[ARM] pxa: Gumstix Verdex PCMCIA support
[linux-2.6/verdex.git] / drivers / ata / sata_nv.c
blob86a40582999ce0f80364e2bb5e0995970b6f906e
1 /*
2 * sata_nv.c - NVIDIA nForce SATA
4 * Copyright 2004 NVIDIA Corp. All rights reserved.
5 * Copyright 2004 Andrew Chew
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; see the file COPYING. If not, write to
20 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 * libata documentation is available via 'make {ps|pdf}docs',
24 * as Documentation/DocBook/libata.*
26 * No hardware documentation available outside of NVIDIA.
27 * This driver programs the NVIDIA SATA controller in a similar
28 * fashion as with other PCI IDE BMDMA controllers, with a few
29 * NV-specific details such as register offsets, SATA phy location,
30 * hotplug info, etc.
32 * CK804/MCP04 controllers support an alternate programming interface
33 * similar to the ADMA specification (with some modifications).
34 * This allows the use of NCQ. Non-DMA-mapped ATA commands are still
35 * sent through the legacy interface.
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/pci.h>
42 #include <linux/init.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/device.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_device.h>
49 #include <linux/libata.h>
51 #define DRV_NAME "sata_nv"
52 #define DRV_VERSION "3.5"
54 #define NV_ADMA_DMA_BOUNDARY 0xffffffffUL
56 enum {
57 NV_MMIO_BAR = 5,
59 NV_PORTS = 2,
60 NV_PIO_MASK = ATA_PIO4,
61 NV_MWDMA_MASK = ATA_MWDMA2,
62 NV_UDMA_MASK = ATA_UDMA6,
63 NV_PORT0_SCR_REG_OFFSET = 0x00,
64 NV_PORT1_SCR_REG_OFFSET = 0x40,
66 /* INT_STATUS/ENABLE */
67 NV_INT_STATUS = 0x10,
68 NV_INT_ENABLE = 0x11,
69 NV_INT_STATUS_CK804 = 0x440,
70 NV_INT_ENABLE_CK804 = 0x441,
72 /* INT_STATUS/ENABLE bits */
73 NV_INT_DEV = 0x01,
74 NV_INT_PM = 0x02,
75 NV_INT_ADDED = 0x04,
76 NV_INT_REMOVED = 0x08,
78 NV_INT_PORT_SHIFT = 4, /* each port occupies 4 bits */
80 NV_INT_ALL = 0x0f,
81 NV_INT_MASK = NV_INT_DEV |
82 NV_INT_ADDED | NV_INT_REMOVED,
84 /* INT_CONFIG */
85 NV_INT_CONFIG = 0x12,
86 NV_INT_CONFIG_METHD = 0x01, // 0 = INT, 1 = SMI
88 // For PCI config register 20
89 NV_MCP_SATA_CFG_20 = 0x50,
90 NV_MCP_SATA_CFG_20_SATA_SPACE_EN = 0x04,
91 NV_MCP_SATA_CFG_20_PORT0_EN = (1 << 17),
92 NV_MCP_SATA_CFG_20_PORT1_EN = (1 << 16),
93 NV_MCP_SATA_CFG_20_PORT0_PWB_EN = (1 << 14),
94 NV_MCP_SATA_CFG_20_PORT1_PWB_EN = (1 << 12),
96 NV_ADMA_MAX_CPBS = 32,
97 NV_ADMA_CPB_SZ = 128,
98 NV_ADMA_APRD_SZ = 16,
99 NV_ADMA_SGTBL_LEN = (1024 - NV_ADMA_CPB_SZ) /
100 NV_ADMA_APRD_SZ,
101 NV_ADMA_SGTBL_TOTAL_LEN = NV_ADMA_SGTBL_LEN + 5,
102 NV_ADMA_SGTBL_SZ = NV_ADMA_SGTBL_LEN * NV_ADMA_APRD_SZ,
103 NV_ADMA_PORT_PRIV_DMA_SZ = NV_ADMA_MAX_CPBS *
104 (NV_ADMA_CPB_SZ + NV_ADMA_SGTBL_SZ),
106 /* BAR5 offset to ADMA general registers */
107 NV_ADMA_GEN = 0x400,
108 NV_ADMA_GEN_CTL = 0x00,
109 NV_ADMA_NOTIFIER_CLEAR = 0x30,
111 /* BAR5 offset to ADMA ports */
112 NV_ADMA_PORT = 0x480,
114 /* size of ADMA port register space */
115 NV_ADMA_PORT_SIZE = 0x100,
117 /* ADMA port registers */
118 NV_ADMA_CTL = 0x40,
119 NV_ADMA_CPB_COUNT = 0x42,
120 NV_ADMA_NEXT_CPB_IDX = 0x43,
121 NV_ADMA_STAT = 0x44,
122 NV_ADMA_CPB_BASE_LOW = 0x48,
123 NV_ADMA_CPB_BASE_HIGH = 0x4C,
124 NV_ADMA_APPEND = 0x50,
125 NV_ADMA_NOTIFIER = 0x68,
126 NV_ADMA_NOTIFIER_ERROR = 0x6C,
128 /* NV_ADMA_CTL register bits */
129 NV_ADMA_CTL_HOTPLUG_IEN = (1 << 0),
130 NV_ADMA_CTL_CHANNEL_RESET = (1 << 5),
131 NV_ADMA_CTL_GO = (1 << 7),
132 NV_ADMA_CTL_AIEN = (1 << 8),
133 NV_ADMA_CTL_READ_NON_COHERENT = (1 << 11),
134 NV_ADMA_CTL_WRITE_NON_COHERENT = (1 << 12),
136 /* CPB response flag bits */
137 NV_CPB_RESP_DONE = (1 << 0),
138 NV_CPB_RESP_ATA_ERR = (1 << 3),
139 NV_CPB_RESP_CMD_ERR = (1 << 4),
140 NV_CPB_RESP_CPB_ERR = (1 << 7),
142 /* CPB control flag bits */
143 NV_CPB_CTL_CPB_VALID = (1 << 0),
144 NV_CPB_CTL_QUEUE = (1 << 1),
145 NV_CPB_CTL_APRD_VALID = (1 << 2),
146 NV_CPB_CTL_IEN = (1 << 3),
147 NV_CPB_CTL_FPDMA = (1 << 4),
149 /* APRD flags */
150 NV_APRD_WRITE = (1 << 1),
151 NV_APRD_END = (1 << 2),
152 NV_APRD_CONT = (1 << 3),
154 /* NV_ADMA_STAT flags */
155 NV_ADMA_STAT_TIMEOUT = (1 << 0),
156 NV_ADMA_STAT_HOTUNPLUG = (1 << 1),
157 NV_ADMA_STAT_HOTPLUG = (1 << 2),
158 NV_ADMA_STAT_CPBERR = (1 << 4),
159 NV_ADMA_STAT_SERROR = (1 << 5),
160 NV_ADMA_STAT_CMD_COMPLETE = (1 << 6),
161 NV_ADMA_STAT_IDLE = (1 << 8),
162 NV_ADMA_STAT_LEGACY = (1 << 9),
163 NV_ADMA_STAT_STOPPED = (1 << 10),
164 NV_ADMA_STAT_DONE = (1 << 12),
165 NV_ADMA_STAT_ERR = NV_ADMA_STAT_CPBERR |
166 NV_ADMA_STAT_TIMEOUT,
168 /* port flags */
169 NV_ADMA_PORT_REGISTER_MODE = (1 << 0),
170 NV_ADMA_ATAPI_SETUP_COMPLETE = (1 << 1),
172 /* MCP55 reg offset */
173 NV_CTL_MCP55 = 0x400,
174 NV_INT_STATUS_MCP55 = 0x440,
175 NV_INT_ENABLE_MCP55 = 0x444,
176 NV_NCQ_REG_MCP55 = 0x448,
178 /* MCP55 */
179 NV_INT_ALL_MCP55 = 0xffff,
180 NV_INT_PORT_SHIFT_MCP55 = 16, /* each port occupies 16 bits */
181 NV_INT_MASK_MCP55 = NV_INT_ALL_MCP55 & 0xfffd,
183 /* SWNCQ ENABLE BITS*/
184 NV_CTL_PRI_SWNCQ = 0x02,
185 NV_CTL_SEC_SWNCQ = 0x04,
187 /* SW NCQ status bits*/
188 NV_SWNCQ_IRQ_DEV = (1 << 0),
189 NV_SWNCQ_IRQ_PM = (1 << 1),
190 NV_SWNCQ_IRQ_ADDED = (1 << 2),
191 NV_SWNCQ_IRQ_REMOVED = (1 << 3),
193 NV_SWNCQ_IRQ_BACKOUT = (1 << 4),
194 NV_SWNCQ_IRQ_SDBFIS = (1 << 5),
195 NV_SWNCQ_IRQ_DHREGFIS = (1 << 6),
196 NV_SWNCQ_IRQ_DMASETUP = (1 << 7),
198 NV_SWNCQ_IRQ_HOTPLUG = NV_SWNCQ_IRQ_ADDED |
199 NV_SWNCQ_IRQ_REMOVED,
203 /* ADMA Physical Region Descriptor - one SG segment */
204 struct nv_adma_prd {
205 __le64 addr;
206 __le32 len;
207 u8 flags;
208 u8 packet_len;
209 __le16 reserved;
212 enum nv_adma_regbits {
213 CMDEND = (1 << 15), /* end of command list */
214 WNB = (1 << 14), /* wait-not-BSY */
215 IGN = (1 << 13), /* ignore this entry */
216 CS1n = (1 << (4 + 8)), /* std. PATA signals follow... */
217 DA2 = (1 << (2 + 8)),
218 DA1 = (1 << (1 + 8)),
219 DA0 = (1 << (0 + 8)),
222 /* ADMA Command Parameter Block
223 The first 5 SG segments are stored inside the Command Parameter Block itself.
224 If there are more than 5 segments the remainder are stored in a separate
225 memory area indicated by next_aprd. */
226 struct nv_adma_cpb {
227 u8 resp_flags; /* 0 */
228 u8 reserved1; /* 1 */
229 u8 ctl_flags; /* 2 */
230 /* len is length of taskfile in 64 bit words */
231 u8 len; /* 3 */
232 u8 tag; /* 4 */
233 u8 next_cpb_idx; /* 5 */
234 __le16 reserved2; /* 6-7 */
235 __le16 tf[12]; /* 8-31 */
236 struct nv_adma_prd aprd[5]; /* 32-111 */
237 __le64 next_aprd; /* 112-119 */
238 __le64 reserved3; /* 120-127 */
242 struct nv_adma_port_priv {
243 struct nv_adma_cpb *cpb;
244 dma_addr_t cpb_dma;
245 struct nv_adma_prd *aprd;
246 dma_addr_t aprd_dma;
247 void __iomem *ctl_block;
248 void __iomem *gen_block;
249 void __iomem *notifier_clear_block;
250 u64 adma_dma_mask;
251 u8 flags;
252 int last_issue_ncq;
255 struct nv_host_priv {
256 unsigned long type;
259 struct defer_queue {
260 u32 defer_bits;
261 unsigned int head;
262 unsigned int tail;
263 unsigned int tag[ATA_MAX_QUEUE];
266 enum ncq_saw_flag_list {
267 ncq_saw_d2h = (1U << 0),
268 ncq_saw_dmas = (1U << 1),
269 ncq_saw_sdb = (1U << 2),
270 ncq_saw_backout = (1U << 3),
273 struct nv_swncq_port_priv {
274 struct ata_prd *prd; /* our SG list */
275 dma_addr_t prd_dma; /* and its DMA mapping */
276 void __iomem *sactive_block;
277 void __iomem *irq_block;
278 void __iomem *tag_block;
279 u32 qc_active;
281 unsigned int last_issue_tag;
283 /* fifo circular queue to store deferral command */
284 struct defer_queue defer_queue;
286 /* for NCQ interrupt analysis */
287 u32 dhfis_bits;
288 u32 dmafis_bits;
289 u32 sdbfis_bits;
291 unsigned int ncq_flags;
295 #define NV_ADMA_CHECK_INTR(GCTL, PORT) ((GCTL) & (1 << (19 + (12 * (PORT)))))
297 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
298 #ifdef CONFIG_PM
299 static int nv_pci_device_resume(struct pci_dev *pdev);
300 #endif
301 static void nv_ck804_host_stop(struct ata_host *host);
302 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance);
303 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance);
304 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance);
305 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val);
306 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val);
308 static int nv_hardreset(struct ata_link *link, unsigned int *class,
309 unsigned long deadline);
310 static void nv_nf2_freeze(struct ata_port *ap);
311 static void nv_nf2_thaw(struct ata_port *ap);
312 static void nv_ck804_freeze(struct ata_port *ap);
313 static void nv_ck804_thaw(struct ata_port *ap);
314 static int nv_adma_slave_config(struct scsi_device *sdev);
315 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc);
316 static void nv_adma_qc_prep(struct ata_queued_cmd *qc);
317 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc);
318 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance);
319 static void nv_adma_irq_clear(struct ata_port *ap);
320 static int nv_adma_port_start(struct ata_port *ap);
321 static void nv_adma_port_stop(struct ata_port *ap);
322 #ifdef CONFIG_PM
323 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg);
324 static int nv_adma_port_resume(struct ata_port *ap);
325 #endif
326 static void nv_adma_freeze(struct ata_port *ap);
327 static void nv_adma_thaw(struct ata_port *ap);
328 static void nv_adma_error_handler(struct ata_port *ap);
329 static void nv_adma_host_stop(struct ata_host *host);
330 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc);
331 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf);
333 static void nv_mcp55_thaw(struct ata_port *ap);
334 static void nv_mcp55_freeze(struct ata_port *ap);
335 static void nv_swncq_error_handler(struct ata_port *ap);
336 static int nv_swncq_slave_config(struct scsi_device *sdev);
337 static int nv_swncq_port_start(struct ata_port *ap);
338 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc);
339 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc);
340 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc);
341 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis);
342 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance);
343 #ifdef CONFIG_PM
344 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg);
345 static int nv_swncq_port_resume(struct ata_port *ap);
346 #endif
348 enum nv_host_type
350 GENERIC,
351 NFORCE2,
352 NFORCE3 = NFORCE2, /* NF2 == NF3 as far as sata_nv is concerned */
353 CK804,
354 ADMA,
355 MCP5x,
356 SWNCQ,
359 static const struct pci_device_id nv_pci_tbl[] = {
360 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE2S_SATA), NFORCE2 },
361 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA), NFORCE3 },
362 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA2), NFORCE3 },
363 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA), CK804 },
364 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA2), CK804 },
365 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA), CK804 },
366 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA2), CK804 },
367 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA), MCP5x },
368 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2), MCP5x },
369 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA), MCP5x },
370 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2), MCP5x },
371 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA), GENERIC },
372 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA2), GENERIC },
373 { PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA3), GENERIC },
375 { } /* terminate list */
378 static struct pci_driver nv_pci_driver = {
379 .name = DRV_NAME,
380 .id_table = nv_pci_tbl,
381 .probe = nv_init_one,
382 #ifdef CONFIG_PM
383 .suspend = ata_pci_device_suspend,
384 .resume = nv_pci_device_resume,
385 #endif
386 .remove = ata_pci_remove_one,
389 static struct scsi_host_template nv_sht = {
390 ATA_BMDMA_SHT(DRV_NAME),
393 static struct scsi_host_template nv_adma_sht = {
394 ATA_NCQ_SHT(DRV_NAME),
395 .can_queue = NV_ADMA_MAX_CPBS,
396 .sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN,
397 .dma_boundary = NV_ADMA_DMA_BOUNDARY,
398 .slave_configure = nv_adma_slave_config,
401 static struct scsi_host_template nv_swncq_sht = {
402 ATA_NCQ_SHT(DRV_NAME),
403 .can_queue = ATA_MAX_QUEUE,
404 .sg_tablesize = LIBATA_MAX_PRD,
405 .dma_boundary = ATA_DMA_BOUNDARY,
406 .slave_configure = nv_swncq_slave_config,
410 * NV SATA controllers have various different problems with hardreset
411 * protocol depending on the specific controller and device.
413 * GENERIC:
415 * bko11195 reports that link doesn't come online after hardreset on
416 * generic nv's and there have been several other similar reports on
417 * linux-ide.
419 * bko12351#c23 reports that warmplug on MCP61 doesn't work with
420 * softreset.
422 * NF2/3:
424 * bko3352 reports nf2/3 controllers can't determine device signature
425 * reliably after hardreset. The following thread reports detection
426 * failure on cold boot with the standard debouncing timing.
428 * http://thread.gmane.org/gmane.linux.ide/34098
430 * bko12176 reports that hardreset fails to bring up the link during
431 * boot on nf2.
433 * CK804:
435 * For initial probing after boot and hot plugging, hardreset mostly
436 * works fine on CK804 but curiously, reprobing on the initial port
437 * by rescanning or rmmod/insmod fails to acquire the initial D2H Reg
438 * FIS in somewhat undeterministic way.
440 * SWNCQ:
442 * bko12351 reports that when SWNCQ is enabled, for hotplug to work,
443 * hardreset should be used and hardreset can't report proper
444 * signature, which suggests that mcp5x is closer to nf2 as long as
445 * reset quirkiness is concerned.
447 * bko12703 reports that boot probing fails for intel SSD with
448 * hardreset. Link fails to come online. Softreset works fine.
450 * The failures are varied but the following patterns seem true for
451 * all flavors.
453 * - Softreset during boot always works.
455 * - Hardreset during boot sometimes fails to bring up the link on
456 * certain comibnations and device signature acquisition is
457 * unreliable.
459 * - Hardreset is often necessary after hotplug.
461 * So, preferring softreset for boot probing and error handling (as
462 * hardreset might bring down the link) but using hardreset for
463 * post-boot probing should work around the above issues in most
464 * cases. Define nv_hardreset() which only kicks in for post-boot
465 * probing and use it for all variants.
467 static struct ata_port_operations nv_generic_ops = {
468 .inherits = &ata_bmdma_port_ops,
469 .lost_interrupt = ATA_OP_NULL,
470 .scr_read = nv_scr_read,
471 .scr_write = nv_scr_write,
472 .hardreset = nv_hardreset,
475 static struct ata_port_operations nv_nf2_ops = {
476 .inherits = &nv_generic_ops,
477 .freeze = nv_nf2_freeze,
478 .thaw = nv_nf2_thaw,
481 static struct ata_port_operations nv_ck804_ops = {
482 .inherits = &nv_generic_ops,
483 .freeze = nv_ck804_freeze,
484 .thaw = nv_ck804_thaw,
485 .host_stop = nv_ck804_host_stop,
488 static struct ata_port_operations nv_adma_ops = {
489 .inherits = &nv_ck804_ops,
491 .check_atapi_dma = nv_adma_check_atapi_dma,
492 .sff_tf_read = nv_adma_tf_read,
493 .qc_defer = ata_std_qc_defer,
494 .qc_prep = nv_adma_qc_prep,
495 .qc_issue = nv_adma_qc_issue,
496 .sff_irq_clear = nv_adma_irq_clear,
498 .freeze = nv_adma_freeze,
499 .thaw = nv_adma_thaw,
500 .error_handler = nv_adma_error_handler,
501 .post_internal_cmd = nv_adma_post_internal_cmd,
503 .port_start = nv_adma_port_start,
504 .port_stop = nv_adma_port_stop,
505 #ifdef CONFIG_PM
506 .port_suspend = nv_adma_port_suspend,
507 .port_resume = nv_adma_port_resume,
508 #endif
509 .host_stop = nv_adma_host_stop,
512 static struct ata_port_operations nv_swncq_ops = {
513 .inherits = &nv_generic_ops,
515 .qc_defer = ata_std_qc_defer,
516 .qc_prep = nv_swncq_qc_prep,
517 .qc_issue = nv_swncq_qc_issue,
519 .freeze = nv_mcp55_freeze,
520 .thaw = nv_mcp55_thaw,
521 .error_handler = nv_swncq_error_handler,
523 #ifdef CONFIG_PM
524 .port_suspend = nv_swncq_port_suspend,
525 .port_resume = nv_swncq_port_resume,
526 #endif
527 .port_start = nv_swncq_port_start,
530 struct nv_pi_priv {
531 irq_handler_t irq_handler;
532 struct scsi_host_template *sht;
535 #define NV_PI_PRIV(_irq_handler, _sht) \
536 &(struct nv_pi_priv){ .irq_handler = _irq_handler, .sht = _sht }
538 static const struct ata_port_info nv_port_info[] = {
539 /* generic */
541 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
542 .pio_mask = NV_PIO_MASK,
543 .mwdma_mask = NV_MWDMA_MASK,
544 .udma_mask = NV_UDMA_MASK,
545 .port_ops = &nv_generic_ops,
546 .private_data = NV_PI_PRIV(nv_generic_interrupt, &nv_sht),
548 /* nforce2/3 */
550 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
551 .pio_mask = NV_PIO_MASK,
552 .mwdma_mask = NV_MWDMA_MASK,
553 .udma_mask = NV_UDMA_MASK,
554 .port_ops = &nv_nf2_ops,
555 .private_data = NV_PI_PRIV(nv_nf2_interrupt, &nv_sht),
557 /* ck804 */
559 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
560 .pio_mask = NV_PIO_MASK,
561 .mwdma_mask = NV_MWDMA_MASK,
562 .udma_mask = NV_UDMA_MASK,
563 .port_ops = &nv_ck804_ops,
564 .private_data = NV_PI_PRIV(nv_ck804_interrupt, &nv_sht),
566 /* ADMA */
568 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
569 ATA_FLAG_MMIO | ATA_FLAG_NCQ,
570 .pio_mask = NV_PIO_MASK,
571 .mwdma_mask = NV_MWDMA_MASK,
572 .udma_mask = NV_UDMA_MASK,
573 .port_ops = &nv_adma_ops,
574 .private_data = NV_PI_PRIV(nv_adma_interrupt, &nv_adma_sht),
576 /* MCP5x */
578 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
579 .pio_mask = NV_PIO_MASK,
580 .mwdma_mask = NV_MWDMA_MASK,
581 .udma_mask = NV_UDMA_MASK,
582 .port_ops = &nv_generic_ops,
583 .private_data = NV_PI_PRIV(nv_generic_interrupt, &nv_sht),
585 /* SWNCQ */
587 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
588 ATA_FLAG_NCQ,
589 .pio_mask = NV_PIO_MASK,
590 .mwdma_mask = NV_MWDMA_MASK,
591 .udma_mask = NV_UDMA_MASK,
592 .port_ops = &nv_swncq_ops,
593 .private_data = NV_PI_PRIV(nv_swncq_interrupt, &nv_swncq_sht),
597 MODULE_AUTHOR("NVIDIA");
598 MODULE_DESCRIPTION("low-level driver for NVIDIA nForce SATA controller");
599 MODULE_LICENSE("GPL");
600 MODULE_DEVICE_TABLE(pci, nv_pci_tbl);
601 MODULE_VERSION(DRV_VERSION);
603 static int adma_enabled;
604 static int swncq_enabled = 1;
605 static int msi_enabled;
607 static void nv_adma_register_mode(struct ata_port *ap)
609 struct nv_adma_port_priv *pp = ap->private_data;
610 void __iomem *mmio = pp->ctl_block;
611 u16 tmp, status;
612 int count = 0;
614 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE)
615 return;
617 status = readw(mmio + NV_ADMA_STAT);
618 while (!(status & NV_ADMA_STAT_IDLE) && count < 20) {
619 ndelay(50);
620 status = readw(mmio + NV_ADMA_STAT);
621 count++;
623 if (count == 20)
624 ata_port_printk(ap, KERN_WARNING,
625 "timeout waiting for ADMA IDLE, stat=0x%hx\n",
626 status);
628 tmp = readw(mmio + NV_ADMA_CTL);
629 writew(tmp & ~NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL);
631 count = 0;
632 status = readw(mmio + NV_ADMA_STAT);
633 while (!(status & NV_ADMA_STAT_LEGACY) && count < 20) {
634 ndelay(50);
635 status = readw(mmio + NV_ADMA_STAT);
636 count++;
638 if (count == 20)
639 ata_port_printk(ap, KERN_WARNING,
640 "timeout waiting for ADMA LEGACY, stat=0x%hx\n",
641 status);
643 pp->flags |= NV_ADMA_PORT_REGISTER_MODE;
646 static void nv_adma_mode(struct ata_port *ap)
648 struct nv_adma_port_priv *pp = ap->private_data;
649 void __iomem *mmio = pp->ctl_block;
650 u16 tmp, status;
651 int count = 0;
653 if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE))
654 return;
656 WARN_ON(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE);
658 tmp = readw(mmio + NV_ADMA_CTL);
659 writew(tmp | NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL);
661 status = readw(mmio + NV_ADMA_STAT);
662 while (((status & NV_ADMA_STAT_LEGACY) ||
663 !(status & NV_ADMA_STAT_IDLE)) && count < 20) {
664 ndelay(50);
665 status = readw(mmio + NV_ADMA_STAT);
666 count++;
668 if (count == 20)
669 ata_port_printk(ap, KERN_WARNING,
670 "timeout waiting for ADMA LEGACY clear and IDLE, stat=0x%hx\n",
671 status);
673 pp->flags &= ~NV_ADMA_PORT_REGISTER_MODE;
676 static int nv_adma_slave_config(struct scsi_device *sdev)
678 struct ata_port *ap = ata_shost_to_port(sdev->host);
679 struct nv_adma_port_priv *pp = ap->private_data;
680 struct nv_adma_port_priv *port0, *port1;
681 struct scsi_device *sdev0, *sdev1;
682 struct pci_dev *pdev = to_pci_dev(ap->host->dev);
683 unsigned long segment_boundary, flags;
684 unsigned short sg_tablesize;
685 int rc;
686 int adma_enable;
687 u32 current_reg, new_reg, config_mask;
689 rc = ata_scsi_slave_config(sdev);
691 if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun)
692 /* Not a proper libata device, ignore */
693 return rc;
695 spin_lock_irqsave(ap->lock, flags);
697 if (ap->link.device[sdev->id].class == ATA_DEV_ATAPI) {
699 * NVIDIA reports that ADMA mode does not support ATAPI commands.
700 * Therefore ATAPI commands are sent through the legacy interface.
701 * However, the legacy interface only supports 32-bit DMA.
702 * Restrict DMA parameters as required by the legacy interface
703 * when an ATAPI device is connected.
705 segment_boundary = ATA_DMA_BOUNDARY;
706 /* Subtract 1 since an extra entry may be needed for padding, see
707 libata-scsi.c */
708 sg_tablesize = LIBATA_MAX_PRD - 1;
710 /* Since the legacy DMA engine is in use, we need to disable ADMA
711 on the port. */
712 adma_enable = 0;
713 nv_adma_register_mode(ap);
714 } else {
715 segment_boundary = NV_ADMA_DMA_BOUNDARY;
716 sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN;
717 adma_enable = 1;
720 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &current_reg);
722 if (ap->port_no == 1)
723 config_mask = NV_MCP_SATA_CFG_20_PORT1_EN |
724 NV_MCP_SATA_CFG_20_PORT1_PWB_EN;
725 else
726 config_mask = NV_MCP_SATA_CFG_20_PORT0_EN |
727 NV_MCP_SATA_CFG_20_PORT0_PWB_EN;
729 if (adma_enable) {
730 new_reg = current_reg | config_mask;
731 pp->flags &= ~NV_ADMA_ATAPI_SETUP_COMPLETE;
732 } else {
733 new_reg = current_reg & ~config_mask;
734 pp->flags |= NV_ADMA_ATAPI_SETUP_COMPLETE;
737 if (current_reg != new_reg)
738 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, new_reg);
740 port0 = ap->host->ports[0]->private_data;
741 port1 = ap->host->ports[1]->private_data;
742 sdev0 = ap->host->ports[0]->link.device[0].sdev;
743 sdev1 = ap->host->ports[1]->link.device[0].sdev;
744 if ((port0->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) ||
745 (port1->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)) {
746 /** We have to set the DMA mask to 32-bit if either port is in
747 ATAPI mode, since they are on the same PCI device which is
748 used for DMA mapping. If we set the mask we also need to set
749 the bounce limit on both ports to ensure that the block
750 layer doesn't feed addresses that cause DMA mapping to
751 choke. If either SCSI device is not allocated yet, it's OK
752 since that port will discover its correct setting when it
753 does get allocated.
754 Note: Setting 32-bit mask should not fail. */
755 if (sdev0)
756 blk_queue_bounce_limit(sdev0->request_queue,
757 ATA_DMA_MASK);
758 if (sdev1)
759 blk_queue_bounce_limit(sdev1->request_queue,
760 ATA_DMA_MASK);
762 pci_set_dma_mask(pdev, ATA_DMA_MASK);
763 } else {
764 /** This shouldn't fail as it was set to this value before */
765 pci_set_dma_mask(pdev, pp->adma_dma_mask);
766 if (sdev0)
767 blk_queue_bounce_limit(sdev0->request_queue,
768 pp->adma_dma_mask);
769 if (sdev1)
770 blk_queue_bounce_limit(sdev1->request_queue,
771 pp->adma_dma_mask);
774 blk_queue_segment_boundary(sdev->request_queue, segment_boundary);
775 blk_queue_max_hw_segments(sdev->request_queue, sg_tablesize);
776 ata_port_printk(ap, KERN_INFO,
777 "DMA mask 0x%llX, segment boundary 0x%lX, hw segs %hu\n",
778 (unsigned long long)*ap->host->dev->dma_mask,
779 segment_boundary, sg_tablesize);
781 spin_unlock_irqrestore(ap->lock, flags);
783 return rc;
786 static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc)
788 struct nv_adma_port_priv *pp = qc->ap->private_data;
789 return !(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE);
792 static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
794 /* Other than when internal or pass-through commands are executed,
795 the only time this function will be called in ADMA mode will be
796 if a command fails. In the failure case we don't care about going
797 into register mode with ADMA commands pending, as the commands will
798 all shortly be aborted anyway. We assume that NCQ commands are not
799 issued via passthrough, which is the only way that switching into
800 ADMA mode could abort outstanding commands. */
801 nv_adma_register_mode(ap);
803 ata_sff_tf_read(ap, tf);
806 static unsigned int nv_adma_tf_to_cpb(struct ata_taskfile *tf, __le16 *cpb)
808 unsigned int idx = 0;
810 if (tf->flags & ATA_TFLAG_ISADDR) {
811 if (tf->flags & ATA_TFLAG_LBA48) {
812 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->hob_feature | WNB);
813 cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->hob_nsect);
814 cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->hob_lbal);
815 cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->hob_lbam);
816 cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->hob_lbah);
817 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature);
818 } else
819 cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature | WNB);
821 cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->nsect);
822 cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->lbal);
823 cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->lbam);
824 cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->lbah);
827 if (tf->flags & ATA_TFLAG_DEVICE)
828 cpb[idx++] = cpu_to_le16((ATA_REG_DEVICE << 8) | tf->device);
830 cpb[idx++] = cpu_to_le16((ATA_REG_CMD << 8) | tf->command | CMDEND);
832 while (idx < 12)
833 cpb[idx++] = cpu_to_le16(IGN);
835 return idx;
838 static int nv_adma_check_cpb(struct ata_port *ap, int cpb_num, int force_err)
840 struct nv_adma_port_priv *pp = ap->private_data;
841 u8 flags = pp->cpb[cpb_num].resp_flags;
843 VPRINTK("CPB %d, flags=0x%x\n", cpb_num, flags);
845 if (unlikely((force_err ||
846 flags & (NV_CPB_RESP_ATA_ERR |
847 NV_CPB_RESP_CMD_ERR |
848 NV_CPB_RESP_CPB_ERR)))) {
849 struct ata_eh_info *ehi = &ap->link.eh_info;
850 int freeze = 0;
852 ata_ehi_clear_desc(ehi);
853 __ata_ehi_push_desc(ehi, "CPB resp_flags 0x%x: ", flags);
854 if (flags & NV_CPB_RESP_ATA_ERR) {
855 ata_ehi_push_desc(ehi, "ATA error");
856 ehi->err_mask |= AC_ERR_DEV;
857 } else if (flags & NV_CPB_RESP_CMD_ERR) {
858 ata_ehi_push_desc(ehi, "CMD error");
859 ehi->err_mask |= AC_ERR_DEV;
860 } else if (flags & NV_CPB_RESP_CPB_ERR) {
861 ata_ehi_push_desc(ehi, "CPB error");
862 ehi->err_mask |= AC_ERR_SYSTEM;
863 freeze = 1;
864 } else {
865 /* notifier error, but no error in CPB flags? */
866 ata_ehi_push_desc(ehi, "unknown");
867 ehi->err_mask |= AC_ERR_OTHER;
868 freeze = 1;
870 /* Kill all commands. EH will determine what actually failed. */
871 if (freeze)
872 ata_port_freeze(ap);
873 else
874 ata_port_abort(ap);
875 return 1;
878 if (likely(flags & NV_CPB_RESP_DONE)) {
879 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, cpb_num);
880 VPRINTK("CPB flags done, flags=0x%x\n", flags);
881 if (likely(qc)) {
882 DPRINTK("Completing qc from tag %d\n", cpb_num);
883 ata_qc_complete(qc);
884 } else {
885 struct ata_eh_info *ehi = &ap->link.eh_info;
886 /* Notifier bits set without a command may indicate the drive
887 is misbehaving. Raise host state machine violation on this
888 condition. */
889 ata_port_printk(ap, KERN_ERR,
890 "notifier for tag %d with no cmd?\n",
891 cpb_num);
892 ehi->err_mask |= AC_ERR_HSM;
893 ehi->action |= ATA_EH_RESET;
894 ata_port_freeze(ap);
895 return 1;
898 return 0;
901 static int nv_host_intr(struct ata_port *ap, u8 irq_stat)
903 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
905 /* freeze if hotplugged */
906 if (unlikely(irq_stat & (NV_INT_ADDED | NV_INT_REMOVED))) {
907 ata_port_freeze(ap);
908 return 1;
911 /* bail out if not our interrupt */
912 if (!(irq_stat & NV_INT_DEV))
913 return 0;
915 /* DEV interrupt w/ no active qc? */
916 if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
917 ata_sff_check_status(ap);
918 return 1;
921 /* handle interrupt */
922 return ata_sff_host_intr(ap, qc);
925 static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance)
927 struct ata_host *host = dev_instance;
928 int i, handled = 0;
929 u32 notifier_clears[2];
931 spin_lock(&host->lock);
933 for (i = 0; i < host->n_ports; i++) {
934 struct ata_port *ap = host->ports[i];
935 notifier_clears[i] = 0;
937 if (ap && !(ap->flags & ATA_FLAG_DISABLED)) {
938 struct nv_adma_port_priv *pp = ap->private_data;
939 void __iomem *mmio = pp->ctl_block;
940 u16 status;
941 u32 gen_ctl;
942 u32 notifier, notifier_error;
944 /* if ADMA is disabled, use standard ata interrupt handler */
945 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) {
946 u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804)
947 >> (NV_INT_PORT_SHIFT * i);
948 handled += nv_host_intr(ap, irq_stat);
949 continue;
952 /* if in ATA register mode, check for standard interrupts */
953 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) {
954 u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804)
955 >> (NV_INT_PORT_SHIFT * i);
956 if (ata_tag_valid(ap->link.active_tag))
957 /** NV_INT_DEV indication seems unreliable at times
958 at least in ADMA mode. Force it on always when a
959 command is active, to prevent losing interrupts. */
960 irq_stat |= NV_INT_DEV;
961 handled += nv_host_intr(ap, irq_stat);
964 notifier = readl(mmio + NV_ADMA_NOTIFIER);
965 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR);
966 notifier_clears[i] = notifier | notifier_error;
968 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL);
970 if (!NV_ADMA_CHECK_INTR(gen_ctl, ap->port_no) && !notifier &&
971 !notifier_error)
972 /* Nothing to do */
973 continue;
975 status = readw(mmio + NV_ADMA_STAT);
977 /* Clear status. Ensure the controller sees the clearing before we start
978 looking at any of the CPB statuses, so that any CPB completions after
979 this point in the handler will raise another interrupt. */
980 writew(status, mmio + NV_ADMA_STAT);
981 readw(mmio + NV_ADMA_STAT); /* flush posted write */
982 rmb();
984 handled++; /* irq handled if we got here */
986 /* freeze if hotplugged or controller error */
987 if (unlikely(status & (NV_ADMA_STAT_HOTPLUG |
988 NV_ADMA_STAT_HOTUNPLUG |
989 NV_ADMA_STAT_TIMEOUT |
990 NV_ADMA_STAT_SERROR))) {
991 struct ata_eh_info *ehi = &ap->link.eh_info;
993 ata_ehi_clear_desc(ehi);
994 __ata_ehi_push_desc(ehi, "ADMA status 0x%08x: ", status);
995 if (status & NV_ADMA_STAT_TIMEOUT) {
996 ehi->err_mask |= AC_ERR_SYSTEM;
997 ata_ehi_push_desc(ehi, "timeout");
998 } else if (status & NV_ADMA_STAT_HOTPLUG) {
999 ata_ehi_hotplugged(ehi);
1000 ata_ehi_push_desc(ehi, "hotplug");
1001 } else if (status & NV_ADMA_STAT_HOTUNPLUG) {
1002 ata_ehi_hotplugged(ehi);
1003 ata_ehi_push_desc(ehi, "hot unplug");
1004 } else if (status & NV_ADMA_STAT_SERROR) {
1005 /* let libata analyze SError and figure out the cause */
1006 ata_ehi_push_desc(ehi, "SError");
1007 } else
1008 ata_ehi_push_desc(ehi, "unknown");
1009 ata_port_freeze(ap);
1010 continue;
1013 if (status & (NV_ADMA_STAT_DONE |
1014 NV_ADMA_STAT_CPBERR |
1015 NV_ADMA_STAT_CMD_COMPLETE)) {
1016 u32 check_commands = notifier_clears[i];
1017 int pos, error = 0;
1019 if (status & NV_ADMA_STAT_CPBERR) {
1020 /* Check all active commands */
1021 if (ata_tag_valid(ap->link.active_tag))
1022 check_commands = 1 <<
1023 ap->link.active_tag;
1024 else
1025 check_commands = ap->
1026 link.sactive;
1029 /** Check CPBs for completed commands */
1030 while ((pos = ffs(check_commands)) && !error) {
1031 pos--;
1032 error = nv_adma_check_cpb(ap, pos,
1033 notifier_error & (1 << pos));
1034 check_commands &= ~(1 << pos);
1040 if (notifier_clears[0] || notifier_clears[1]) {
1041 /* Note: Both notifier clear registers must be written
1042 if either is set, even if one is zero, according to NVIDIA. */
1043 struct nv_adma_port_priv *pp = host->ports[0]->private_data;
1044 writel(notifier_clears[0], pp->notifier_clear_block);
1045 pp = host->ports[1]->private_data;
1046 writel(notifier_clears[1], pp->notifier_clear_block);
1049 spin_unlock(&host->lock);
1051 return IRQ_RETVAL(handled);
1054 static void nv_adma_freeze(struct ata_port *ap)
1056 struct nv_adma_port_priv *pp = ap->private_data;
1057 void __iomem *mmio = pp->ctl_block;
1058 u16 tmp;
1060 nv_ck804_freeze(ap);
1062 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
1063 return;
1065 /* clear any outstanding CK804 notifications */
1066 writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT),
1067 ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1069 /* Disable interrupt */
1070 tmp = readw(mmio + NV_ADMA_CTL);
1071 writew(tmp & ~(NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN),
1072 mmio + NV_ADMA_CTL);
1073 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1076 static void nv_adma_thaw(struct ata_port *ap)
1078 struct nv_adma_port_priv *pp = ap->private_data;
1079 void __iomem *mmio = pp->ctl_block;
1080 u16 tmp;
1082 nv_ck804_thaw(ap);
1084 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
1085 return;
1087 /* Enable interrupt */
1088 tmp = readw(mmio + NV_ADMA_CTL);
1089 writew(tmp | (NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN),
1090 mmio + NV_ADMA_CTL);
1091 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1094 static void nv_adma_irq_clear(struct ata_port *ap)
1096 struct nv_adma_port_priv *pp = ap->private_data;
1097 void __iomem *mmio = pp->ctl_block;
1098 u32 notifier_clears[2];
1100 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) {
1101 ata_sff_irq_clear(ap);
1102 return;
1105 /* clear any outstanding CK804 notifications */
1106 writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT),
1107 ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1109 /* clear ADMA status */
1110 writew(0xffff, mmio + NV_ADMA_STAT);
1112 /* clear notifiers - note both ports need to be written with
1113 something even though we are only clearing on one */
1114 if (ap->port_no == 0) {
1115 notifier_clears[0] = 0xFFFFFFFF;
1116 notifier_clears[1] = 0;
1117 } else {
1118 notifier_clears[0] = 0;
1119 notifier_clears[1] = 0xFFFFFFFF;
1121 pp = ap->host->ports[0]->private_data;
1122 writel(notifier_clears[0], pp->notifier_clear_block);
1123 pp = ap->host->ports[1]->private_data;
1124 writel(notifier_clears[1], pp->notifier_clear_block);
1127 static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc)
1129 struct nv_adma_port_priv *pp = qc->ap->private_data;
1131 if (pp->flags & NV_ADMA_PORT_REGISTER_MODE)
1132 ata_sff_post_internal_cmd(qc);
1135 static int nv_adma_port_start(struct ata_port *ap)
1137 struct device *dev = ap->host->dev;
1138 struct nv_adma_port_priv *pp;
1139 int rc;
1140 void *mem;
1141 dma_addr_t mem_dma;
1142 void __iomem *mmio;
1143 struct pci_dev *pdev = to_pci_dev(dev);
1144 u16 tmp;
1146 VPRINTK("ENTER\n");
1148 /* Ensure DMA mask is set to 32-bit before allocating legacy PRD and
1149 pad buffers */
1150 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1151 if (rc)
1152 return rc;
1153 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1154 if (rc)
1155 return rc;
1157 rc = ata_port_start(ap);
1158 if (rc)
1159 return rc;
1161 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1162 if (!pp)
1163 return -ENOMEM;
1165 mmio = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_PORT +
1166 ap->port_no * NV_ADMA_PORT_SIZE;
1167 pp->ctl_block = mmio;
1168 pp->gen_block = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_GEN;
1169 pp->notifier_clear_block = pp->gen_block +
1170 NV_ADMA_NOTIFIER_CLEAR + (4 * ap->port_no);
1172 /* Now that the legacy PRD and padding buffer are allocated we can
1173 safely raise the DMA mask to allocate the CPB/APRD table.
1174 These are allowed to fail since we store the value that ends up
1175 being used to set as the bounce limit in slave_config later if
1176 needed. */
1177 pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1178 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1179 pp->adma_dma_mask = *dev->dma_mask;
1181 mem = dmam_alloc_coherent(dev, NV_ADMA_PORT_PRIV_DMA_SZ,
1182 &mem_dma, GFP_KERNEL);
1183 if (!mem)
1184 return -ENOMEM;
1185 memset(mem, 0, NV_ADMA_PORT_PRIV_DMA_SZ);
1188 * First item in chunk of DMA memory:
1189 * 128-byte command parameter block (CPB)
1190 * one for each command tag
1192 pp->cpb = mem;
1193 pp->cpb_dma = mem_dma;
1195 writel(mem_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW);
1196 writel((mem_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH);
1198 mem += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ;
1199 mem_dma += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ;
1202 * Second item: block of ADMA_SGTBL_LEN s/g entries
1204 pp->aprd = mem;
1205 pp->aprd_dma = mem_dma;
1207 ap->private_data = pp;
1209 /* clear any outstanding interrupt conditions */
1210 writew(0xffff, mmio + NV_ADMA_STAT);
1212 /* initialize port variables */
1213 pp->flags = NV_ADMA_PORT_REGISTER_MODE;
1215 /* clear CPB fetch count */
1216 writew(0, mmio + NV_ADMA_CPB_COUNT);
1218 /* clear GO for register mode, enable interrupt */
1219 tmp = readw(mmio + NV_ADMA_CTL);
1220 writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN |
1221 NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL);
1223 tmp = readw(mmio + NV_ADMA_CTL);
1224 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1225 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1226 udelay(1);
1227 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1228 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1230 return 0;
1233 static void nv_adma_port_stop(struct ata_port *ap)
1235 struct nv_adma_port_priv *pp = ap->private_data;
1236 void __iomem *mmio = pp->ctl_block;
1238 VPRINTK("ENTER\n");
1239 writew(0, mmio + NV_ADMA_CTL);
1242 #ifdef CONFIG_PM
1243 static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg)
1245 struct nv_adma_port_priv *pp = ap->private_data;
1246 void __iomem *mmio = pp->ctl_block;
1248 /* Go to register mode - clears GO */
1249 nv_adma_register_mode(ap);
1251 /* clear CPB fetch count */
1252 writew(0, mmio + NV_ADMA_CPB_COUNT);
1254 /* disable interrupt, shut down port */
1255 writew(0, mmio + NV_ADMA_CTL);
1257 return 0;
1260 static int nv_adma_port_resume(struct ata_port *ap)
1262 struct nv_adma_port_priv *pp = ap->private_data;
1263 void __iomem *mmio = pp->ctl_block;
1264 u16 tmp;
1266 /* set CPB block location */
1267 writel(pp->cpb_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW);
1268 writel((pp->cpb_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH);
1270 /* clear any outstanding interrupt conditions */
1271 writew(0xffff, mmio + NV_ADMA_STAT);
1273 /* initialize port variables */
1274 pp->flags |= NV_ADMA_PORT_REGISTER_MODE;
1276 /* clear CPB fetch count */
1277 writew(0, mmio + NV_ADMA_CPB_COUNT);
1279 /* clear GO for register mode, enable interrupt */
1280 tmp = readw(mmio + NV_ADMA_CTL);
1281 writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN |
1282 NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL);
1284 tmp = readw(mmio + NV_ADMA_CTL);
1285 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1286 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1287 udelay(1);
1288 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1289 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1291 return 0;
1293 #endif
1295 static void nv_adma_setup_port(struct ata_port *ap)
1297 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1298 struct ata_ioports *ioport = &ap->ioaddr;
1300 VPRINTK("ENTER\n");
1302 mmio += NV_ADMA_PORT + ap->port_no * NV_ADMA_PORT_SIZE;
1304 ioport->cmd_addr = mmio;
1305 ioport->data_addr = mmio + (ATA_REG_DATA * 4);
1306 ioport->error_addr =
1307 ioport->feature_addr = mmio + (ATA_REG_ERR * 4);
1308 ioport->nsect_addr = mmio + (ATA_REG_NSECT * 4);
1309 ioport->lbal_addr = mmio + (ATA_REG_LBAL * 4);
1310 ioport->lbam_addr = mmio + (ATA_REG_LBAM * 4);
1311 ioport->lbah_addr = mmio + (ATA_REG_LBAH * 4);
1312 ioport->device_addr = mmio + (ATA_REG_DEVICE * 4);
1313 ioport->status_addr =
1314 ioport->command_addr = mmio + (ATA_REG_STATUS * 4);
1315 ioport->altstatus_addr =
1316 ioport->ctl_addr = mmio + 0x20;
1319 static int nv_adma_host_init(struct ata_host *host)
1321 struct pci_dev *pdev = to_pci_dev(host->dev);
1322 unsigned int i;
1323 u32 tmp32;
1325 VPRINTK("ENTER\n");
1327 /* enable ADMA on the ports */
1328 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
1329 tmp32 |= NV_MCP_SATA_CFG_20_PORT0_EN |
1330 NV_MCP_SATA_CFG_20_PORT0_PWB_EN |
1331 NV_MCP_SATA_CFG_20_PORT1_EN |
1332 NV_MCP_SATA_CFG_20_PORT1_PWB_EN;
1334 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
1336 for (i = 0; i < host->n_ports; i++)
1337 nv_adma_setup_port(host->ports[i]);
1339 return 0;
1342 static void nv_adma_fill_aprd(struct ata_queued_cmd *qc,
1343 struct scatterlist *sg,
1344 int idx,
1345 struct nv_adma_prd *aprd)
1347 u8 flags = 0;
1348 if (qc->tf.flags & ATA_TFLAG_WRITE)
1349 flags |= NV_APRD_WRITE;
1350 if (idx == qc->n_elem - 1)
1351 flags |= NV_APRD_END;
1352 else if (idx != 4)
1353 flags |= NV_APRD_CONT;
1355 aprd->addr = cpu_to_le64(((u64)sg_dma_address(sg)));
1356 aprd->len = cpu_to_le32(((u32)sg_dma_len(sg))); /* len in bytes */
1357 aprd->flags = flags;
1358 aprd->packet_len = 0;
1361 static void nv_adma_fill_sg(struct ata_queued_cmd *qc, struct nv_adma_cpb *cpb)
1363 struct nv_adma_port_priv *pp = qc->ap->private_data;
1364 struct nv_adma_prd *aprd;
1365 struct scatterlist *sg;
1366 unsigned int si;
1368 VPRINTK("ENTER\n");
1370 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1371 aprd = (si < 5) ? &cpb->aprd[si] :
1372 &pp->aprd[NV_ADMA_SGTBL_LEN * qc->tag + (si-5)];
1373 nv_adma_fill_aprd(qc, sg, si, aprd);
1375 if (si > 5)
1376 cpb->next_aprd = cpu_to_le64(((u64)(pp->aprd_dma + NV_ADMA_SGTBL_SZ * qc->tag)));
1377 else
1378 cpb->next_aprd = cpu_to_le64(0);
1381 static int nv_adma_use_reg_mode(struct ata_queued_cmd *qc)
1383 struct nv_adma_port_priv *pp = qc->ap->private_data;
1385 /* ADMA engine can only be used for non-ATAPI DMA commands,
1386 or interrupt-driven no-data commands. */
1387 if ((pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) ||
1388 (qc->tf.flags & ATA_TFLAG_POLLING))
1389 return 1;
1391 if ((qc->flags & ATA_QCFLAG_DMAMAP) ||
1392 (qc->tf.protocol == ATA_PROT_NODATA))
1393 return 0;
1395 return 1;
1398 static void nv_adma_qc_prep(struct ata_queued_cmd *qc)
1400 struct nv_adma_port_priv *pp = qc->ap->private_data;
1401 struct nv_adma_cpb *cpb = &pp->cpb[qc->tag];
1402 u8 ctl_flags = NV_CPB_CTL_CPB_VALID |
1403 NV_CPB_CTL_IEN;
1405 if (nv_adma_use_reg_mode(qc)) {
1406 BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) &&
1407 (qc->flags & ATA_QCFLAG_DMAMAP));
1408 nv_adma_register_mode(qc->ap);
1409 ata_sff_qc_prep(qc);
1410 return;
1413 cpb->resp_flags = NV_CPB_RESP_DONE;
1414 wmb();
1415 cpb->ctl_flags = 0;
1416 wmb();
1418 cpb->len = 3;
1419 cpb->tag = qc->tag;
1420 cpb->next_cpb_idx = 0;
1422 /* turn on NCQ flags for NCQ commands */
1423 if (qc->tf.protocol == ATA_PROT_NCQ)
1424 ctl_flags |= NV_CPB_CTL_QUEUE | NV_CPB_CTL_FPDMA;
1426 VPRINTK("qc->flags = 0x%lx\n", qc->flags);
1428 nv_adma_tf_to_cpb(&qc->tf, cpb->tf);
1430 if (qc->flags & ATA_QCFLAG_DMAMAP) {
1431 nv_adma_fill_sg(qc, cpb);
1432 ctl_flags |= NV_CPB_CTL_APRD_VALID;
1433 } else
1434 memset(&cpb->aprd[0], 0, sizeof(struct nv_adma_prd) * 5);
1436 /* Be paranoid and don't let the device see NV_CPB_CTL_CPB_VALID
1437 until we are finished filling in all of the contents */
1438 wmb();
1439 cpb->ctl_flags = ctl_flags;
1440 wmb();
1441 cpb->resp_flags = 0;
1444 static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc)
1446 struct nv_adma_port_priv *pp = qc->ap->private_data;
1447 void __iomem *mmio = pp->ctl_block;
1448 int curr_ncq = (qc->tf.protocol == ATA_PROT_NCQ);
1450 VPRINTK("ENTER\n");
1452 /* We can't handle result taskfile with NCQ commands, since
1453 retrieving the taskfile switches us out of ADMA mode and would abort
1454 existing commands. */
1455 if (unlikely(qc->tf.protocol == ATA_PROT_NCQ &&
1456 (qc->flags & ATA_QCFLAG_RESULT_TF))) {
1457 ata_dev_printk(qc->dev, KERN_ERR,
1458 "NCQ w/ RESULT_TF not allowed\n");
1459 return AC_ERR_SYSTEM;
1462 if (nv_adma_use_reg_mode(qc)) {
1463 /* use ATA register mode */
1464 VPRINTK("using ATA register mode: 0x%lx\n", qc->flags);
1465 BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) &&
1466 (qc->flags & ATA_QCFLAG_DMAMAP));
1467 nv_adma_register_mode(qc->ap);
1468 return ata_sff_qc_issue(qc);
1469 } else
1470 nv_adma_mode(qc->ap);
1472 /* write append register, command tag in lower 8 bits
1473 and (number of cpbs to append -1) in top 8 bits */
1474 wmb();
1476 if (curr_ncq != pp->last_issue_ncq) {
1477 /* Seems to need some delay before switching between NCQ and
1478 non-NCQ commands, else we get command timeouts and such. */
1479 udelay(20);
1480 pp->last_issue_ncq = curr_ncq;
1483 writew(qc->tag, mmio + NV_ADMA_APPEND);
1485 DPRINTK("Issued tag %u\n", qc->tag);
1487 return 0;
1490 static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance)
1492 struct ata_host *host = dev_instance;
1493 unsigned int i;
1494 unsigned int handled = 0;
1495 unsigned long flags;
1497 spin_lock_irqsave(&host->lock, flags);
1499 for (i = 0; i < host->n_ports; i++) {
1500 struct ata_port *ap;
1502 ap = host->ports[i];
1503 if (ap &&
1504 !(ap->flags & ATA_FLAG_DISABLED)) {
1505 struct ata_queued_cmd *qc;
1507 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1508 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
1509 handled += ata_sff_host_intr(ap, qc);
1510 else
1511 // No request pending? Clear interrupt status
1512 // anyway, in case there's one pending.
1513 ap->ops->sff_check_status(ap);
1518 spin_unlock_irqrestore(&host->lock, flags);
1520 return IRQ_RETVAL(handled);
1523 static irqreturn_t nv_do_interrupt(struct ata_host *host, u8 irq_stat)
1525 int i, handled = 0;
1527 for (i = 0; i < host->n_ports; i++) {
1528 struct ata_port *ap = host->ports[i];
1530 if (ap && !(ap->flags & ATA_FLAG_DISABLED))
1531 handled += nv_host_intr(ap, irq_stat);
1533 irq_stat >>= NV_INT_PORT_SHIFT;
1536 return IRQ_RETVAL(handled);
1539 static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance)
1541 struct ata_host *host = dev_instance;
1542 u8 irq_stat;
1543 irqreturn_t ret;
1545 spin_lock(&host->lock);
1546 irq_stat = ioread8(host->ports[0]->ioaddr.scr_addr + NV_INT_STATUS);
1547 ret = nv_do_interrupt(host, irq_stat);
1548 spin_unlock(&host->lock);
1550 return ret;
1553 static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance)
1555 struct ata_host *host = dev_instance;
1556 u8 irq_stat;
1557 irqreturn_t ret;
1559 spin_lock(&host->lock);
1560 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
1561 ret = nv_do_interrupt(host, irq_stat);
1562 spin_unlock(&host->lock);
1564 return ret;
1567 static int nv_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val)
1569 if (sc_reg > SCR_CONTROL)
1570 return -EINVAL;
1572 *val = ioread32(link->ap->ioaddr.scr_addr + (sc_reg * 4));
1573 return 0;
1576 static int nv_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val)
1578 if (sc_reg > SCR_CONTROL)
1579 return -EINVAL;
1581 iowrite32(val, link->ap->ioaddr.scr_addr + (sc_reg * 4));
1582 return 0;
1585 static int nv_hardreset(struct ata_link *link, unsigned int *class,
1586 unsigned long deadline)
1588 struct ata_eh_context *ehc = &link->eh_context;
1590 /* Do hardreset iff it's post-boot probing, please read the
1591 * comment above port ops for details.
1593 if (!(link->ap->pflags & ATA_PFLAG_LOADING) &&
1594 !ata_dev_enabled(link->device))
1595 sata_link_hardreset(link, sata_deb_timing_hotplug, deadline,
1596 NULL, NULL);
1597 else if (!(ehc->i.flags & ATA_EHI_QUIET))
1598 ata_link_printk(link, KERN_INFO,
1599 "nv: skipping hardreset on occupied port\n");
1601 /* device signature acquisition is unreliable */
1602 return -EAGAIN;
1605 static void nv_nf2_freeze(struct ata_port *ap)
1607 void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr;
1608 int shift = ap->port_no * NV_INT_PORT_SHIFT;
1609 u8 mask;
1611 mask = ioread8(scr_addr + NV_INT_ENABLE);
1612 mask &= ~(NV_INT_ALL << shift);
1613 iowrite8(mask, scr_addr + NV_INT_ENABLE);
1616 static void nv_nf2_thaw(struct ata_port *ap)
1618 void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr;
1619 int shift = ap->port_no * NV_INT_PORT_SHIFT;
1620 u8 mask;
1622 iowrite8(NV_INT_ALL << shift, scr_addr + NV_INT_STATUS);
1624 mask = ioread8(scr_addr + NV_INT_ENABLE);
1625 mask |= (NV_INT_MASK << shift);
1626 iowrite8(mask, scr_addr + NV_INT_ENABLE);
1629 static void nv_ck804_freeze(struct ata_port *ap)
1631 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1632 int shift = ap->port_no * NV_INT_PORT_SHIFT;
1633 u8 mask;
1635 mask = readb(mmio_base + NV_INT_ENABLE_CK804);
1636 mask &= ~(NV_INT_ALL << shift);
1637 writeb(mask, mmio_base + NV_INT_ENABLE_CK804);
1640 static void nv_ck804_thaw(struct ata_port *ap)
1642 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1643 int shift = ap->port_no * NV_INT_PORT_SHIFT;
1644 u8 mask;
1646 writeb(NV_INT_ALL << shift, mmio_base + NV_INT_STATUS_CK804);
1648 mask = readb(mmio_base + NV_INT_ENABLE_CK804);
1649 mask |= (NV_INT_MASK << shift);
1650 writeb(mask, mmio_base + NV_INT_ENABLE_CK804);
1653 static void nv_mcp55_freeze(struct ata_port *ap)
1655 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1656 int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55;
1657 u32 mask;
1659 writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55);
1661 mask = readl(mmio_base + NV_INT_ENABLE_MCP55);
1662 mask &= ~(NV_INT_ALL_MCP55 << shift);
1663 writel(mask, mmio_base + NV_INT_ENABLE_MCP55);
1664 ata_sff_freeze(ap);
1667 static void nv_mcp55_thaw(struct ata_port *ap)
1669 void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
1670 int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55;
1671 u32 mask;
1673 writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55);
1675 mask = readl(mmio_base + NV_INT_ENABLE_MCP55);
1676 mask |= (NV_INT_MASK_MCP55 << shift);
1677 writel(mask, mmio_base + NV_INT_ENABLE_MCP55);
1678 ata_sff_thaw(ap);
1681 static void nv_adma_error_handler(struct ata_port *ap)
1683 struct nv_adma_port_priv *pp = ap->private_data;
1684 if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE)) {
1685 void __iomem *mmio = pp->ctl_block;
1686 int i;
1687 u16 tmp;
1689 if (ata_tag_valid(ap->link.active_tag) || ap->link.sactive) {
1690 u32 notifier = readl(mmio + NV_ADMA_NOTIFIER);
1691 u32 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR);
1692 u32 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL);
1693 u32 status = readw(mmio + NV_ADMA_STAT);
1694 u8 cpb_count = readb(mmio + NV_ADMA_CPB_COUNT);
1695 u8 next_cpb_idx = readb(mmio + NV_ADMA_NEXT_CPB_IDX);
1697 ata_port_printk(ap, KERN_ERR,
1698 "EH in ADMA mode, notifier 0x%X "
1699 "notifier_error 0x%X gen_ctl 0x%X status 0x%X "
1700 "next cpb count 0x%X next cpb idx 0x%x\n",
1701 notifier, notifier_error, gen_ctl, status,
1702 cpb_count, next_cpb_idx);
1704 for (i = 0; i < NV_ADMA_MAX_CPBS; i++) {
1705 struct nv_adma_cpb *cpb = &pp->cpb[i];
1706 if ((ata_tag_valid(ap->link.active_tag) && i == ap->link.active_tag) ||
1707 ap->link.sactive & (1 << i))
1708 ata_port_printk(ap, KERN_ERR,
1709 "CPB %d: ctl_flags 0x%x, resp_flags 0x%x\n",
1710 i, cpb->ctl_flags, cpb->resp_flags);
1714 /* Push us back into port register mode for error handling. */
1715 nv_adma_register_mode(ap);
1717 /* Mark all of the CPBs as invalid to prevent them from
1718 being executed */
1719 for (i = 0; i < NV_ADMA_MAX_CPBS; i++)
1720 pp->cpb[i].ctl_flags &= ~NV_CPB_CTL_CPB_VALID;
1722 /* clear CPB fetch count */
1723 writew(0, mmio + NV_ADMA_CPB_COUNT);
1725 /* Reset channel */
1726 tmp = readw(mmio + NV_ADMA_CTL);
1727 writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1728 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1729 udelay(1);
1730 writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
1731 readw(mmio + NV_ADMA_CTL); /* flush posted write */
1734 ata_sff_error_handler(ap);
1737 static void nv_swncq_qc_to_dq(struct ata_port *ap, struct ata_queued_cmd *qc)
1739 struct nv_swncq_port_priv *pp = ap->private_data;
1740 struct defer_queue *dq = &pp->defer_queue;
1742 /* queue is full */
1743 WARN_ON(dq->tail - dq->head == ATA_MAX_QUEUE);
1744 dq->defer_bits |= (1 << qc->tag);
1745 dq->tag[dq->tail++ & (ATA_MAX_QUEUE - 1)] = qc->tag;
1748 static struct ata_queued_cmd *nv_swncq_qc_from_dq(struct ata_port *ap)
1750 struct nv_swncq_port_priv *pp = ap->private_data;
1751 struct defer_queue *dq = &pp->defer_queue;
1752 unsigned int tag;
1754 if (dq->head == dq->tail) /* null queue */
1755 return NULL;
1757 tag = dq->tag[dq->head & (ATA_MAX_QUEUE - 1)];
1758 dq->tag[dq->head++ & (ATA_MAX_QUEUE - 1)] = ATA_TAG_POISON;
1759 WARN_ON(!(dq->defer_bits & (1 << tag)));
1760 dq->defer_bits &= ~(1 << tag);
1762 return ata_qc_from_tag(ap, tag);
1765 static void nv_swncq_fis_reinit(struct ata_port *ap)
1767 struct nv_swncq_port_priv *pp = ap->private_data;
1769 pp->dhfis_bits = 0;
1770 pp->dmafis_bits = 0;
1771 pp->sdbfis_bits = 0;
1772 pp->ncq_flags = 0;
1775 static void nv_swncq_pp_reinit(struct ata_port *ap)
1777 struct nv_swncq_port_priv *pp = ap->private_data;
1778 struct defer_queue *dq = &pp->defer_queue;
1780 dq->head = 0;
1781 dq->tail = 0;
1782 dq->defer_bits = 0;
1783 pp->qc_active = 0;
1784 pp->last_issue_tag = ATA_TAG_POISON;
1785 nv_swncq_fis_reinit(ap);
1788 static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis)
1790 struct nv_swncq_port_priv *pp = ap->private_data;
1792 writew(fis, pp->irq_block);
1795 static void __ata_bmdma_stop(struct ata_port *ap)
1797 struct ata_queued_cmd qc;
1799 qc.ap = ap;
1800 ata_bmdma_stop(&qc);
1803 static void nv_swncq_ncq_stop(struct ata_port *ap)
1805 struct nv_swncq_port_priv *pp = ap->private_data;
1806 unsigned int i;
1807 u32 sactive;
1808 u32 done_mask;
1810 ata_port_printk(ap, KERN_ERR,
1811 "EH in SWNCQ mode,QC:qc_active 0x%X sactive 0x%X\n",
1812 ap->qc_active, ap->link.sactive);
1813 ata_port_printk(ap, KERN_ERR,
1814 "SWNCQ:qc_active 0x%X defer_bits 0x%X last_issue_tag 0x%x\n "
1815 "dhfis 0x%X dmafis 0x%X sdbfis 0x%X\n",
1816 pp->qc_active, pp->defer_queue.defer_bits, pp->last_issue_tag,
1817 pp->dhfis_bits, pp->dmafis_bits, pp->sdbfis_bits);
1819 ata_port_printk(ap, KERN_ERR, "ATA_REG 0x%X ERR_REG 0x%X\n",
1820 ap->ops->sff_check_status(ap),
1821 ioread8(ap->ioaddr.error_addr));
1823 sactive = readl(pp->sactive_block);
1824 done_mask = pp->qc_active ^ sactive;
1826 ata_port_printk(ap, KERN_ERR, "tag : dhfis dmafis sdbfis sacitve\n");
1827 for (i = 0; i < ATA_MAX_QUEUE; i++) {
1828 u8 err = 0;
1829 if (pp->qc_active & (1 << i))
1830 err = 0;
1831 else if (done_mask & (1 << i))
1832 err = 1;
1833 else
1834 continue;
1836 ata_port_printk(ap, KERN_ERR,
1837 "tag 0x%x: %01x %01x %01x %01x %s\n", i,
1838 (pp->dhfis_bits >> i) & 0x1,
1839 (pp->dmafis_bits >> i) & 0x1,
1840 (pp->sdbfis_bits >> i) & 0x1,
1841 (sactive >> i) & 0x1,
1842 (err ? "error! tag doesn't exit" : " "));
1845 nv_swncq_pp_reinit(ap);
1846 ap->ops->sff_irq_clear(ap);
1847 __ata_bmdma_stop(ap);
1848 nv_swncq_irq_clear(ap, 0xffff);
1851 static void nv_swncq_error_handler(struct ata_port *ap)
1853 struct ata_eh_context *ehc = &ap->link.eh_context;
1855 if (ap->link.sactive) {
1856 nv_swncq_ncq_stop(ap);
1857 ehc->i.action |= ATA_EH_RESET;
1860 ata_sff_error_handler(ap);
1863 #ifdef CONFIG_PM
1864 static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg)
1866 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1867 u32 tmp;
1869 /* clear irq */
1870 writel(~0, mmio + NV_INT_STATUS_MCP55);
1872 /* disable irq */
1873 writel(0, mmio + NV_INT_ENABLE_MCP55);
1875 /* disable swncq */
1876 tmp = readl(mmio + NV_CTL_MCP55);
1877 tmp &= ~(NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ);
1878 writel(tmp, mmio + NV_CTL_MCP55);
1880 return 0;
1883 static int nv_swncq_port_resume(struct ata_port *ap)
1885 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1886 u32 tmp;
1888 /* clear irq */
1889 writel(~0, mmio + NV_INT_STATUS_MCP55);
1891 /* enable irq */
1892 writel(0x00fd00fd, mmio + NV_INT_ENABLE_MCP55);
1894 /* enable swncq */
1895 tmp = readl(mmio + NV_CTL_MCP55);
1896 writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55);
1898 return 0;
1900 #endif
1902 static void nv_swncq_host_init(struct ata_host *host)
1904 u32 tmp;
1905 void __iomem *mmio = host->iomap[NV_MMIO_BAR];
1906 struct pci_dev *pdev = to_pci_dev(host->dev);
1907 u8 regval;
1909 /* disable ECO 398 */
1910 pci_read_config_byte(pdev, 0x7f, &regval);
1911 regval &= ~(1 << 7);
1912 pci_write_config_byte(pdev, 0x7f, regval);
1914 /* enable swncq */
1915 tmp = readl(mmio + NV_CTL_MCP55);
1916 VPRINTK("HOST_CTL:0x%X\n", tmp);
1917 writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55);
1919 /* enable irq intr */
1920 tmp = readl(mmio + NV_INT_ENABLE_MCP55);
1921 VPRINTK("HOST_ENABLE:0x%X\n", tmp);
1922 writel(tmp | 0x00fd00fd, mmio + NV_INT_ENABLE_MCP55);
1924 /* clear port irq */
1925 writel(~0x0, mmio + NV_INT_STATUS_MCP55);
1928 static int nv_swncq_slave_config(struct scsi_device *sdev)
1930 struct ata_port *ap = ata_shost_to_port(sdev->host);
1931 struct pci_dev *pdev = to_pci_dev(ap->host->dev);
1932 struct ata_device *dev;
1933 int rc;
1934 u8 rev;
1935 u8 check_maxtor = 0;
1936 unsigned char model_num[ATA_ID_PROD_LEN + 1];
1938 rc = ata_scsi_slave_config(sdev);
1939 if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun)
1940 /* Not a proper libata device, ignore */
1941 return rc;
1943 dev = &ap->link.device[sdev->id];
1944 if (!(ap->flags & ATA_FLAG_NCQ) || dev->class == ATA_DEV_ATAPI)
1945 return rc;
1947 /* if MCP51 and Maxtor, then disable ncq */
1948 if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA ||
1949 pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2)
1950 check_maxtor = 1;
1952 /* if MCP55 and rev <= a2 and Maxtor, then disable ncq */
1953 if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA ||
1954 pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2) {
1955 pci_read_config_byte(pdev, 0x8, &rev);
1956 if (rev <= 0xa2)
1957 check_maxtor = 1;
1960 if (!check_maxtor)
1961 return rc;
1963 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
1965 if (strncmp(model_num, "Maxtor", 6) == 0) {
1966 ata_scsi_change_queue_depth(sdev, 1);
1967 ata_dev_printk(dev, KERN_NOTICE,
1968 "Disabling SWNCQ mode (depth %x)\n", sdev->queue_depth);
1971 return rc;
1974 static int nv_swncq_port_start(struct ata_port *ap)
1976 struct device *dev = ap->host->dev;
1977 void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
1978 struct nv_swncq_port_priv *pp;
1979 int rc;
1981 rc = ata_port_start(ap);
1982 if (rc)
1983 return rc;
1985 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1986 if (!pp)
1987 return -ENOMEM;
1989 pp->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE,
1990 &pp->prd_dma, GFP_KERNEL);
1991 if (!pp->prd)
1992 return -ENOMEM;
1993 memset(pp->prd, 0, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE);
1995 ap->private_data = pp;
1996 pp->sactive_block = ap->ioaddr.scr_addr + 4 * SCR_ACTIVE;
1997 pp->irq_block = mmio + NV_INT_STATUS_MCP55 + ap->port_no * 2;
1998 pp->tag_block = mmio + NV_NCQ_REG_MCP55 + ap->port_no * 2;
2000 return 0;
2003 static void nv_swncq_qc_prep(struct ata_queued_cmd *qc)
2005 if (qc->tf.protocol != ATA_PROT_NCQ) {
2006 ata_sff_qc_prep(qc);
2007 return;
2010 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2011 return;
2013 nv_swncq_fill_sg(qc);
2016 static void nv_swncq_fill_sg(struct ata_queued_cmd *qc)
2018 struct ata_port *ap = qc->ap;
2019 struct scatterlist *sg;
2020 struct nv_swncq_port_priv *pp = ap->private_data;
2021 struct ata_prd *prd;
2022 unsigned int si, idx;
2024 prd = pp->prd + ATA_MAX_PRD * qc->tag;
2026 idx = 0;
2027 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2028 u32 addr, offset;
2029 u32 sg_len, len;
2031 addr = (u32)sg_dma_address(sg);
2032 sg_len = sg_dma_len(sg);
2034 while (sg_len) {
2035 offset = addr & 0xffff;
2036 len = sg_len;
2037 if ((offset + sg_len) > 0x10000)
2038 len = 0x10000 - offset;
2040 prd[idx].addr = cpu_to_le32(addr);
2041 prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2043 idx++;
2044 sg_len -= len;
2045 addr += len;
2049 prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2052 static unsigned int nv_swncq_issue_atacmd(struct ata_port *ap,
2053 struct ata_queued_cmd *qc)
2055 struct nv_swncq_port_priv *pp = ap->private_data;
2057 if (qc == NULL)
2058 return 0;
2060 DPRINTK("Enter\n");
2062 writel((1 << qc->tag), pp->sactive_block);
2063 pp->last_issue_tag = qc->tag;
2064 pp->dhfis_bits &= ~(1 << qc->tag);
2065 pp->dmafis_bits &= ~(1 << qc->tag);
2066 pp->qc_active |= (0x1 << qc->tag);
2068 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2069 ap->ops->sff_exec_command(ap, &qc->tf);
2071 DPRINTK("Issued tag %u\n", qc->tag);
2073 return 0;
2076 static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc)
2078 struct ata_port *ap = qc->ap;
2079 struct nv_swncq_port_priv *pp = ap->private_data;
2081 if (qc->tf.protocol != ATA_PROT_NCQ)
2082 return ata_sff_qc_issue(qc);
2084 DPRINTK("Enter\n");
2086 if (!pp->qc_active)
2087 nv_swncq_issue_atacmd(ap, qc);
2088 else
2089 nv_swncq_qc_to_dq(ap, qc); /* add qc to defer queue */
2091 return 0;
2094 static void nv_swncq_hotplug(struct ata_port *ap, u32 fis)
2096 u32 serror;
2097 struct ata_eh_info *ehi = &ap->link.eh_info;
2099 ata_ehi_clear_desc(ehi);
2101 /* AHCI needs SError cleared; otherwise, it might lock up */
2102 sata_scr_read(&ap->link, SCR_ERROR, &serror);
2103 sata_scr_write(&ap->link, SCR_ERROR, serror);
2105 /* analyze @irq_stat */
2106 if (fis & NV_SWNCQ_IRQ_ADDED)
2107 ata_ehi_push_desc(ehi, "hot plug");
2108 else if (fis & NV_SWNCQ_IRQ_REMOVED)
2109 ata_ehi_push_desc(ehi, "hot unplug");
2111 ata_ehi_hotplugged(ehi);
2113 /* okay, let's hand over to EH */
2114 ehi->serror |= serror;
2116 ata_port_freeze(ap);
2119 static int nv_swncq_sdbfis(struct ata_port *ap)
2121 struct ata_queued_cmd *qc;
2122 struct nv_swncq_port_priv *pp = ap->private_data;
2123 struct ata_eh_info *ehi = &ap->link.eh_info;
2124 u32 sactive;
2125 int nr_done = 0;
2126 u32 done_mask;
2127 int i;
2128 u8 host_stat;
2129 u8 lack_dhfis = 0;
2131 host_stat = ap->ops->bmdma_status(ap);
2132 if (unlikely(host_stat & ATA_DMA_ERR)) {
2133 /* error when transfering data to/from memory */
2134 ata_ehi_clear_desc(ehi);
2135 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2136 ehi->err_mask |= AC_ERR_HOST_BUS;
2137 ehi->action |= ATA_EH_RESET;
2138 return -EINVAL;
2141 ap->ops->sff_irq_clear(ap);
2142 __ata_bmdma_stop(ap);
2144 sactive = readl(pp->sactive_block);
2145 done_mask = pp->qc_active ^ sactive;
2147 if (unlikely(done_mask & sactive)) {
2148 ata_ehi_clear_desc(ehi);
2149 ata_ehi_push_desc(ehi, "illegal SWNCQ:qc_active transition"
2150 "(%08x->%08x)", pp->qc_active, sactive);
2151 ehi->err_mask |= AC_ERR_HSM;
2152 ehi->action |= ATA_EH_RESET;
2153 return -EINVAL;
2155 for (i = 0; i < ATA_MAX_QUEUE; i++) {
2156 if (!(done_mask & (1 << i)))
2157 continue;
2159 qc = ata_qc_from_tag(ap, i);
2160 if (qc) {
2161 ata_qc_complete(qc);
2162 pp->qc_active &= ~(1 << i);
2163 pp->dhfis_bits &= ~(1 << i);
2164 pp->dmafis_bits &= ~(1 << i);
2165 pp->sdbfis_bits |= (1 << i);
2166 nr_done++;
2170 if (!ap->qc_active) {
2171 DPRINTK("over\n");
2172 nv_swncq_pp_reinit(ap);
2173 return nr_done;
2176 if (pp->qc_active & pp->dhfis_bits)
2177 return nr_done;
2179 if ((pp->ncq_flags & ncq_saw_backout) ||
2180 (pp->qc_active ^ pp->dhfis_bits))
2181 /* if the controller cann't get a device to host register FIS,
2182 * The driver needs to reissue the new command.
2184 lack_dhfis = 1;
2186 DPRINTK("id 0x%x QC: qc_active 0x%x,"
2187 "SWNCQ:qc_active 0x%X defer_bits %X "
2188 "dhfis 0x%X dmafis 0x%X last_issue_tag %x\n",
2189 ap->print_id, ap->qc_active, pp->qc_active,
2190 pp->defer_queue.defer_bits, pp->dhfis_bits,
2191 pp->dmafis_bits, pp->last_issue_tag);
2193 nv_swncq_fis_reinit(ap);
2195 if (lack_dhfis) {
2196 qc = ata_qc_from_tag(ap, pp->last_issue_tag);
2197 nv_swncq_issue_atacmd(ap, qc);
2198 return nr_done;
2201 if (pp->defer_queue.defer_bits) {
2202 /* send deferral queue command */
2203 qc = nv_swncq_qc_from_dq(ap);
2204 WARN_ON(qc == NULL);
2205 nv_swncq_issue_atacmd(ap, qc);
2208 return nr_done;
2211 static inline u32 nv_swncq_tag(struct ata_port *ap)
2213 struct nv_swncq_port_priv *pp = ap->private_data;
2214 u32 tag;
2216 tag = readb(pp->tag_block) >> 2;
2217 return (tag & 0x1f);
2220 static int nv_swncq_dmafis(struct ata_port *ap)
2222 struct ata_queued_cmd *qc;
2223 unsigned int rw;
2224 u8 dmactl;
2225 u32 tag;
2226 struct nv_swncq_port_priv *pp = ap->private_data;
2228 __ata_bmdma_stop(ap);
2229 tag = nv_swncq_tag(ap);
2231 DPRINTK("dma setup tag 0x%x\n", tag);
2232 qc = ata_qc_from_tag(ap, tag);
2234 if (unlikely(!qc))
2235 return 0;
2237 rw = qc->tf.flags & ATA_TFLAG_WRITE;
2239 /* load PRD table addr. */
2240 iowrite32(pp->prd_dma + ATA_PRD_TBL_SZ * qc->tag,
2241 ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2243 /* specify data direction, triple-check start bit is clear */
2244 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2245 dmactl &= ~ATA_DMA_WR;
2246 if (!rw)
2247 dmactl |= ATA_DMA_WR;
2249 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2251 return 1;
2254 static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis)
2256 struct nv_swncq_port_priv *pp = ap->private_data;
2257 struct ata_queued_cmd *qc;
2258 struct ata_eh_info *ehi = &ap->link.eh_info;
2259 u32 serror;
2260 u8 ata_stat;
2261 int rc = 0;
2263 ata_stat = ap->ops->sff_check_status(ap);
2264 nv_swncq_irq_clear(ap, fis);
2265 if (!fis)
2266 return;
2268 if (ap->pflags & ATA_PFLAG_FROZEN)
2269 return;
2271 if (fis & NV_SWNCQ_IRQ_HOTPLUG) {
2272 nv_swncq_hotplug(ap, fis);
2273 return;
2276 if (!pp->qc_active)
2277 return;
2279 if (ap->ops->scr_read(&ap->link, SCR_ERROR, &serror))
2280 return;
2281 ap->ops->scr_write(&ap->link, SCR_ERROR, serror);
2283 if (ata_stat & ATA_ERR) {
2284 ata_ehi_clear_desc(ehi);
2285 ata_ehi_push_desc(ehi, "Ata error. fis:0x%X", fis);
2286 ehi->err_mask |= AC_ERR_DEV;
2287 ehi->serror |= serror;
2288 ehi->action |= ATA_EH_RESET;
2289 ata_port_freeze(ap);
2290 return;
2293 if (fis & NV_SWNCQ_IRQ_BACKOUT) {
2294 /* If the IRQ is backout, driver must issue
2295 * the new command again some time later.
2297 pp->ncq_flags |= ncq_saw_backout;
2300 if (fis & NV_SWNCQ_IRQ_SDBFIS) {
2301 pp->ncq_flags |= ncq_saw_sdb;
2302 DPRINTK("id 0x%x SWNCQ: qc_active 0x%X "
2303 "dhfis 0x%X dmafis 0x%X sactive 0x%X\n",
2304 ap->print_id, pp->qc_active, pp->dhfis_bits,
2305 pp->dmafis_bits, readl(pp->sactive_block));
2306 rc = nv_swncq_sdbfis(ap);
2307 if (rc < 0)
2308 goto irq_error;
2311 if (fis & NV_SWNCQ_IRQ_DHREGFIS) {
2312 /* The interrupt indicates the new command
2313 * was transmitted correctly to the drive.
2315 pp->dhfis_bits |= (0x1 << pp->last_issue_tag);
2316 pp->ncq_flags |= ncq_saw_d2h;
2317 if (pp->ncq_flags & (ncq_saw_sdb | ncq_saw_backout)) {
2318 ata_ehi_push_desc(ehi, "illegal fis transaction");
2319 ehi->err_mask |= AC_ERR_HSM;
2320 ehi->action |= ATA_EH_RESET;
2321 goto irq_error;
2324 if (!(fis & NV_SWNCQ_IRQ_DMASETUP) &&
2325 !(pp->ncq_flags & ncq_saw_dmas)) {
2326 ata_stat = ap->ops->sff_check_status(ap);
2327 if (ata_stat & ATA_BUSY)
2328 goto irq_exit;
2330 if (pp->defer_queue.defer_bits) {
2331 DPRINTK("send next command\n");
2332 qc = nv_swncq_qc_from_dq(ap);
2333 nv_swncq_issue_atacmd(ap, qc);
2338 if (fis & NV_SWNCQ_IRQ_DMASETUP) {
2339 /* program the dma controller with appropriate PRD buffers
2340 * and start the DMA transfer for requested command.
2342 pp->dmafis_bits |= (0x1 << nv_swncq_tag(ap));
2343 pp->ncq_flags |= ncq_saw_dmas;
2344 rc = nv_swncq_dmafis(ap);
2347 irq_exit:
2348 return;
2349 irq_error:
2350 ata_ehi_push_desc(ehi, "fis:0x%x", fis);
2351 ata_port_freeze(ap);
2352 return;
2355 static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance)
2357 struct ata_host *host = dev_instance;
2358 unsigned int i;
2359 unsigned int handled = 0;
2360 unsigned long flags;
2361 u32 irq_stat;
2363 spin_lock_irqsave(&host->lock, flags);
2365 irq_stat = readl(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_MCP55);
2367 for (i = 0; i < host->n_ports; i++) {
2368 struct ata_port *ap = host->ports[i];
2370 if (ap && !(ap->flags & ATA_FLAG_DISABLED)) {
2371 if (ap->link.sactive) {
2372 nv_swncq_host_interrupt(ap, (u16)irq_stat);
2373 handled = 1;
2374 } else {
2375 if (irq_stat) /* reserve Hotplug */
2376 nv_swncq_irq_clear(ap, 0xfff0);
2378 handled += nv_host_intr(ap, (u8)irq_stat);
2381 irq_stat >>= NV_INT_PORT_SHIFT_MCP55;
2384 spin_unlock_irqrestore(&host->lock, flags);
2386 return IRQ_RETVAL(handled);
2389 static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2391 static int printed_version;
2392 const struct ata_port_info *ppi[] = { NULL, NULL };
2393 struct nv_pi_priv *ipriv;
2394 struct ata_host *host;
2395 struct nv_host_priv *hpriv;
2396 int rc;
2397 u32 bar;
2398 void __iomem *base;
2399 unsigned long type = ent->driver_data;
2401 // Make sure this is a SATA controller by counting the number of bars
2402 // (NVIDIA SATA controllers will always have six bars). Otherwise,
2403 // it's an IDE controller and we ignore it.
2404 for (bar = 0; bar < 6; bar++)
2405 if (pci_resource_start(pdev, bar) == 0)
2406 return -ENODEV;
2408 if (!printed_version++)
2409 dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
2411 rc = pcim_enable_device(pdev);
2412 if (rc)
2413 return rc;
2415 /* determine type and allocate host */
2416 if (type == CK804 && adma_enabled) {
2417 dev_printk(KERN_NOTICE, &pdev->dev, "Using ADMA mode\n");
2418 type = ADMA;
2419 } else if (type == MCP5x && swncq_enabled) {
2420 dev_printk(KERN_NOTICE, &pdev->dev, "Using SWNCQ mode\n");
2421 type = SWNCQ;
2424 ppi[0] = &nv_port_info[type];
2425 ipriv = ppi[0]->private_data;
2426 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2427 if (rc)
2428 return rc;
2430 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
2431 if (!hpriv)
2432 return -ENOMEM;
2433 hpriv->type = type;
2434 host->private_data = hpriv;
2436 /* request and iomap NV_MMIO_BAR */
2437 rc = pcim_iomap_regions(pdev, 1 << NV_MMIO_BAR, DRV_NAME);
2438 if (rc)
2439 return rc;
2441 /* configure SCR access */
2442 base = host->iomap[NV_MMIO_BAR];
2443 host->ports[0]->ioaddr.scr_addr = base + NV_PORT0_SCR_REG_OFFSET;
2444 host->ports[1]->ioaddr.scr_addr = base + NV_PORT1_SCR_REG_OFFSET;
2446 /* enable SATA space for CK804 */
2447 if (type >= CK804) {
2448 u8 regval;
2450 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2451 regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2452 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2455 /* init ADMA */
2456 if (type == ADMA) {
2457 rc = nv_adma_host_init(host);
2458 if (rc)
2459 return rc;
2460 } else if (type == SWNCQ)
2461 nv_swncq_host_init(host);
2463 if (msi_enabled) {
2464 dev_printk(KERN_NOTICE, &pdev->dev, "Using MSI\n");
2465 pci_enable_msi(pdev);
2468 pci_set_master(pdev);
2469 return ata_host_activate(host, pdev->irq, ipriv->irq_handler,
2470 IRQF_SHARED, ipriv->sht);
2473 #ifdef CONFIG_PM
2474 static int nv_pci_device_resume(struct pci_dev *pdev)
2476 struct ata_host *host = dev_get_drvdata(&pdev->dev);
2477 struct nv_host_priv *hpriv = host->private_data;
2478 int rc;
2480 rc = ata_pci_device_do_resume(pdev);
2481 if (rc)
2482 return rc;
2484 if (pdev->dev.power.power_state.event == PM_EVENT_SUSPEND) {
2485 if (hpriv->type >= CK804) {
2486 u8 regval;
2488 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2489 regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2490 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2492 if (hpriv->type == ADMA) {
2493 u32 tmp32;
2494 struct nv_adma_port_priv *pp;
2495 /* enable/disable ADMA on the ports appropriately */
2496 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
2498 pp = host->ports[0]->private_data;
2499 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
2500 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN |
2501 NV_MCP_SATA_CFG_20_PORT0_PWB_EN);
2502 else
2503 tmp32 |= (NV_MCP_SATA_CFG_20_PORT0_EN |
2504 NV_MCP_SATA_CFG_20_PORT0_PWB_EN);
2505 pp = host->ports[1]->private_data;
2506 if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
2507 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT1_EN |
2508 NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2509 else
2510 tmp32 |= (NV_MCP_SATA_CFG_20_PORT1_EN |
2511 NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2513 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
2517 ata_host_resume(host);
2519 return 0;
2521 #endif
2523 static void nv_ck804_host_stop(struct ata_host *host)
2525 struct pci_dev *pdev = to_pci_dev(host->dev);
2526 u8 regval;
2528 /* disable SATA space for CK804 */
2529 pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
2530 regval &= ~NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
2531 pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
2534 static void nv_adma_host_stop(struct ata_host *host)
2536 struct pci_dev *pdev = to_pci_dev(host->dev);
2537 u32 tmp32;
2539 /* disable ADMA on the ports */
2540 pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
2541 tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN |
2542 NV_MCP_SATA_CFG_20_PORT0_PWB_EN |
2543 NV_MCP_SATA_CFG_20_PORT1_EN |
2544 NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
2546 pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
2548 nv_ck804_host_stop(host);
2551 static int __init nv_init(void)
2553 return pci_register_driver(&nv_pci_driver);
2556 static void __exit nv_exit(void)
2558 pci_unregister_driver(&nv_pci_driver);
2561 module_init(nv_init);
2562 module_exit(nv_exit);
2563 module_param_named(adma, adma_enabled, bool, 0444);
2564 MODULE_PARM_DESC(adma, "Enable use of ADMA (Default: false)");
2565 module_param_named(swncq, swncq_enabled, bool, 0444);
2566 MODULE_PARM_DESC(swncq, "Enable use of SWNCQ (Default: true)");
2567 module_param_named(msi, msi_enabled, bool, 0444);
2568 MODULE_PARM_DESC(msi, "Enable use of MSI (Default: false)");