 * 'cmd' itself, without filling any other registers
1977 * LOCKING:
1978 * Kernel thread context (may sleep).
1980 * RETURNS:
1981 * Zero on success, AC_ERR_* mask on failure
1983 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1985 struct ata_taskfile tf;
1987 ata_tf_init(dev, &tf);
1989 tf.command = cmd;
1990 tf.flags |= ATA_TFLAG_DEVICE;
1991 tf.protocol = ATA_PROT_NODATA;
1993 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1997 * ata_pio_need_iordy - check if iordy needed
1998 * @adev: ATA device
2000 * Check if the current speed of the device requires IORDY. Used
2001 * by various controllers for chip configuration.
2003 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
2005 /* Don't set IORDY if we're preparing for reset. IORDY may
2006 * lead to controller lock up on certain controllers if the
2007 * port is not occupied. See bko#11703 for details.
2009 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
2010 return 0;
2011 /* Controller doesn't support IORDY. Probably a pointless
2012 * check as the caller should know this.
2014 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
2015 return 0;
2016 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
2017 if (ata_id_is_cfa(adev->id)
2018 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2019 return 0;
2020 /* PIO3 and higher it is mandatory */
2021 if (adev->pio_mode > XFER_PIO_2)
2022 return 1;
2023 /* We turn it on when possible */
2024 if (ata_id_has_iordy(adev->id))
2025 return 1;
2026 return 0;
2030 * ata_pio_mask_no_iordy - Return the non IORDY mask
2031 * @adev: ATA device
2033 * Compute the highest mode possible if we are not using iordy. Return
2034 * -1 if no iordy mode is available.
2036 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2038 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2039 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
2040 u16 pio = adev->id[ATA_ID_EIDE_PIO];
2041 /* Is the speed faster than the drive allows non IORDY ? */
2042 if (pio) {
2043 /* This is cycle times not frequency - watch the logic! */
2044 if (pio > 240) /* PIO2 is 240nS per cycle */
2045 return 3 << ATA_SHIFT_PIO;
2046 return 7 << ATA_SHIFT_PIO;
2049 return 3 << ATA_SHIFT_PIO;
2053 * ata_do_dev_read_id - default ID read method
2054 * @dev: device
2055 * @tf: proposed taskfile
2056 * @id: data buffer
2058 * Issue the identify taskfile and hand back the buffer containing
2059 * identify data. For some RAID controllers and for pre ATA devices
2060 * this function is wrapped or replaced by the driver
2062 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2063 struct ata_taskfile *tf, u16 *id)
2065 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2066 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2070 * ata_dev_read_id - Read ID data from the specified device
2071 * @dev: target device
2072 * @p_class: pointer to class of the target device (may be changed)
2073 * @flags: ATA_READID_* flags
2074 * @id: buffer to read IDENTIFY data into
2076 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2077 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2078 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2079 * for pre-ATA4 drives.
2081 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2082 * now we abort if we hit that case.
2084 * LOCKING:
2085 * Kernel thread context (may sleep)
2087 * RETURNS:
2088 * 0 on success, -errno otherwise.
2090 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2091 unsigned int flags, u16 *id)
2093 struct ata_port *ap = dev->link->ap;
2094 unsigned int class = *p_class;
2095 struct ata_taskfile tf;
2096 unsigned int err_mask = 0;
2097 const char *reason;
2098 bool is_semb = class == ATA_DEV_SEMB;
2099 int may_fallback = 1, tried_spinup = 0;
2100 int rc;
2102 if (ata_msg_ctl(ap))
2103 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2105 retry:
2106 ata_tf_init(dev, &tf);
2108 switch (class) {
2109 case ATA_DEV_SEMB:
2110 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
2111 case ATA_DEV_ATA:
2112 tf.command = ATA_CMD_ID_ATA;
2113 break;
2114 case ATA_DEV_ATAPI:
2115 tf.command = ATA_CMD_ID_ATAPI;
2116 break;
2117 default:
2118 rc = -ENODEV;
2119 reason = "unsupported class";
2120 goto err_out;
2123 tf.protocol = ATA_PROT_PIO;
2125 /* Some devices choke if TF registers contain garbage. Make
2126 * sure those are properly initialized.
2128 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2130 /* Device presence detection is unreliable on some
2131 * controllers. Always poll IDENTIFY if available.
2133 tf.flags |= ATA_TFLAG_POLLING;
2135 if (ap->ops->read_id)
2136 err_mask = ap->ops->read_id(dev, &tf, id);
2137 else
2138 err_mask = ata_do_dev_read_id(dev, &tf, id);
2140 if (err_mask) {
2141 if (err_mask & AC_ERR_NODEV_HINT) {
2142 ata_dev_printk(dev, KERN_DEBUG,
2143 "NODEV after polling detection\n");
2144 return -ENOENT;
2147 if (is_semb) {
2148 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2149 "device w/ SEMB sig, disabled\n");
2150 /* SEMB is not supported yet */
2151 *p_class = ATA_DEV_SEMB_UNSUP;
2152 return 0;
2155 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2156 /* Device or controller might have reported
2157 * the wrong device class. Give a shot at the
2158 * other IDENTIFY if the current one is
2159 * aborted by the device.
2161 if (may_fallback) {
2162 may_fallback = 0;
2164 if (class == ATA_DEV_ATA)
2165 class = ATA_DEV_ATAPI;
2166 else
2167 class = ATA_DEV_ATA;
2168 goto retry;
2171 /* Control reaches here iff the device aborted
2172 * both flavors of IDENTIFYs which happens
2173 * sometimes with phantom devices.
2175 ata_dev_printk(dev, KERN_DEBUG,
2176 "both IDENTIFYs aborted, assuming NODEV\n");
2177 return -ENOENT;
2180 rc = -EIO;
2181 reason = "I/O error";
2182 goto err_out;
2185 /* Falling back doesn't make sense if ID data was read
2186 * successfully at least once.
2188 may_fallback = 0;
2190 swap_buf_le16(id, ATA_ID_WORDS);
2192 /* sanity check */
2193 rc = -EINVAL;
2194 reason = "device reports invalid type";
2196 if (class == ATA_DEV_ATA) {
2197 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2198 goto err_out;
2199 } else {
2200 if (ata_id_is_ata(id))
2201 goto err_out;
2204 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2205 tried_spinup = 1;
2207 * Drive powered-up in standby mode, and requires a specific
2208 * SET_FEATURES spin-up subcommand before it will accept
2209 * anything other than the original IDENTIFY command.
2211 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2212 if (err_mask && id[2] != 0x738c) {
2213 rc = -EIO;
2214 reason = "SPINUP failed";
2215 goto err_out;
2218 * If the drive initially returned incomplete IDENTIFY info,
2219 * we now must reissue the IDENTIFY command.
2221 if (id[2] == 0x37c8)
2222 goto retry;
2225 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2227 * The exact sequence expected by certain pre-ATA4 drives is:
2228 * SRST RESET
2229 * IDENTIFY (optional in early ATA)
2230 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2231 * anything else..
2232 * Some drives were very specific about that exact sequence.
2234 * Note that ATA4 says lba is mandatory so the second check
2235 * shoud never trigger.
2237 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2238 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2239 if (err_mask) {
2240 rc = -EIO;
2241 reason = "INIT_DEV_PARAMS failed";
2242 goto err_out;
2245 /* current CHS translation info (id[53-58]) might be
2246 * changed. reread the identify device info.
2248 flags &= ~ATA_READID_POSTRESET;
2249 goto retry;
2253 *p_class = class;
2255 return 0;
2257 err_out:
2258 if (ata_msg_warn(ap))
2259 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2260 "(%s, err_mask=0x%x)\n", reason, err_mask);
2261 return rc;
2264 static int ata_do_link_spd_horkage(struct ata_device *dev)
2266 struct ata_link *plink = ata_dev_phys_link(dev);
2267 u32 target, target_limit;
2269 if (!sata_scr_valid(plink))
2270 return 0;
2272 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2273 target = 1;
2274 else
2275 return 0;
2277 target_limit = (1 << target) - 1;
2279 /* if already on stricter limit, no need to push further */
2280 if (plink->sata_spd_limit <= target_limit)
2281 return 0;
2283 plink->sata_spd_limit = target_limit;
2285 /* Request another EH round by returning -EAGAIN if link is
2286 * going faster than the target speed. Forward progress is
2287 * guaranteed by setting sata_spd_limit to target_limit above.
2289 if (plink->sata_spd > target) {
2290 ata_dev_printk(dev, KERN_INFO,
2291 "applying link speed limit horkage to %s\n",
2292 sata_spd_string(target));
2293 return -EAGAIN;
2295 return 0;
2298 static inline u8 ata_dev_knobble(struct ata_device *dev)
2300 struct ata_port *ap = dev->link->ap;
2302 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2303 return 0;
2305 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2308 static int ata_dev_config_ncq(struct ata_device *dev,
2309 char *desc, size_t desc_sz)
2311 struct ata_port *ap = dev->link->ap;
2312 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2313 unsigned int err_mask;
2314 char *aa_desc = "";
2316 if (!ata_id_has_ncq(dev->id)) {
2317 desc[0] = '\0';
2318 return 0;
2320 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2321 snprintf(desc, desc_sz, "NCQ (not used)");
2322 return 0;
2324 if (ap->flags & ATA_FLAG_NCQ) {
2325 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2326 dev->flags |= ATA_DFLAG_NCQ;
2329 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2330 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2331 ata_id_has_fpdma_aa(dev->id)) {
2332 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2333 SATA_FPDMA_AA);
2334 if (err_mask) {
2335 ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
2336 "(error_mask=0x%x)\n", err_mask);
2337 if (err_mask != AC_ERR_DEV) {
2338 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2339 return -EIO;
2341 } else
2342 aa_desc = ", AA";
2345 if (hdepth >= ddepth)
2346 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2347 else
2348 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2349 ddepth, aa_desc);
2350 return 0;
2354 * ata_dev_configure - Configure the specified ATA/ATAPI device
2355 * @dev: Target device to configure
2357 * Configure @dev according to @dev->id. Generic and low-level
2358 * driver specific fixups are also applied.
2360 * LOCKING:
2361 * Kernel thread context (may sleep)
2363 * RETURNS:
2364 * 0 on success, -errno otherwise
2366 int ata_dev_configure(struct ata_device *dev)
2368 struct ata_port *ap = dev->link->ap;
2369 struct ata_eh_context *ehc = &dev->link->eh_context;
2370 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2371 const u16 *id = dev->id;
2372 unsigned long xfer_mask;
2373 char revbuf[7]; /* XYZ-99\0 */
2374 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2375 char modelbuf[ATA_ID_PROD_LEN+1];
2376 int rc;
2378 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2379 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2380 __func__);
2381 return 0;
2384 if (ata_msg_probe(ap))
2385 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2387 /* set horkage */
2388 dev->horkage |= ata_dev_blacklisted(dev);
2389 ata_force_horkage(dev);
2391 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2392 ata_dev_printk(dev, KERN_INFO,
2393 "unsupported device, disabling\n");
2394 ata_dev_disable(dev);
2395 return 0;
2398 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2399 dev->class == ATA_DEV_ATAPI) {
2400 ata_dev_printk(dev, KERN_WARNING,
2401 "WARNING: ATAPI is %s, device ignored.\n",
2402 atapi_enabled ? "not supported with this driver"
2403 : "disabled");
2404 ata_dev_disable(dev);
2405 return 0;
2408 rc = ata_do_link_spd_horkage(dev);
2409 if (rc)
2410 return rc;
2412 /* let ACPI work its magic */
2413 rc = ata_acpi_on_devcfg(dev);
2414 if (rc)
2415 return rc;
2417 /* massage HPA, do it early as it might change IDENTIFY data */
2418 rc = ata_hpa_resize(dev);
2419 if (rc)
2420 return rc;
2422 /* print device capabilities */
2423 if (ata_msg_probe(ap))
2424 ata_dev_printk(dev, KERN_DEBUG,
2425 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2426 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2427 __func__,
2428 id[49], id[82], id[83], id[84],
2429 id[85], id[86], id[87], id[88]);
2431 /* initialize to-be-configured parameters */
2432 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2433 dev->max_sectors = 0;
2434 dev->cdb_len = 0;
2435 dev->n_sectors = 0;
2436 dev->cylinders = 0;
2437 dev->heads = 0;
2438 dev->sectors = 0;
2439 dev->multi_count = 0;
2442 * common ATA, ATAPI feature tests
2445 /* find max transfer mode; for printk only */
2446 xfer_mask = ata_id_xfermask(id);
2448 if (ata_msg_probe(ap))
2449 ata_dump_id(id);
2451 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2452 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2453 sizeof(fwrevbuf));
2455 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2456 sizeof(modelbuf));
2458 /* ATA-specific feature tests */
2459 if (dev->class == ATA_DEV_ATA) {
2460 if (ata_id_is_cfa(id)) {
2461 /* CPRM may make this media unusable */
2462 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2463 ata_dev_printk(dev, KERN_WARNING,
2464 "supports DRM functions and may "
2465 "not be fully accessable.\n");
2466 snprintf(revbuf, 7, "CFA");
2467 } else {
2468 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2469 /* Warn the user if the device has TPM extensions */
2470 if (ata_id_has_tpm(id))
2471 ata_dev_printk(dev, KERN_WARNING,
2472 "supports DRM functions and may "
2473 "not be fully accessable.\n");
2476 dev->n_sectors = ata_id_n_sectors(id);
2478 /* get current R/W Multiple count setting */
2479 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2480 unsigned int max = dev->id[47] & 0xff;
2481 unsigned int cnt = dev->id[59] & 0xff;
2482 /* only recognize/allow powers of two here */
2483 if (is_power_of_2(max) && is_power_of_2(cnt))
2484 if (cnt <= max)
2485 dev->multi_count = cnt;
2488 if (ata_id_has_lba(id)) {
2489 const char *lba_desc;
2490 char ncq_desc[24];
2492 lba_desc = "LBA";
2493 dev->flags |= ATA_DFLAG_LBA;
2494 if (ata_id_has_lba48(id)) {
2495 dev->flags |= ATA_DFLAG_LBA48;
2496 lba_desc = "LBA48";
2498 if (dev->n_sectors >= (1UL << 28) &&
2499 ata_id_has_flush_ext(id))
2500 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2503 /* config NCQ */
2504 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2505 if (rc)
2506 return rc;
2508 /* print device info to dmesg */
2509 if (ata_msg_drv(ap) && print_info) {
2510 ata_dev_printk(dev, KERN_INFO,
2511 "%s: %s, %s, max %s\n",
2512 revbuf, modelbuf, fwrevbuf,
2513 ata_mode_string(xfer_mask));
2514 ata_dev_printk(dev, KERN_INFO,
2515 "%Lu sectors, multi %u: %s %s\n",
2516 (unsigned long long)dev->n_sectors,
2517 dev->multi_count, lba_desc, ncq_desc);
2519 } else {
2520 /* CHS */
2522 /* Default translation */
2523 dev->cylinders = id[1];
2524 dev->heads = id[3];
2525 dev->sectors = id[6];
2527 if (ata_id_current_chs_valid(id)) {
2528 /* Current CHS translation is valid. */
2529 dev->cylinders = id[54];
2530 dev->heads = id[55];
2531 dev->sectors = id[56];
2534 /* print device info to dmesg */
2535 if (ata_msg_drv(ap) && print_info) {
2536 ata_dev_printk(dev, KERN_INFO,
2537 "%s: %s, %s, max %s\n",
2538 revbuf, modelbuf, fwrevbuf,
2539 ata_mode_string(xfer_mask));
2540 ata_dev_printk(dev, KERN_INFO,
2541 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2542 (unsigned long long)dev->n_sectors,
2543 dev->multi_count, dev->cylinders,
2544 dev->heads, dev->sectors);
2548 dev->cdb_len = 16;
2551 /* ATAPI-specific feature tests */
2552 else if (dev->class == ATA_DEV_ATAPI) {
2553 const char *cdb_intr_string = "";
2554 const char *atapi_an_string = "";
2555 const char *dma_dir_string = "";
2556 u32 sntf;
2558 rc = atapi_cdb_len(id);
2559 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2560 if (ata_msg_warn(ap))
2561 ata_dev_printk(dev, KERN_WARNING,
2562 "unsupported CDB len\n");
2563 rc = -EINVAL;
2564 goto err_out_nosup;
2566 dev->cdb_len = (unsigned int) rc;
2568 /* Enable ATAPI AN if both the host and device have
2569 * the support. If PMP is attached, SNTF is required
2570 * to enable ATAPI AN to discern between PHY status
2571 * changed notifications and ATAPI ANs.
2573 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2574 (!sata_pmp_attached(ap) ||
2575 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2576 unsigned int err_mask;
2578 /* issue SET feature command to turn this on */
2579 err_mask = ata_dev_set_feature(dev,
2580 SETFEATURES_SATA_ENABLE, SATA_AN);
2581 if (err_mask)
2582 ata_dev_printk(dev, KERN_ERR,
2583 "failed to enable ATAPI AN "
2584 "(err_mask=0x%x)\n", err_mask);
2585 else {
2586 dev->flags |= ATA_DFLAG_AN;
2587 atapi_an_string = ", ATAPI AN";
2591 if (ata_id_cdb_intr(dev->id)) {
2592 dev->flags |= ATA_DFLAG_CDB_INTR;
2593 cdb_intr_string = ", CDB intr";
2596 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2597 dev->flags |= ATA_DFLAG_DMADIR;
2598 dma_dir_string = ", DMADIR";
2601 /* print device info to dmesg */
2602 if (ata_msg_drv(ap) && print_info)
2603 ata_dev_printk(dev, KERN_INFO,
2604 "ATAPI: %s, %s, max %s%s%s%s\n",
2605 modelbuf, fwrevbuf,
2606 ata_mode_string(xfer_mask),
2607 cdb_intr_string, atapi_an_string,
2608 dma_dir_string);
2611 /* determine max_sectors */
2612 dev->max_sectors = ATA_MAX_SECTORS;
2613 if (dev->flags & ATA_DFLAG_LBA48)
2614 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2616 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2617 if (ata_id_has_hipm(dev->id))
2618 dev->flags |= ATA_DFLAG_HIPM;
2619 if (ata_id_has_dipm(dev->id))
2620 dev->flags |= ATA_DFLAG_DIPM;
2623 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2624 200 sectors */
2625 if (ata_dev_knobble(dev)) {
2626 if (ata_msg_drv(ap) && print_info)
2627 ata_dev_printk(dev, KERN_INFO,
2628 "applying bridge limits\n");
2629 dev->udma_mask &= ATA_UDMA5;
2630 dev->max_sectors = ATA_MAX_SECTORS;
2633 if ((dev->class == ATA_DEV_ATAPI) &&
2634 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2635 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2636 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2639 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2640 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2641 dev->max_sectors);
2643 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2644 dev->horkage |= ATA_HORKAGE_IPM;
2646 /* reset link pm_policy for this port to no pm */
2647 ap->pm_policy = MAX_PERFORMANCE;
2650 if (ap->ops->dev_config)
2651 ap->ops->dev_config(dev);
2653 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2654 /* Let the user know. We don't want to disallow opens for
2655 rescue purposes, or in case the vendor is just a blithering
2656 idiot. Do this after the dev_config call as some controllers
2657 with buggy firmware may want to avoid reporting false device
2658 bugs */
2660 if (print_info) {
2661 ata_dev_printk(dev, KERN_WARNING,
2662 "Drive reports diagnostics failure. This may indicate a drive\n");
2663 ata_dev_printk(dev, KERN_WARNING,
2664 "fault or invalid emulation. Contact drive vendor for information.\n");
2668 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2669 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2670 "firmware update to be fully functional.\n");
2671 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2672 "or visit http://ata.wiki.kernel.org.\n");
2675 return 0;
2677 err_out_nosup:
2678 if (ata_msg_probe(ap))
2679 ata_dev_printk(dev, KERN_DEBUG,
2680 "%s: EXIT, err\n", __func__);
2681 return rc;
2685 * ata_cable_40wire - return 40 wire cable type
2686 * @ap: port
2688 * Helper method for drivers which want to hardwire 40 wire cable
2689 * detection.
2692 int ata_cable_40wire(struct ata_port *ap)
2694 return ATA_CBL_PATA40;
2698 * ata_cable_80wire - return 80 wire cable type
2699 * @ap: port
2701 * Helper method for drivers which want to hardwire 80 wire cable
2702 * detection.
2705 int ata_cable_80wire(struct ata_port *ap)
2707 return ATA_CBL_PATA80;
2711 * ata_cable_unknown - return unknown PATA cable.
2712 * @ap: port
2714 * Helper method for drivers which have no PATA cable detection.
2717 int ata_cable_unknown(struct ata_port *ap)
2719 return ATA_CBL_PATA_UNK;
2723 * ata_cable_ignore - return ignored PATA cable.
2724 * @ap: port
2726 * Helper method for drivers which don't use cable type to limit
2727 * transfer mode.
2729 int ata_cable_ignore(struct ata_port *ap)
2731 return ATA_CBL_PATA_IGN;
2735 * ata_cable_sata - return SATA cable type
2736 * @ap: port
2738 * Helper method for drivers which have SATA cables
2741 int ata_cable_sata(struct ata_port *ap)
2743 return ATA_CBL_SATA;
2747 * ata_bus_probe - Reset and probe ATA bus
2748 * @ap: Bus to probe
2750 * Master ATA bus probing function. Initiates a hardware-dependent
2751 * bus reset, then attempts to identify any devices found on
2752 * the bus.
2754 * LOCKING:
2755 * PCI/etc. bus probe sem.
2757 * RETURNS:
2758 * Zero on success, negative errno otherwise.
2761 int ata_bus_probe(struct ata_port *ap)
2763 unsigned int classes[ATA_MAX_DEVICES];
2764 int tries[ATA_MAX_DEVICES];
2765 int rc;
2766 struct ata_device *dev;
2768 ata_port_probe(ap);
2770 ata_for_each_dev(dev, &ap->link, ALL)
2771 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2773 retry:
2774 ata_for_each_dev(dev, &ap->link, ALL) {
2775 /* If we issue an SRST then an ATA drive (not ATAPI)
2776 * may change configuration and be in PIO0 timing. If
2777 * we do a hard reset (or are coming from power on)
2778 * this is true for ATA or ATAPI. Until we've set a
2779 * suitable controller mode we should not touch the
2780 * bus as we may be talking too fast.
2782 dev->pio_mode = XFER_PIO_0;
2784 /* If the controller has a pio mode setup function
2785 * then use it to set the chipset to rights. Don't
2786 * touch the DMA setup as that will be dealt with when
2787 * configuring devices.
2789 if (ap->ops->set_piomode)
2790 ap->ops->set_piomode(ap, dev);
2793 /* reset and determine device classes */
2794 ap->ops->phy_reset(ap);
2796 ata_for_each_dev(dev, &ap->link, ALL) {
2797 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2798 dev->class != ATA_DEV_UNKNOWN)
2799 classes[dev->devno] = dev->class;
2800 else
2801 classes[dev->devno] = ATA_DEV_NONE;
2803 dev->class = ATA_DEV_UNKNOWN;
2806 ata_port_probe(ap);
2808 /* read IDENTIFY page and configure devices. We have to do the identify
2809 specific sequence bass-ackwards so that PDIAG- is released by
2810 the slave device */
2812 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2813 if (tries[dev->devno])
2814 dev->class = classes[dev->devno];
2816 if (!ata_dev_enabled(dev))
2817 continue;
2819 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2820 dev->id);
2821 if (rc)
2822 goto fail;
2825 /* Now ask for the cable type as PDIAG- should have been released */
2826 if (ap->ops->cable_detect)
2827 ap->cbl = ap->ops->cable_detect(ap);
2829 /* We may have SATA bridge glue hiding here irrespective of
2830 * the reported cable types and sensed types. When SATA
2831 * drives indicate we have a bridge, we don't know which end
2832 * of the link the bridge is which is a problem.
2834 ata_for_each_dev(dev, &ap->link, ENABLED)
2835 if (ata_id_is_sata(dev->id))
2836 ap->cbl = ATA_CBL_SATA;
2838 /* After the identify sequence we can now set up the devices. We do
2839 this in the normal order so that the user doesn't get confused */
2841 ata_for_each_dev(dev, &ap->link, ENABLED) {
2842 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2843 rc = ata_dev_configure(dev);
2844 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2845 if (rc)
2846 goto fail;
2849 /* configure transfer mode */
2850 rc = ata_set_mode(&ap->link, &dev);
2851 if (rc)
2852 goto fail;
2854 ata_for_each_dev(dev, &ap->link, ENABLED)
2855 return 0;
2857 /* no device present, disable port */
2858 ata_port_disable(ap);
2859 return -ENODEV;
2861 fail:
2862 tries[dev->devno]--;
2864 switch (rc) {
2865 case -EINVAL:
2866 /* eeek, something went very wrong, give up */
2867 tries[dev->devno] = 0;
2868 break;
2870 case -ENODEV:
2871 /* give it just one more chance */
2872 tries[dev->devno] = min(tries[dev->devno], 1);
2873 case -EIO:
2874 if (tries[dev->devno] == 1) {
2875 /* This is the last chance, better to slow
2876 * down than lose it.
2878 sata_down_spd_limit(&ap->link, 0);
2879 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2883 if (!tries[dev->devno])
2884 ata_dev_disable(dev);
2886 goto retry;
2890 * ata_port_probe - Mark port as enabled
2891 * @ap: Port for which we indicate enablement
2893 * Modify @ap data structure such that the system
2894 * thinks that the entire port is enabled.
2896 * LOCKING: host lock, or some other form of
2897 * serialization.
2900 void ata_port_probe(struct ata_port *ap)
2902 ap->flags &= ~ATA_FLAG_DISABLED;
2906 * sata_print_link_status - Print SATA link status
2907 * @link: SATA link to printk link status about
2909 * This function prints link speed and status of a SATA link.
2911 * LOCKING:
2912 * None.
2914 static void sata_print_link_status(struct ata_link *link)
2916 u32 sstatus, scontrol, tmp;
2918 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2919 return;
2920 sata_scr_read(link, SCR_CONTROL, &scontrol);
2922 if (ata_phys_link_online(link)) {
2923 tmp = (sstatus >> 4) & 0xf;
2924 ata_link_printk(link, KERN_INFO,
2925 "SATA link up %s (SStatus %X SControl %X)\n",
2926 sata_spd_string(tmp), sstatus, scontrol);
2927 } else {
2928 ata_link_printk(link, KERN_INFO,
2929 "SATA link down (SStatus %X SControl %X)\n",
2930 sstatus, scontrol);
2935 * ata_dev_pair - return other device on cable
2936 * @adev: device
2938 * Obtain the other device on the same cable, or if none is
2939 * present NULL is returned
2942 struct ata_device *ata_dev_pair(struct ata_device *adev)
2944 struct ata_link *link = adev->link;
2945 struct ata_device *pair = &link->device[1 - adev->devno];
2946 if (!ata_dev_enabled(pair))
2947 return NULL;
2948 return pair;
2952 * ata_port_disable - Disable port.
2953 * @ap: Port to be disabled.
2955 * Modify @ap data structure such that the system
2956 * thinks that the entire port is disabled, and should
2957 * never attempt to probe or communicate with devices
2958 * on this port.
2960 * LOCKING: host lock, or some other form of
2961 * serialization.
2964 void ata_port_disable(struct ata_port *ap)
2966 ap->link.device[0].class = ATA_DEV_NONE;
2967 ap->link.device[1].class = ATA_DEV_NONE;
2968 ap->flags |= ATA_FLAG_DISABLED;
2972 * sata_down_spd_limit - adjust SATA spd limit downward
2973 * @link: Link to adjust SATA spd limit for
2974 * @spd_limit: Additional limit
2976 * Adjust SATA spd limit of @link downward. Note that this
2977 * function only adjusts the limit. The change must be applied
2978 * using sata_set_spd().
2980 * If @spd_limit is non-zero, the speed is limited to equal to or
2981 * lower than @spd_limit if such speed is supported. If
2982 * @spd_limit is slower than any supported speed, only the lowest
2983 * supported speed is allowed.
2985 * LOCKING:
2986 * Inherited from caller.
2988 * RETURNS:
2989 * 0 on success, negative errno on failure
2991 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2993 u32 sstatus, spd, mask;
2994 int rc, bit;
2996 if (!sata_scr_valid(link))
2997 return -EOPNOTSUPP;
2999 /* If SCR can be read, use it to determine the current SPD.
3000 * If not, use cached value in link->sata_spd.
3002 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3003 if (rc == 0 && ata_sstatus_online(sstatus))
3004 spd = (sstatus >> 4) & 0xf;
3005 else
3006 spd = link->sata_spd;
3008 mask = link->sata_spd_limit;
3009 if (mask <= 1)
3010 return -EINVAL;
3012 /* unconditionally mask off the highest bit */
3013 bit = fls(mask) - 1;
3014 mask &= ~(1 << bit);
3016 /* Mask off all speeds higher than or equal to the current
3017 * one. Force 1.5Gbps if current SPD is not available.
3019 if (spd > 1)
3020 mask &= (1 << (spd - 1)) - 1;
3021 else
3022 mask &= 1;
3024 /* were we already at the bottom? */
3025 if (!mask)
3026 return -EINVAL;
3028 if (spd_limit) {
3029 if (mask & ((1 << spd_limit) - 1))
3030 mask &= (1 << spd_limit) - 1;
3031 else {
3032 bit = ffs(mask) - 1;
3033 mask = 1 << bit;
3037 link->sata_spd_limit = mask;
3039 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
3040 sata_spd_string(fls(mask)));
3042 return 0;
3045 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3047 struct ata_link *host_link = &link->ap->link;
3048 u32 limit, target, spd;
3050 limit = link->sata_spd_limit;
3052 /* Don't configure downstream link faster than upstream link.
3053 * It doesn't speed up anything and some PMPs choke on such
3054 * configuration.
3056 if (!ata_is_host_link(link) && host_link->sata_spd)
3057 limit &= (1 << host_link->sata_spd) - 1;
3059 if (limit == UINT_MAX)
3060 target = 0;
3061 else
3062 target = fls(limit);
3064 spd = (*scontrol >> 4) & 0xf;
3065 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3067 return spd != target;
3071 * sata_set_spd_needed - is SATA spd configuration needed
3072 * @link: Link in question
3074 * Test whether the spd limit in SControl matches
3075 * @link->sata_spd_limit. This function is used to determine
3076 * whether hardreset is necessary to apply SATA spd
3077 * configuration.
3079 * LOCKING:
3080 * Inherited from caller.
3082 * RETURNS:
3083 * 1 if SATA spd configuration is needed, 0 otherwise.
3085 static int sata_set_spd_needed(struct ata_link *link)
3087 u32 scontrol;
3089 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3090 return 1;
3092 return __sata_set_spd_needed(link, &scontrol);
3096 * sata_set_spd - set SATA spd according to spd limit
3097 * @link: Link to set SATA spd for
3099 * Set SATA spd of @link according to sata_spd_limit.
3101 * LOCKING:
3102 * Inherited from caller.
3104 * RETURNS:
3105 * 0 if spd doesn't need to be changed, 1 if spd has been
3106 * changed. Negative errno if SCR registers are inaccessible.
3108 int sata_set_spd(struct ata_link *link)
3110 u32 scontrol;
3111 int rc;
3113 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3114 return rc;
3116 if (!__sata_set_spd_needed(link, &scontrol))
3117 return 0;
3119 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3120 return rc;
3122 return 1;
3126 * This mode timing computation functionality is ported over from
3127 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3130 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3131 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3132 * for UDMA6, which is currently supported only by Maxtor drives.
3134 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3137 static const struct ata_timing ata_timing[] = {
3138 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3139 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3140 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3141 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3142 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3143 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3144 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3145 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3147 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3148 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3149 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3151 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3152 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3153 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3154 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3155 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3157 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3158 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3159 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3160 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3161 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3162 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3163 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3164 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3166 { 0xFF }
3169 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3170 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3172 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3174 q->setup = EZ(t->setup * 1000, T);
3175 q->act8b = EZ(t->act8b * 1000, T);
3176 q->rec8b = EZ(t->rec8b * 1000, T);
3177 q->cyc8b = EZ(t->cyc8b * 1000, T);
3178 q->active = EZ(t->active * 1000, T);
3179 q->recover = EZ(t->recover * 1000, T);
3180 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3181 q->cycle = EZ(t->cycle * 1000, T);
3182 q->udma = EZ(t->udma * 1000, UT);
3185 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3186 struct ata_timing *m, unsigned int what)
3188 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3189 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3190 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3191 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3192 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3193 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3194 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3195 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3196 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3199 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3201 const struct ata_timing *t = ata_timing;
3203 while (xfer_mode > t->mode)
3204 t++;
3206 if (xfer_mode == t->mode)
3207 return t;
3208 return NULL;
3211 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3212 struct ata_timing *t, int T, int UT)
3214 const struct ata_timing *s;
3215 struct ata_timing p;
3218 * Find the mode.
3221 if (!(s = ata_timing_find_mode(speed)))
3222 return -EINVAL;
3224 memcpy(t, s, sizeof(*s));
3227 * If the drive is an EIDE drive, it can tell us it needs extended
3228 * PIO/MW_DMA cycle timing.
3231 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3232 memset(&p, 0, sizeof(p));
3233 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3234 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3235 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3236 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3237 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3239 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3243 * Convert the timing to bus clock counts.
3246 ata_timing_quantize(t, t, T, UT);
3249 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3250 * S.M.A.R.T * and some other commands. We have to ensure that the
3251 * DMA cycle timing is slower/equal than the fastest PIO timing.
3254 if (speed > XFER_PIO_6) {
3255 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3256 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3260 * Lengthen active & recovery time so that cycle time is correct.
3263 if (t->act8b + t->rec8b < t->cyc8b) {
3264 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3265 t->rec8b = t->cyc8b - t->act8b;
3268 if (t->active + t->recover < t->cycle) {
3269 t->active += (t->cycle - (t->active + t->recover)) / 2;
3270 t->recover = t->cycle - t->active;
3273 /* In a few cases quantisation may produce enough errors to
3274 leave t->cycle too low for the sum of active and recovery
3275 if so we must correct this */
3276 if (t->active + t->recover > t->cycle)
3277 t->cycle = t->active + t->recover;
3279 return 0;
3283 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3284 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3285 * @cycle: cycle duration in ns
3287 * Return matching xfer mode for @cycle. The returned mode is of
3288 * the transfer type specified by @xfer_shift. If @cycle is too
3289 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3290 * than the fastest known mode, the fasted mode is returned.
3292 * LOCKING:
3293 * None.
3295 * RETURNS:
3296 * Matching xfer_mode, 0xff if no match found.
3298 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3300 u8 base_mode = 0xff, last_mode = 0xff;
3301 const struct ata_xfer_ent *ent;
3302 const struct ata_timing *t;
3304 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3305 if (ent->shift == xfer_shift)
3306 base_mode = ent->base;
3308 for (t = ata_timing_find_mode(base_mode);
3309 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3310 unsigned short this_cycle;
3312 switch (xfer_shift) {
3313 case ATA_SHIFT_PIO:
3314 case ATA_SHIFT_MWDMA:
3315 this_cycle = t->cycle;
3316 break;
3317 case ATA_SHIFT_UDMA:
3318 this_cycle = t->udma;
3319 break;
3320 default:
3321 return 0xff;
3324 if (cycle > this_cycle)
3325 break;
3327 last_mode = t->mode;
3330 return last_mode;
3334 * ata_down_xfermask_limit - adjust dev xfer masks downward
3335 * @dev: Device to adjust xfer masks
3336 * @sel: ATA_DNXFER_* selector
3338 * Adjust xfer masks of @dev downward. Note that this function
3339 * does not apply the change. Invoking ata_set_mode() afterwards
3340 * will apply the limit.
3342 * LOCKING:
3343 * Inherited from caller.
3345 * RETURNS:
3346 * 0 on success, negative errno on failure
3348 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3350 char buf[32];
3351 unsigned long orig_mask, xfer_mask;
3352 unsigned long pio_mask, mwdma_mask, udma_mask;
3353 int quiet, highbit;
3355 quiet = !!(sel & ATA_DNXFER_QUIET);
3356 sel &= ~ATA_DNXFER_QUIET;
3358 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3359 dev->mwdma_mask,
3360 dev->udma_mask);
3361 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3363 switch (sel) {
3364 case ATA_DNXFER_PIO:
3365 highbit = fls(pio_mask) - 1;
3366 pio_mask &= ~(1 << highbit);
3367 break;
3369 case ATA_DNXFER_DMA:
3370 if (udma_mask) {
3371 highbit = fls(udma_mask) - 1;
3372 udma_mask &= ~(1 << highbit);
3373 if (!udma_mask)
3374 return -ENOENT;
3375 } else if (mwdma_mask) {
3376 highbit = fls(mwdma_mask) - 1;
3377 mwdma_mask &= ~(1 << highbit);
3378 if (!mwdma_mask)
3379 return -ENOENT;
3381 break;
3383 case ATA_DNXFER_40C:
3384 udma_mask &= ATA_UDMA_MASK_40C;
3385 break;
3387 case ATA_DNXFER_FORCE_PIO0:
3388 pio_mask &= 1;
3389 case ATA_DNXFER_FORCE_PIO:
3390 mwdma_mask = 0;
3391 udma_mask = 0;
3392 break;
3394 default:
3395 BUG();
3398 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3400 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3401 return -ENOENT;
3403 if (!quiet) {
3404 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3405 snprintf(buf, sizeof(buf), "%s:%s",
3406 ata_mode_string(xfer_mask),
3407 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3408 else
3409 snprintf(buf, sizeof(buf), "%s",
3410 ata_mode_string(xfer_mask));
3412 ata_dev_printk(dev, KERN_WARNING,
3413 "limiting speed to %s\n", buf);
3416 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3417 &dev->udma_mask);
3419 return 0;
3422 static int ata_dev_set_mode(struct ata_device *dev)
3424 struct ata_port *ap = dev->link->ap;
3425 struct ata_eh_context *ehc = &dev->link->eh_context;
3426 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3427 const char *dev_err_whine = "";
3428 int ign_dev_err = 0;
3429 unsigned int err_mask = 0;
3430 int rc;
3432 dev->flags &= ~ATA_DFLAG_PIO;
3433 if (dev->xfer_shift == ATA_SHIFT_PIO)
3434 dev->flags |= ATA_DFLAG_PIO;
3436 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3437 dev_err_whine = " (SET_XFERMODE skipped)";
3438 else {
3439 if (nosetxfer)
3440 ata_dev_printk(dev, KERN_WARNING,
3441 "NOSETXFER but PATA detected - can't "
3442 "skip SETXFER, might malfunction\n");
3443 err_mask = ata_dev_set_xfermode(dev);
3446 if (err_mask & ~AC_ERR_DEV)
3447 goto fail;
3449 /* revalidate */
3450 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3451 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3452 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3453 if (rc)
3454 return rc;
3456 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3457 /* Old CFA may refuse this command, which is just fine */
3458 if (ata_id_is_cfa(dev->id))
3459 ign_dev_err = 1;
3460 /* Catch several broken garbage emulations plus some pre
3461 ATA devices */
3462 if (ata_id_major_version(dev->id) == 0 &&
3463 dev->pio_mode <= XFER_PIO_2)
3464 ign_dev_err = 1;
3465 /* Some very old devices and some bad newer ones fail
3466 any kind of SET_XFERMODE request but support PIO0-2
3467 timings and no IORDY */
3468 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3469 ign_dev_err = 1;
3471 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3472 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3473 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3474 dev->dma_mode == XFER_MW_DMA_0 &&
3475 (dev->id[63] >> 8) & 1)
3476 ign_dev_err = 1;
3478 /* if the device is actually configured correctly, ignore dev err */
3479 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3480 ign_dev_err = 1;
3482 if (err_mask & AC_ERR_DEV) {
3483 if (!ign_dev_err)
3484 goto fail;
3485 else
3486 dev_err_whine = " (device error ignored)";
3489 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3490 dev->xfer_shift, (int)dev->xfer_mode);
3492 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3493 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3494 dev_err_whine);
3496 return 0;
3498 fail:
3499 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3500 "(err_mask=0x%x)\n", err_mask);
3501 return -EIO;
3505 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3506 * @link: link on which timings will be programmed
3507 * @r_failed_dev: out parameter for failed device
3509 * Standard implementation of the function used to tune and set
3510 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3511 * ata_dev_set_mode() fails, pointer to the failing device is
3512 * returned in @r_failed_dev.
3514 * LOCKING:
3515 * PCI/etc. bus probe sem.
3517 * RETURNS:
3518 * 0 on success, negative errno otherwise
3521 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3523 struct ata_port *ap = link->ap;
3524 struct ata_device *dev;
3525 int rc = 0, used_dma = 0, found = 0;
3527 /* step 1: calculate xfer_mask */
3528 ata_for_each_dev(dev, link, ENABLED) {
3529 unsigned long pio_mask, dma_mask;
3530 unsigned int mode_mask;
3532 mode_mask = ATA_DMA_MASK_ATA;
3533 if (dev->class == ATA_DEV_ATAPI)
3534 mode_mask = ATA_DMA_MASK_ATAPI;
3535 else if (ata_id_is_cfa(dev->id))
3536 mode_mask = ATA_DMA_MASK_CFA;
3538 ata_dev_xfermask(dev);
3539 ata_force_xfermask(dev);
3541 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3542 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3544 if (libata_dma_mask & mode_mask)
3545 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3546 else
3547 dma_mask = 0;
3549 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3550 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3552 found = 1;
3553 if (ata_dma_enabled(dev))
3554 used_dma = 1;
3556 if (!found)
3557 goto out;
3559 /* step 2: always set host PIO timings */
3560 ata_for_each_dev(dev, link, ENABLED) {
3561 if (dev->pio_mode == 0xff) {
3562 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3563 rc = -EINVAL;
3564 goto out;
3567 dev->xfer_mode = dev->pio_mode;
3568 dev->xfer_shift = ATA_SHIFT_PIO;
3569 if (ap->ops->set_piomode)
3570 ap->ops->set_piomode(ap, dev);
3573 /* step 3: set host DMA timings */
3574 ata_for_each_dev(dev, link, ENABLED) {
3575 if (!ata_dma_enabled(dev))
3576 continue;
3578 dev->xfer_mode = dev->dma_mode;
3579 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3580 if (ap->ops->set_dmamode)
3581 ap->ops->set_dmamode(ap, dev);
3584 /* step 4: update devices' xfer mode */
3585 ata_for_each_dev(dev, link, ENABLED) {
3586 rc = ata_dev_set_mode(dev);
3587 if (rc)
3588 goto out;
3591 /* Record simplex status. If we selected DMA then the other
3592 * host channels are not permitted to do so.
3594 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3595 ap->host->simplex_claimed = ap;
3597 out:
3598 if (rc)
3599 *r_failed_dev = dev;
3600 return rc;
3604 * ata_wait_ready - wait for link to become ready
3605 * @link: link to be waited on
3606 * @deadline: deadline jiffies for the operation
3607 * @check_ready: callback to check link readiness
3609 * Wait for @link to become ready. @check_ready should return
3610 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3611 * link doesn't seem to be occupied, other errno for other error
3612 * conditions.
3614 * Transient -ENODEV conditions are allowed for
3615 * ATA_TMOUT_FF_WAIT.
3617 * LOCKING:
3618 * EH context.
3620 * RETURNS:
3621 * 0 if @linke is ready before @deadline; otherwise, -errno.
3623 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3624 int (*check_ready)(struct ata_link *link))
3626 unsigned long start = jiffies;
3627 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3628 int warned = 0;
3630 /* Slave readiness can't be tested separately from master. On
3631 * M/S emulation configuration, this function should be called
3632 * only on the master and it will handle both master and slave.
3634 WARN_ON(link == link->ap->slave_link);
3636 if (time_after(nodev_deadline, deadline))
3637 nodev_deadline = deadline;
3639 while (1) {
3640 unsigned long now = jiffies;
3641 int ready, tmp;
3643 ready = tmp = check_ready(link);
3644 if (ready > 0)
3645 return 0;
3647 /* -ENODEV could be transient. Ignore -ENODEV if link
3648 * is online. Also, some SATA devices take a long
3649 * time to clear 0xff after reset. For example,
3650 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3651 * GoVault needs even more than that. Wait for
3652 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3654 * Note that some PATA controllers (pata_ali) explode
3655 * if status register is read more than once when
3656 * there's no device attached.
3658 if (ready == -ENODEV) {
3659 if (ata_link_online(link))
3660 ready = 0;
3661 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3662 !ata_link_offline(link) &&
3663 time_before(now, nodev_deadline))
3664 ready = 0;
3667 if (ready)
3668 return ready;
3669 if (time_after(now, deadline))
3670 return -EBUSY;
3672 if (!warned && time_after(now, start + 5 * HZ) &&
3673 (deadline - now > 3 * HZ)) {
3674 ata_link_printk(link, KERN_WARNING,
3675 "link is slow to respond, please be patient "
3676 "(ready=%d)\n", tmp);
3677 warned = 1;
3680 msleep(50);
3685 * ata_wait_after_reset - wait for link to become ready after reset
3686 * @link: link to be waited on
3687 * @deadline: deadline jiffies for the operation
3688 * @check_ready: callback to check link readiness
3690 * Wait for @link to become ready after reset.
3692 * LOCKING:
3693 * EH context.
3695 * RETURNS:
3696 * 0 if @linke is ready before @deadline; otherwise, -errno.
3698 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3699 int (*check_ready)(struct ata_link *link))
3701 msleep(ATA_WAIT_AFTER_RESET);
3703 return ata_wait_ready(link, deadline, check_ready);
3707 * sata_link_debounce - debounce SATA phy status
3708 * @link: ATA link to debounce SATA phy status for
3709 * @params: timing parameters { interval, duratinon, timeout } in msec
3710 * @deadline: deadline jiffies for the operation
3712 * Make sure SStatus of @link reaches stable state, determined by
3713 * holding the same value where DET is not 1 for @duration polled
3714 * every @interval, before @timeout. Timeout constraints the
3715 * beginning of the stable state. Because DET gets stuck at 1 on
3716 * some controllers after hot unplugging, this functions waits
3717 * until timeout then returns 0 if DET is stable at 1.
3719 * @timeout is further limited by @deadline. The sooner of the
3720 * two is used.
3722 * LOCKING:
3723 * Kernel thread context (may sleep)
3725 * RETURNS:
3726 * 0 on success, -errno on failure.
3728 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3729 unsigned long deadline)
3731 unsigned long interval = params[0];
3732 unsigned long duration = params[1];
3733 unsigned long last_jiffies, t;
3734 u32 last, cur;
3735 int rc;
3737 t = ata_deadline(jiffies, params[2]);
3738 if (time_before(t, deadline))
3739 deadline = t;
3741 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3742 return rc;
3743 cur &= 0xf;
3745 last = cur;
3746 last_jiffies = jiffies;
3748 while (1) {
3749 msleep(interval);
3750 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3751 return rc;
3752 cur &= 0xf;
3754 /* DET stable? */
3755 if (cur == last) {
3756 if (cur == 1 && time_before(jiffies, deadline))
3757 continue;
3758 if (time_after(jiffies,
3759 ata_deadline(last_jiffies, duration)))
3760 return 0;
3761 continue;
3764 /* unstable, start over */
3765 last = cur;
3766 last_jiffies = jiffies;
3768 /* Check deadline. If debouncing failed, return
3769 * -EPIPE to tell upper layer to lower link speed.
3771 if (time_after(jiffies, deadline))
3772 return -EPIPE;
3777 * sata_link_resume - resume SATA link
3778 * @link: ATA link to resume SATA
3779 * @params: timing parameters { interval, duratinon, timeout } in msec
3780 * @deadline: deadline jiffies for the operation
3782 * Resume SATA phy @link and debounce it.
3784 * LOCKING:
3785 * Kernel thread context (may sleep)
3787 * RETURNS:
3788 * 0 on success, -errno on failure.
3790 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3791 unsigned long deadline)
3793 u32 scontrol, serror;
3794 int rc;
3796 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3797 return rc;
3799 scontrol = (scontrol & 0x0f0) | 0x300;
3801 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3802 return rc;
3804 /* Some PHYs react badly if SStatus is pounded immediately
3805 * after resuming. Delay 200ms before debouncing.
3807 msleep(200);
3809 if ((rc = sata_link_debounce(link, params, deadline)))
3810 return rc;
3812 /* clear SError, some PHYs require this even for SRST to work */
3813 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3814 rc = sata_scr_write(link, SCR_ERROR, serror);
3816 return rc != -EINVAL ? rc : 0;
3820 * ata_std_prereset - prepare for reset
3821 * @link: ATA link to be reset
3822 * @deadline: deadline jiffies for the operation
3824 * @link is about to be reset. Initialize it. Failure from
3825 * prereset makes libata abort whole reset sequence and give up
3826 * that port, so prereset should be best-effort. It does its
3827 * best to prepare for reset sequence but if things go wrong, it
3828 * should just whine, not fail.
3830 * LOCKING:
3831 * Kernel thread context (may sleep)
3833 * RETURNS:
3834 * 0 on success, -errno otherwise.
3836 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3838 struct ata_port *ap = link->ap;
3839 struct ata_eh_context *ehc = &link->eh_context;
3840 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3841 int rc;
3843 /* if we're about to do hardreset, nothing more to do */
3844 if (ehc->i.action & ATA_EH_HARDRESET)
3845 return 0;
3847 /* if SATA, resume link */
3848 if (ap->flags & ATA_FLAG_SATA) {
3849 rc = sata_link_resume(link, timing, deadline);
3850 /* whine about phy resume failure but proceed */
3851 if (rc && rc != -EOPNOTSUPP)
3852 ata_link_printk(link, KERN_WARNING, "failed to resume "
3853 "link for reset (errno=%d)\n", rc);
3856 /* no point in trying softreset on offline link */
3857 if (ata_phys_link_offline(link))
3858 ehc->i.action &= ~ATA_EH_SOFTRESET;
3860 return 0;
3864 * sata_link_hardreset - reset link via SATA phy reset
3865 * @link: link to reset
3866 * @timing: timing parameters { interval, duratinon, timeout } in msec
3867 * @deadline: deadline jiffies for the operation
3868 * @online: optional out parameter indicating link onlineness
3869 * @check_ready: optional callback to check link readiness
3871 * SATA phy-reset @link using DET bits of SControl register.
3872 * After hardreset, link readiness is waited upon using
3873 * ata_wait_ready() if @check_ready is specified. LLDs are
3874 * allowed to not specify @check_ready and wait itself after this
3875 * function returns. Device classification is LLD's
3876 * responsibility.
3878 * *@online is set to one iff reset succeeded and @link is online
3879 * after reset.
3881 * LOCKING:
3882 * Kernel thread context (may sleep)
3884 * RETURNS:
3885 * 0 on success, -errno otherwise.
3887 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3888 unsigned long deadline,
3889 bool *online, int (*check_ready)(struct ata_link *))
3891 u32 scontrol;
3892 int rc;
3894 DPRINTK("ENTER\n");
3896 if (online)
3897 *online = false;
3899 if (sata_set_spd_needed(link)) {
3900 /* SATA spec says nothing about how to reconfigure
3901 * spd. To be on the safe side, turn off phy during
3902 * reconfiguration. This works for at least ICH7 AHCI
3903 * and Sil3124.
3905 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3906 goto out;
3908 scontrol = (scontrol & 0x0f0) | 0x304;
3910 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3911 goto out;
3913 sata_set_spd(link);
3916 /* issue phy wake/reset */
3917 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3918 goto out;
3920 scontrol = (scontrol & 0x0f0) | 0x301;
3922 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3923 goto out;
3925 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3926 * 10.4.2 says at least 1 ms.
3928 msleep(1);
3930 /* bring link back */
3931 rc = sata_link_resume(link, timing, deadline);
3932 if (rc)
3933 goto out;
3934 /* if link is offline nothing more to do */
3935 if (ata_phys_link_offline(link))
3936 goto out;
3938 /* Link is online. From this point, -ENODEV too is an error. */
3939 if (online)
3940 *online = true;
3942 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3943 /* If PMP is supported, we have to do follow-up SRST.
3944 * Some PMPs don't send D2H Reg FIS after hardreset if
3945 * the first port is empty. Wait only for
3946 * ATA_TMOUT_PMP_SRST_WAIT.
3948 if (check_ready) {
3949 unsigned long pmp_deadline;
3951 pmp_deadline = ata_deadline(jiffies,
3952 ATA_TMOUT_PMP_SRST_WAIT);
3953 if (time_after(pmp_deadline, deadline))
3954 pmp_deadline = deadline;
3955 ata_wait_ready(link, pmp_deadline, check_ready);
3957 rc = -EAGAIN;
3958 goto out;
3961 rc = 0;
3962 if (check_ready)
3963 rc = ata_wait_ready(link, deadline, check_ready);
3964 out:
3965 if (rc && rc != -EAGAIN) {
3966 /* online is set iff link is online && reset succeeded */
3967 if (online)
3968 *online = false;
3969 ata_link_printk(link, KERN_ERR,
3970 "COMRESET failed (errno=%d)\n", rc);
3972 DPRINTK("EXIT, rc=%d\n", rc);
3973 return rc;
3977 * sata_std_hardreset - COMRESET w/o waiting or classification
3978 * @link: link to reset
3979 * @class: resulting class of attached device
3980 * @deadline: deadline jiffies for the operation
3982 * Standard SATA COMRESET w/o waiting or classification.
3984 * LOCKING:
3985 * Kernel thread context (may sleep)
3987 * RETURNS:
3988 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3990 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3991 unsigned long deadline)
3993 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3994 bool online;
3995 int rc;
3997 /* do hardreset */
3998 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3999 return online ? -EAGAIN : rc;
4003 * ata_std_postreset - standard postreset callback
4004 * @link: the target ata_link
4005 * @classes: classes of attached devices
4007 * This function is invoked after a successful reset. Note that
4008 * the device might have been reset more than once using
4009 * different reset methods before postreset is invoked.
4011 * LOCKING:
4012 * Kernel thread context (may sleep)
4014 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4016 u32 serror;
4018 DPRINTK("ENTER\n");
4020 /* reset complete, clear SError */
4021 if (!sata_scr_read(link, SCR_ERROR, &serror))
4022 sata_scr_write(link, SCR_ERROR, serror);
4024 /* print link status */
4025 sata_print_link_status(link);
4027 DPRINTK("EXIT\n");
4031 * ata_dev_same_device - Determine whether new ID matches configured device
4032 * @dev: device to compare against
4033 * @new_class: class of the new device
4034 * @new_id: IDENTIFY page of the new device
4036 * Compare @new_class and @new_id against @dev and determine
4037 * whether @dev is the device indicated by @new_class and
4038 * @new_id.
4040 * LOCKING:
4041 * None.
4043 * RETURNS:
4044 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4046 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4047 const u16 *new_id)
4049 const u16 *old_id = dev->id;
4050 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4051 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4053 if (dev->class != new_class) {
4054 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4055 dev->class, new_class);
4056 return 0;
4059 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4060 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4061 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4062 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4064 if (strcmp(model[0], model[1])) {
4065 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4066 "'%s' != '%s'\n", model[0], model[1]);
4067 return 0;
4070 if (strcmp(serial[0], serial[1])) {
4071 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4072 "'%s' != '%s'\n", serial[0], serial[1]);
4073 return 0;
4076 return 1;
4080 * ata_dev_reread_id - Re-read IDENTIFY data
4081 * @dev: target ATA device
4082 * @readid_flags: read ID flags
4084 * Re-read IDENTIFY page and make sure @dev is still attached to
4085 * the port.
4087 * LOCKING:
4088 * Kernel thread context (may sleep)
4090 * RETURNS:
4091 * 0 on success, negative errno otherwise
4093 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4095 unsigned int class = dev->class;
4096 u16 *id = (void *)dev->link->ap->sector_buf;
4097 int rc;
4099 /* read ID data */
4100 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4101 if (rc)
4102 return rc;
4104 /* is the device still there? */
4105 if (!ata_dev_same_device(dev, class, id))
4106 return -ENODEV;
4108 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4109 return 0;
4113 * ata_dev_revalidate - Revalidate ATA device
4114 * @dev: device to revalidate
4115 * @new_class: new class code
4116 * @readid_flags: read ID flags
4118 * Re-read IDENTIFY page, make sure @dev is still attached to the
4119 * port and reconfigure it according to the new IDENTIFY page.
4121 * LOCKING:
4122 * Kernel thread context (may sleep)
4124 * RETURNS:
4125 * 0 on success, negative errno otherwise
4127 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4128 unsigned int readid_flags)
4130 u64 n_sectors = dev->n_sectors;
4131 u64 n_native_sectors = dev->n_native_sectors;
4132 int rc;
4134 if (!ata_dev_enabled(dev))
4135 return -ENODEV;
4137 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4138 if (ata_class_enabled(new_class) &&
4139 new_class != ATA_DEV_ATA &&
4140 new_class != ATA_DEV_ATAPI &&
4141 new_class != ATA_DEV_SEMB) {
4142 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4143 dev->class, new_class);
4144 rc = -ENODEV;
4145 goto fail;
4148 /* re-read ID */
4149 rc = ata_dev_reread_id(dev, readid_flags);
4150 if (rc)
4151 goto fail;
4153 /* configure device according to the new ID */
4154 rc = ata_dev_configure(dev);
4155 if (rc)
4156 goto fail;
4158 /* verify n_sectors hasn't changed */
4159 if (dev->class == ATA_DEV_ATA && n_sectors &&
4160 dev->n_sectors != n_sectors) {
4161 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch "
4162 "%llu != %llu\n",
4163 (unsigned long long)n_sectors,
4164 (unsigned long long)dev->n_sectors);
4166 * Something could have caused HPA to be unlocked
4167 * involuntarily. If n_native_sectors hasn't changed
4168 * and the new size matches it, keep the device.
4170 if (dev->n_native_sectors == n_native_sectors &&
4171 dev->n_sectors > n_sectors &&
4172 dev->n_sectors == n_native_sectors) {
4173 ata_dev_printk(dev, KERN_WARNING,
4174 "new n_sectors matches native, probably "
4175 "late HPA unlock, continuing\n");
4176 /* keep using the old n_sectors */
4177 dev->n_sectors = n_sectors;
4178 } else {
4179 /* restore original n_[native]_sectors and fail */
4180 dev->n_native_sectors = n_native_sectors;
4181 dev->n_sectors = n_sectors;
4182 rc = -ENODEV;
4183 goto fail;
4187 return 0;
4189 fail:
4190 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4191 return rc;
4194 struct ata_blacklist_entry {
4195 const char *model_num;
4196 const char *model_rev;
4197 unsigned long horkage;
4200 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4201 /* Devices with DMA related problems under Linux */
4202 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4203 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4204 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4205 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4206 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4207 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4208 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4209 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4210 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4211 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4212 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4213 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4214 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4215 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4216 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4217 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4218 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4219 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4220 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4221 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4222 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4223 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4224 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4225 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4226 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4227 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4228 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4229 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4230 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4231 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4232 /* Odd clown on sil3726/4726 PMPs */
4233 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4235 /* Weird ATAPI devices */
4236 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4237 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4239 /* Devices we expect to fail diagnostics */
4241 /* Devices where NCQ should be avoided */
4242 /* NCQ is slow */
4243 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4244 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4245 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4246 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4247 /* NCQ is broken */
4248 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4249 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4250 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4251 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4252 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4254 /* Seagate NCQ + FLUSH CACHE firmware bug */
4255 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
4256 ATA_HORKAGE_FIRMWARE_WARN },
4257 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
4258 ATA_HORKAGE_FIRMWARE_WARN },
4259 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
4260 ATA_HORKAGE_FIRMWARE_WARN },
4261 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
4262 ATA_HORKAGE_FIRMWARE_WARN },
4263 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
4264 ATA_HORKAGE_FIRMWARE_WARN },
4266 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4267 ATA_HORKAGE_FIRMWARE_WARN },
4268 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4269 ATA_HORKAGE_FIRMWARE_WARN },
4270 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4271 ATA_HORKAGE_FIRMWARE_WARN },
4272 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4273 ATA_HORKAGE_FIRMWARE_WARN },
4274 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4275 ATA_HORKAGE_FIRMWARE_WARN },
4277 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4278 ATA_HORKAGE_FIRMWARE_WARN },
4279 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4280 ATA_HORKAGE_FIRMWARE_WARN },
4281 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4282 ATA_HORKAGE_FIRMWARE_WARN },
4283 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4284 ATA_HORKAGE_FIRMWARE_WARN },
4285 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4286 ATA_HORKAGE_FIRMWARE_WARN },
4288 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4289 ATA_HORKAGE_FIRMWARE_WARN },
4290 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4291 ATA_HORKAGE_FIRMWARE_WARN },
4292 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4293 ATA_HORKAGE_FIRMWARE_WARN },
4294 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4295 ATA_HORKAGE_FIRMWARE_WARN },
4296 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4297 ATA_HORKAGE_FIRMWARE_WARN },
4299 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4300 ATA_HORKAGE_FIRMWARE_WARN },
4301 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4302 ATA_HORKAGE_FIRMWARE_WARN },
4303 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4304 ATA_HORKAGE_FIRMWARE_WARN },
4305 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4306 ATA_HORKAGE_FIRMWARE_WARN },
4307 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4308 ATA_HORKAGE_FIRMWARE_WARN },
4310 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4311 ATA_HORKAGE_FIRMWARE_WARN },
4312 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4313 ATA_HORKAGE_FIRMWARE_WARN },
4314 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4315 ATA_HORKAGE_FIRMWARE_WARN },
4316 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4317 ATA_HORKAGE_FIRMWARE_WARN },
4318 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
4319 ATA_HORKAGE_FIRMWARE_WARN },
4321 /* Blacklist entries taken from Silicon Image 3124/3132
4322 Windows driver .inf file - also several Linux problem reports */
4323 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4324 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4325 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4327 /* devices which puke on READ_NATIVE_MAX */
4328 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4329 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4330 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4331 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4333 /* this one allows HPA unlocking but fails IOs on the area */
4334 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4336 /* Devices which report 1 sector over size HPA */
4337 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4338 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4339 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4341 /* Devices which get the IVB wrong */
4342 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4343 /* Maybe we should just blacklist TSSTcorp... */
4344 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4345 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4346 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4347 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4348 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4349 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4351 /* Devices that do not need bridging limits applied */
4352 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4354 /* Devices which aren't very happy with higher link speeds */
4355 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4358 * Devices which choke on SETXFER. Applies only if both the
4359 * device and controller are SATA.
4361 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER },
4363 /* End Marker */
4367 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4369 const char *p;
4370 int len;
4373 * check for trailing wildcard: *\0
4375 p = strchr(patt, wildchar);
4376 if (p && ((*(p + 1)) == 0))
4377 len = p - patt;
4378 else {
4379 len = strlen(name);
4380 if (!len) {
4381 if (!*patt)
4382 return 0;
4383 return -1;
4387 return strncmp(patt, name, len);
4390 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4392 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4393 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4394 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4396 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4397 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4399 while (ad->model_num) {
4400 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4401 if (ad->model_rev == NULL)
4402 return ad->horkage;
4403 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4404 return ad->horkage;
4406 ad++;
4408 return 0;
4411 static int ata_dma_blacklisted(const struct ata_device *dev)
4413 /* We don't support polling DMA.
4414 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4415 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4417 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4418 (dev->flags & ATA_DFLAG_CDB_INTR))
4419 return 1;
4420 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4424 * ata_is_40wire - check drive side detection
4425 * @dev: device
4427 * Perform drive side detection decoding, allowing for device vendors
4428 * who can't follow the documentation.
4431 static int ata_is_40wire(struct ata_device *dev)
4433 if (dev->horkage & ATA_HORKAGE_IVB)
4434 return ata_drive_40wire_relaxed(dev->id);
4435 return ata_drive_40wire(dev->id);
4439 * cable_is_40wire - 40/80/SATA decider
4440 * @ap: port to consider
4442 * This function encapsulates the policy for speed management
4443 * in one place. At the moment we don't cache the result but
4444 * there is a good case for setting ap->cbl to the result when
4445 * we are called with unknown cables (and figuring out if it
4446 * impacts hotplug at all).
4448 * Return 1 if the cable appears to be 40 wire.
4451 static int cable_is_40wire(struct ata_port *ap)
4453 struct ata_link *link;
4454 struct ata_device *dev;
4456 /* If the controller thinks we are 40 wire, we are. */
4457 if (ap->cbl == ATA_CBL_PATA40)
4458 return 1;
4460 /* If the controller thinks we are 80 wire, we are. */
4461 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4462 return 0;
4464 /* If the system is known to be 40 wire short cable (eg
4465 * laptop), then we allow 80 wire modes even if the drive
4466 * isn't sure.
4468 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4469 return 0;
4471 /* If the controller doesn't know, we scan.
4473 * Note: We look for all 40 wire detects at this point. Any
4474 * 80 wire detect is taken to be 80 wire cable because
4475 * - in many setups only the one drive (slave if present) will
4476 * give a valid detect
4477 * - if you have a non detect capable drive you don't want it
4478 * to colour the choice
4480 ata_for_each_link(link, ap, EDGE) {
4481 ata_for_each_dev(dev, link, ENABLED) {
4482 if (!ata_is_40wire(dev))
4483 return 0;
4486 return 1;
4490 * ata_dev_xfermask - Compute supported xfermask of the given device
4491 * @dev: Device to compute xfermask for
4493 * Compute supported xfermask of @dev and store it in
4494 * dev->*_mask. This function is responsible for applying all
4495 * known limits including host controller limits, device
4496 * blacklist, etc...
4498 * LOCKING:
4499 * None.
4501 static void ata_dev_xfermask(struct ata_device *dev)
4503 struct ata_link *link = dev->link;
4504 struct ata_port *ap = link->ap;
4505 struct ata_host *host = ap->host;
4506 unsigned long xfer_mask;
4508 /* controller modes available */
4509 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4510 ap->mwdma_mask, ap->udma_mask);
4512 /* drive modes available */
4513 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4514 dev->mwdma_mask, dev->udma_mask);
4515 xfer_mask &= ata_id_xfermask(dev->id);
4518 * CFA Advanced TrueIDE timings are not allowed on a shared
4519 * cable
4521 if (ata_dev_pair(dev)) {
4522 /* No PIO5 or PIO6 */
4523 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4524 /* No MWDMA3 or MWDMA 4 */
4525 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4528 if (ata_dma_blacklisted(dev)) {
4529 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4530 ata_dev_printk(dev, KERN_WARNING,
4531 "device is on DMA blacklist, disabling DMA\n");
4534 if ((host->flags & ATA_HOST_SIMPLEX) &&
4535 host->simplex_claimed && host->simplex_claimed != ap) {
4536 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4537 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4538 "other device, disabling DMA\n");
4541 if (ap->flags & ATA_FLAG_NO_IORDY)
4542 xfer_mask &= ata_pio_mask_no_iordy(dev);
4544 if (ap->ops->mode_filter)
4545 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4547 /* Apply cable rule here. Don't apply it early because when
4548 * we handle hot plug the cable type can itself change.
4549 * Check this last so that we know if the transfer rate was
4550 * solely limited by the cable.
4551 * Unknown or 80 wire cables reported host side are checked
4552 * drive side as well. Cases where we know a 40wire cable
4553 * is used safely for 80 are not checked here.
4555 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4556 /* UDMA/44 or higher would be available */
4557 if (cable_is_40wire(ap)) {
4558 ata_dev_printk(dev, KERN_WARNING,
4559 "limited to UDMA/33 due to 40-wire cable\n");
4560 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4563 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4564 &dev->mwdma_mask, &dev->udma_mask);
4568 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4569 * @dev: Device to which command will be sent
4571 * Issue SET FEATURES - XFER MODE command to device @dev
4572 * on port @ap.
4574 * LOCKING:
4575 * PCI/etc. bus probe sem.
4577 * RETURNS:
4578 * 0 on success, AC_ERR_* mask otherwise.
4581 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4583 struct ata_taskfile tf;
4584 unsigned int err_mask;
4586 /* set up set-features taskfile */
4587 DPRINTK("set features - xfer mode\n");
4589 /* Some controllers and ATAPI devices show flaky interrupt
4590 * behavior after setting xfer mode. Use polling instead.
4592 ata_tf_init(dev, &tf);
4593 tf.command = ATA_CMD_SET_FEATURES;
4594 tf.feature = SETFEATURES_XFER;
4595 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4596 tf.protocol = ATA_PROT_NODATA;
4597 /* If we are using IORDY we must send the mode setting command */
4598 if (ata_pio_need_iordy(dev))
4599 tf.nsect = dev->xfer_mode;
4600 /* If the device has IORDY and the controller does not - turn it off */
4601 else if (ata_id_has_iordy(dev->id))
4602 tf.nsect = 0x01;
4603 else /* In the ancient relic department - skip all of this */
4604 return 0;
4606 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4608 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4609 return err_mask;
4612 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4613 * @dev: Device to which command will be sent
4614 * @enable: Whether to enable or disable the feature
4615 * @feature: The sector count represents the feature to set
4617 * Issue SET FEATURES - SATA FEATURES command to device @dev
4618 * on port @ap with sector count
4620 * LOCKING:
4621 * PCI/etc. bus probe sem.
4623 * RETURNS:
4624 * 0 on success, AC_ERR_* mask otherwise.
4626 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4627 u8 feature)
4629 struct ata_taskfile tf;
4630 unsigned int err_mask;
4632 /* set up set-features taskfile */
4633 DPRINTK("set features - SATA features\n");
4635 ata_tf_init(dev, &tf);
4636 tf.command = ATA_CMD_SET_FEATURES;
4637 tf.feature = enable;
4638 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4639 tf.protocol = ATA_PROT_NODATA;
4640 tf.nsect = feature;
4642 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4644 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4645 return err_mask;
4649 * ata_dev_init_params - Issue INIT DEV PARAMS command
4650 * @dev: Device to which command will be sent
4651 * @heads: Number of heads (taskfile parameter)
4652 * @sectors: Number of sectors (taskfile parameter)
4654 * LOCKING:
4655 * Kernel thread context (may sleep)
4657 * RETURNS:
4658 * 0 on success, AC_ERR_* mask otherwise.
4660 static unsigned int ata_dev_init_params(struct ata_device *dev,
4661 u16 heads, u16 sectors)
4663 struct ata_taskfile tf;
4664 unsigned int err_mask;
4666 /* Number of sectors per track 1-255. Number of heads 1-16 */
4667 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4668 return AC_ERR_INVALID;
4670 /* set up init dev params taskfile */
4671 DPRINTK("init dev params \n");
4673 ata_tf_init(dev, &tf);
4674 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4675 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4676 tf.protocol = ATA_PROT_NODATA;
4677 tf.nsect = sectors;
4678 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4680 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4681 /* A clean abort indicates an original or just out of spec drive
4682 and we should continue as we issue the setup based on the
4683 drive reported working geometry */
4684 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4685 err_mask = 0;
4687 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4688 return err_mask;
4692 * ata_sg_clean - Unmap DMA memory associated with command
4693 * @qc: Command containing DMA memory to be released
4695 * Unmap all mapped DMA memory associated with this command.
4697 * LOCKING:
4698 * spin_lock_irqsave(host lock)
4700 void ata_sg_clean(struct ata_queued_cmd *qc)
4702 struct ata_port *ap = qc->ap;
4703 struct scatterlist *sg = qc->sg;
4704 int dir = qc->dma_dir;
4706 WARN_ON_ONCE(sg == NULL);
4708 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4710 if (qc->n_elem)
4711 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4713 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4714 qc->sg = NULL;
4718 * atapi_check_dma - Check whether ATAPI DMA can be supported
4719 * @qc: Metadata associated with taskfile to check
4721 * Allow low-level driver to filter ATA PACKET commands, returning
4722 * a status indicating whether or not it is OK to use DMA for the
4723 * supplied PACKET command.
4725 * LOCKING:
4726 * spin_lock_irqsave(host lock)
4728 * RETURNS: 0 when ATAPI DMA can be used
4729 * nonzero otherwise
4731 int atapi_check_dma(struct ata_queued_cmd *qc)
4733 struct ata_port *ap = qc->ap;
4735 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4736 * few ATAPI devices choke on such DMA requests.
4738 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4739 unlikely(qc->nbytes & 15))
4740 return 1;
4742 if (ap->ops->check_atapi_dma)
4743 return ap->ops->check_atapi_dma(qc);
4745 return 0;
4749 * ata_std_qc_defer - Check whether a qc needs to be deferred
4750 * @qc: ATA command in question
4752 * Non-NCQ commands cannot run with any other command, NCQ or
4753 * not. As upper layer only knows the queue depth, we are
4754 * responsible for maintaining exclusion. This function checks
4755 * whether a new command @qc can be issued.
4757 * LOCKING:
4758 * spin_lock_irqsave(host lock)
4760 * RETURNS:
4761 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4763 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4765 struct ata_link *link = qc->dev->link;
4767 if (qc->tf.protocol == ATA_PROT_NCQ) {
4768 if (!ata_tag_valid(link->active_tag))
4769 return 0;
4770 } else {
4771 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4772 return 0;
4775 return ATA_DEFER_LINK;
4778 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4781 * ata_sg_init - Associate command with scatter-gather table.
4782 * @qc: Command to be associated
4783 * @sg: Scatter-gather table.
4784 * @n_elem: Number of elements in s/g table.
4786 * Initialize the data-related elements of queued_cmd @qc
4787 * to point to a scatter-gather table @sg, containing @n_elem
4788 * elements.
4790 * LOCKING:
4791 * spin_lock_irqsave(host lock)
4793 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4794 unsigned int n_elem)
4796 qc->sg = sg;
4797 qc->n_elem = n_elem;
4798 qc->cursg = qc->sg;
4802 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4803 * @qc: Command with scatter-gather table to be mapped.
4805 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4807 * LOCKING:
4808 * spin_lock_irqsave(host lock)
4810 * RETURNS:
4811 * Zero on success, negative on error.
4814 static int ata_sg_setup(struct ata_queued_cmd *qc)
4816 struct ata_port *ap = qc->ap;
4817 unsigned int n_elem;
4819 VPRINTK("ENTER, ata%u\n", ap->print_id);
4821 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4822 if (n_elem < 1)
4823 return -1;
4825 DPRINTK("%d sg elements mapped\n", n_elem);
4826 qc->orig_n_elem = qc->n_elem;
4827 qc->n_elem = n_elem;
4828 qc->flags |= ATA_QCFLAG_DMAMAP;
4830 return 0;
4834 * swap_buf_le16 - swap halves of 16-bit words in place
4835 * @buf: Buffer to swap
4836 * @buf_words: Number of 16-bit words in buffer.
4838 * Swap halves of 16-bit words if needed to convert from
4839 * little-endian byte order to native cpu byte order, or
4840 * vice-versa.
4842 * LOCKING:
4843 * Inherited from caller.
4845 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4847 #ifdef __BIG_ENDIAN
4848 unsigned int i;
4850 for (i = 0; i < buf_words; i++)
4851 buf[i] = le16_to_cpu(buf[i]);
4852 #endif /* __BIG_ENDIAN */
4856 * ata_qc_new - Request an available ATA command, for queueing
4857 * @ap: target port
4859 * LOCKING:
4860 * None.
4863 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4865 struct ata_queued_cmd *qc = NULL;
4866 unsigned int i;
4868 /* no command while frozen */
4869 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4870 return NULL;
4872 /* the last tag is reserved for internal command. */
4873 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4874 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4875 qc = __ata_qc_from_tag(ap, i);
4876 break;
4879 if (qc)
4880 qc->tag = i;
4882 return qc;
4886 * ata_qc_new_init - Request an available ATA command, and initialize it
4887 * @dev: Device from whom we request an available command structure
4889 * LOCKING:
4890 * None.
4893 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4895 struct ata_port *ap = dev->link->ap;
4896 struct ata_queued_cmd *qc;
4898 qc = ata_qc_new(ap);
4899 if (qc) {
4900 qc->scsicmd = NULL;
4901 qc->ap = ap;
4902 qc->dev = dev;
4904 ata_qc_reinit(qc);
4907 return qc;
4911 * ata_qc_free - free unused ata_queued_cmd
4912 * @qc: Command to complete
4914 * Designed to free unused ata_queued_cmd object
4915 * in case something prevents using it.
4917 * LOCKING:
4918 * spin_lock_irqsave(host lock)
4920 void ata_qc_free(struct ata_queued_cmd *qc)
4922 struct ata_port *ap = qc->ap;
4923 unsigned int tag;
4925 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4927 qc->flags = 0;
4928 tag = qc->tag;
4929 if (likely(ata_tag_valid(tag))) {
4930 qc->tag = ATA_TAG_POISON;
4931 clear_bit(tag, &ap->qc_allocated);
4935 void __ata_qc_complete(struct ata_queued_cmd *qc)
4937 struct ata_port *ap = qc->ap;
4938 struct ata_link *link = qc->dev->link;
4940 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4941 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4943 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4944 ata_sg_clean(qc);
4946 /* command should be marked inactive atomically with qc completion */
4947 if (qc->tf.protocol == ATA_PROT_NCQ) {
4948 link->sactive &= ~(1 << qc->tag);
4949 if (!link->sactive)
4950 ap->nr_active_links--;
4951 } else {
4952 link->active_tag = ATA_TAG_POISON;
4953 ap->nr_active_links--;
4956 /* clear exclusive status */
4957 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4958 ap->excl_link == link))
4959 ap->excl_link = NULL;
4961 /* atapi: mark qc as inactive to prevent the interrupt handler
4962 * from completing the command twice later, before the error handler
4963 * is called. (when rc != 0 and atapi request sense is needed)
4965 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4966 ap->qc_active &= ~(1 << qc->tag);
4968 /* call completion callback */
4969 qc->complete_fn(qc);
4972 static void fill_result_tf(struct ata_queued_cmd *qc)
4974 struct ata_port *ap = qc->ap;
4976 qc->result_tf.flags = qc->tf.flags;
4977 ap->ops->qc_fill_rtf(qc);
4980 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4982 struct ata_device *dev = qc->dev;
4984 if (ata_tag_internal(qc->tag))
4985 return;
4987 if (ata_is_nodata(qc->tf.protocol))
4988 return;
4990 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4991 return;
4993 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4997 * ata_qc_complete - Complete an active ATA command
4998 * @qc: Command to complete
5000 * Indicate to the mid and upper layers that an ATA
5001 * command has completed, with either an ok or not-ok status.
5003 * LOCKING:
5004 * spin_lock_irqsave(host lock)
5006 void ata_qc_complete(struct ata_queued_cmd *qc)
5008 struct ata_port *ap = qc->ap;
5010 /* XXX: New EH and old EH use different mechanisms to
5011 * synchronize EH with regular execution path.
5013 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5014 * Normal execution path is responsible for not accessing a
5015 * failed qc. libata core enforces the rule by returning NULL
5016 * from ata_qc_from_tag() for failed qcs.
5018 * Old EH depends on ata_qc_complete() nullifying completion
5019 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5020 * not synchronize with interrupt handler. Only PIO task is
5021 * taken care of.
5023 if (ap->ops->error_handler) {
5024 struct ata_device *dev = qc->dev;
5025 struct ata_eh_info *ehi = &dev->link->eh_info;
5027 if (unlikely(qc->err_mask))
5028 qc->flags |= ATA_QCFLAG_FAILED;
5030 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5031 if (!ata_tag_internal(qc->tag)) {
5032 /* always fill result TF for failed qc */
5033 fill_result_tf(qc);
5034 ata_qc_schedule_eh(qc);
5035 return;
5039 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5041 /* read result TF if requested */
5042 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5043 fill_result_tf(qc);
5045 /* Some commands need post-processing after successful
5046 * completion.
5048 switch (qc->tf.command) {
5049 case ATA_CMD_SET_FEATURES:
5050 if (qc->tf.feature != SETFEATURES_WC_ON &&
5051 qc->tf.feature != SETFEATURES_WC_OFF)
5052 break;
5053 /* fall through */
5054 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5055 case ATA_CMD_SET_MULTI: /* multi_count changed */
5056 /* revalidate device */
5057 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5058 ata_port_schedule_eh(ap);
5059 break;
5061 case ATA_CMD_SLEEP:
5062 dev->flags |= ATA_DFLAG_SLEEPING;
5063 break;
5066 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5067 ata_verify_xfer(qc);
5069 __ata_qc_complete(qc);
5070 } else {
5071 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5072 return;
5074 /* read result TF if failed or requested */
5075 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5076 fill_result_tf(qc);
5078 __ata_qc_complete(qc);
5083 * ata_qc_complete_multiple - Complete multiple qcs successfully
5084 * @ap: port in question
5085 * @qc_active: new qc_active mask
5087 * Complete in-flight commands. This functions is meant to be
5088 * called from low-level driver's interrupt routine to complete
5089 * requests normally. ap->qc_active and @qc_active is compared
5090 * and commands are completed accordingly.
5092 * LOCKING:
5093 * spin_lock_irqsave(host lock)
5095 * RETURNS:
5096 * Number of completed commands on success, -errno otherwise.
5098 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5100 int nr_done = 0;
5101 u32 done_mask;
5103 done_mask = ap->qc_active ^ qc_active;
5105 if (unlikely(done_mask & qc_active)) {
5106 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5107 "(%08x->%08x)\n", ap->qc_active, qc_active);
5108 return -EINVAL;
5111 while (done_mask) {
5112 struct ata_queued_cmd *qc;
5113 unsigned int tag = __ffs(done_mask);
5115 qc = ata_qc_from_tag(ap, tag);
5116 if (qc) {
5117 ata_qc_complete(qc);
5118 nr_done++;
5120 done_mask &= ~(1 << tag);
5123 return nr_done;
5127 * ata_qc_issue - issue taskfile to device
5128 * @qc: command to issue to device
5130 * Prepare an ATA command to submission to device.
5131 * This includes mapping the data into a DMA-able
5132 * area, filling in the S/G table, and finally
5133 * writing the taskfile to hardware, starting the command.
5135 * LOCKING:
5136 * spin_lock_irqsave(host lock)
5138 void ata_qc_issue(struct ata_queued_cmd *qc)
5140 struct ata_port *ap = qc->ap;
5141 struct ata_link *link = qc->dev->link;
5142 u8 prot = qc->tf.protocol;
5144 /* Make sure only one non-NCQ command is outstanding. The
5145 * check is skipped for old EH because it reuses active qc to
5146 * request ATAPI sense.
5148 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5150 if (ata_is_ncq(prot)) {
5151 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5153 if (!link->sactive)
5154 ap->nr_active_links++;
5155 link->sactive |= 1 << qc->tag;
5156 } else {
5157 WARN_ON_ONCE(link->sactive);
5159 ap->nr_active_links++;
5160 link->active_tag = qc->tag;
5163 qc->flags |= ATA_QCFLAG_ACTIVE;
5164 ap->qc_active |= 1 << qc->tag;
5166 /* We guarantee to LLDs that they will have at least one
5167 * non-zero sg if the command is a data command.
5169 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5171 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5172 (ap->flags & ATA_FLAG_PIO_DMA)))
5173 if (ata_sg_setup(qc))
5174 goto sg_err;
5176 /* if device is sleeping, schedule reset and abort the link */
5177 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5178 link->eh_info.action |= ATA_EH_RESET;
5179 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5180 ata_link_abort(link);
5181 return;
5184 ap->ops->qc_prep(qc);
5186 qc->err_mask |= ap->ops->qc_issue(qc);
5187 if (unlikely(qc->err_mask))
5188 goto err;
5189 return;
5191 sg_err:
5192 qc->err_mask |= AC_ERR_SYSTEM;
5193 err:
5194 ata_qc_complete(qc);
5198 * sata_scr_valid - test whether SCRs are accessible
5199 * @link: ATA link to test SCR accessibility for
5201 * Test whether SCRs are accessible for @link.
5203 * LOCKING:
5204 * None.
5206 * RETURNS:
5207 * 1 if SCRs are accessible, 0 otherwise.
5209 int sata_scr_valid(struct ata_link *link)
5211 struct ata_port *ap = link->ap;
5213 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5217 * sata_scr_read - read SCR register of the specified port
5218 * @link: ATA link to read SCR for
5219 * @reg: SCR to read
5220 * @val: Place to store read value
5222 * Read SCR register @reg of @link into *@val. This function is
5223 * guaranteed to succeed if @link is ap->link, the cable type of
5224 * the port is SATA and the port implements ->scr_read.
5226 * LOCKING:
5227 * None if @link is ap->link. Kernel thread context otherwise.
5229 * RETURNS:
5230 * 0 on success, negative errno on failure.
5232 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5234 if (ata_is_host_link(link)) {
5235 if (sata_scr_valid(link))
5236 return link->ap->ops->scr_read(link, reg, val);
5237 return -EOPNOTSUPP;
5240 return sata_pmp_scr_read(link, reg, val);
5244 * sata_scr_write - write SCR register of the specified port
5245 * @link: ATA link to write SCR for
5246 * @reg: SCR to write
5247 * @val: value to write
5249 * Write @val to SCR register @reg of @link. This function is
5250 * guaranteed to succeed if @link is ap->link, the cable type of
5251 * the port is SATA and the port implements ->scr_read.
5253 * LOCKING:
5254 * None if @link is ap->link. Kernel thread context otherwise.
5256 * RETURNS:
5257 * 0 on success, negative errno on failure.
5259 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5261 if (ata_is_host_link(link)) {
5262 if (sata_scr_valid(link))
5263 return link->ap->ops->scr_write(link, reg, val);
5264 return -EOPNOTSUPP;
5267 return sata_pmp_scr_write(link, reg, val);
5271 * sata_scr_write_flush - write SCR register of the specified port and flush
5272 * @link: ATA link to write SCR for
5273 * @reg: SCR to write
5274 * @val: value to write
5276 * This function is identical to sata_scr_write() except that this
5277 * function performs flush after writing to the register.
5279 * LOCKING:
5280 * None if @link is ap->link. Kernel thread context otherwise.
5282 * RETURNS:
5283 * 0 on success, negative errno on failure.
5285 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5287 if (ata_is_host_link(link)) {
5288 int rc;
5290 if (sata_scr_valid(link)) {
5291 rc = link->ap->ops->scr_write(link, reg, val);
5292 if (rc == 0)
5293 rc = link->ap->ops->scr_read(link, reg, &val);
5294 return rc;
5296 return -EOPNOTSUPP;
5299 return sata_pmp_scr_write(link, reg, val);
5303 * ata_phys_link_online - test whether the given link is online
5304 * @link: ATA link to test
5306 * Test whether @link is online. Note that this function returns
5307 * 0 if online status of @link cannot be obtained, so
5308 * ata_link_online(link) != !ata_link_offline(link).
5310 * LOCKING:
5311 * None.
5313 * RETURNS:
5314 * True if the port online status is available and online.
5316 bool ata_phys_link_online(struct ata_link *link)
5318 u32 sstatus;
5320 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5321 ata_sstatus_online(sstatus))
5322 return true;
5323 return false;
5327 * ata_phys_link_offline - test whether the given link is offline
5328 * @link: ATA link to test
5330 * Test whether @link is offline. Note that this function
5331 * returns 0 if offline status of @link cannot be obtained, so
5332 * ata_link_online(link) != !ata_link_offline(link).
5334 * LOCKING:
5335 * None.
5337 * RETURNS:
5338 * True if the port offline status is available and offline.
5340 bool ata_phys_link_offline(struct ata_link *link)
5342 u32 sstatus;
5344 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5345 !ata_sstatus_online(sstatus))
5346 return true;
5347 return false;
5351 * ata_link_online - test whether the given link is online
5352 * @link: ATA link to test
5354 * Test whether @link is online. This is identical to
5355 * ata_phys_link_online() when there's no slave link. When
5356 * there's a slave link, this function should only be called on
5357 * the master link and will return true if any of M/S links is
5358 * online.
5360 * LOCKING:
5361 * None.
5363 * RETURNS:
5364 * True if the port online status is available and online.
5366 bool ata_link_online(struct ata_link *link)
5368 struct ata_link *slave = link->ap->slave_link;
5370 WARN_ON(link == slave); /* shouldn't be called on slave link */
5372 return ata_phys_link_online(link) ||
5373 (slave && ata_phys_link_online(slave));
5377 * ata_link_offline - test whether the given link is offline
5378 * @link: ATA link to test
5380 * Test whether @link is offline. This is identical to
5381 * ata_phys_link_offline() when there's no slave link. When
5382 * there's a slave link, this function should only be called on
5383 * the master link and will return true if both M/S links are
5384 * offline.
5386 * LOCKING:
5387 * None.
5389 * RETURNS:
5390 * True if the port offline status is available and offline.
5392 bool ata_link_offline(struct ata_link *link)
5394 struct ata_link *slave = link->ap->slave_link;
5396 WARN_ON(link == slave); /* shouldn't be called on slave link */
5398 return ata_phys_link_offline(link) &&
5399 (!slave || ata_phys_link_offline(slave));
5402 #ifdef CONFIG_PM
5403 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5404 unsigned int action, unsigned int ehi_flags,
5405 int wait)
5407 unsigned long flags;
5408 int i, rc;
5410 for (i = 0; i < host->n_ports; i++) {
5411 struct ata_port *ap = host->ports[i];
5412 struct ata_link *link;
5414 /* Previous resume operation might still be in
5415 * progress. Wait for PM_PENDING to clear.
5417 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5418 ata_port_wait_eh(ap);
5419 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5422 /* request PM ops to EH */
5423 spin_lock_irqsave(ap->lock, flags);
5425 ap->pm_mesg = mesg;
5426 if (wait) {
5427 rc = 0;
5428 ap->pm_result = &rc;
5431 ap->pflags |= ATA_PFLAG_PM_PENDING;
5432 ata_for_each_link(link, ap, HOST_FIRST) {
5433 link->eh_info.action |= action;
5434 link->eh_info.flags |= ehi_flags;
5437 ata_port_schedule_eh(ap);
5439 spin_unlock_irqrestore(ap->lock, flags);
5441 /* wait and check result */
5442 if (wait) {
5443 ata_port_wait_eh(ap);
5444 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5445 if (rc)
5446 return rc;
5450 return 0;
5454 * ata_host_suspend - suspend host
5455 * @host: host to suspend
5456 * @mesg: PM message
5458 * Suspend @host. Actual operation is performed by EH. This
5459 * function requests EH to perform PM operations and waits for EH
5460 * to finish.
5462 * LOCKING:
5463 * Kernel thread context (may sleep).
5465 * RETURNS:
5466 * 0 on success, -errno on failure.
5468 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5470 int rc;
5473 * disable link pm on all ports before requesting
5474 * any pm activity
5476 ata_lpm_enable(host);
5478 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5479 if (rc == 0)
5480 host->dev->power.power_state = mesg;
5481 return rc;
5485 * ata_host_resume - resume host
5486 * @host: host to resume
5488 * Resume @host. Actual operation is performed by EH. This
5489 * function requests EH to perform PM operations and returns.
5490 * Note that all resume operations are performed parallely.
5492 * LOCKING:
5493 * Kernel thread context (may sleep).
5495 void ata_host_resume(struct ata_host *host)
5497 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5498 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5499 host->dev->power.power_state = PMSG_ON;
5501 /* reenable link pm */
5502 ata_lpm_disable(host);
5504 #endif
5507 * ata_port_start - Set port up for dma.
5508 * @ap: Port to initialize
5510 * Called just after data structures for each port are
5511 * initialized. Allocates space for PRD table.
5513 * May be used as the port_start() entry in ata_port_operations.
5515 * LOCKING:
5516 * Inherited from caller.
5518 int ata_port_start(struct ata_port *ap)
5520 struct device *dev = ap->dev;
5522 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5523 GFP_KERNEL);
5524 if (!ap->prd)
5525 return -ENOMEM;
5527 return 0;
5531 * ata_dev_init - Initialize an ata_device structure
5532 * @dev: Device structure to initialize
5534 * Initialize @dev in preparation for probing.
5536 * LOCKING:
5537 * Inherited from caller.
5539 void ata_dev_init(struct ata_device *dev)
5541 struct ata_link *link = ata_dev_phys_link(dev);
5542 struct ata_port *ap = link->ap;
5543 unsigned long flags;
5545 /* SATA spd limit is bound to the attached device, reset together */
5546 link->sata_spd_limit = link->hw_sata_spd_limit;
5547 link->sata_spd = 0;
5549 /* High bits of dev->flags are used to record warm plug
5550 * requests which occur asynchronously. Synchronize using
5551 * host lock.
5553 spin_lock_irqsave(ap->lock, flags);
5554 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5555 dev->horkage = 0;
5556 spin_unlock_irqrestore(ap->lock, flags);
5558 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5559 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5560 dev->pio_mask = UINT_MAX;
5561 dev->mwdma_mask = UINT_MAX;
5562 dev->udma_mask = UINT_MAX;
5566 * ata_link_init - Initialize an ata_link structure
5567 * @ap: ATA port link is attached to
5568 * @link: Link structure to initialize
5569 * @pmp: Port multiplier port number
5571 * Initialize @link.
5573 * LOCKING:
5574 * Kernel thread context (may sleep)
5576 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5578 int i;
5580 /* clear everything except for devices */
5581 memset(link, 0, offsetof(struct ata_link, device[0]));
5583 link->ap = ap;
5584 link->pmp = pmp;
5585 link->active_tag = ATA_TAG_POISON;
5586 link->hw_sata_spd_limit = UINT_MAX;
5588 /* can't use iterator, ap isn't initialized yet */
5589 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5590 struct ata_device *dev = &link->device[i];
5592 dev->link = link;
5593 dev->devno = dev - link->device;
5594 #ifdef CONFIG_ATA_ACPI
5595 dev->gtf_filter = ata_acpi_gtf_filter;
5596 #endif
5597 ata_dev_init(dev);
5602 * sata_link_init_spd - Initialize link->sata_spd_limit
5603 * @link: Link to configure sata_spd_limit for
5605 * Initialize @link->[hw_]sata_spd_limit to the currently
5606 * configured value.
5608 * LOCKING:
5609 * Kernel thread context (may sleep).
5611 * RETURNS:
5612 * 0 on success, -errno on failure.
5614 int sata_link_init_spd(struct ata_link *link)
5616 u8 spd;
5617 int rc;
5619 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5620 if (rc)
5621 return rc;
5623 spd = (link->saved_scontrol >> 4) & 0xf;
5624 if (spd)
5625 link->hw_sata_spd_limit &= (1 << spd) - 1;
5627 ata_force_link_limits(link);
5629 link->sata_spd_limit = link->hw_sata_spd_limit;
5631 return 0;
5635 * ata_port_alloc - allocate and initialize basic ATA port resources
5636 * @host: ATA host this allocated port belongs to
5638 * Allocate and initialize basic ATA port resources.
5640 * RETURNS:
5641 * Allocate ATA port on success, NULL on failure.
5643 * LOCKING:
5644 * Inherited from calling layer (may sleep).
5646 struct ata_port *ata_port_alloc(struct ata_host *host)
5648 struct ata_port *ap;
5650 DPRINTK("ENTER\n");
5652 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5653 if (!ap)
5654 return NULL;
5656 ap->pflags |= ATA_PFLAG_INITIALIZING;
5657 ap->lock = &host->lock;
5658 ap->flags = ATA_FLAG_DISABLED;
5659 ap->print_id = -1;
5660 ap->ctl = ATA_DEVCTL_OBS;
5661 ap->host = host;
5662 ap->dev = host->dev;
5663 ap->last_ctl = 0xFF;
5665 #if defined(ATA_VERBOSE_DEBUG)
5666 /* turn on all debugging levels */
5667 ap->msg_enable = 0x00FF;
5668 #elif defined(ATA_DEBUG)
5669 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5670 #else
5671 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5672 #endif
5674 #ifdef CONFIG_ATA_SFF
5675 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5676 #else
5677 INIT_DELAYED_WORK(&ap->port_task, NULL);
5678 #endif
5679 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5680 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5681 INIT_LIST_HEAD(&ap->eh_done_q);
5682 init_waitqueue_head(&ap->eh_wait_q);
5683 init_completion(&ap->park_req_pending);
5684 init_timer_deferrable(&ap->fastdrain_timer);
5685 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5686 ap->fastdrain_timer.data = (unsigned long)ap;
5688 ap->cbl = ATA_CBL_NONE;
5690 ata_link_init(ap, &ap->link, 0);
5692 #ifdef ATA_IRQ_TRAP
5693 ap->stats.unhandled_irq = 1;
5694 ap->stats.idle_irq = 1;
5695 #endif
5696 return ap;
5699 static void ata_host_release(struct device *gendev, void *res)
5701 struct ata_host *host = dev_get_drvdata(gendev);
5702 int i;
5704 for (i = 0; i < host->n_ports; i++) {
5705 struct ata_port *ap = host->ports[i];
5707 if (!ap)
5708 continue;
5710 if (ap->scsi_host)
5711 scsi_host_put(ap->scsi_host);
5713 kfree(ap->pmp_link);
5714 kfree(ap->slave_link);
5715 kfree(ap);
5716 host->ports[i] = NULL;
5719 dev_set_drvdata(gendev, NULL);
5723 * ata_host_alloc - allocate and init basic ATA host resources
5724 * @dev: generic device this host is associated with
5725 * @max_ports: maximum number of ATA ports associated with this host
5727 * Allocate and initialize basic ATA host resources. LLD calls
5728 * this function to allocate a host, initializes it fully and
5729 * attaches it using ata_host_register().
5731 * @max_ports ports are allocated and host->n_ports is
5732 * initialized to @max_ports. The caller is allowed to decrease
5733 * host->n_ports before calling ata_host_register(). The unused
5734 * ports will be automatically freed on registration.
5736 * RETURNS:
5737 * Allocate ATA host on success, NULL on failure.
5739 * LOCKING:
5740 * Inherited from calling layer (may sleep).
5742 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5744 struct ata_host *host;
5745 size_t sz;
5746 int i;
5748 DPRINTK("ENTER\n");
5750 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5751 return NULL;
5753 /* alloc a container for our list of ATA ports (buses) */
5754 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5755 /* alloc a container for our list of ATA ports (buses) */
5756 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5757 if (!host)
5758 goto err_out;
5760 devres_add(dev, host);
5761 dev_set_drvdata(dev, host);
5763 spin_lock_init(&host->lock);
5764 host->dev = dev;
5765 host->n_ports = max_ports;
5767 /* allocate ports bound to this host */
5768 for (i = 0; i < max_ports; i++) {
5769 struct ata_port *ap;
5771 ap = ata_port_alloc(host);
5772 if (!ap)
5773 goto err_out;
5775 ap->port_no = i;
5776 host->ports[i] = ap;
5779 devres_remove_group(dev, NULL);
5780 return host;
5782 err_out:
5783 devres_release_group(dev, NULL);
5784 return NULL;
5788 * ata_host_alloc_pinfo - alloc host and init with port_info array
5789 * @dev: generic device this host is associated with
5790 * @ppi: array of ATA port_info to initialize host with
5791 * @n_ports: number of ATA ports attached to this host
5793 * Allocate ATA host and initialize with info from @ppi. If NULL
5794 * terminated, @ppi may contain fewer entries than @n_ports. The
5795 * last entry will be used for the remaining ports.
5797 * RETURNS:
5798 * Allocate ATA host on success, NULL on failure.
5800 * LOCKING:
5801 * Inherited from calling layer (may sleep).
5803 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5804 const struct ata_port_info * const * ppi,
5805 int n_ports)
5807 const struct ata_port_info *pi;
5808 struct ata_host *host;
5809 int i, j;
5811 host = ata_host_alloc(dev, n_ports);
5812 if (!host)
5813 return NULL;
5815 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5816 struct ata_port *ap = host->ports[i];
5818 if (ppi[j])
5819 pi = ppi[j++];
5821 ap->pio_mask = pi->pio_mask;
5822 ap->mwdma_mask = pi->mwdma_mask;
5823 ap->udma_mask = pi->udma_mask;
5824 ap->flags |= pi->flags;
5825 ap->link.flags |= pi->link_flags;
5826 ap->ops = pi->port_ops;
5828 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5829 host->ops = pi->port_ops;
5832 return host;
5836 * ata_slave_link_init - initialize slave link
5837 * @ap: port to initialize slave link for
5839 * Create and initialize slave link for @ap. This enables slave
5840 * link handling on the port.
5842 * In libata, a port contains links and a link contains devices.
5843 * There is single host link but if a PMP is attached to it,
5844 * there can be multiple fan-out links. On SATA, there's usually
5845 * a single device connected to a link but PATA and SATA
5846 * controllers emulating TF based interface can have two - master
5847 * and slave.
5849 * However, there are a few controllers which don't fit into this
5850 * abstraction too well - SATA controllers which emulate TF
5851 * interface with both master and slave devices but also have
5852 * separate SCR register sets for each device. These controllers
5853 * need separate links for physical link handling
5854 * (e.g. onlineness, link speed) but should be treated like a
5855 * traditional M/S controller for everything else (e.g. command
5856 * issue, softreset).
5858 * slave_link is libata's way of handling this class of
5859 * controllers without impacting core layer too much. For
5860 * anything other than physical link handling, the default host
5861 * link is used for both master and slave. For physical link
5862 * handling, separate @ap->slave_link is used. All dirty details
5863 * are implemented inside libata core layer. From LLD's POV, the
5864 * only difference is that prereset, hardreset and postreset are
5865 * called once more for the slave link, so the reset sequence
5866 * looks like the following.
5868 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5869 * softreset(M) -> postreset(M) -> postreset(S)
5871 * Note that softreset is called only for the master. Softreset
5872 * resets both M/S by definition, so SRST on master should handle
5873 * both (the standard method will work just fine).
5875 * LOCKING:
5876 * Should be called before host is registered.
5878 * RETURNS:
5879 * 0 on success, -errno on failure.
5881 int ata_slave_link_init(struct ata_port *ap)
5883 struct ata_link *link;
5885 WARN_ON(ap->slave_link);
5886 WARN_ON(ap->flags & ATA_FLAG_PMP);
5888 link = kzalloc(sizeof(*link), GFP_KERNEL);
5889 if (!link)
5890 return -ENOMEM;
5892 ata_link_init(ap, link, 1);
5893 ap->slave_link = link;
5894 return 0;
5897 static void ata_host_stop(struct device *gendev, void *res)
5899 struct ata_host *host = dev_get_drvdata(gendev);
5900 int i;
5902 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5904 for (i = 0; i < host->n_ports; i++) {
5905 struct ata_port *ap = host->ports[i];
5907 if (ap->ops->port_stop)
5908 ap->ops->port_stop(ap);
5911 if (host->ops->host_stop)
5912 host->ops->host_stop(host);
5916 * ata_finalize_port_ops - finalize ata_port_operations
5917 * @ops: ata_port_operations to finalize
5919 * An ata_port_operations can inherit from another ops and that
5920 * ops can again inherit from another. This can go on as many
5921 * times as necessary as long as there is no loop in the
5922 * inheritance chain.
5924 * Ops tables are finalized when the host is started. NULL or
5925 * unspecified entries are inherited from the closet ancestor
5926 * which has the method and the entry is populated with it.
5927 * After finalization, the ops table directly points to all the
5928 * methods and ->inherits is no longer necessary and cleared.
5930 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5932 * LOCKING:
5933 * None.
5935 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5937 static DEFINE_SPINLOCK(lock);
5938 const struct ata_port_operations *cur;
5939 void **begin = (void **)ops;
5940 void **end = (void **)&ops->inherits;
5941 void **pp;
5943 if (!ops || !ops->inherits)
5944 return;
5946 spin_lock(&lock);
5948 for (cur = ops->inherits; cur; cur = cur->inherits) {
5949 void **inherit = (void **)cur;
5951 for (pp = begin; pp < end; pp++, inherit++)
5952 if (!*pp)
5953 *pp = *inherit;
5956 for (pp = begin; pp < end; pp++)
5957 if (IS_ERR(*pp))
5958 *pp = NULL;
5960 ops->inherits = NULL;
5962 spin_unlock(&lock);
5966 * ata_host_start - start and freeze ports of an ATA host
5967 * @host: ATA host to start ports for
5969 * Start and then freeze ports of @host. Started status is
5970 * recorded in host->flags, so this function can be called
5971 * multiple times. Ports are guaranteed to get started only
5972 * once. If host->ops isn't initialized yet, its set to the
5973 * first non-dummy port ops.
5975 * LOCKING:
5976 * Inherited from calling layer (may sleep).
5978 * RETURNS:
5979 * 0 if all ports are started successfully, -errno otherwise.
5981 int ata_host_start(struct ata_host *host)
5983 int have_stop = 0;
5984 void *start_dr = NULL;
5985 int i, rc;
5987 if (host->flags & ATA_HOST_STARTED)
5988 return 0;
5990 ata_finalize_port_ops(host->ops);
5992 for (i = 0; i < host->n_ports; i++) {
5993 struct ata_port *ap = host->ports[i];
5995 ata_finalize_port_ops(ap->ops);
5997 if (!host->ops && !ata_port_is_dummy(ap))
5998 host->ops = ap->ops;
6000 if (ap->ops->port_stop)
6001 have_stop = 1;
6004 if (host->ops->host_stop)
6005 have_stop = 1;
6007 if (have_stop) {
6008 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6009 if (!start_dr)
6010 return -ENOMEM;
6013 for (i = 0; i < host->n_ports; i++) {
6014 struct ata_port *ap = host->ports[i];
6016 if (ap->ops->port_start) {
6017 rc = ap->ops->port_start(ap);
6018 if (rc) {
6019 if (rc != -ENODEV)
6020 dev_printk(KERN_ERR, host->dev,
6021 "failed to start port %d "
6022 "(errno=%d)\n", i, rc);
6023 goto err_out;
6026 ata_eh_freeze_port(ap);
6029 if (start_dr)
6030 devres_add(host->dev, start_dr);
6031 host->flags |= ATA_HOST_STARTED;
6032 return 0;
6034 err_out:
6035 while (--i >= 0) {
6036 struct ata_port *ap = host->ports[i];
6038 if (ap->ops->port_stop)
6039 ap->ops->port_stop(ap);
6041 devres_free(start_dr);
6042 return rc;
6046 * ata_sas_host_init - Initialize a host struct
6047 * @host: host to initialize
6048 * @dev: device host is attached to
6049 * @flags: host flags
6050 * @ops: port_ops
6052 * LOCKING:
6053 * PCI/etc. bus probe sem.
6056 /* KILLME - the only user left is ipr */
6057 void ata_host_init(struct ata_host *host, struct device *dev,
6058 unsigned long flags, struct ata_port_operations *ops)
6060 spin_lock_init(&host->lock);
6061 host->dev = dev;
6062 host->flags = flags;
6063 host->ops = ops;
6067 static void async_port_probe(void *data, async_cookie_t cookie)
6069 int rc;
6070 struct ata_port *ap = data;
6073 * If we're not allowed to scan this host in parallel,
6074 * we need to wait until all previous scans have completed
6075 * before going further.
6076 * Jeff Garzik says this is only within a controller, so we
6077 * don't need to wait for port 0, only for later ports.
6079 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6080 async_synchronize_cookie(cookie);
6082 /* probe */
6083 if (ap->ops->error_handler) {
6084 struct ata_eh_info *ehi = &ap->link.eh_info;
6085 unsigned long flags;
6087 ata_port_probe(ap);
6089 /* kick EH for boot probing */
6090 spin_lock_irqsave(ap->lock, flags);
6092 ehi->probe_mask |= ATA_ALL_DEVICES;
6093 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6094 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6096 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6097 ap->pflags |= ATA_PFLAG_LOADING;
6098 ata_port_schedule_eh(ap);
6100 spin_unlock_irqrestore(ap->lock, flags);
6102 /* wait for EH to finish */
6103 ata_port_wait_eh(ap);
6104 } else {
6105 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6106 rc = ata_bus_probe(ap);
6107 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6109 if (rc) {
6110 /* FIXME: do something useful here?
6111 * Current libata behavior will
6112 * tear down everything when
6113 * the module is removed
6114 * or the h/w is unplugged.
6119 /* in order to keep device order, we need to synchronize at this point */
6120 async_synchronize_cookie(cookie);
6122 ata_scsi_scan_host(ap, 1);
6126 * ata_host_register - register initialized ATA host
6127 * @host: ATA host to register
6128 * @sht: template for SCSI host
6130 * Register initialized ATA host. @host is allocated using
6131 * ata_host_alloc() and fully initialized by LLD. This function
6132 * starts ports, registers @host with ATA and SCSI layers and
6133 * probe registered devices.
6135 * LOCKING:
6136 * Inherited from calling layer (may sleep).
6138 * RETURNS:
6139 * 0 on success, -errno otherwise.
6141 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6143 int i, rc;
6145 /* host must have been started */
6146 if (!(host->flags & ATA_HOST_STARTED)) {
6147 dev_printk(KERN_ERR, host->dev,
6148 "BUG: trying to register unstarted host\n");
6149 WARN_ON(1);
6150 return -EINVAL;
6153 /* Blow away unused ports. This happens when LLD can't
6154 * determine the exact number of ports to allocate at
6155 * allocation time.
6157 for (i = host->n_ports; host->ports[i]; i++)
6158 kfree(host->ports[i]);
6160 /* give ports names and add SCSI hosts */
6161 for (i = 0; i < host->n_ports; i++)
6162 host->ports[i]->print_id = ata_print_id++;
6164 rc = ata_scsi_add_hosts(host, sht);
6165 if (rc)
6166 return rc;
6168 /* associate with ACPI nodes */
6169 ata_acpi_associate(host);
6171 /* set cable, sata_spd_limit and report */
6172 for (i = 0; i < host->n_ports; i++) {
6173 struct ata_port *ap = host->ports[i];
6174 unsigned long xfer_mask;
6176 /* set SATA cable type if still unset */
6177 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6178 ap->cbl = ATA_CBL_SATA;
6180 /* init sata_spd_limit to the current value */
6181 sata_link_init_spd(&ap->link);
6182 if (ap->slave_link)
6183 sata_link_init_spd(ap->slave_link);
6185 /* print per-port info to dmesg */
6186 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6187 ap->udma_mask);
6189 if (!ata_port_is_dummy(ap)) {
6190 ata_port_printk(ap, KERN_INFO,
6191 "%cATA max %s %s\n",
6192 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6193 ata_mode_string(xfer_mask),
6194 ap->link.eh_info.desc);
6195 ata_ehi_clear_desc(&ap->link.eh_info);
6196 } else
6197 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6200 /* perform each probe asynchronously */
6201 for (i = 0; i < host->n_ports; i++) {
6202 struct ata_port *ap = host->ports[i];
6203 async_schedule(async_port_probe, ap);
6206 return 0;
6210 * ata_host_activate - start host, request IRQ and register it
6211 * @host: target ATA host
6212 * @irq: IRQ to request
6213 * @irq_handler: irq_handler used when requesting IRQ
6214 * @irq_flags: irq_flags used when requesting IRQ
6215 * @sht: scsi_host_template to use when registering the host
6217 * After allocating an ATA host and initializing it, most libata
6218 * LLDs perform three steps to activate the host - start host,
6219 * request IRQ and register it. This helper takes necessasry
6220 * arguments and performs the three steps in one go.
6222 * An invalid IRQ skips the IRQ registration and expects the host to
6223 * have set polling mode on the port. In this case, @irq_handler
6224 * should be NULL.
6226 * LOCKING:
6227 * Inherited from calling layer (may sleep).
6229 * RETURNS:
6230 * 0 on success, -errno otherwise.
6232 int ata_host_activate(struct ata_host *host, int irq,
6233 irq_handler_t irq_handler, unsigned long irq_flags,
6234 struct scsi_host_template *sht)
6236 int i, rc;
6238 rc = ata_host_start(host);
6239 if (rc)
6240 return rc;
6242 /* Special case for polling mode */
6243 if (!irq) {
6244 WARN_ON(irq_handler);
6245 return ata_host_register(host, sht);
6248 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6249 dev_driver_string(host->dev), host);
6250 if (rc)
6251 return rc;
6253 for (i = 0; i < host->n_ports; i++)
6254 ata_port_desc(host->ports[i], "irq %d", irq);
6256 rc = ata_host_register(host, sht);
6257 /* if failed, just free the IRQ and leave ports alone */
6258 if (rc)
6259 devm_free_irq(host->dev, irq, host);
6261 return rc;
6265 * ata_port_detach - Detach ATA port in prepration of device removal
6266 * @ap: ATA port to be detached
6268 * Detach all ATA devices and the associated SCSI devices of @ap;
6269 * then, remove the associated SCSI host. @ap is guaranteed to
6270 * be quiescent on return from this function.
6272 * LOCKING:
6273 * Kernel thread context (may sleep).
6275 static void ata_port_detach(struct ata_port *ap)
6277 unsigned long flags;
6279 if (!ap->ops->error_handler)
6280 goto skip_eh;
6282 /* tell EH we're leaving & flush EH */
6283 spin_lock_irqsave(ap->lock, flags);
6284 ap->pflags |= ATA_PFLAG_UNLOADING;
6285 ata_port_schedule_eh(ap);
6286 spin_unlock_irqrestore(ap->lock, flags);
6288 /* wait till EH commits suicide */
6289 ata_port_wait_eh(ap);
6291 /* it better be dead now */
6292 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6294 cancel_rearming_delayed_work(&ap->hotplug_task);
6296 skip_eh:
6297 /* remove the associated SCSI host */
6298 scsi_remove_host(ap->scsi_host);
6302 * ata_host_detach - Detach all ports of an ATA host
6303 * @host: Host to detach
6305 * Detach all ports of @host.
6307 * LOCKING:
6308 * Kernel thread context (may sleep).
6310 void ata_host_detach(struct ata_host *host)
6312 int i;
6314 for (i = 0; i < host->n_ports; i++)
6315 ata_port_detach(host->ports[i]);
6317 /* the host is dead now, dissociate ACPI */
6318 ata_acpi_dissociate(host);
6321 #ifdef CONFIG_PCI
6324 * ata_pci_remove_one - PCI layer callback for device removal
6325 * @pdev: PCI device that was removed
6327 * PCI layer indicates to libata via this hook that hot-unplug or
6328 * module unload event has occurred. Detach all ports. Resource
6329 * release is handled via devres.
6331 * LOCKING:
6332 * Inherited from PCI layer (may sleep).
6334 void ata_pci_remove_one(struct pci_dev *pdev)
6336 struct device *dev = &pdev->dev;
6337 struct ata_host *host = dev_get_drvdata(dev);
6339 ata_host_detach(host);
6342 /* move to PCI subsystem */
6343 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6345 unsigned long tmp = 0;
6347 switch (bits->width) {
6348 case 1: {
6349 u8 tmp8 = 0;
6350 pci_read_config_byte(pdev, bits->reg, &tmp8);
6351 tmp = tmp8;
6352 break;
6354 case 2: {
6355 u16 tmp16 = 0;
6356 pci_read_config_word(pdev, bits->reg, &tmp16);
6357 tmp = tmp16;
6358 break;
6360 case 4: {
6361 u32 tmp32 = 0;
6362 pci_read_config_dword(pdev, bits->reg, &tmp32);
6363 tmp = tmp32;
6364 break;
6367 default:
6368 return -EINVAL;
6371 tmp &= bits->mask;
6373 return (tmp == bits->val) ? 1 : 0;
6376 #ifdef CONFIG_PM
6377 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6379 pci_save_state(pdev);
6380 pci_disable_device(pdev);
6382 if (mesg.event & PM_EVENT_SLEEP)
6383 pci_set_power_state(pdev, PCI_D3hot);
6386 int ata_pci_device_do_resume(struct pci_dev *pdev)
6388 int rc;
6390 pci_set_power_state(pdev, PCI_D0);
6391 pci_restore_state(pdev);
6393 rc = pcim_enable_device(pdev);
6394 if (rc) {
6395 dev_printk(KERN_ERR, &pdev->dev,
6396 "failed to enable device after resume (%d)\n", rc);
6397 return rc;
6400 pci_set_master(pdev);
6401 return 0;
6404 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6406 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6407 int rc = 0;
6409 rc = ata_host_suspend(host, mesg);
6410 if (rc)
6411 return rc;
6413 ata_pci_device_do_suspend(pdev, mesg);
6415 return 0;
6418 int ata_pci_device_resume(struct pci_dev *pdev)
6420 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6421 int rc;
6423 rc = ata_pci_device_do_resume(pdev);
6424 if (rc == 0)
6425 ata_host_resume(host);
6426 return rc;
6428 #endif /* CONFIG_PM */
6430 #endif /* CONFIG_PCI */
6432 static int __init ata_parse_force_one(char **cur,
6433 struct ata_force_ent *force_ent,
6434 const char **reason)
6436 /* FIXME: Currently, there's no way to tag init const data and
6437 * using __initdata causes build failure on some versions of
6438 * gcc. Once __initdataconst is implemented, add const to the
6439 * following structure.
6441 static struct ata_force_param force_tbl[] __initdata = {
6442 { "40c", .cbl = ATA_CBL_PATA40 },
6443 { "80c", .cbl = ATA_CBL_PATA80 },
6444 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6445 { "unk", .cbl = ATA_CBL_PATA_UNK },
6446 { "ign", .cbl = ATA_CBL_PATA_IGN },
6447 { "sata", .cbl = ATA_CBL_SATA },
6448 { "1.5Gbps", .spd_limit = 1 },
6449 { "3.0Gbps", .spd_limit = 2 },
6450 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6451 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6452 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6453 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6454 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6455 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6456 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6457 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6458 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6459 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6460 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6461 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6462 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6463 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6464 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6465 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6466 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6467 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6468 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6469 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6470 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6471 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6472 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6473 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6474 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6475 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6476 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6477 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6478 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6479 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6480 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6481 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6482 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6483 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6484 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6485 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6486 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6487 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6488 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6490 char *start = *cur, *p = *cur;
6491 char *id, *val, *endp;
6492 const struct ata_force_param *match_fp = NULL;
6493 int nr_matches = 0, i;
6495 /* find where this param ends and update *cur */
6496 while (*p != '\0' && *p != ',')
6497 p++;
6499 if (*p == '\0')
6500 *cur = p;
6501 else
6502 *cur = p + 1;
6504 *p = '\0';
6506 /* parse */
6507 p = strchr(start, ':');
6508 if (!p) {
6509 val = strstrip(start);
6510 goto parse_val;
6512 *p = '\0';
6514 id = strstrip(start);
6515 val = strstrip(p + 1);
6517 /* parse id */
6518 p = strchr(id, '.');
6519 if (p) {
6520 *p++ = '\0';
6521 force_ent->device = simple_strtoul(p, &endp, 10);
6522 if (p == endp || *endp != '\0') {
6523 *reason = "invalid device";
6524 return -EINVAL;
6528 force_ent->port = simple_strtoul(id, &endp, 10);
6529 if (p == endp || *endp != '\0') {
6530 *reason = "invalid port/link";
6531 return -EINVAL;
6534 parse_val:
6535 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6536 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6537 const struct ata_force_param *fp = &force_tbl[i];
6539 if (strncasecmp(val, fp->name, strlen(val)))
6540 continue;
6542 nr_matches++;
6543 match_fp = fp;
6545 if (strcasecmp(val, fp->name) == 0) {
6546 nr_matches = 1;
6547 break;
6551 if (!nr_matches) {
6552 *reason = "unknown value";
6553 return -EINVAL;
6555 if (nr_matches > 1) {
6556 *reason = "ambigious value";
6557 return -EINVAL;
6560 force_ent->param = *match_fp;
6562 return 0;
6565 static void __init ata_parse_force_param(void)
6567 int idx = 0, size = 1;
6568 int last_port = -1, last_device = -1;
6569 char *p, *cur, *next;
6571 /* calculate maximum number of params and allocate force_tbl */
6572 for (p = ata_force_param_buf; *p; p++)
6573 if (*p == ',')
6574 size++;
6576 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6577 if (!ata_force_tbl) {
6578 printk(KERN_WARNING "ata: failed to extend force table, "
6579 "libata.force ignored\n");
6580 return;
6583 /* parse and populate the table */
6584 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6585 const char *reason = "";
6586 struct ata_force_ent te = { .port = -1, .device = -1 };
6588 next = cur;
6589 if (ata_parse_force_one(&next, &te, &reason)) {
6590 printk(KERN_WARNING "ata: failed to parse force "
6591 "parameter \"%s\" (%s)\n",
6592 cur, reason);
6593 continue;
6596 if (te.port == -1) {
6597 te.port = last_port;
6598 te.device = last_device;
6601 ata_force_tbl[idx++] = te;
6603 last_port = te.port;
6604 last_device = te.device;
6607 ata_force_tbl_size = idx;
6610 static int __init ata_init(void)
6612 ata_parse_force_param();
6614 ata_wq = create_workqueue("ata");
6615 if (!ata_wq)
6616 goto free_force_tbl;
6618 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6619 if (!ata_aux_wq)
6620 goto free_wq;
6622 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6623 return 0;
6625 free_wq:
6626 destroy_workqueue(ata_wq);
6627 free_force_tbl:
6628 kfree(ata_force_tbl);
6629 return -ENOMEM;
6632 static void __exit ata_exit(void)
6634 kfree(ata_force_tbl);
6635 destroy_workqueue(ata_wq);
6636 destroy_workqueue(ata_aux_wq);
6639 subsys_initcall(ata_init);
6640 module_exit(ata_exit);
6642 static unsigned long ratelimit_time;
6643 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6645 int ata_ratelimit(void)
6647 int rc;
6648 unsigned long flags;
6650 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6652 if (time_after(jiffies, ratelimit_time)) {
6653 rc = 1;
6654 ratelimit_time = jiffies + (HZ/5);
6655 } else
6656 rc = 0;
6658 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6660 return rc;
6664 * ata_wait_register - wait until register value changes
6665 * @reg: IO-mapped register
6666 * @mask: Mask to apply to read register value
6667 * @val: Wait condition
6668 * @interval: polling interval in milliseconds
6669 * @timeout: timeout in milliseconds
6671 * Waiting for some bits of register to change is a common
6672 * operation for ATA controllers. This function reads 32bit LE
6673 * IO-mapped register @reg and tests for the following condition.
6675 * (*@reg & mask) != val
6677 * If the condition is met, it returns; otherwise, the process is
6678 * repeated after @interval_msec until timeout.
6680 * LOCKING:
6681 * Kernel thread context (may sleep)
6683 * RETURNS:
6684 * The final register value.
6686 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6687 unsigned long interval, unsigned long timeout)
6689 unsigned long deadline;
6690 u32 tmp;
6692 tmp = ioread32(reg);
6694 /* Calculate timeout _after_ the first read to make sure
6695 * preceding writes reach the controller before starting to
6696 * eat away the timeout.
6698 deadline = ata_deadline(jiffies, timeout);
6700 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6701 msleep(interval);
6702 tmp = ioread32(reg);
6705 return tmp;
6709 * Dummy port_ops
6711 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6713 return AC_ERR_SYSTEM;
6716 static void ata_dummy_error_handler(struct ata_port *ap)
6718 /* truly dummy */
6721 struct ata_port_operations ata_dummy_port_ops = {
6722 .qc_prep = ata_noop_qc_prep,
6723 .qc_issue = ata_dummy_qc_issue,
6724 .error_handler = ata_dummy_error_handler,
6727 const struct ata_port_info ata_dummy_port_info = {
6728 .port_ops = &ata_dummy_port_ops,
6732 * libata is essentially a library of internal helper functions for
6733 * low-level ATA host controller drivers. As such, the API/ABI is
6734 * likely to change as new drivers are added and updated.
6735 * Do not depend on ABI/API stability.
6737 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6738 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6739 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6740 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6741 EXPORT_SYMBOL_GPL(sata_port_ops);
6742 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6743 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6744 EXPORT_SYMBOL_GPL(ata_link_next);
6745 EXPORT_SYMBOL_GPL(ata_dev_next);
6746 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6747 EXPORT_SYMBOL_GPL(ata_host_init);
6748 EXPORT_SYMBOL_GPL(ata_host_alloc);
6749 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6750 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6751 EXPORT_SYMBOL_GPL(ata_host_start);
6752 EXPORT_SYMBOL_GPL(ata_host_register);
6753 EXPORT_SYMBOL_GPL(ata_host_activate);
6754 EXPORT_SYMBOL_GPL(ata_host_detach);
6755 EXPORT_SYMBOL_GPL(ata_sg_init);
6756 EXPORT_SYMBOL_GPL(ata_qc_complete);
6757 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6758 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6759 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6760 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6761 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6762 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6763 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6764 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6765 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6766 EXPORT_SYMBOL_GPL(ata_mode_string);
6767 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6768 EXPORT_SYMBOL_GPL(ata_port_start);
6769 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6770 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6771 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6772 EXPORT_SYMBOL_GPL(ata_port_probe);
6773 EXPORT_SYMBOL_GPL(ata_dev_disable);
6774 EXPORT_SYMBOL_GPL(sata_set_spd);
6775 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6776 EXPORT_SYMBOL_GPL(sata_link_debounce);
6777 EXPORT_SYMBOL_GPL(sata_link_resume);
6778 EXPORT_SYMBOL_GPL(ata_std_prereset);
6779 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6780 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6781 EXPORT_SYMBOL_GPL(ata_std_postreset);
6782 EXPORT_SYMBOL_GPL(ata_dev_classify);
6783 EXPORT_SYMBOL_GPL(ata_dev_pair);
6784 EXPORT_SYMBOL_GPL(ata_port_disable);
6785 EXPORT_SYMBOL_GPL(ata_ratelimit);
6786 EXPORT_SYMBOL_GPL(ata_wait_register);
6787 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6788 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6789 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6790 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6791 EXPORT_SYMBOL_GPL(sata_scr_valid);
6792 EXPORT_SYMBOL_GPL(sata_scr_read);
6793 EXPORT_SYMBOL_GPL(sata_scr_write);
6794 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6795 EXPORT_SYMBOL_GPL(ata_link_online);
6796 EXPORT_SYMBOL_GPL(ata_link_offline);
6797 #ifdef CONFIG_PM
6798 EXPORT_SYMBOL_GPL(ata_host_suspend);
6799 EXPORT_SYMBOL_GPL(ata_host_resume);
6800 #endif /* CONFIG_PM */
6801 EXPORT_SYMBOL_GPL(ata_id_string);
6802 EXPORT_SYMBOL_GPL(ata_id_c_string);
6803 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6804 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6806 EXPORT_SYMBOL_GPL(ata_pio_queue_task);
6807 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6808 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6809 EXPORT_SYMBOL_GPL(ata_timing_compute);
6810 EXPORT_SYMBOL_GPL(ata_timing_merge);
6811 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6813 #ifdef CONFIG_PCI
6814 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6815 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6816 #ifdef CONFIG_PM
6817 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6818 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6819 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6820 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6821 #endif /* CONFIG_PM */
6822 #endif /* CONFIG_PCI */
6824 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6825 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6826 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6827 EXPORT_SYMBOL_GPL(ata_port_desc);
6828 #ifdef CONFIG_PCI
6829 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6830 #endif /* CONFIG_PCI */
6831 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6832 EXPORT_SYMBOL_GPL(ata_link_abort);
6833 EXPORT_SYMBOL_GPL(ata_port_abort);
6834 EXPORT_SYMBOL_GPL(ata_port_freeze);
6835 EXPORT_SYMBOL_GPL(sata_async_notification);
6836 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6837 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6838 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6839 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6840 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6841 EXPORT_SYMBOL_GPL(ata_do_eh);
6842 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6844 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6845 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6846 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6847 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6848 EXPORT_SYMBOL_GPL(ata_cable_sata);