[ARM] pxa: Gumstix Verdex PCMCIA support
[linux-2.6/verdex.git] / drivers / edac / amd64_edac.c
blob4f4ac82382f7726a5496a5441e4bc20fe0932c69
1 #include "amd64_edac.h"
2 #include <asm/k8.h>
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
16 /* Lookup table for all possible MC control instances */
17 struct amd64_pvt;
18 static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
19 static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
22 * See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only
23 * for DDR2 DRAM mapping.
25 u32 revf_quad_ddr2_shift[] = {
26 0, /* 0000b NULL DIMM (128mb) */
27 28, /* 0001b 256mb */
28 29, /* 0010b 512mb */
29 29, /* 0011b 512mb */
30 29, /* 0100b 512mb */
31 30, /* 0101b 1gb */
32 30, /* 0110b 1gb */
33 31, /* 0111b 2gb */
34 31, /* 1000b 2gb */
35 32, /* 1001b 4gb */
36 32, /* 1010b 4gb */
37 33, /* 1011b 8gb */
38 0, /* 1100b future */
39 0, /* 1101b future */
40 0, /* 1110b future */
41 0 /* 1111b future */
45 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
46 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
47 * or higher value'.
49 *FIXME: Produce a better mapping/linearisation.
52 struct scrubrate scrubrates[] = {
53 { 0x01, 1600000000UL},
54 { 0x02, 800000000UL},
55 { 0x03, 400000000UL},
56 { 0x04, 200000000UL},
57 { 0x05, 100000000UL},
58 { 0x06, 50000000UL},
59 { 0x07, 25000000UL},
60 { 0x08, 12284069UL},
61 { 0x09, 6274509UL},
62 { 0x0A, 3121951UL},
63 { 0x0B, 1560975UL},
64 { 0x0C, 781440UL},
65 { 0x0D, 390720UL},
66 { 0x0E, 195300UL},
67 { 0x0F, 97650UL},
68 { 0x10, 48854UL},
69 { 0x11, 24427UL},
70 { 0x12, 12213UL},
71 { 0x13, 6101UL},
72 { 0x14, 3051UL},
73 { 0x15, 1523UL},
74 { 0x16, 761UL},
75 { 0x00, 0UL}, /* scrubbing off */
79 * Memory scrubber control interface. For K8, memory scrubbing is handled by
80 * hardware and can involve L2 cache, dcache as well as the main memory. With
81 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
82 * functionality.
84 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
85 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
86 * bytes/sec for the setting.
88 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
89 * other archs, we might not have access to the caches directly.
93 * scan the scrub rate mapping table for a close or matching bandwidth value to
94 * issue. If requested is too big, then use last maximum value found.
96 static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
97 u32 min_scrubrate)
99 u32 scrubval;
100 int i;
103 * map the configured rate (new_bw) to a value specific to the AMD64
104 * memory controller and apply to register. Search for the first
105 * bandwidth entry that is greater or equal than the setting requested
106 * and program that. If at last entry, turn off DRAM scrubbing.
108 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
110 * skip scrub rates which aren't recommended
111 * (see F10 BKDG, F3x58)
113 if (scrubrates[i].scrubval < min_scrubrate)
114 continue;
116 if (scrubrates[i].bandwidth <= new_bw)
117 break;
120 * if no suitable bandwidth found, turn off DRAM scrubbing
121 * entirely by falling back to the last element in the
122 * scrubrates array.
126 scrubval = scrubrates[i].scrubval;
127 if (scrubval)
128 edac_printk(KERN_DEBUG, EDAC_MC,
129 "Setting scrub rate bandwidth: %u\n",
130 scrubrates[i].bandwidth);
131 else
132 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
134 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
136 return 0;
139 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
141 struct amd64_pvt *pvt = mci->pvt_info;
142 u32 min_scrubrate = 0x0;
144 switch (boot_cpu_data.x86) {
145 case 0xf:
146 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
147 break;
148 case 0x10:
149 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
150 break;
151 case 0x11:
152 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
153 break;
155 default:
156 amd64_printk(KERN_ERR, "Unsupported family!\n");
157 break;
159 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
160 min_scrubrate);
163 static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
165 struct amd64_pvt *pvt = mci->pvt_info;
166 u32 scrubval = 0;
167 int status = -1, i, ret = 0;
169 ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
170 if (ret)
171 debugf0("Reading K8_SCRCTRL failed\n");
173 scrubval = scrubval & 0x001F;
175 edac_printk(KERN_DEBUG, EDAC_MC,
176 "pci-read, sdram scrub control value: %d \n", scrubval);
178 for (i = 0; ARRAY_SIZE(scrubrates); i++) {
179 if (scrubrates[i].scrubval == scrubval) {
180 *bw = scrubrates[i].bandwidth;
181 status = 0;
182 break;
186 return status;
189 /* Map from a CSROW entry to the mask entry that operates on it */
190 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
192 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_F)
193 return csrow;
194 else
195 return csrow >> 1;
198 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
199 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
201 if (dct == 0)
202 return pvt->dcsb0[csrow];
203 else
204 return pvt->dcsb1[csrow];
208 * Return the 'mask' address the i'th CS entry. This function is needed because
209 * there number of DCSM registers on Rev E and prior vs Rev F and later is
210 * different.
212 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
214 if (dct == 0)
215 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
216 else
217 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
222 * In *base and *limit, pass back the full 40-bit base and limit physical
223 * addresses for the node given by node_id. This information is obtained from
224 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
225 * base and limit addresses are of type SysAddr, as defined at the start of
226 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
227 * in the address range they represent.
229 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
230 u64 *base, u64 *limit)
232 *base = pvt->dram_base[node_id];
233 *limit = pvt->dram_limit[node_id];
237 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
238 * with node_id
240 static int amd64_base_limit_match(struct amd64_pvt *pvt,
241 u64 sys_addr, int node_id)
243 u64 base, limit, addr;
245 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
247 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
248 * all ones if the most significant implemented address bit is 1.
249 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
250 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
251 * Application Programming.
253 addr = sys_addr & 0x000000ffffffffffull;
255 return (addr >= base) && (addr <= limit);
259 * Attempt to map a SysAddr to a node. On success, return a pointer to the
260 * mem_ctl_info structure for the node that the SysAddr maps to.
262 * On failure, return NULL.
264 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
265 u64 sys_addr)
267 struct amd64_pvt *pvt;
268 int node_id;
269 u32 intlv_en, bits;
272 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
273 * 3.4.4.2) registers to map the SysAddr to a node ID.
275 pvt = mci->pvt_info;
278 * The value of this field should be the same for all DRAM Base
279 * registers. Therefore we arbitrarily choose to read it from the
280 * register for node 0.
282 intlv_en = pvt->dram_IntlvEn[0];
284 if (intlv_en == 0) {
285 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
286 if (amd64_base_limit_match(pvt, sys_addr, node_id))
287 goto found;
289 goto err_no_match;
292 if (unlikely((intlv_en != 0x01) &&
293 (intlv_en != 0x03) &&
294 (intlv_en != 0x07))) {
295 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
296 "IntlvEn field of DRAM Base Register for node 0: "
297 "this probably indicates a BIOS bug.\n", intlv_en);
298 return NULL;
301 bits = (((u32) sys_addr) >> 12) & intlv_en;
303 for (node_id = 0; ; ) {
304 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
305 break; /* intlv_sel field matches */
307 if (++node_id >= DRAM_REG_COUNT)
308 goto err_no_match;
311 /* sanity test for sys_addr */
312 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
313 amd64_printk(KERN_WARNING,
314 "%s(): sys_addr 0x%llx falls outside base/limit "
315 "address range for node %d with node interleaving "
316 "enabled.\n",
317 __func__, sys_addr, node_id);
318 return NULL;
321 found:
322 return edac_mc_find(node_id);
324 err_no_match:
325 debugf2("sys_addr 0x%lx doesn't match any node\n",
326 (unsigned long)sys_addr);
328 return NULL;
332 * Extract the DRAM CS base address from selected csrow register.
334 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
336 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
337 pvt->dcs_shift;
341 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
343 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
345 u64 dcsm_bits, other_bits;
346 u64 mask;
348 /* Extract bits from DRAM CS Mask. */
349 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
351 other_bits = pvt->dcsm_mask;
352 other_bits = ~(other_bits << pvt->dcs_shift);
355 * The extracted bits from DCSM belong in the spaces represented by
356 * the cleared bits in other_bits.
358 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
360 return mask;
364 * @input_addr is an InputAddr associated with the node given by mci. Return the
365 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
367 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
369 struct amd64_pvt *pvt;
370 int csrow;
371 u64 base, mask;
373 pvt = mci->pvt_info;
376 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
377 * base/mask register pair, test the condition shown near the start of
378 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
380 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
382 /* This DRAM chip select is disabled on this node */
383 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
384 continue;
386 base = base_from_dct_base(pvt, csrow);
387 mask = ~mask_from_dct_mask(pvt, csrow);
389 if ((input_addr & mask) == (base & mask)) {
390 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
391 (unsigned long)input_addr, csrow,
392 pvt->mc_node_id);
394 return csrow;
398 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
399 (unsigned long)input_addr, pvt->mc_node_id);
401 return -1;
405 * Return the base value defined by the DRAM Base register for the node
406 * represented by mci. This function returns the full 40-bit value despite the
407 * fact that the register only stores bits 39-24 of the value. See section
408 * 3.4.4.1 (BKDG #26094, K8, revA-E)
410 static inline u64 get_dram_base(struct mem_ctl_info *mci)
412 struct amd64_pvt *pvt = mci->pvt_info;
414 return pvt->dram_base[pvt->mc_node_id];
418 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
419 * for the node represented by mci. Info is passed back in *hole_base,
420 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
421 * info is invalid. Info may be invalid for either of the following reasons:
423 * - The revision of the node is not E or greater. In this case, the DRAM Hole
424 * Address Register does not exist.
426 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
427 * indicating that its contents are not valid.
429 * The values passed back in *hole_base, *hole_offset, and *hole_size are
430 * complete 32-bit values despite the fact that the bitfields in the DHAR
431 * only represent bits 31-24 of the base and offset values.
433 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
434 u64 *hole_offset, u64 *hole_size)
436 struct amd64_pvt *pvt = mci->pvt_info;
437 u64 base;
439 /* only revE and later have the DRAM Hole Address Register */
440 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
441 debugf1(" revision %d for node %d does not support DHAR\n",
442 pvt->ext_model, pvt->mc_node_id);
443 return 1;
446 /* only valid for Fam10h */
447 if (boot_cpu_data.x86 == 0x10 &&
448 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
449 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
450 return 1;
453 if ((pvt->dhar & DHAR_VALID) == 0) {
454 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
455 pvt->mc_node_id);
456 return 1;
459 /* This node has Memory Hoisting */
461 /* +------------------+--------------------+--------------------+-----
462 * | memory | DRAM hole | relocated |
463 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
464 * | | | DRAM hole |
465 * | | | [0x100000000, |
466 * | | | (0x100000000+ |
467 * | | | (0xffffffff-x))] |
468 * +------------------+--------------------+--------------------+-----
470 * Above is a diagram of physical memory showing the DRAM hole and the
471 * relocated addresses from the DRAM hole. As shown, the DRAM hole
472 * starts at address x (the base address) and extends through address
473 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
474 * addresses in the hole so that they start at 0x100000000.
477 base = dhar_base(pvt->dhar);
479 *hole_base = base;
480 *hole_size = (0x1ull << 32) - base;
482 if (boot_cpu_data.x86 > 0xf)
483 *hole_offset = f10_dhar_offset(pvt->dhar);
484 else
485 *hole_offset = k8_dhar_offset(pvt->dhar);
487 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
488 pvt->mc_node_id, (unsigned long)*hole_base,
489 (unsigned long)*hole_offset, (unsigned long)*hole_size);
491 return 0;
493 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
496 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
497 * assumed that sys_addr maps to the node given by mci.
499 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
500 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
501 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
502 * then it is also involved in translating a SysAddr to a DramAddr. Sections
503 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
504 * These parts of the documentation are unclear. I interpret them as follows:
506 * When node n receives a SysAddr, it processes the SysAddr as follows:
508 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
509 * Limit registers for node n. If the SysAddr is not within the range
510 * specified by the base and limit values, then node n ignores the Sysaddr
511 * (since it does not map to node n). Otherwise continue to step 2 below.
513 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
514 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
515 * the range of relocated addresses (starting at 0x100000000) from the DRAM
516 * hole. If not, skip to step 3 below. Else get the value of the
517 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
518 * offset defined by this value from the SysAddr.
520 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
521 * Base register for node n. To obtain the DramAddr, subtract the base
522 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
524 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
526 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
527 int ret = 0;
529 dram_base = get_dram_base(mci);
531 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
532 &hole_size);
533 if (!ret) {
534 if ((sys_addr >= (1ull << 32)) &&
535 (sys_addr < ((1ull << 32) + hole_size))) {
536 /* use DHAR to translate SysAddr to DramAddr */
537 dram_addr = sys_addr - hole_offset;
539 debugf2("using DHAR to translate SysAddr 0x%lx to "
540 "DramAddr 0x%lx\n",
541 (unsigned long)sys_addr,
542 (unsigned long)dram_addr);
544 return dram_addr;
549 * Translate the SysAddr to a DramAddr as shown near the start of
550 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
551 * only deals with 40-bit values. Therefore we discard bits 63-40 of
552 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
553 * discard are all 1s. Otherwise the bits we discard are all 0s. See
554 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
555 * Programmer's Manual Volume 1 Application Programming.
557 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
559 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
560 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
561 (unsigned long)dram_addr);
562 return dram_addr;
566 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
567 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
568 * for node interleaving.
570 static int num_node_interleave_bits(unsigned intlv_en)
572 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
573 int n;
575 BUG_ON(intlv_en > 7);
576 n = intlv_shift_table[intlv_en];
577 return n;
580 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
581 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
583 struct amd64_pvt *pvt;
584 int intlv_shift;
585 u64 input_addr;
587 pvt = mci->pvt_info;
590 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
591 * concerning translating a DramAddr to an InputAddr.
593 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
594 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
595 (dram_addr & 0xfff);
597 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
598 intlv_shift, (unsigned long)dram_addr,
599 (unsigned long)input_addr);
601 return input_addr;
605 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
606 * assumed that @sys_addr maps to the node given by mci.
608 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
610 u64 input_addr;
612 input_addr =
613 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
615 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
616 (unsigned long)sys_addr, (unsigned long)input_addr);
618 return input_addr;
623 * @input_addr is an InputAddr associated with the node represented by mci.
624 * Translate @input_addr to a DramAddr and return the result.
626 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
628 struct amd64_pvt *pvt;
629 int node_id, intlv_shift;
630 u64 bits, dram_addr;
631 u32 intlv_sel;
634 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
635 * shows how to translate a DramAddr to an InputAddr. Here we reverse
636 * this procedure. When translating from a DramAddr to an InputAddr, the
637 * bits used for node interleaving are discarded. Here we recover these
638 * bits from the IntlvSel field of the DRAM Limit register (section
639 * 3.4.4.2) for the node that input_addr is associated with.
641 pvt = mci->pvt_info;
642 node_id = pvt->mc_node_id;
643 BUG_ON((node_id < 0) || (node_id > 7));
645 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
647 if (intlv_shift == 0) {
648 debugf1(" InputAddr 0x%lx translates to DramAddr of "
649 "same value\n", (unsigned long)input_addr);
651 return input_addr;
654 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
655 (input_addr & 0xfff);
657 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
658 dram_addr = bits + (intlv_sel << 12);
660 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
661 "(%d node interleave bits)\n", (unsigned long)input_addr,
662 (unsigned long)dram_addr, intlv_shift);
664 return dram_addr;
668 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
669 * @dram_addr to a SysAddr.
671 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
673 struct amd64_pvt *pvt = mci->pvt_info;
674 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
675 int ret = 0;
677 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
678 &hole_size);
679 if (!ret) {
680 if ((dram_addr >= hole_base) &&
681 (dram_addr < (hole_base + hole_size))) {
682 sys_addr = dram_addr + hole_offset;
684 debugf1("using DHAR to translate DramAddr 0x%lx to "
685 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
686 (unsigned long)sys_addr);
688 return sys_addr;
692 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
693 sys_addr = dram_addr + base;
696 * The sys_addr we have computed up to this point is a 40-bit value
697 * because the k8 deals with 40-bit values. However, the value we are
698 * supposed to return is a full 64-bit physical address. The AMD
699 * x86-64 architecture specifies that the most significant implemented
700 * address bit through bit 63 of a physical address must be either all
701 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
702 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
703 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
704 * Programming.
706 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
708 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
709 pvt->mc_node_id, (unsigned long)dram_addr,
710 (unsigned long)sys_addr);
712 return sys_addr;
716 * @input_addr is an InputAddr associated with the node given by mci. Translate
717 * @input_addr to a SysAddr.
719 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
720 u64 input_addr)
722 return dram_addr_to_sys_addr(mci,
723 input_addr_to_dram_addr(mci, input_addr));
727 * Find the minimum and maximum InputAddr values that map to the given @csrow.
728 * Pass back these values in *input_addr_min and *input_addr_max.
730 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
731 u64 *input_addr_min, u64 *input_addr_max)
733 struct amd64_pvt *pvt;
734 u64 base, mask;
736 pvt = mci->pvt_info;
737 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
739 base = base_from_dct_base(pvt, csrow);
740 mask = mask_from_dct_mask(pvt, csrow);
742 *input_addr_min = base & ~mask;
743 *input_addr_max = base | mask | pvt->dcs_mask_notused;
747 * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
748 * Address High (section 3.6.4.6) register values and return the result. Address
749 * is located in the info structure (nbeah and nbeal), the encoding is device
750 * specific.
752 static u64 extract_error_address(struct mem_ctl_info *mci,
753 struct err_regs *info)
755 struct amd64_pvt *pvt = mci->pvt_info;
757 return pvt->ops->get_error_address(mci, info);
761 /* Map the Error address to a PAGE and PAGE OFFSET. */
762 static inline void error_address_to_page_and_offset(u64 error_address,
763 u32 *page, u32 *offset)
765 *page = (u32) (error_address >> PAGE_SHIFT);
766 *offset = ((u32) error_address) & ~PAGE_MASK;
770 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
771 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
772 * of a node that detected an ECC memory error. mci represents the node that
773 * the error address maps to (possibly different from the node that detected
774 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
775 * error.
777 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
779 int csrow;
781 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
783 if (csrow == -1)
784 amd64_mc_printk(mci, KERN_ERR,
785 "Failed to translate InputAddr to csrow for "
786 "address 0x%lx\n", (unsigned long)sys_addr);
787 return csrow;
790 static int get_channel_from_ecc_syndrome(unsigned short syndrome);
792 static void amd64_cpu_display_info(struct amd64_pvt *pvt)
794 if (boot_cpu_data.x86 == 0x11)
795 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
796 else if (boot_cpu_data.x86 == 0x10)
797 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
798 else if (boot_cpu_data.x86 == 0xf)
799 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
800 (pvt->ext_model >= OPTERON_CPU_REV_F) ?
801 "Rev F or later" : "Rev E or earlier");
802 else
803 /* we'll hardly ever ever get here */
804 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
808 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
809 * are ECC capable.
811 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
813 int bit;
814 enum dev_type edac_cap = EDAC_FLAG_NONE;
816 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
817 ? 19
818 : 17;
820 if (pvt->dclr0 & BIT(bit))
821 edac_cap = EDAC_FLAG_SECDED;
823 return edac_cap;
827 static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
828 int ganged);
830 /* Display and decode various NB registers for debug purposes. */
831 static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
833 int ganged;
835 debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
836 pvt->nbcap,
837 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
838 (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
839 (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
840 debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
841 (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
842 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
843 debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
844 pvt->dclr0,
845 (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
846 (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
847 (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
848 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
849 (pvt->dclr0 & BIT(12)) ? "Y" : "N",
850 (pvt->dclr0 & BIT(13)) ? "Y" : "N",
851 (pvt->dclr0 & BIT(14)) ? "Y" : "N",
852 (pvt->dclr0 & BIT(15)) ? "Y" : "N",
853 (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
856 debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
858 if (boot_cpu_data.x86 == 0xf) {
859 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
860 pvt->dhar, dhar_base(pvt->dhar),
861 k8_dhar_offset(pvt->dhar));
862 debugf1(" DramHoleValid=%s\n",
863 (pvt->dhar & DHAR_VALID) ? "True" : "False");
865 debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
867 /* everything below this point is Fam10h and above */
868 return;
870 } else {
871 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
872 pvt->dhar, dhar_base(pvt->dhar),
873 f10_dhar_offset(pvt->dhar));
874 debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
875 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
876 "True" : "False",
877 (pvt->dhar & DHAR_VALID) ?
878 "True" : "False");
881 /* Only if NOT ganged does dcl1 have valid info */
882 if (!dct_ganging_enabled(pvt)) {
883 debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
884 "Width=%s\n", pvt->dclr1,
885 (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
886 (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
887 (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
888 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
889 "DIMM Type=%s\n",
890 (pvt->dclr1 & BIT(12)) ? "Y" : "N",
891 (pvt->dclr1 & BIT(13)) ? "Y" : "N",
892 (pvt->dclr1 & BIT(14)) ? "Y" : "N",
893 (pvt->dclr1 & BIT(15)) ? "Y" : "N",
894 (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
898 * Determine if ganged and then dump memory sizes for first controller,
899 * and if NOT ganged dump info for 2nd controller.
901 ganged = dct_ganging_enabled(pvt);
903 f10_debug_display_dimm_sizes(0, pvt, ganged);
905 if (!ganged)
906 f10_debug_display_dimm_sizes(1, pvt, ganged);
909 /* Read in both of DBAM registers */
910 static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
912 int err = 0;
913 unsigned int reg;
915 reg = DBAM0;
916 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
917 if (err)
918 goto err_reg;
920 if (boot_cpu_data.x86 >= 0x10) {
921 reg = DBAM1;
922 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
924 if (err)
925 goto err_reg;
928 return;
930 err_reg:
931 debugf0("Error reading F2x%03x.\n", reg);
935 * NOTE: CPU Revision Dependent code: Rev E and Rev F
937 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
938 * set the shift factor for the DCSB and DCSM values.
940 * ->dcs_mask_notused, RevE:
942 * To find the max InputAddr for the csrow, start with the base address and set
943 * all bits that are "don't care" bits in the test at the start of section
944 * 3.5.4 (p. 84).
946 * The "don't care" bits are all set bits in the mask and all bits in the gaps
947 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
948 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
949 * gaps.
951 * ->dcs_mask_notused, RevF and later:
953 * To find the max InputAddr for the csrow, start with the base address and set
954 * all bits that are "don't care" bits in the test at the start of NPT section
955 * 4.5.4 (p. 87).
957 * The "don't care" bits are all set bits in the mask and all bits in the gaps
958 * between bit ranges [36:27] and [21:13].
960 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
961 * which are all bits in the above-mentioned gaps.
963 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
966 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_F) {
967 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
968 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
969 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
970 pvt->dcs_shift = REV_E_DCS_SHIFT;
971 pvt->cs_count = 8;
972 pvt->num_dcsm = 8;
973 } else {
974 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
975 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
976 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
977 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
979 if (boot_cpu_data.x86 == 0x11) {
980 pvt->cs_count = 4;
981 pvt->num_dcsm = 2;
982 } else {
983 pvt->cs_count = 8;
984 pvt->num_dcsm = 4;
990 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
992 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
994 int cs, reg, err = 0;
996 amd64_set_dct_base_and_mask(pvt);
998 for (cs = 0; cs < pvt->cs_count; cs++) {
999 reg = K8_DCSB0 + (cs * 4);
1000 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1001 &pvt->dcsb0[cs]);
1002 if (unlikely(err))
1003 debugf0("Reading K8_DCSB0[%d] failed\n", cs);
1004 else
1005 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
1006 cs, pvt->dcsb0[cs], reg);
1008 /* If DCT are NOT ganged, then read in DCT1's base */
1009 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1010 reg = F10_DCSB1 + (cs * 4);
1011 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1012 &pvt->dcsb1[cs]);
1013 if (unlikely(err))
1014 debugf0("Reading F10_DCSB1[%d] failed\n", cs);
1015 else
1016 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
1017 cs, pvt->dcsb1[cs], reg);
1018 } else {
1019 pvt->dcsb1[cs] = 0;
1023 for (cs = 0; cs < pvt->num_dcsm; cs++) {
1024 reg = K8_DCSM0 + (cs * 4);
1025 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1026 &pvt->dcsm0[cs]);
1027 if (unlikely(err))
1028 debugf0("Reading K8_DCSM0 failed\n");
1029 else
1030 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
1031 cs, pvt->dcsm0[cs], reg);
1033 /* If DCT are NOT ganged, then read in DCT1's mask */
1034 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1035 reg = F10_DCSM1 + (cs * 4);
1036 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1037 &pvt->dcsm1[cs]);
1038 if (unlikely(err))
1039 debugf0("Reading F10_DCSM1[%d] failed\n", cs);
1040 else
1041 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
1042 cs, pvt->dcsm1[cs], reg);
1043 } else
1044 pvt->dcsm1[cs] = 0;
1048 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1050 enum mem_type type;
1052 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
1053 /* Rev F and later */
1054 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1055 } else {
1056 /* Rev E and earlier */
1057 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1060 debugf1(" Memory type is: %s\n",
1061 (type == MEM_DDR2) ? "MEM_DDR2" :
1062 (type == MEM_RDDR2) ? "MEM_RDDR2" :
1063 (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
1065 return type;
1069 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1070 * and the later RevF memory controllers (DDR vs DDR2)
1072 * Return:
1073 * number of memory channels in operation
1074 * Pass back:
1075 * contents of the DCL0_LOW register
1077 static int k8_early_channel_count(struct amd64_pvt *pvt)
1079 int flag, err = 0;
1081 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1082 if (err)
1083 return err;
1085 if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
1086 /* RevF (NPT) and later */
1087 flag = pvt->dclr0 & F10_WIDTH_128;
1088 } else {
1089 /* RevE and earlier */
1090 flag = pvt->dclr0 & REVE_WIDTH_128;
1093 /* not used */
1094 pvt->dclr1 = 0;
1096 return (flag) ? 2 : 1;
1099 /* extract the ERROR ADDRESS for the K8 CPUs */
1100 static u64 k8_get_error_address(struct mem_ctl_info *mci,
1101 struct err_regs *info)
1103 return (((u64) (info->nbeah & 0xff)) << 32) +
1104 (info->nbeal & ~0x03);
1108 * Read the Base and Limit registers for K8 based Memory controllers; extract
1109 * fields from the 'raw' reg into separate data fields
1111 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1113 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1115 u32 low;
1116 u32 off = dram << 3; /* 8 bytes between DRAM entries */
1117 int err;
1119 err = pci_read_config_dword(pvt->addr_f1_ctl,
1120 K8_DRAM_BASE_LOW + off, &low);
1121 if (err)
1122 debugf0("Reading K8_DRAM_BASE_LOW failed\n");
1124 /* Extract parts into separate data entries */
1125 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 24;
1126 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1127 pvt->dram_rw_en[dram] = (low & 0x3);
1129 err = pci_read_config_dword(pvt->addr_f1_ctl,
1130 K8_DRAM_LIMIT_LOW + off, &low);
1131 if (err)
1132 debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
1135 * Extract parts into separate data entries. Limit is the HIGHEST memory
1136 * location of the region, so lower 24 bits need to be all ones
1138 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 24) | 0x00FFFFFF;
1139 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1140 pvt->dram_DstNode[dram] = (low & 0x7);
1143 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1144 struct err_regs *info,
1145 u64 SystemAddress)
1147 struct mem_ctl_info *src_mci;
1148 unsigned short syndrome;
1149 int channel, csrow;
1150 u32 page, offset;
1152 /* Extract the syndrome parts and form a 16-bit syndrome */
1153 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1154 syndrome |= LOW_SYNDROME(info->nbsh);
1156 /* CHIPKILL enabled */
1157 if (info->nbcfg & K8_NBCFG_CHIPKILL) {
1158 channel = get_channel_from_ecc_syndrome(syndrome);
1159 if (channel < 0) {
1161 * Syndrome didn't map, so we don't know which of the
1162 * 2 DIMMs is in error. So we need to ID 'both' of them
1163 * as suspect.
1165 amd64_mc_printk(mci, KERN_WARNING,
1166 "unknown syndrome 0x%x - possible error "
1167 "reporting race\n", syndrome);
1168 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1169 return;
1171 } else {
1173 * non-chipkill ecc mode
1175 * The k8 documentation is unclear about how to determine the
1176 * channel number when using non-chipkill memory. This method
1177 * was obtained from email communication with someone at AMD.
1178 * (Wish the email was placed in this comment - norsk)
1180 channel = ((SystemAddress & BIT(3)) != 0);
1184 * Find out which node the error address belongs to. This may be
1185 * different from the node that detected the error.
1187 src_mci = find_mc_by_sys_addr(mci, SystemAddress);
1188 if (!src_mci) {
1189 amd64_mc_printk(mci, KERN_ERR,
1190 "failed to map error address 0x%lx to a node\n",
1191 (unsigned long)SystemAddress);
1192 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1193 return;
1196 /* Now map the SystemAddress to a CSROW */
1197 csrow = sys_addr_to_csrow(src_mci, SystemAddress);
1198 if (csrow < 0) {
1199 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1200 } else {
1201 error_address_to_page_and_offset(SystemAddress, &page, &offset);
1203 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1204 channel, EDAC_MOD_STR);
1209 * determrine the number of PAGES in for this DIMM's size based on its DRAM
1210 * Address Mapping.
1212 * First step is to calc the number of bits to shift a value of 1 left to
1213 * indicate show many pages. Start with the DBAM value as the starting bits,
1214 * then proceed to adjust those shift bits, based on CPU rev and the table.
1215 * See BKDG on the DBAM
1217 static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1219 int nr_pages;
1221 if (pvt->ext_model >= OPTERON_CPU_REV_F) {
1222 nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1223 } else {
1225 * RevE and less section; this line is tricky. It collapses the
1226 * table used by RevD and later to one that matches revisions CG
1227 * and earlier.
1229 dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
1230 (dram_map > 8 ? 4 : (dram_map > 5 ?
1231 3 : (dram_map > 2 ? 1 : 0))) : 0;
1233 /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
1234 nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
1237 return nr_pages;
1241 * Get the number of DCT channels in use.
1243 * Return:
1244 * number of Memory Channels in operation
1245 * Pass back:
1246 * contents of the DCL0_LOW register
1248 static int f10_early_channel_count(struct amd64_pvt *pvt)
1250 int dbams[] = { DBAM0, DBAM1 };
1251 int err = 0, channels = 0;
1252 int i, j;
1253 u32 dbam;
1255 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1256 if (err)
1257 goto err_reg;
1259 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
1260 if (err)
1261 goto err_reg;
1263 /* If we are in 128 bit mode, then we are using 2 channels */
1264 if (pvt->dclr0 & F10_WIDTH_128) {
1265 debugf0("Data WIDTH is 128 bits - 2 channels\n");
1266 channels = 2;
1267 return channels;
1271 * Need to check if in UN-ganged mode: In such, there are 2 channels,
1272 * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
1273 * will be OFF.
1275 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1276 * their CSEnable bit on. If so, then SINGLE DIMM case.
1278 debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
1281 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1282 * is more than just one DIMM present in unganged mode. Need to check
1283 * both controllers since DIMMs can be placed in either one.
1285 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1286 err = pci_read_config_dword(pvt->dram_f2_ctl, dbams[i], &dbam);
1287 if (err)
1288 goto err_reg;
1290 for (j = 0; j < 4; j++) {
1291 if (DBAM_DIMM(j, dbam) > 0) {
1292 channels++;
1293 break;
1298 debugf0("MCT channel count: %d\n", channels);
1300 return channels;
1302 err_reg:
1303 return -1;
1307 static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1309 return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1312 /* Enable extended configuration access via 0xCF8 feature */
1313 static void amd64_setup(struct amd64_pvt *pvt)
1315 u32 reg;
1317 pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1319 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1320 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1321 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1324 /* Restore the extended configuration access via 0xCF8 feature */
1325 static void amd64_teardown(struct amd64_pvt *pvt)
1327 u32 reg;
1329 pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1331 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1332 if (pvt->flags.cf8_extcfg)
1333 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1334 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1337 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1338 struct err_regs *info)
1340 return (((u64) (info->nbeah & 0xffff)) << 32) +
1341 (info->nbeal & ~0x01);
1345 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1346 * fields from the 'raw' reg into separate data fields.
1348 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1350 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1352 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1354 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1355 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1357 /* read the 'raw' DRAM BASE Address register */
1358 pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
1360 /* Read from the ECS data register */
1361 pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
1363 /* Extract parts into separate data entries */
1364 pvt->dram_rw_en[dram] = (low_base & 0x3);
1366 if (pvt->dram_rw_en[dram] == 0)
1367 return;
1369 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1371 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
1372 (((u64)low_base & 0xFFFF0000) << 24);
1374 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1375 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1377 /* read the 'raw' LIMIT registers */
1378 pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
1380 /* Read from the ECS data register for the HIGH portion */
1381 pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
1383 debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
1384 high_base, low_base, high_limit, low_limit);
1386 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1387 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1390 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1391 * memory location of the region, so low 24 bits need to be all ones.
1393 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
1394 (((u64) low_limit & 0xFFFF0000) << 24) |
1395 0x00FFFFFF;
1398 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1400 int err = 0;
1402 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1403 &pvt->dram_ctl_select_low);
1404 if (err) {
1405 debugf0("Reading F10_DCTL_SEL_LOW failed\n");
1406 } else {
1407 debugf0("DRAM_DCTL_SEL_LOW=0x%x DctSelBaseAddr=0x%x\n",
1408 pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
1410 debugf0(" DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
1411 "sel-hi-range=%s\n",
1412 (dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
1413 (dct_dram_enabled(pvt) ? "Enabled" : "Disabled"),
1414 (dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
1416 debugf0(" DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
1417 (dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
1418 (dct_memory_cleared(pvt) ? "True " : "False "),
1419 dct_sel_interleave_addr(pvt));
1422 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1423 &pvt->dram_ctl_select_high);
1424 if (err)
1425 debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
1429 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1430 * Interleaving Modes.
1432 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1433 int hi_range_sel, u32 intlv_en)
1435 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1437 if (dct_ganging_enabled(pvt))
1438 cs = 0;
1439 else if (hi_range_sel)
1440 cs = dct_sel_high;
1441 else if (dct_interleave_enabled(pvt)) {
1443 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1445 if (dct_sel_interleave_addr(pvt) == 0)
1446 cs = sys_addr >> 6 & 1;
1447 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1448 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1450 if (dct_sel_interleave_addr(pvt) & 1)
1451 cs = (sys_addr >> 9 & 1) ^ temp;
1452 else
1453 cs = (sys_addr >> 6 & 1) ^ temp;
1454 } else if (intlv_en & 4)
1455 cs = sys_addr >> 15 & 1;
1456 else if (intlv_en & 2)
1457 cs = sys_addr >> 14 & 1;
1458 else if (intlv_en & 1)
1459 cs = sys_addr >> 13 & 1;
1460 else
1461 cs = sys_addr >> 12 & 1;
1462 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1463 cs = ~dct_sel_high & 1;
1464 else
1465 cs = 0;
1467 return cs;
1470 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1472 if (intlv_en == 1)
1473 return 1;
1474 else if (intlv_en == 3)
1475 return 2;
1476 else if (intlv_en == 7)
1477 return 3;
1479 return 0;
1482 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1483 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1484 u32 dct_sel_base_addr,
1485 u64 dct_sel_base_off,
1486 u32 hole_valid, u32 hole_off,
1487 u64 dram_base)
1489 u64 chan_off;
1491 if (hi_range_sel) {
1492 if (!(dct_sel_base_addr & 0xFFFFF800) &&
1493 hole_valid && (sys_addr >= 0x100000000ULL))
1494 chan_off = hole_off << 16;
1495 else
1496 chan_off = dct_sel_base_off;
1497 } else {
1498 if (hole_valid && (sys_addr >= 0x100000000ULL))
1499 chan_off = hole_off << 16;
1500 else
1501 chan_off = dram_base & 0xFFFFF8000000ULL;
1504 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1505 (chan_off & 0x0000FFFFFF800000ULL);
1508 /* Hack for the time being - Can we get this from BIOS?? */
1509 #define CH0SPARE_RANK 0
1510 #define CH1SPARE_RANK 1
1513 * checks if the csrow passed in is marked as SPARED, if so returns the new
1514 * spare row
1516 static inline int f10_process_possible_spare(int csrow,
1517 u32 cs, struct amd64_pvt *pvt)
1519 u32 swap_done;
1520 u32 bad_dram_cs;
1522 /* Depending on channel, isolate respective SPARING info */
1523 if (cs) {
1524 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1525 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1526 if (swap_done && (csrow == bad_dram_cs))
1527 csrow = CH1SPARE_RANK;
1528 } else {
1529 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1530 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1531 if (swap_done && (csrow == bad_dram_cs))
1532 csrow = CH0SPARE_RANK;
1534 return csrow;
1538 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1539 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1541 * Return:
1542 * -EINVAL: NOT FOUND
1543 * 0..csrow = Chip-Select Row
1545 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1547 struct mem_ctl_info *mci;
1548 struct amd64_pvt *pvt;
1549 u32 cs_base, cs_mask;
1550 int cs_found = -EINVAL;
1551 int csrow;
1553 mci = mci_lookup[nid];
1554 if (!mci)
1555 return cs_found;
1557 pvt = mci->pvt_info;
1559 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1561 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
1563 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1564 if (!(cs_base & K8_DCSB_CS_ENABLE))
1565 continue;
1568 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1569 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1570 * of the actual address.
1572 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1575 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1576 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1578 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1580 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1581 csrow, cs_base, cs_mask);
1583 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1585 debugf1(" Final CSMask=0x%x\n", cs_mask);
1586 debugf1(" (InputAddr & ~CSMask)=0x%x "
1587 "(CSBase & ~CSMask)=0x%x\n",
1588 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1590 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1591 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1593 debugf1(" MATCH csrow=%d\n", cs_found);
1594 break;
1597 return cs_found;
1600 /* For a given @dram_range, check if @sys_addr falls within it. */
1601 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1602 u64 sys_addr, int *nid, int *chan_sel)
1604 int node_id, cs_found = -EINVAL, high_range = 0;
1605 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1606 u32 hole_valid, tmp, dct_sel_base, channel;
1607 u64 dram_base, chan_addr, dct_sel_base_off;
1609 dram_base = pvt->dram_base[dram_range];
1610 intlv_en = pvt->dram_IntlvEn[dram_range];
1612 node_id = pvt->dram_DstNode[dram_range];
1613 intlv_sel = pvt->dram_IntlvSel[dram_range];
1615 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1616 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1619 * This assumes that one node's DHAR is the same as all the other
1620 * nodes' DHAR.
1622 hole_off = (pvt->dhar & 0x0000FF80);
1623 hole_valid = (pvt->dhar & 0x1);
1624 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1626 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1627 hole_off, hole_valid, intlv_sel);
1629 if (intlv_en ||
1630 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1631 return -EINVAL;
1633 dct_sel_base = dct_sel_baseaddr(pvt);
1636 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1637 * select between DCT0 and DCT1.
1639 if (dct_high_range_enabled(pvt) &&
1640 !dct_ganging_enabled(pvt) &&
1641 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1642 high_range = 1;
1644 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1646 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1647 dct_sel_base_off, hole_valid,
1648 hole_off, dram_base);
1650 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1652 /* remove Node ID (in case of memory interleaving) */
1653 tmp = chan_addr & 0xFC0;
1655 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1657 /* remove channel interleave and hash */
1658 if (dct_interleave_enabled(pvt) &&
1659 !dct_high_range_enabled(pvt) &&
1660 !dct_ganging_enabled(pvt)) {
1661 if (dct_sel_interleave_addr(pvt) != 1)
1662 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1663 else {
1664 tmp = chan_addr & 0xFC0;
1665 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1666 | tmp;
1670 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1671 chan_addr, (u32)(chan_addr >> 8));
1673 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1675 if (cs_found >= 0) {
1676 *nid = node_id;
1677 *chan_sel = channel;
1679 return cs_found;
1682 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1683 int *node, int *chan_sel)
1685 int dram_range, cs_found = -EINVAL;
1686 u64 dram_base, dram_limit;
1688 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1690 if (!pvt->dram_rw_en[dram_range])
1691 continue;
1693 dram_base = pvt->dram_base[dram_range];
1694 dram_limit = pvt->dram_limit[dram_range];
1696 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1698 cs_found = f10_match_to_this_node(pvt, dram_range,
1699 sys_addr, node,
1700 chan_sel);
1701 if (cs_found >= 0)
1702 break;
1705 return cs_found;
1709 * This the F10h reference code from AMD to map a @sys_addr to NodeID,
1710 * CSROW, Channel.
1712 * The @sys_addr is usually an error address received from the hardware.
1714 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1715 struct err_regs *info,
1716 u64 sys_addr)
1718 struct amd64_pvt *pvt = mci->pvt_info;
1719 u32 page, offset;
1720 unsigned short syndrome;
1721 int nid, csrow, chan = 0;
1723 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1725 if (csrow >= 0) {
1726 error_address_to_page_and_offset(sys_addr, &page, &offset);
1728 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1729 syndrome |= LOW_SYNDROME(info->nbsh);
1732 * Is CHIPKILL on? If so, then we can attempt to use the
1733 * syndrome to isolate which channel the error was on.
1735 if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
1736 chan = get_channel_from_ecc_syndrome(syndrome);
1738 if (chan >= 0) {
1739 edac_mc_handle_ce(mci, page, offset, syndrome,
1740 csrow, chan, EDAC_MOD_STR);
1741 } else {
1743 * Channel unknown, report all channels on this
1744 * CSROW as failed.
1746 for (chan = 0; chan < mci->csrows[csrow].nr_channels;
1747 chan++) {
1748 edac_mc_handle_ce(mci, page, offset,
1749 syndrome,
1750 csrow, chan,
1751 EDAC_MOD_STR);
1755 } else {
1756 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1761 * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
1762 * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
1763 * indicates an empty DIMM slot, as reported by Hardware on empty slots.
1765 * Normalize to 128MB by subracting 27 bit shift.
1767 static int map_dbam_to_csrow_size(int index)
1769 int mega_bytes = 0;
1771 if (index > 0 && index <= DBAM_MAX_VALUE)
1772 mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
1774 return mega_bytes;
1778 * debug routine to display the memory sizes of a DIMM (ganged or not) and it
1779 * CSROWs as well
1781 static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
1782 int ganged)
1784 int dimm, size0, size1;
1785 u32 dbam;
1786 u32 *dcsb;
1788 debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl,
1789 ctrl ? pvt->dbam1 : pvt->dbam0,
1790 ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
1792 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1793 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1795 /* Dump memory sizes for DIMM and its CSROWs */
1796 for (dimm = 0; dimm < 4; dimm++) {
1798 size0 = 0;
1799 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1800 size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1802 size1 = 0;
1803 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1804 size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1806 debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB "
1807 "CSROW-%d=%5dMB\n",
1808 ctrl,
1809 dimm,
1810 size0 + size1,
1811 dimm * 2,
1812 size0,
1813 dimm * 2 + 1,
1814 size1);
1819 * Very early hardware probe on pci_probe thread to determine if this module
1820 * supports the hardware.
1822 * Return:
1823 * 0 for OK
1824 * 1 for error
1826 static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
1828 int ret = 0;
1831 * If we are on a DDR3 machine, we don't know yet if
1832 * we support that properly at this time
1834 if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
1835 (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
1837 amd64_printk(KERN_WARNING,
1838 "%s() This machine is running with DDR3 memory. "
1839 "This is not currently supported. "
1840 "DCHR0=0x%x DCHR1=0x%x\n",
1841 __func__, pvt->dchr0, pvt->dchr1);
1843 amd64_printk(KERN_WARNING,
1844 " Contact '%s' module MAINTAINER to help add"
1845 " support.\n",
1846 EDAC_MOD_STR);
1848 ret = 1;
1851 return ret;
1855 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1856 * (as per PCI DEVICE_IDs):
1858 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1859 * DEVICE ID, even though there is differences between the different Revisions
1860 * (CG,D,E,F).
1862 * Family F10h and F11h.
1865 static struct amd64_family_type amd64_family_types[] = {
1866 [K8_CPUS] = {
1867 .ctl_name = "RevF",
1868 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1869 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1870 .ops = {
1871 .early_channel_count = k8_early_channel_count,
1872 .get_error_address = k8_get_error_address,
1873 .read_dram_base_limit = k8_read_dram_base_limit,
1874 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1875 .dbam_map_to_pages = k8_dbam_map_to_pages,
1878 [F10_CPUS] = {
1879 .ctl_name = "Family 10h",
1880 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1881 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1882 .ops = {
1883 .probe_valid_hardware = f10_probe_valid_hardware,
1884 .early_channel_count = f10_early_channel_count,
1885 .get_error_address = f10_get_error_address,
1886 .read_dram_base_limit = f10_read_dram_base_limit,
1887 .read_dram_ctl_register = f10_read_dram_ctl_register,
1888 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1889 .dbam_map_to_pages = f10_dbam_map_to_pages,
1892 [F11_CPUS] = {
1893 .ctl_name = "Family 11h",
1894 .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1895 .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1896 .ops = {
1897 .probe_valid_hardware = f10_probe_valid_hardware,
1898 .early_channel_count = f10_early_channel_count,
1899 .get_error_address = f10_get_error_address,
1900 .read_dram_base_limit = f10_read_dram_base_limit,
1901 .read_dram_ctl_register = f10_read_dram_ctl_register,
1902 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1903 .dbam_map_to_pages = f10_dbam_map_to_pages,
1908 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1909 unsigned int device,
1910 struct pci_dev *related)
1912 struct pci_dev *dev = NULL;
1914 dev = pci_get_device(vendor, device, dev);
1915 while (dev) {
1916 if ((dev->bus->number == related->bus->number) &&
1917 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1918 break;
1919 dev = pci_get_device(vendor, device, dev);
1922 return dev;
1926 * syndrome mapping table for ECC ChipKill devices
1928 * The comment in each row is the token (nibble) number that is in error.
1929 * The least significant nibble of the syndrome is the mask for the bits
1930 * that are in error (need to be toggled) for the particular nibble.
1932 * Each row contains 16 entries.
1933 * The first entry (0th) is the channel number for that row of syndromes.
1934 * The remaining 15 entries are the syndromes for the respective Error
1935 * bit mask index.
1937 * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
1938 * bit in error.
1939 * The 2nd index entry is 0x0010 that the second bit is damaged.
1940 * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
1941 * are damaged.
1942 * Thus so on until index 15, 0x1111, whose entry has the syndrome
1943 * indicating that all 4 bits are damaged.
1945 * A search is performed on this table looking for a given syndrome.
1947 * See the AMD documentation for ECC syndromes. This ECC table is valid
1948 * across all the versions of the AMD64 processors.
1950 * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
1951 * COLUMN index, then search all ROWS of that column, looking for a match
1952 * with the input syndrome. The ROW value will be the token number.
1954 * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
1955 * error.
1957 #define NUMBER_ECC_ROWS 36
1958 static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
1959 /* Channel 0 syndromes */
1960 {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
1961 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
1962 {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
1963 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
1964 {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
1965 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
1966 {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
1967 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
1968 {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
1969 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
1970 {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
1971 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
1972 {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
1973 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
1974 {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
1975 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
1976 {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
1977 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
1978 {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
1979 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
1980 {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
1981 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
1982 {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
1983 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
1984 {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
1985 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
1986 {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
1987 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
1988 {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
1989 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
1990 {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
1991 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
1993 /* Channel 1 syndromes */
1994 {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
1995 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
1996 {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
1997 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
1998 {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
1999 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
2000 {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
2001 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
2002 {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
2003 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
2004 {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
2005 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
2006 {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
2007 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
2008 {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
2009 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
2010 {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
2011 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
2012 {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
2013 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
2014 {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
2015 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
2016 {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
2017 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
2018 {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
2019 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
2020 {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
2021 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
2022 {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
2023 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
2024 {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
2025 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
2027 /* ECC bits are also in the set of tokens and they too can go bad
2028 * first 2 cover channel 0, while the second 2 cover channel 1
2030 {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
2031 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
2032 {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
2033 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
2034 {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
2035 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
2036 {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
2037 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
2041 * Given the syndrome argument, scan each of the channel tables for a syndrome
2042 * match. Depending on which table it is found, return the channel number.
2044 static int get_channel_from_ecc_syndrome(unsigned short syndrome)
2046 int row;
2047 int column;
2049 /* Determine column to scan */
2050 column = syndrome & 0xF;
2052 /* Scan all rows, looking for syndrome, or end of table */
2053 for (row = 0; row < NUMBER_ECC_ROWS; row++) {
2054 if (ecc_chipkill_syndromes[row][column] == syndrome)
2055 return ecc_chipkill_syndromes[row][0];
2058 debugf0("syndrome(%x) not found\n", syndrome);
2059 return -1;
2063 * Check for valid error in the NB Status High register. If so, proceed to read
2064 * NB Status Low, NB Address Low and NB Address High registers and store data
2065 * into error structure.
2067 * Returns:
2068 * - 1: if hardware regs contains valid error info
2069 * - 0: if no valid error is indicated
2071 static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
2072 struct err_regs *regs)
2074 struct amd64_pvt *pvt;
2075 struct pci_dev *misc_f3_ctl;
2076 int err = 0;
2078 pvt = mci->pvt_info;
2079 misc_f3_ctl = pvt->misc_f3_ctl;
2081 err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, &regs->nbsh);
2082 if (err)
2083 goto err_reg;
2085 if (!(regs->nbsh & K8_NBSH_VALID_BIT))
2086 return 0;
2088 /* valid error, read remaining error information registers */
2089 err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, &regs->nbsl);
2090 if (err)
2091 goto err_reg;
2093 err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, &regs->nbeal);
2094 if (err)
2095 goto err_reg;
2097 err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, &regs->nbeah);
2098 if (err)
2099 goto err_reg;
2101 err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, &regs->nbcfg);
2102 if (err)
2103 goto err_reg;
2105 return 1;
2107 err_reg:
2108 debugf0("Reading error info register failed\n");
2109 return 0;
2113 * This function is called to retrieve the error data from hardware and store it
2114 * in the info structure.
2116 * Returns:
2117 * - 1: if a valid error is found
2118 * - 0: if no error is found
2120 static int amd64_get_error_info(struct mem_ctl_info *mci,
2121 struct err_regs *info)
2123 struct amd64_pvt *pvt;
2124 struct err_regs regs;
2126 pvt = mci->pvt_info;
2128 if (!amd64_get_error_info_regs(mci, info))
2129 return 0;
2132 * Here's the problem with the K8's EDAC reporting: There are four
2133 * registers which report pieces of error information. They are shared
2134 * between CEs and UEs. Furthermore, contrary to what is stated in the
2135 * BKDG, the overflow bit is never used! Every error always updates the
2136 * reporting registers.
2138 * Can you see the race condition? All four error reporting registers
2139 * must be read before a new error updates them! There is no way to read
2140 * all four registers atomically. The best than can be done is to detect
2141 * that a race has occured and then report the error without any kind of
2142 * precision.
2144 * What is still positive is that errors are still reported and thus
2145 * problems can still be detected - just not localized because the
2146 * syndrome and address are spread out across registers.
2148 * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
2149 * UEs and CEs should have separate register sets with proper overflow
2150 * bits that are used! At very least the problem can be fixed by
2151 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2152 * set the overflow bit - unless the current error is CE and the new
2153 * error is UE which would be the only situation for overwriting the
2154 * current values.
2157 regs = *info;
2159 /* Use info from the second read - most current */
2160 if (unlikely(!amd64_get_error_info_regs(mci, info)))
2161 return 0;
2163 /* clear the error bits in hardware */
2164 pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
2166 /* Check for the possible race condition */
2167 if ((regs.nbsh != info->nbsh) ||
2168 (regs.nbsl != info->nbsl) ||
2169 (regs.nbeah != info->nbeah) ||
2170 (regs.nbeal != info->nbeal)) {
2171 amd64_mc_printk(mci, KERN_WARNING,
2172 "hardware STATUS read access race condition "
2173 "detected!\n");
2174 return 0;
2176 return 1;
2180 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2181 * ADDRESS and process.
2183 static void amd64_handle_ce(struct mem_ctl_info *mci,
2184 struct err_regs *info)
2186 struct amd64_pvt *pvt = mci->pvt_info;
2187 u64 SystemAddress;
2189 /* Ensure that the Error Address is VALID */
2190 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2191 amd64_mc_printk(mci, KERN_ERR,
2192 "HW has no ERROR_ADDRESS available\n");
2193 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
2194 return;
2197 SystemAddress = extract_error_address(mci, info);
2199 amd64_mc_printk(mci, KERN_ERR,
2200 "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
2202 pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
2205 /* Handle any Un-correctable Errors (UEs) */
2206 static void amd64_handle_ue(struct mem_ctl_info *mci,
2207 struct err_regs *info)
2209 int csrow;
2210 u64 SystemAddress;
2211 u32 page, offset;
2212 struct mem_ctl_info *log_mci, *src_mci = NULL;
2214 log_mci = mci;
2216 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2217 amd64_mc_printk(mci, KERN_CRIT,
2218 "HW has no ERROR_ADDRESS available\n");
2219 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2220 return;
2223 SystemAddress = extract_error_address(mci, info);
2226 * Find out which node the error address belongs to. This may be
2227 * different from the node that detected the error.
2229 src_mci = find_mc_by_sys_addr(mci, SystemAddress);
2230 if (!src_mci) {
2231 amd64_mc_printk(mci, KERN_CRIT,
2232 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2233 (unsigned long)SystemAddress);
2234 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2235 return;
2238 log_mci = src_mci;
2240 csrow = sys_addr_to_csrow(log_mci, SystemAddress);
2241 if (csrow < 0) {
2242 amd64_mc_printk(mci, KERN_CRIT,
2243 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2244 (unsigned long)SystemAddress);
2245 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2246 } else {
2247 error_address_to_page_and_offset(SystemAddress, &page, &offset);
2248 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2252 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
2253 struct err_regs *info)
2255 u32 ec = ERROR_CODE(info->nbsl);
2256 u32 xec = EXT_ERROR_CODE(info->nbsl);
2257 int ecc_type = info->nbsh & (0x3 << 13);
2259 /* Bail early out if this was an 'observed' error */
2260 if (PP(ec) == K8_NBSL_PP_OBS)
2261 return;
2263 /* Do only ECC errors */
2264 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2265 return;
2267 if (ecc_type == 2)
2268 amd64_handle_ce(mci, info);
2269 else if (ecc_type == 1)
2270 amd64_handle_ue(mci, info);
2273 * If main error is CE then overflow must be CE. If main error is UE
2274 * then overflow is unknown. We'll call the overflow a CE - if
2275 * panic_on_ue is set then we're already panic'ed and won't arrive
2276 * here. Else, then apparently someone doesn't think that UE's are
2277 * catastrophic.
2279 if (info->nbsh & K8_NBSH_OVERFLOW)
2280 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
2283 void amd64_decode_bus_error(int node_id, struct err_regs *regs)
2285 struct mem_ctl_info *mci = mci_lookup[node_id];
2287 __amd64_decode_bus_error(mci, regs);
2290 * Check the UE bit of the NB status high register, if set generate some
2291 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2292 * If it was a GART error, skip that process.
2294 * FIXME: this should go somewhere else, if at all.
2296 if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
2297 edac_mc_handle_ue_no_info(mci, "UE bit is set");
2302 * The main polling 'check' function, called FROM the edac core to perform the
2303 * error checking and if an error is encountered, error processing.
2305 static void amd64_check(struct mem_ctl_info *mci)
2307 struct err_regs regs;
2309 if (amd64_get_error_info(mci, &regs)) {
2310 struct amd64_pvt *pvt = mci->pvt_info;
2311 amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
2316 * Input:
2317 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2318 * 2) AMD Family index value
2320 * Ouput:
2321 * Upon return of 0, the following filled in:
2323 * struct pvt->addr_f1_ctl
2324 * struct pvt->misc_f3_ctl
2326 * Filled in with related device funcitions of 'dram_f2_ctl'
2327 * These devices are "reserved" via the pci_get_device()
2329 * Upon return of 1 (error status):
2331 * Nothing reserved
2333 static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2335 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2337 /* Reserve the ADDRESS MAP Device */
2338 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2339 amd64_dev->addr_f1_ctl,
2340 pvt->dram_f2_ctl);
2342 if (!pvt->addr_f1_ctl) {
2343 amd64_printk(KERN_ERR, "error address map device not found: "
2344 "vendor %x device 0x%x (broken BIOS?)\n",
2345 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2346 return 1;
2349 /* Reserve the MISC Device */
2350 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2351 amd64_dev->misc_f3_ctl,
2352 pvt->dram_f2_ctl);
2354 if (!pvt->misc_f3_ctl) {
2355 pci_dev_put(pvt->addr_f1_ctl);
2356 pvt->addr_f1_ctl = NULL;
2358 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2359 "vendor %x device 0x%x (broken BIOS?)\n",
2360 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2361 return 1;
2364 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2365 pci_name(pvt->addr_f1_ctl));
2366 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2367 pci_name(pvt->dram_f2_ctl));
2368 debugf1(" Misc device PCI Bus ID:\t%s\n",
2369 pci_name(pvt->misc_f3_ctl));
2371 return 0;
2374 static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2376 pci_dev_put(pvt->addr_f1_ctl);
2377 pci_dev_put(pvt->misc_f3_ctl);
2381 * Retrieve the hardware registers of the memory controller (this includes the
2382 * 'Address Map' and 'Misc' device regs)
2384 static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2386 u64 msr_val;
2387 int dram, err = 0;
2390 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2391 * those are Read-As-Zero
2393 rdmsrl(MSR_K8_TOP_MEM1, msr_val);
2394 pvt->top_mem = msr_val >> 23;
2395 debugf0(" TOP_MEM=0x%08llx\n", pvt->top_mem);
2397 /* check first whether TOP_MEM2 is enabled */
2398 rdmsrl(MSR_K8_SYSCFG, msr_val);
2399 if (msr_val & (1U << 21)) {
2400 rdmsrl(MSR_K8_TOP_MEM2, msr_val);
2401 pvt->top_mem2 = msr_val >> 23;
2402 debugf0(" TOP_MEM2=0x%08llx\n", pvt->top_mem2);
2403 } else
2404 debugf0(" TOP_MEM2 disabled.\n");
2406 amd64_cpu_display_info(pvt);
2408 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
2409 if (err)
2410 goto err_reg;
2412 if (pvt->ops->read_dram_ctl_register)
2413 pvt->ops->read_dram_ctl_register(pvt);
2415 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2417 * Call CPU specific READ function to get the DRAM Base and
2418 * Limit values from the DCT.
2420 pvt->ops->read_dram_base_limit(pvt, dram);
2423 * Only print out debug info on rows with both R and W Enabled.
2424 * Normal processing, compiler should optimize this whole 'if'
2425 * debug output block away.
2427 if (pvt->dram_rw_en[dram] != 0) {
2428 debugf1(" DRAM_BASE[%d]: 0x%8.08x-%8.08x "
2429 "DRAM_LIMIT: 0x%8.08x-%8.08x\n",
2430 dram,
2431 (u32)(pvt->dram_base[dram] >> 32),
2432 (u32)(pvt->dram_base[dram] & 0xFFFFFFFF),
2433 (u32)(pvt->dram_limit[dram] >> 32),
2434 (u32)(pvt->dram_limit[dram] & 0xFFFFFFFF));
2435 debugf1(" IntlvEn=%s %s %s "
2436 "IntlvSel=%d DstNode=%d\n",
2437 pvt->dram_IntlvEn[dram] ?
2438 "Enabled" : "Disabled",
2439 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2440 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2441 pvt->dram_IntlvSel[dram],
2442 pvt->dram_DstNode[dram]);
2446 amd64_read_dct_base_mask(pvt);
2448 err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
2449 if (err)
2450 goto err_reg;
2452 amd64_read_dbam_reg(pvt);
2454 err = pci_read_config_dword(pvt->misc_f3_ctl,
2455 F10_ONLINE_SPARE, &pvt->online_spare);
2456 if (err)
2457 goto err_reg;
2459 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2460 if (err)
2461 goto err_reg;
2463 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
2464 if (err)
2465 goto err_reg;
2467 if (!dct_ganging_enabled(pvt)) {
2468 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1,
2469 &pvt->dclr1);
2470 if (err)
2471 goto err_reg;
2473 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1,
2474 &pvt->dchr1);
2475 if (err)
2476 goto err_reg;
2479 amd64_dump_misc_regs(pvt);
2481 return;
2483 err_reg:
2484 debugf0("Reading an MC register failed\n");
2489 * NOTE: CPU Revision Dependent code
2491 * Input:
2492 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
2493 * k8 private pointer to -->
2494 * DRAM Bank Address mapping register
2495 * node_id
2496 * DCL register where dual_channel_active is
2498 * The DBAM register consists of 4 sets of 4 bits each definitions:
2500 * Bits: CSROWs
2501 * 0-3 CSROWs 0 and 1
2502 * 4-7 CSROWs 2 and 3
2503 * 8-11 CSROWs 4 and 5
2504 * 12-15 CSROWs 6 and 7
2506 * Values range from: 0 to 15
2507 * The meaning of the values depends on CPU revision and dual-channel state,
2508 * see relevant BKDG more info.
2510 * The memory controller provides for total of only 8 CSROWs in its current
2511 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2512 * single channel or two (2) DIMMs in dual channel mode.
2514 * The following code logic collapses the various tables for CSROW based on CPU
2515 * revision.
2517 * Returns:
2518 * The number of PAGE_SIZE pages on the specified CSROW number it
2519 * encompasses
2522 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2524 u32 dram_map, nr_pages;
2527 * The math on this doesn't look right on the surface because x/2*4 can
2528 * be simplified to x*2 but this expression makes use of the fact that
2529 * it is integral math where 1/2=0. This intermediate value becomes the
2530 * number of bits to shift the DBAM register to extract the proper CSROW
2531 * field.
2533 dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2535 nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
2538 * If dual channel then double the memory size of single channel.
2539 * Channel count is 1 or 2
2541 nr_pages <<= (pvt->channel_count - 1);
2543 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
2544 debugf0(" nr_pages= %u channel-count = %d\n",
2545 nr_pages, pvt->channel_count);
2547 return nr_pages;
2551 * Initialize the array of csrow attribute instances, based on the values
2552 * from pci config hardware registers.
2554 static int amd64_init_csrows(struct mem_ctl_info *mci)
2556 struct csrow_info *csrow;
2557 struct amd64_pvt *pvt;
2558 u64 input_addr_min, input_addr_max, sys_addr;
2559 int i, err = 0, empty = 1;
2561 pvt = mci->pvt_info;
2563 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
2564 if (err)
2565 debugf0("Reading K8_NBCFG failed\n");
2567 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2568 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2569 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2572 for (i = 0; i < pvt->cs_count; i++) {
2573 csrow = &mci->csrows[i];
2575 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2576 debugf1("----CSROW %d EMPTY for node %d\n", i,
2577 pvt->mc_node_id);
2578 continue;
2581 debugf1("----CSROW %d VALID for MC node %d\n",
2582 i, pvt->mc_node_id);
2584 empty = 0;
2585 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2586 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2587 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2588 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2589 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2590 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2591 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2592 /* 8 bytes of resolution */
2594 csrow->mtype = amd64_determine_memory_type(pvt);
2596 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2597 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2598 (unsigned long)input_addr_min,
2599 (unsigned long)input_addr_max);
2600 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2601 (unsigned long)sys_addr, csrow->page_mask);
2602 debugf1(" nr_pages: %u first_page: 0x%lx "
2603 "last_page: 0x%lx\n",
2604 (unsigned)csrow->nr_pages,
2605 csrow->first_page, csrow->last_page);
2608 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2610 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2611 csrow->edac_mode =
2612 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2613 EDAC_S4ECD4ED : EDAC_SECDED;
2614 else
2615 csrow->edac_mode = EDAC_NONE;
2618 return empty;
2622 * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
2623 * enable it.
2625 static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2627 struct amd64_pvt *pvt = mci->pvt_info;
2628 const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
2629 int cpu, idx = 0, err = 0;
2630 struct msr msrs[cpumask_weight(cpumask)];
2631 u32 value;
2632 u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2634 if (!ecc_enable_override)
2635 return;
2637 memset(msrs, 0, sizeof(msrs));
2639 amd64_printk(KERN_WARNING,
2640 "'ecc_enable_override' parameter is active, "
2641 "Enabling AMD ECC hardware now: CAUTION\n");
2643 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
2644 if (err)
2645 debugf0("Reading K8_NBCTL failed\n");
2647 /* turn on UECCn and CECCEn bits */
2648 pvt->old_nbctl = value & mask;
2649 pvt->nbctl_mcgctl_saved = 1;
2651 value |= mask;
2652 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2654 rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2656 for_each_cpu(cpu, cpumask) {
2657 if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
2658 set_bit(idx, &pvt->old_mcgctl);
2660 msrs[idx].l |= K8_MSR_MCGCTL_NBE;
2661 idx++;
2663 wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2665 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2666 if (err)
2667 debugf0("Reading K8_NBCFG failed\n");
2669 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2670 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2671 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2673 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2674 amd64_printk(KERN_WARNING,
2675 "This node reports that DRAM ECC is "
2676 "currently Disabled; ENABLING now\n");
2678 /* Attempt to turn on DRAM ECC Enable */
2679 value |= K8_NBCFG_ECC_ENABLE;
2680 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2682 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2683 if (err)
2684 debugf0("Reading K8_NBCFG failed\n");
2686 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2687 amd64_printk(KERN_WARNING,
2688 "Hardware rejects Enabling DRAM ECC checking\n"
2689 "Check memory DIMM configuration\n");
2690 } else {
2691 amd64_printk(KERN_DEBUG,
2692 "Hardware accepted DRAM ECC Enable\n");
2695 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2696 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2697 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2699 pvt->ctl_error_info.nbcfg = value;
2702 static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2704 const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
2705 int cpu, idx = 0, err = 0;
2706 struct msr msrs[cpumask_weight(cpumask)];
2707 u32 value;
2708 u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2710 if (!pvt->nbctl_mcgctl_saved)
2711 return;
2713 memset(msrs, 0, sizeof(msrs));
2715 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
2716 if (err)
2717 debugf0("Reading K8_NBCTL failed\n");
2718 value &= ~mask;
2719 value |= pvt->old_nbctl;
2721 /* restore the NB Enable MCGCTL bit */
2722 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2724 rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2726 for_each_cpu(cpu, cpumask) {
2727 msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
2728 msrs[idx].l |=
2729 test_bit(idx, &pvt->old_mcgctl) << K8_MSR_MCGCTL_NBE;
2730 idx++;
2733 wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2736 /* get all cores on this DCT */
2737 static void get_cpus_on_this_dct_cpumask(cpumask_t *mask, int nid)
2739 int cpu;
2741 for_each_online_cpu(cpu)
2742 if (amd_get_nb_id(cpu) == nid)
2743 cpumask_set_cpu(cpu, mask);
2746 /* check MCG_CTL on all the cpus on this node */
2747 static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2749 cpumask_t mask;
2750 struct msr *msrs;
2751 int cpu, nbe, idx = 0;
2752 bool ret = false;
2754 cpumask_clear(&mask);
2756 get_cpus_on_this_dct_cpumask(&mask, nid);
2758 msrs = kzalloc(sizeof(struct msr) * cpumask_weight(&mask), GFP_KERNEL);
2759 if (!msrs) {
2760 amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
2761 __func__);
2762 return false;
2765 rdmsr_on_cpus(&mask, MSR_IA32_MCG_CTL, msrs);
2767 for_each_cpu(cpu, &mask) {
2768 nbe = msrs[idx].l & K8_MSR_MCGCTL_NBE;
2770 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2771 cpu, msrs[idx].q,
2772 (nbe ? "enabled" : "disabled"));
2774 if (!nbe)
2775 goto out;
2777 idx++;
2779 ret = true;
2781 out:
2782 kfree(msrs);
2783 return ret;
2787 * EDAC requires that the BIOS have ECC enabled before taking over the
2788 * processing of ECC errors. This is because the BIOS can properly initialize
2789 * the memory system completely. A command line option allows to force-enable
2790 * hardware ECC later in amd64_enable_ecc_error_reporting().
2792 static const char *ecc_warning =
2793 "WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n"
2794 " Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n"
2795 " Also, use of the override can cause unknown side effects.\n";
2797 static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2799 u32 value;
2800 int err = 0;
2801 u8 ecc_enabled = 0;
2802 bool nb_mce_en = false;
2804 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2805 if (err)
2806 debugf0("Reading K8_NBCTL failed\n");
2808 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
2809 if (!ecc_enabled)
2810 amd64_printk(KERN_WARNING, "This node reports that Memory ECC "
2811 "is currently disabled, set F3x%x[22] (%s).\n",
2812 K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2813 else
2814 amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
2816 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2817 if (!nb_mce_en)
2818 amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR "
2819 "0x%08x[4] on node %d to enable.\n",
2820 MSR_IA32_MCG_CTL, pvt->mc_node_id);
2822 if (!ecc_enabled || !nb_mce_en) {
2823 if (!ecc_enable_override) {
2824 amd64_printk(KERN_WARNING, "%s", ecc_warning);
2825 return -ENODEV;
2827 } else
2828 /* CLEAR the override, since BIOS controlled it */
2829 ecc_enable_override = 0;
2831 return 0;
2834 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2835 ARRAY_SIZE(amd64_inj_attrs) +
2838 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2840 static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2842 unsigned int i = 0, j = 0;
2844 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2845 sysfs_attrs[i] = amd64_dbg_attrs[i];
2847 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2848 sysfs_attrs[i] = amd64_inj_attrs[j];
2850 sysfs_attrs[i] = terminator;
2852 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2855 static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2857 struct amd64_pvt *pvt = mci->pvt_info;
2859 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2860 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2862 if (pvt->nbcap & K8_NBCAP_SECDED)
2863 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2865 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2866 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2868 mci->edac_cap = amd64_determine_edac_cap(pvt);
2869 mci->mod_name = EDAC_MOD_STR;
2870 mci->mod_ver = EDAC_AMD64_VERSION;
2871 mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
2872 mci->dev_name = pci_name(pvt->dram_f2_ctl);
2873 mci->ctl_page_to_phys = NULL;
2875 /* IMPORTANT: Set the polling 'check' function in this module */
2876 mci->edac_check = amd64_check;
2878 /* memory scrubber interface */
2879 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2880 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2884 * Init stuff for this DRAM Controller device.
2886 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2887 * Space feature MUST be enabled on ALL Processors prior to actually reading
2888 * from the ECS registers. Since the loading of the module can occur on any
2889 * 'core', and cores don't 'see' all the other processors ECS data when the
2890 * others are NOT enabled. Our solution is to first enable ECS access in this
2891 * routine on all processors, gather some data in a amd64_pvt structure and
2892 * later come back in a finish-setup function to perform that final
2893 * initialization. See also amd64_init_2nd_stage() for that.
2895 static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2896 int mc_type_index)
2898 struct amd64_pvt *pvt = NULL;
2899 int err = 0, ret;
2901 ret = -ENOMEM;
2902 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2903 if (!pvt)
2904 goto err_exit;
2906 pvt->mc_node_id = get_node_id(dram_f2_ctl);
2908 pvt->dram_f2_ctl = dram_f2_ctl;
2909 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2910 pvt->mc_type_index = mc_type_index;
2911 pvt->ops = family_ops(mc_type_index);
2912 pvt->old_mcgctl = 0;
2915 * We have the dram_f2_ctl device as an argument, now go reserve its
2916 * sibling devices from the PCI system.
2918 ret = -ENODEV;
2919 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2920 if (err)
2921 goto err_free;
2923 ret = -EINVAL;
2924 err = amd64_check_ecc_enabled(pvt);
2925 if (err)
2926 goto err_put;
2929 * Key operation here: setup of HW prior to performing ops on it. Some
2930 * setup is required to access ECS data. After this is performed, the
2931 * 'teardown' function must be called upon error and normal exit paths.
2933 if (boot_cpu_data.x86 >= 0x10)
2934 amd64_setup(pvt);
2937 * Save the pointer to the private data for use in 2nd initialization
2938 * stage
2940 pvt_lookup[pvt->mc_node_id] = pvt;
2942 return 0;
2944 err_put:
2945 amd64_free_mc_sibling_devices(pvt);
2947 err_free:
2948 kfree(pvt);
2950 err_exit:
2951 return ret;
2955 * This is the finishing stage of the init code. Needs to be performed after all
2956 * MCs' hardware have been prepped for accessing extended config space.
2958 static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2960 int node_id = pvt->mc_node_id;
2961 struct mem_ctl_info *mci;
2962 int ret, err = 0;
2964 amd64_read_mc_registers(pvt);
2966 ret = -ENODEV;
2967 if (pvt->ops->probe_valid_hardware) {
2968 err = pvt->ops->probe_valid_hardware(pvt);
2969 if (err)
2970 goto err_exit;
2974 * We need to determine how many memory channels there are. Then use
2975 * that information for calculating the size of the dynamic instance
2976 * tables in the 'mci' structure
2978 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2979 if (pvt->channel_count < 0)
2980 goto err_exit;
2982 ret = -ENOMEM;
2983 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
2984 if (!mci)
2985 goto err_exit;
2987 mci->pvt_info = pvt;
2989 mci->dev = &pvt->dram_f2_ctl->dev;
2990 amd64_setup_mci_misc_attributes(mci);
2992 if (amd64_init_csrows(mci))
2993 mci->edac_cap = EDAC_FLAG_NONE;
2995 amd64_enable_ecc_error_reporting(mci);
2996 amd64_set_mc_sysfs_attributes(mci);
2998 ret = -ENODEV;
2999 if (edac_mc_add_mc(mci)) {
3000 debugf1("failed edac_mc_add_mc()\n");
3001 goto err_add_mc;
3004 mci_lookup[node_id] = mci;
3005 pvt_lookup[node_id] = NULL;
3007 /* register stuff with EDAC MCE */
3008 if (report_gart_errors)
3009 amd_report_gart_errors(true);
3011 amd_register_ecc_decoder(amd64_decode_bus_error);
3013 return 0;
3015 err_add_mc:
3016 edac_mc_free(mci);
3018 err_exit:
3019 debugf0("failure to init 2nd stage: ret=%d\n", ret);
3021 amd64_restore_ecc_error_reporting(pvt);
3023 if (boot_cpu_data.x86 > 0xf)
3024 amd64_teardown(pvt);
3026 amd64_free_mc_sibling_devices(pvt);
3028 kfree(pvt_lookup[pvt->mc_node_id]);
3029 pvt_lookup[node_id] = NULL;
3031 return ret;
3035 static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
3036 const struct pci_device_id *mc_type)
3038 int ret = 0;
3040 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
3041 get_amd_family_name(mc_type->driver_data));
3043 ret = pci_enable_device(pdev);
3044 if (ret < 0)
3045 ret = -EIO;
3046 else
3047 ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
3049 if (ret < 0)
3050 debugf0("ret=%d\n", ret);
3052 return ret;
3055 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
3057 struct mem_ctl_info *mci;
3058 struct amd64_pvt *pvt;
3060 /* Remove from EDAC CORE tracking list */
3061 mci = edac_mc_del_mc(&pdev->dev);
3062 if (!mci)
3063 return;
3065 pvt = mci->pvt_info;
3067 amd64_restore_ecc_error_reporting(pvt);
3069 if (boot_cpu_data.x86 > 0xf)
3070 amd64_teardown(pvt);
3072 amd64_free_mc_sibling_devices(pvt);
3074 kfree(pvt);
3075 mci->pvt_info = NULL;
3077 mci_lookup[pvt->mc_node_id] = NULL;
3079 /* unregister from EDAC MCE */
3080 amd_report_gart_errors(false);
3081 amd_unregister_ecc_decoder(amd64_decode_bus_error);
3083 /* Free the EDAC CORE resources */
3084 edac_mc_free(mci);
3088 * This table is part of the interface for loading drivers for PCI devices. The
3089 * PCI core identifies what devices are on a system during boot, and then
3090 * inquiry this table to see if this driver is for a given device found.
3092 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
3094 .vendor = PCI_VENDOR_ID_AMD,
3095 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
3096 .subvendor = PCI_ANY_ID,
3097 .subdevice = PCI_ANY_ID,
3098 .class = 0,
3099 .class_mask = 0,
3100 .driver_data = K8_CPUS
3103 .vendor = PCI_VENDOR_ID_AMD,
3104 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
3105 .subvendor = PCI_ANY_ID,
3106 .subdevice = PCI_ANY_ID,
3107 .class = 0,
3108 .class_mask = 0,
3109 .driver_data = F10_CPUS
3112 .vendor = PCI_VENDOR_ID_AMD,
3113 .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
3114 .subvendor = PCI_ANY_ID,
3115 .subdevice = PCI_ANY_ID,
3116 .class = 0,
3117 .class_mask = 0,
3118 .driver_data = F11_CPUS
3120 {0, }
3122 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
3124 static struct pci_driver amd64_pci_driver = {
3125 .name = EDAC_MOD_STR,
3126 .probe = amd64_init_one_instance,
3127 .remove = __devexit_p(amd64_remove_one_instance),
3128 .id_table = amd64_pci_table,
3131 static void amd64_setup_pci_device(void)
3133 struct mem_ctl_info *mci;
3134 struct amd64_pvt *pvt;
3136 if (amd64_ctl_pci)
3137 return;
3139 mci = mci_lookup[0];
3140 if (mci) {
3142 pvt = mci->pvt_info;
3143 amd64_ctl_pci =
3144 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
3145 EDAC_MOD_STR);
3147 if (!amd64_ctl_pci) {
3148 pr_warning("%s(): Unable to create PCI control\n",
3149 __func__);
3151 pr_warning("%s(): PCI error report via EDAC not set\n",
3152 __func__);
3157 static int __init amd64_edac_init(void)
3159 int nb, err = -ENODEV;
3161 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
3163 opstate_init();
3165 if (cache_k8_northbridges() < 0)
3166 goto err_exit;
3168 err = pci_register_driver(&amd64_pci_driver);
3169 if (err)
3170 return err;
3173 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
3174 * amd64_pvt structs. These will be used in the 2nd stage init function
3175 * to finish initialization of the MC instances.
3177 for (nb = 0; nb < num_k8_northbridges; nb++) {
3178 if (!pvt_lookup[nb])
3179 continue;
3181 err = amd64_init_2nd_stage(pvt_lookup[nb]);
3182 if (err)
3183 goto err_2nd_stage;
3186 amd64_setup_pci_device();
3188 return 0;
3190 err_2nd_stage:
3191 debugf0("2nd stage failed\n");
3193 err_exit:
3194 pci_unregister_driver(&amd64_pci_driver);
3196 return err;
3199 static void __exit amd64_edac_exit(void)
3201 if (amd64_ctl_pci)
3202 edac_pci_release_generic_ctl(amd64_ctl_pci);
3204 pci_unregister_driver(&amd64_pci_driver);
3207 module_init(amd64_edac_init);
3208 module_exit(amd64_edac_exit);
3210 MODULE_LICENSE("GPL");
3211 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3212 "Dave Peterson, Thayne Harbaugh");
3213 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3214 EDAC_AMD64_VERSION);
3216 module_param(edac_op_state, int, 0444);
3217 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");