[ARM] pxa: Gumstix Verdex PCMCIA support
[linux-2.6/verdex.git] / drivers / misc / sgi-xp / xpc_sn2.c
blob8b70e03f939f9c0a78f3708a0393b46d8f61e8c8
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (c) 2008-2009 Silicon Graphics, Inc. All Rights Reserved.
7 */
9 /*
10 * Cross Partition Communication (XPC) sn2-based functions.
12 * Architecture specific implementation of common functions.
16 #include <linux/delay.h>
17 #include <asm/uncached.h>
18 #include <asm/sn/mspec.h>
19 #include <asm/sn/sn_sal.h>
20 #include "xpc.h"
23 * Define the number of u64s required to represent all the C-brick nasids
24 * as a bitmap. The cross-partition kernel modules deal only with
25 * C-brick nasids, thus the need for bitmaps which don't account for
26 * odd-numbered (non C-brick) nasids.
28 #define XPC_MAX_PHYSNODES_SN2 (MAX_NUMALINK_NODES / 2)
29 #define XP_NASID_MASK_BYTES_SN2 ((XPC_MAX_PHYSNODES_SN2 + 7) / 8)
30 #define XP_NASID_MASK_WORDS_SN2 ((XPC_MAX_PHYSNODES_SN2 + 63) / 64)
33 * Memory for XPC's amo variables is allocated by the MSPEC driver. These
34 * pages are located in the lowest granule. The lowest granule uses 4k pages
35 * for cached references and an alternate TLB handler to never provide a
36 * cacheable mapping for the entire region. This will prevent speculative
37 * reading of cached copies of our lines from being issued which will cause
38 * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64
39 * amo variables (based on XP_MAX_NPARTITIONS_SN2) to identify the senders of
40 * NOTIFY IRQs, 128 amo variables (based on XP_NASID_MASK_WORDS_SN2) to identify
41 * the senders of ACTIVATE IRQs, 1 amo variable to identify which remote
42 * partitions (i.e., XPCs) consider themselves currently engaged with the
43 * local XPC and 1 amo variable to request partition deactivation.
45 #define XPC_NOTIFY_IRQ_AMOS_SN2 0
46 #define XPC_ACTIVATE_IRQ_AMOS_SN2 (XPC_NOTIFY_IRQ_AMOS_SN2 + \
47 XP_MAX_NPARTITIONS_SN2)
48 #define XPC_ENGAGED_PARTITIONS_AMO_SN2 (XPC_ACTIVATE_IRQ_AMOS_SN2 + \
49 XP_NASID_MASK_WORDS_SN2)
50 #define XPC_DEACTIVATE_REQUEST_AMO_SN2 (XPC_ENGAGED_PARTITIONS_AMO_SN2 + 1)
53 * Buffer used to store a local copy of portions of a remote partition's
54 * reserved page (either its header and part_nasids mask, or its vars).
56 static void *xpc_remote_copy_buffer_base_sn2;
57 static char *xpc_remote_copy_buffer_sn2;
59 static struct xpc_vars_sn2 *xpc_vars_sn2;
60 static struct xpc_vars_part_sn2 *xpc_vars_part_sn2;
62 static int
63 xpc_setup_partitions_sn2(void)
65 /* nothing needs to be done */
66 return 0;
69 static void
70 xpc_teardown_partitions_sn2(void)
72 /* nothing needs to be done */
75 /* SH_IPI_ACCESS shub register value on startup */
76 static u64 xpc_sh1_IPI_access_sn2;
77 static u64 xpc_sh2_IPI_access0_sn2;
78 static u64 xpc_sh2_IPI_access1_sn2;
79 static u64 xpc_sh2_IPI_access2_sn2;
80 static u64 xpc_sh2_IPI_access3_sn2;
83 * Change protections to allow IPI operations.
85 static void
86 xpc_allow_IPI_ops_sn2(void)
88 int node;
89 int nasid;
91 /* !!! The following should get moved into SAL. */
92 if (is_shub2()) {
93 xpc_sh2_IPI_access0_sn2 =
94 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0));
95 xpc_sh2_IPI_access1_sn2 =
96 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1));
97 xpc_sh2_IPI_access2_sn2 =
98 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2));
99 xpc_sh2_IPI_access3_sn2 =
100 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3));
102 for_each_online_node(node) {
103 nasid = cnodeid_to_nasid(node);
104 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
105 -1UL);
106 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
107 -1UL);
108 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
109 -1UL);
110 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
111 -1UL);
113 } else {
114 xpc_sh1_IPI_access_sn2 =
115 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS));
117 for_each_online_node(node) {
118 nasid = cnodeid_to_nasid(node);
119 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
120 -1UL);
126 * Restrict protections to disallow IPI operations.
128 static void
129 xpc_disallow_IPI_ops_sn2(void)
131 int node;
132 int nasid;
134 /* !!! The following should get moved into SAL. */
135 if (is_shub2()) {
136 for_each_online_node(node) {
137 nasid = cnodeid_to_nasid(node);
138 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
139 xpc_sh2_IPI_access0_sn2);
140 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
141 xpc_sh2_IPI_access1_sn2);
142 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
143 xpc_sh2_IPI_access2_sn2);
144 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
145 xpc_sh2_IPI_access3_sn2);
147 } else {
148 for_each_online_node(node) {
149 nasid = cnodeid_to_nasid(node);
150 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
151 xpc_sh1_IPI_access_sn2);
157 * The following set of functions are used for the sending and receiving of
158 * IRQs (also known as IPIs). There are two flavors of IRQs, one that is
159 * associated with partition activity (SGI_XPC_ACTIVATE) and the other that
160 * is associated with channel activity (SGI_XPC_NOTIFY).
163 static u64
164 xpc_receive_IRQ_amo_sn2(struct amo *amo)
166 return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR);
169 static enum xp_retval
170 xpc_send_IRQ_sn2(struct amo *amo, u64 flag, int nasid, int phys_cpuid,
171 int vector)
173 int ret = 0;
174 unsigned long irq_flags;
176 local_irq_save(irq_flags);
178 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag);
179 sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
182 * We must always use the nofault function regardless of whether we
183 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
184 * didn't, we'd never know that the other partition is down and would
185 * keep sending IRQs and amos to it until the heartbeat times out.
187 ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
188 xp_nofault_PIOR_target));
190 local_irq_restore(irq_flags);
192 return (ret == 0) ? xpSuccess : xpPioReadError;
195 static struct amo *
196 xpc_init_IRQ_amo_sn2(int index)
198 struct amo *amo = xpc_vars_sn2->amos_page + index;
200 (void)xpc_receive_IRQ_amo_sn2(amo); /* clear amo variable */
201 return amo;
205 * Functions associated with SGI_XPC_ACTIVATE IRQ.
209 * Notify the heartbeat check thread that an activate IRQ has been received.
211 static irqreturn_t
212 xpc_handle_activate_IRQ_sn2(int irq, void *dev_id)
214 unsigned long irq_flags;
216 spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
217 xpc_activate_IRQ_rcvd++;
218 spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
220 wake_up_interruptible(&xpc_activate_IRQ_wq);
221 return IRQ_HANDLED;
225 * Flag the appropriate amo variable and send an IRQ to the specified node.
227 static void
228 xpc_send_activate_IRQ_sn2(unsigned long amos_page_pa, int from_nasid,
229 int to_nasid, int to_phys_cpuid)
231 struct amo *amos = (struct amo *)__va(amos_page_pa +
232 (XPC_ACTIVATE_IRQ_AMOS_SN2 *
233 sizeof(struct amo)));
235 (void)xpc_send_IRQ_sn2(&amos[BIT_WORD(from_nasid / 2)],
236 BIT_MASK(from_nasid / 2), to_nasid,
237 to_phys_cpuid, SGI_XPC_ACTIVATE);
240 static void
241 xpc_send_local_activate_IRQ_sn2(int from_nasid)
243 unsigned long irq_flags;
244 struct amo *amos = (struct amo *)__va(xpc_vars_sn2->amos_page_pa +
245 (XPC_ACTIVATE_IRQ_AMOS_SN2 *
246 sizeof(struct amo)));
248 /* fake the sending and receipt of an activate IRQ from remote nasid */
249 FETCHOP_STORE_OP(TO_AMO((u64)&amos[BIT_WORD(from_nasid / 2)].variable),
250 FETCHOP_OR, BIT_MASK(from_nasid / 2));
252 spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
253 xpc_activate_IRQ_rcvd++;
254 spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
256 wake_up_interruptible(&xpc_activate_IRQ_wq);
260 * Functions associated with SGI_XPC_NOTIFY IRQ.
264 * Check to see if any chctl flags were sent from the specified partition.
266 static void
267 xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition *part)
269 union xpc_channel_ctl_flags chctl;
270 unsigned long irq_flags;
272 chctl.all_flags = xpc_receive_IRQ_amo_sn2(part->sn.sn2.
273 local_chctl_amo_va);
274 if (chctl.all_flags == 0)
275 return;
277 spin_lock_irqsave(&part->chctl_lock, irq_flags);
278 part->chctl.all_flags |= chctl.all_flags;
279 spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
281 dev_dbg(xpc_chan, "received notify IRQ from partid=%d, chctl.all_flags="
282 "0x%llx\n", XPC_PARTID(part), chctl.all_flags);
284 xpc_wakeup_channel_mgr(part);
288 * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
289 * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
290 * than one partition, we use an amo structure per partition to indicate
291 * whether a partition has sent an IRQ or not. If it has, then wake up the
292 * associated kthread to handle it.
294 * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IRQs sent by XPC
295 * running on other partitions.
297 * Noteworthy Arguments:
299 * irq - Interrupt ReQuest number. NOT USED.
301 * dev_id - partid of IRQ's potential sender.
303 static irqreturn_t
304 xpc_handle_notify_IRQ_sn2(int irq, void *dev_id)
306 short partid = (short)(u64)dev_id;
307 struct xpc_partition *part = &xpc_partitions[partid];
309 DBUG_ON(partid < 0 || partid >= XP_MAX_NPARTITIONS_SN2);
311 if (xpc_part_ref(part)) {
312 xpc_check_for_sent_chctl_flags_sn2(part);
314 xpc_part_deref(part);
316 return IRQ_HANDLED;
320 * Check to see if xpc_handle_notify_IRQ_sn2() dropped any IRQs on the floor
321 * because the write to their associated amo variable completed after the IRQ
322 * was received.
324 static void
325 xpc_check_for_dropped_notify_IRQ_sn2(struct xpc_partition *part)
327 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
329 if (xpc_part_ref(part)) {
330 xpc_check_for_sent_chctl_flags_sn2(part);
332 part_sn2->dropped_notify_IRQ_timer.expires = jiffies +
333 XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
334 add_timer(&part_sn2->dropped_notify_IRQ_timer);
335 xpc_part_deref(part);
340 * Send a notify IRQ to the remote partition that is associated with the
341 * specified channel.
343 static void
344 xpc_send_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
345 char *chctl_flag_string, unsigned long *irq_flags)
347 struct xpc_partition *part = &xpc_partitions[ch->partid];
348 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
349 union xpc_channel_ctl_flags chctl = { 0 };
350 enum xp_retval ret;
352 if (likely(part->act_state != XPC_P_AS_DEACTIVATING)) {
353 chctl.flags[ch->number] = chctl_flag;
354 ret = xpc_send_IRQ_sn2(part_sn2->remote_chctl_amo_va,
355 chctl.all_flags,
356 part_sn2->notify_IRQ_nasid,
357 part_sn2->notify_IRQ_phys_cpuid,
358 SGI_XPC_NOTIFY);
359 dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
360 chctl_flag_string, ch->partid, ch->number, ret);
361 if (unlikely(ret != xpSuccess)) {
362 if (irq_flags != NULL)
363 spin_unlock_irqrestore(&ch->lock, *irq_flags);
364 XPC_DEACTIVATE_PARTITION(part, ret);
365 if (irq_flags != NULL)
366 spin_lock_irqsave(&ch->lock, *irq_flags);
371 #define XPC_SEND_NOTIFY_IRQ_SN2(_ch, _ipi_f, _irq_f) \
372 xpc_send_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f, _irq_f)
375 * Make it look like the remote partition, which is associated with the
376 * specified channel, sent us a notify IRQ. This faked IRQ will be handled
377 * by xpc_check_for_dropped_notify_IRQ_sn2().
379 static void
380 xpc_send_local_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
381 char *chctl_flag_string)
383 struct xpc_partition *part = &xpc_partitions[ch->partid];
384 union xpc_channel_ctl_flags chctl = { 0 };
386 chctl.flags[ch->number] = chctl_flag;
387 FETCHOP_STORE_OP(TO_AMO((u64)&part->sn.sn2.local_chctl_amo_va->
388 variable), FETCHOP_OR, chctl.all_flags);
389 dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
390 chctl_flag_string, ch->partid, ch->number);
393 #define XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(_ch, _ipi_f) \
394 xpc_send_local_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f)
396 static void
397 xpc_send_chctl_closerequest_sn2(struct xpc_channel *ch,
398 unsigned long *irq_flags)
400 struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
402 args->reason = ch->reason;
403 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREQUEST, irq_flags);
406 static void
407 xpc_send_chctl_closereply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
409 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREPLY, irq_flags);
412 static void
413 xpc_send_chctl_openrequest_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
415 struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
417 args->entry_size = ch->entry_size;
418 args->local_nentries = ch->local_nentries;
419 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREQUEST, irq_flags);
422 static void
423 xpc_send_chctl_openreply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
425 struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
427 args->remote_nentries = ch->remote_nentries;
428 args->local_nentries = ch->local_nentries;
429 args->local_msgqueue_pa = xp_pa(ch->sn.sn2.local_msgqueue);
430 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREPLY, irq_flags);
433 static void
434 xpc_send_chctl_opencomplete_sn2(struct xpc_channel *ch,
435 unsigned long *irq_flags)
437 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENCOMPLETE, irq_flags);
440 static void
441 xpc_send_chctl_msgrequest_sn2(struct xpc_channel *ch)
443 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST, NULL);
446 static void
447 xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel *ch)
449 XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST);
452 static enum xp_retval
453 xpc_save_remote_msgqueue_pa_sn2(struct xpc_channel *ch,
454 unsigned long msgqueue_pa)
456 ch->sn.sn2.remote_msgqueue_pa = msgqueue_pa;
457 return xpSuccess;
461 * This next set of functions are used to keep track of when a partition is
462 * potentially engaged in accessing memory belonging to another partition.
465 static void
466 xpc_indicate_partition_engaged_sn2(struct xpc_partition *part)
468 unsigned long irq_flags;
469 struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
470 (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
471 sizeof(struct amo)));
473 local_irq_save(irq_flags);
475 /* set bit corresponding to our partid in remote partition's amo */
476 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
477 BIT(sn_partition_id));
480 * We must always use the nofault function regardless of whether we
481 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
482 * didn't, we'd never know that the other partition is down and would
483 * keep sending IRQs and amos to it until the heartbeat times out.
485 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
486 variable),
487 xp_nofault_PIOR_target));
489 local_irq_restore(irq_flags);
492 static void
493 xpc_indicate_partition_disengaged_sn2(struct xpc_partition *part)
495 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
496 unsigned long irq_flags;
497 struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
498 (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
499 sizeof(struct amo)));
501 local_irq_save(irq_flags);
503 /* clear bit corresponding to our partid in remote partition's amo */
504 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
505 ~BIT(sn_partition_id));
508 * We must always use the nofault function regardless of whether we
509 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
510 * didn't, we'd never know that the other partition is down and would
511 * keep sending IRQs and amos to it until the heartbeat times out.
513 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
514 variable),
515 xp_nofault_PIOR_target));
517 local_irq_restore(irq_flags);
520 * Send activate IRQ to get other side to see that we've cleared our
521 * bit in their engaged partitions amo.
523 xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
524 cnodeid_to_nasid(0),
525 part_sn2->activate_IRQ_nasid,
526 part_sn2->activate_IRQ_phys_cpuid);
529 static void
530 xpc_assume_partition_disengaged_sn2(short partid)
532 struct amo *amo = xpc_vars_sn2->amos_page +
533 XPC_ENGAGED_PARTITIONS_AMO_SN2;
535 /* clear bit(s) based on partid mask in our partition's amo */
536 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
537 ~BIT(partid));
540 static int
541 xpc_partition_engaged_sn2(short partid)
543 struct amo *amo = xpc_vars_sn2->amos_page +
544 XPC_ENGAGED_PARTITIONS_AMO_SN2;
546 /* our partition's amo variable ANDed with partid mask */
547 return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
548 BIT(partid)) != 0;
551 static int
552 xpc_any_partition_engaged_sn2(void)
554 struct amo *amo = xpc_vars_sn2->amos_page +
555 XPC_ENGAGED_PARTITIONS_AMO_SN2;
557 /* our partition's amo variable */
558 return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) != 0;
561 /* original protection values for each node */
562 static u64 xpc_prot_vec_sn2[MAX_NUMNODES];
565 * Change protections to allow amo operations on non-Shub 1.1 systems.
567 static enum xp_retval
568 xpc_allow_amo_ops_sn2(struct amo *amos_page)
570 enum xp_retval ret = xpSuccess;
573 * On SHUB 1.1, we cannot call sn_change_memprotect() since the BIST
574 * collides with memory operations. On those systems we call
575 * xpc_allow_amo_ops_shub_wars_1_1_sn2() instead.
577 if (!enable_shub_wars_1_1())
578 ret = xp_expand_memprotect(ia64_tpa((u64)amos_page), PAGE_SIZE);
580 return ret;
584 * Change protections to allow amo operations on Shub 1.1 systems.
586 static void
587 xpc_allow_amo_ops_shub_wars_1_1_sn2(void)
589 int node;
590 int nasid;
592 if (!enable_shub_wars_1_1())
593 return;
595 for_each_online_node(node) {
596 nasid = cnodeid_to_nasid(node);
597 /* save current protection values */
598 xpc_prot_vec_sn2[node] =
599 (u64)HUB_L((u64 *)GLOBAL_MMR_ADDR(nasid,
600 SH1_MD_DQLP_MMR_DIR_PRIVEC0));
601 /* open up everything */
602 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
603 SH1_MD_DQLP_MMR_DIR_PRIVEC0),
604 -1UL);
605 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
606 SH1_MD_DQRP_MMR_DIR_PRIVEC0),
607 -1UL);
611 static enum xp_retval
612 xpc_get_partition_rsvd_page_pa_sn2(void *buf, u64 *cookie, unsigned long *rp_pa,
613 size_t *len)
615 s64 status;
616 enum xp_retval ret;
618 status = sn_partition_reserved_page_pa((u64)buf, cookie,
619 (u64 *)rp_pa, (u64 *)len);
620 if (status == SALRET_OK)
621 ret = xpSuccess;
622 else if (status == SALRET_MORE_PASSES)
623 ret = xpNeedMoreInfo;
624 else
625 ret = xpSalError;
627 return ret;
631 static int
632 xpc_setup_rsvd_page_sn2(struct xpc_rsvd_page *rp)
634 struct amo *amos_page;
635 int i;
636 int ret;
638 xpc_vars_sn2 = XPC_RP_VARS(rp);
640 rp->sn.sn2.vars_pa = xp_pa(xpc_vars_sn2);
642 /* vars_part array follows immediately after vars */
643 xpc_vars_part_sn2 = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) +
644 XPC_RP_VARS_SIZE);
647 * Before clearing xpc_vars_sn2, see if a page of amos had been
648 * previously allocated. If not we'll need to allocate one and set
649 * permissions so that cross-partition amos are allowed.
651 * The allocated amo page needs MCA reporting to remain disabled after
652 * XPC has unloaded. To make this work, we keep a copy of the pointer
653 * to this page (i.e., amos_page) in the struct xpc_vars_sn2 structure,
654 * which is pointed to by the reserved page, and re-use that saved copy
655 * on subsequent loads of XPC. This amo page is never freed, and its
656 * memory protections are never restricted.
658 amos_page = xpc_vars_sn2->amos_page;
659 if (amos_page == NULL) {
660 amos_page = (struct amo *)TO_AMO(uncached_alloc_page(0, 1));
661 if (amos_page == NULL) {
662 dev_err(xpc_part, "can't allocate page of amos\n");
663 return -ENOMEM;
667 * Open up amo-R/W to cpu. This is done on Shub 1.1 systems
668 * when xpc_allow_amo_ops_shub_wars_1_1_sn2() is called.
670 ret = xpc_allow_amo_ops_sn2(amos_page);
671 if (ret != xpSuccess) {
672 dev_err(xpc_part, "can't allow amo operations\n");
673 uncached_free_page(__IA64_UNCACHED_OFFSET |
674 TO_PHYS((u64)amos_page), 1);
675 return -EPERM;
679 /* clear xpc_vars_sn2 */
680 memset(xpc_vars_sn2, 0, sizeof(struct xpc_vars_sn2));
682 xpc_vars_sn2->version = XPC_V_VERSION;
683 xpc_vars_sn2->activate_IRQ_nasid = cpuid_to_nasid(0);
684 xpc_vars_sn2->activate_IRQ_phys_cpuid = cpu_physical_id(0);
685 xpc_vars_sn2->vars_part_pa = xp_pa(xpc_vars_part_sn2);
686 xpc_vars_sn2->amos_page_pa = ia64_tpa((u64)amos_page);
687 xpc_vars_sn2->amos_page = amos_page; /* save for next load of XPC */
689 /* clear xpc_vars_part_sn2 */
690 memset((u64 *)xpc_vars_part_sn2, 0, sizeof(struct xpc_vars_part_sn2) *
691 XP_MAX_NPARTITIONS_SN2);
693 /* initialize the activate IRQ related amo variables */
694 for (i = 0; i < xpc_nasid_mask_nlongs; i++)
695 (void)xpc_init_IRQ_amo_sn2(XPC_ACTIVATE_IRQ_AMOS_SN2 + i);
697 /* initialize the engaged remote partitions related amo variables */
698 (void)xpc_init_IRQ_amo_sn2(XPC_ENGAGED_PARTITIONS_AMO_SN2);
699 (void)xpc_init_IRQ_amo_sn2(XPC_DEACTIVATE_REQUEST_AMO_SN2);
701 return 0;
704 static int
705 xpc_hb_allowed_sn2(short partid, void *heartbeating_to_mask)
707 return test_bit(partid, heartbeating_to_mask);
710 static void
711 xpc_allow_hb_sn2(short partid)
713 DBUG_ON(xpc_vars_sn2 == NULL);
714 set_bit(partid, xpc_vars_sn2->heartbeating_to_mask);
717 static void
718 xpc_disallow_hb_sn2(short partid)
720 DBUG_ON(xpc_vars_sn2 == NULL);
721 clear_bit(partid, xpc_vars_sn2->heartbeating_to_mask);
724 static void
725 xpc_disallow_all_hbs_sn2(void)
727 DBUG_ON(xpc_vars_sn2 == NULL);
728 bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, xp_max_npartitions);
731 static void
732 xpc_increment_heartbeat_sn2(void)
734 xpc_vars_sn2->heartbeat++;
737 static void
738 xpc_offline_heartbeat_sn2(void)
740 xpc_increment_heartbeat_sn2();
741 xpc_vars_sn2->heartbeat_offline = 1;
744 static void
745 xpc_online_heartbeat_sn2(void)
747 xpc_increment_heartbeat_sn2();
748 xpc_vars_sn2->heartbeat_offline = 0;
751 static void
752 xpc_heartbeat_init_sn2(void)
754 DBUG_ON(xpc_vars_sn2 == NULL);
756 bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2);
757 xpc_online_heartbeat_sn2();
760 static void
761 xpc_heartbeat_exit_sn2(void)
763 xpc_offline_heartbeat_sn2();
766 static enum xp_retval
767 xpc_get_remote_heartbeat_sn2(struct xpc_partition *part)
769 struct xpc_vars_sn2 *remote_vars;
770 enum xp_retval ret;
772 remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
774 /* pull the remote vars structure that contains the heartbeat */
775 ret = xp_remote_memcpy(xp_pa(remote_vars),
776 part->sn.sn2.remote_vars_pa,
777 XPC_RP_VARS_SIZE);
778 if (ret != xpSuccess)
779 return ret;
781 dev_dbg(xpc_part, "partid=%d, heartbeat=%lld, last_heartbeat=%lld, "
782 "heartbeat_offline=%lld, HB_mask[0]=0x%lx\n", XPC_PARTID(part),
783 remote_vars->heartbeat, part->last_heartbeat,
784 remote_vars->heartbeat_offline,
785 remote_vars->heartbeating_to_mask[0]);
787 if ((remote_vars->heartbeat == part->last_heartbeat &&
788 !remote_vars->heartbeat_offline) ||
789 !xpc_hb_allowed_sn2(sn_partition_id,
790 remote_vars->heartbeating_to_mask)) {
791 ret = xpNoHeartbeat;
792 } else {
793 part->last_heartbeat = remote_vars->heartbeat;
796 return ret;
800 * Get a copy of the remote partition's XPC variables from the reserved page.
802 * remote_vars points to a buffer that is cacheline aligned for BTE copies and
803 * assumed to be of size XPC_RP_VARS_SIZE.
805 static enum xp_retval
806 xpc_get_remote_vars_sn2(unsigned long remote_vars_pa,
807 struct xpc_vars_sn2 *remote_vars)
809 enum xp_retval ret;
811 if (remote_vars_pa == 0)
812 return xpVarsNotSet;
814 /* pull over the cross partition variables */
815 ret = xp_remote_memcpy(xp_pa(remote_vars), remote_vars_pa,
816 XPC_RP_VARS_SIZE);
817 if (ret != xpSuccess)
818 return ret;
820 if (XPC_VERSION_MAJOR(remote_vars->version) !=
821 XPC_VERSION_MAJOR(XPC_V_VERSION)) {
822 return xpBadVersion;
825 return xpSuccess;
828 static void
829 xpc_request_partition_activation_sn2(struct xpc_rsvd_page *remote_rp,
830 unsigned long remote_rp_pa, int nasid)
832 xpc_send_local_activate_IRQ_sn2(nasid);
835 static void
836 xpc_request_partition_reactivation_sn2(struct xpc_partition *part)
838 xpc_send_local_activate_IRQ_sn2(part->sn.sn2.activate_IRQ_nasid);
841 static void
842 xpc_request_partition_deactivation_sn2(struct xpc_partition *part)
844 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
845 unsigned long irq_flags;
846 struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
847 (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
848 sizeof(struct amo)));
850 local_irq_save(irq_flags);
852 /* set bit corresponding to our partid in remote partition's amo */
853 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
854 BIT(sn_partition_id));
857 * We must always use the nofault function regardless of whether we
858 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
859 * didn't, we'd never know that the other partition is down and would
860 * keep sending IRQs and amos to it until the heartbeat times out.
862 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
863 variable),
864 xp_nofault_PIOR_target));
866 local_irq_restore(irq_flags);
869 * Send activate IRQ to get other side to see that we've set our
870 * bit in their deactivate request amo.
872 xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
873 cnodeid_to_nasid(0),
874 part_sn2->activate_IRQ_nasid,
875 part_sn2->activate_IRQ_phys_cpuid);
878 static void
879 xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition *part)
881 unsigned long irq_flags;
882 struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
883 (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
884 sizeof(struct amo)));
886 local_irq_save(irq_flags);
888 /* clear bit corresponding to our partid in remote partition's amo */
889 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
890 ~BIT(sn_partition_id));
893 * We must always use the nofault function regardless of whether we
894 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
895 * didn't, we'd never know that the other partition is down and would
896 * keep sending IRQs and amos to it until the heartbeat times out.
898 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
899 variable),
900 xp_nofault_PIOR_target));
902 local_irq_restore(irq_flags);
905 static int
906 xpc_partition_deactivation_requested_sn2(short partid)
908 struct amo *amo = xpc_vars_sn2->amos_page +
909 XPC_DEACTIVATE_REQUEST_AMO_SN2;
911 /* our partition's amo variable ANDed with partid mask */
912 return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
913 BIT(partid)) != 0;
917 * Update the remote partition's info.
919 static void
920 xpc_update_partition_info_sn2(struct xpc_partition *part, u8 remote_rp_version,
921 unsigned long *remote_rp_ts_jiffies,
922 unsigned long remote_rp_pa,
923 unsigned long remote_vars_pa,
924 struct xpc_vars_sn2 *remote_vars)
926 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
928 part->remote_rp_version = remote_rp_version;
929 dev_dbg(xpc_part, " remote_rp_version = 0x%016x\n",
930 part->remote_rp_version);
932 part->remote_rp_ts_jiffies = *remote_rp_ts_jiffies;
933 dev_dbg(xpc_part, " remote_rp_ts_jiffies = 0x%016lx\n",
934 part->remote_rp_ts_jiffies);
936 part->remote_rp_pa = remote_rp_pa;
937 dev_dbg(xpc_part, " remote_rp_pa = 0x%016lx\n", part->remote_rp_pa);
939 part_sn2->remote_vars_pa = remote_vars_pa;
940 dev_dbg(xpc_part, " remote_vars_pa = 0x%016lx\n",
941 part_sn2->remote_vars_pa);
943 part->last_heartbeat = remote_vars->heartbeat - 1;
944 dev_dbg(xpc_part, " last_heartbeat = 0x%016llx\n",
945 part->last_heartbeat);
947 part_sn2->remote_vars_part_pa = remote_vars->vars_part_pa;
948 dev_dbg(xpc_part, " remote_vars_part_pa = 0x%016lx\n",
949 part_sn2->remote_vars_part_pa);
951 part_sn2->activate_IRQ_nasid = remote_vars->activate_IRQ_nasid;
952 dev_dbg(xpc_part, " activate_IRQ_nasid = 0x%x\n",
953 part_sn2->activate_IRQ_nasid);
955 part_sn2->activate_IRQ_phys_cpuid =
956 remote_vars->activate_IRQ_phys_cpuid;
957 dev_dbg(xpc_part, " activate_IRQ_phys_cpuid = 0x%x\n",
958 part_sn2->activate_IRQ_phys_cpuid);
960 part_sn2->remote_amos_page_pa = remote_vars->amos_page_pa;
961 dev_dbg(xpc_part, " remote_amos_page_pa = 0x%lx\n",
962 part_sn2->remote_amos_page_pa);
964 part_sn2->remote_vars_version = remote_vars->version;
965 dev_dbg(xpc_part, " remote_vars_version = 0x%x\n",
966 part_sn2->remote_vars_version);
970 * Prior code has determined the nasid which generated a activate IRQ.
971 * Inspect that nasid to determine if its partition needs to be activated
972 * or deactivated.
974 * A partition is considered "awaiting activation" if our partition
975 * flags indicate it is not active and it has a heartbeat. A
976 * partition is considered "awaiting deactivation" if our partition
977 * flags indicate it is active but it has no heartbeat or it is not
978 * sending its heartbeat to us.
980 * To determine the heartbeat, the remote nasid must have a properly
981 * initialized reserved page.
983 static void
984 xpc_identify_activate_IRQ_req_sn2(int nasid)
986 struct xpc_rsvd_page *remote_rp;
987 struct xpc_vars_sn2 *remote_vars;
988 unsigned long remote_rp_pa;
989 unsigned long remote_vars_pa;
990 int remote_rp_version;
991 int reactivate = 0;
992 unsigned long remote_rp_ts_jiffies = 0;
993 short partid;
994 struct xpc_partition *part;
995 struct xpc_partition_sn2 *part_sn2;
996 enum xp_retval ret;
998 /* pull over the reserved page structure */
1000 remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer_sn2;
1002 ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa);
1003 if (ret != xpSuccess) {
1004 dev_warn(xpc_part, "unable to get reserved page from nasid %d, "
1005 "which sent interrupt, reason=%d\n", nasid, ret);
1006 return;
1009 remote_vars_pa = remote_rp->sn.sn2.vars_pa;
1010 remote_rp_version = remote_rp->version;
1011 remote_rp_ts_jiffies = remote_rp->ts_jiffies;
1013 partid = remote_rp->SAL_partid;
1014 part = &xpc_partitions[partid];
1015 part_sn2 = &part->sn.sn2;
1017 /* pull over the cross partition variables */
1019 remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
1021 ret = xpc_get_remote_vars_sn2(remote_vars_pa, remote_vars);
1022 if (ret != xpSuccess) {
1023 dev_warn(xpc_part, "unable to get XPC variables from nasid %d, "
1024 "which sent interrupt, reason=%d\n", nasid, ret);
1026 XPC_DEACTIVATE_PARTITION(part, ret);
1027 return;
1030 part->activate_IRQ_rcvd++;
1032 dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = "
1033 "%lld:0x%lx\n", (int)nasid, (int)partid,
1034 part->activate_IRQ_rcvd,
1035 remote_vars->heartbeat, remote_vars->heartbeating_to_mask[0]);
1037 if (xpc_partition_disengaged(part) &&
1038 part->act_state == XPC_P_AS_INACTIVE) {
1040 xpc_update_partition_info_sn2(part, remote_rp_version,
1041 &remote_rp_ts_jiffies,
1042 remote_rp_pa, remote_vars_pa,
1043 remote_vars);
1045 if (xpc_partition_deactivation_requested_sn2(partid)) {
1047 * Other side is waiting on us to deactivate even though
1048 * we already have.
1050 return;
1053 xpc_activate_partition(part);
1054 return;
1057 DBUG_ON(part->remote_rp_version == 0);
1058 DBUG_ON(part_sn2->remote_vars_version == 0);
1060 if (remote_rp_ts_jiffies != part->remote_rp_ts_jiffies) {
1062 /* the other side rebooted */
1064 DBUG_ON(xpc_partition_engaged_sn2(partid));
1065 DBUG_ON(xpc_partition_deactivation_requested_sn2(partid));
1067 xpc_update_partition_info_sn2(part, remote_rp_version,
1068 &remote_rp_ts_jiffies,
1069 remote_rp_pa, remote_vars_pa,
1070 remote_vars);
1071 reactivate = 1;
1074 if (part->disengage_timeout > 0 && !xpc_partition_disengaged(part)) {
1075 /* still waiting on other side to disengage from us */
1076 return;
1079 if (reactivate)
1080 XPC_DEACTIVATE_PARTITION(part, xpReactivating);
1081 else if (xpc_partition_deactivation_requested_sn2(partid))
1082 XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown);
1086 * Loop through the activation amo variables and process any bits
1087 * which are set. Each bit indicates a nasid sending a partition
1088 * activation or deactivation request.
1090 * Return #of IRQs detected.
1093 xpc_identify_activate_IRQ_sender_sn2(void)
1095 int l;
1096 int b;
1097 unsigned long nasid_mask_long;
1098 u64 nasid; /* remote nasid */
1099 int n_IRQs_detected = 0;
1100 struct amo *act_amos;
1102 act_amos = xpc_vars_sn2->amos_page + XPC_ACTIVATE_IRQ_AMOS_SN2;
1104 /* scan through activate amo variables looking for non-zero entries */
1105 for (l = 0; l < xpc_nasid_mask_nlongs; l++) {
1107 if (xpc_exiting)
1108 break;
1110 nasid_mask_long = xpc_receive_IRQ_amo_sn2(&act_amos[l]);
1112 b = find_first_bit(&nasid_mask_long, BITS_PER_LONG);
1113 if (b >= BITS_PER_LONG) {
1114 /* no IRQs from nasids in this amo variable */
1115 continue;
1118 dev_dbg(xpc_part, "amo[%d] gave back 0x%lx\n", l,
1119 nasid_mask_long);
1122 * If this nasid has been added to the machine since
1123 * our partition was reset, this will retain the
1124 * remote nasid in our reserved pages machine mask.
1125 * This is used in the event of module reload.
1127 xpc_mach_nasids[l] |= nasid_mask_long;
1129 /* locate the nasid(s) which sent interrupts */
1131 do {
1132 n_IRQs_detected++;
1133 nasid = (l * BITS_PER_LONG + b) * 2;
1134 dev_dbg(xpc_part, "interrupt from nasid %lld\n", nasid);
1135 xpc_identify_activate_IRQ_req_sn2(nasid);
1137 b = find_next_bit(&nasid_mask_long, BITS_PER_LONG,
1138 b + 1);
1139 } while (b < BITS_PER_LONG);
1141 return n_IRQs_detected;
1144 static void
1145 xpc_process_activate_IRQ_rcvd_sn2(void)
1147 unsigned long irq_flags;
1148 int n_IRQs_expected;
1149 int n_IRQs_detected;
1151 spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1152 n_IRQs_expected = xpc_activate_IRQ_rcvd;
1153 xpc_activate_IRQ_rcvd = 0;
1154 spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1156 n_IRQs_detected = xpc_identify_activate_IRQ_sender_sn2();
1157 if (n_IRQs_detected < n_IRQs_expected) {
1158 /* retry once to help avoid missing amo */
1159 (void)xpc_identify_activate_IRQ_sender_sn2();
1164 * Setup the channel structures that are sn2 specific.
1166 static enum xp_retval
1167 xpc_setup_ch_structures_sn2(struct xpc_partition *part)
1169 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1170 struct xpc_channel_sn2 *ch_sn2;
1171 enum xp_retval retval;
1172 int ret;
1173 int cpuid;
1174 int ch_number;
1175 struct timer_list *timer;
1176 short partid = XPC_PARTID(part);
1178 /* allocate all the required GET/PUT values */
1180 part_sn2->local_GPs =
1181 xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1182 &part_sn2->local_GPs_base);
1183 if (part_sn2->local_GPs == NULL) {
1184 dev_err(xpc_chan, "can't get memory for local get/put "
1185 "values\n");
1186 return xpNoMemory;
1189 part_sn2->remote_GPs =
1190 xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1191 &part_sn2->remote_GPs_base);
1192 if (part_sn2->remote_GPs == NULL) {
1193 dev_err(xpc_chan, "can't get memory for remote get/put "
1194 "values\n");
1195 retval = xpNoMemory;
1196 goto out_1;
1199 part_sn2->remote_GPs_pa = 0;
1201 /* allocate all the required open and close args */
1203 part_sn2->local_openclose_args =
1204 xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
1205 GFP_KERNEL, &part_sn2->
1206 local_openclose_args_base);
1207 if (part_sn2->local_openclose_args == NULL) {
1208 dev_err(xpc_chan, "can't get memory for local connect args\n");
1209 retval = xpNoMemory;
1210 goto out_2;
1213 part_sn2->remote_openclose_args_pa = 0;
1215 part_sn2->local_chctl_amo_va = xpc_init_IRQ_amo_sn2(partid);
1217 part_sn2->notify_IRQ_nasid = 0;
1218 part_sn2->notify_IRQ_phys_cpuid = 0;
1219 part_sn2->remote_chctl_amo_va = NULL;
1221 sprintf(part_sn2->notify_IRQ_owner, "xpc%02d", partid);
1222 ret = request_irq(SGI_XPC_NOTIFY, xpc_handle_notify_IRQ_sn2,
1223 IRQF_SHARED, part_sn2->notify_IRQ_owner,
1224 (void *)(u64)partid);
1225 if (ret != 0) {
1226 dev_err(xpc_chan, "can't register NOTIFY IRQ handler, "
1227 "errno=%d\n", -ret);
1228 retval = xpLackOfResources;
1229 goto out_3;
1232 /* Setup a timer to check for dropped notify IRQs */
1233 timer = &part_sn2->dropped_notify_IRQ_timer;
1234 init_timer(timer);
1235 timer->function =
1236 (void (*)(unsigned long))xpc_check_for_dropped_notify_IRQ_sn2;
1237 timer->data = (unsigned long)part;
1238 timer->expires = jiffies + XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
1239 add_timer(timer);
1241 for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
1242 ch_sn2 = &part->channels[ch_number].sn.sn2;
1244 ch_sn2->local_GP = &part_sn2->local_GPs[ch_number];
1245 ch_sn2->local_openclose_args =
1246 &part_sn2->local_openclose_args[ch_number];
1248 mutex_init(&ch_sn2->msg_to_pull_mutex);
1252 * Setup the per partition specific variables required by the
1253 * remote partition to establish channel connections with us.
1255 * The setting of the magic # indicates that these per partition
1256 * specific variables are ready to be used.
1258 xpc_vars_part_sn2[partid].GPs_pa = xp_pa(part_sn2->local_GPs);
1259 xpc_vars_part_sn2[partid].openclose_args_pa =
1260 xp_pa(part_sn2->local_openclose_args);
1261 xpc_vars_part_sn2[partid].chctl_amo_pa =
1262 xp_pa(part_sn2->local_chctl_amo_va);
1263 cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */
1264 xpc_vars_part_sn2[partid].notify_IRQ_nasid = cpuid_to_nasid(cpuid);
1265 xpc_vars_part_sn2[partid].notify_IRQ_phys_cpuid =
1266 cpu_physical_id(cpuid);
1267 xpc_vars_part_sn2[partid].nchannels = part->nchannels;
1268 xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC1_SN2;
1270 return xpSuccess;
1272 /* setup of ch structures failed */
1273 out_3:
1274 kfree(part_sn2->local_openclose_args_base);
1275 part_sn2->local_openclose_args = NULL;
1276 out_2:
1277 kfree(part_sn2->remote_GPs_base);
1278 part_sn2->remote_GPs = NULL;
1279 out_1:
1280 kfree(part_sn2->local_GPs_base);
1281 part_sn2->local_GPs = NULL;
1282 return retval;
1286 * Teardown the channel structures that are sn2 specific.
1288 static void
1289 xpc_teardown_ch_structures_sn2(struct xpc_partition *part)
1291 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1292 short partid = XPC_PARTID(part);
1295 * Indicate that the variables specific to the remote partition are no
1296 * longer available for its use.
1298 xpc_vars_part_sn2[partid].magic = 0;
1300 /* in case we've still got outstanding timers registered... */
1301 del_timer_sync(&part_sn2->dropped_notify_IRQ_timer);
1302 free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid);
1304 kfree(part_sn2->local_openclose_args_base);
1305 part_sn2->local_openclose_args = NULL;
1306 kfree(part_sn2->remote_GPs_base);
1307 part_sn2->remote_GPs = NULL;
1308 kfree(part_sn2->local_GPs_base);
1309 part_sn2->local_GPs = NULL;
1310 part_sn2->local_chctl_amo_va = NULL;
1314 * Create a wrapper that hides the underlying mechanism for pulling a cacheline
1315 * (or multiple cachelines) from a remote partition.
1317 * src_pa must be a cacheline aligned physical address on the remote partition.
1318 * dst must be a cacheline aligned virtual address on this partition.
1319 * cnt must be cacheline sized
1321 /* ??? Replace this function by call to xp_remote_memcpy() or bte_copy()? */
1322 static enum xp_retval
1323 xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst,
1324 const unsigned long src_pa, size_t cnt)
1326 enum xp_retval ret;
1328 DBUG_ON(src_pa != L1_CACHE_ALIGN(src_pa));
1329 DBUG_ON((unsigned long)dst != L1_CACHE_ALIGN((unsigned long)dst));
1330 DBUG_ON(cnt != L1_CACHE_ALIGN(cnt));
1332 if (part->act_state == XPC_P_AS_DEACTIVATING)
1333 return part->reason;
1335 ret = xp_remote_memcpy(xp_pa(dst), src_pa, cnt);
1336 if (ret != xpSuccess) {
1337 dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed,"
1338 " ret=%d\n", XPC_PARTID(part), ret);
1340 return ret;
1344 * Pull the remote per partition specific variables from the specified
1345 * partition.
1347 static enum xp_retval
1348 xpc_pull_remote_vars_part_sn2(struct xpc_partition *part)
1350 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1351 u8 buffer[L1_CACHE_BYTES * 2];
1352 struct xpc_vars_part_sn2 *pulled_entry_cacheline =
1353 (struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer);
1354 struct xpc_vars_part_sn2 *pulled_entry;
1355 unsigned long remote_entry_cacheline_pa;
1356 unsigned long remote_entry_pa;
1357 short partid = XPC_PARTID(part);
1358 enum xp_retval ret;
1360 /* pull the cacheline that contains the variables we're interested in */
1362 DBUG_ON(part_sn2->remote_vars_part_pa !=
1363 L1_CACHE_ALIGN(part_sn2->remote_vars_part_pa));
1364 DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2);
1366 remote_entry_pa = part_sn2->remote_vars_part_pa +
1367 sn_partition_id * sizeof(struct xpc_vars_part_sn2);
1369 remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1));
1371 pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline
1372 + (remote_entry_pa &
1373 (L1_CACHE_BYTES - 1)));
1375 ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline,
1376 remote_entry_cacheline_pa,
1377 L1_CACHE_BYTES);
1378 if (ret != xpSuccess) {
1379 dev_dbg(xpc_chan, "failed to pull XPC vars_part from "
1380 "partition %d, ret=%d\n", partid, ret);
1381 return ret;
1384 /* see if they've been set up yet */
1386 if (pulled_entry->magic != XPC_VP_MAGIC1_SN2 &&
1387 pulled_entry->magic != XPC_VP_MAGIC2_SN2) {
1389 if (pulled_entry->magic != 0) {
1390 dev_dbg(xpc_chan, "partition %d's XPC vars_part for "
1391 "partition %d has bad magic value (=0x%llx)\n",
1392 partid, sn_partition_id, pulled_entry->magic);
1393 return xpBadMagic;
1396 /* they've not been initialized yet */
1397 return xpRetry;
1400 if (xpc_vars_part_sn2[partid].magic == XPC_VP_MAGIC1_SN2) {
1402 /* validate the variables */
1404 if (pulled_entry->GPs_pa == 0 ||
1405 pulled_entry->openclose_args_pa == 0 ||
1406 pulled_entry->chctl_amo_pa == 0) {
1408 dev_err(xpc_chan, "partition %d's XPC vars_part for "
1409 "partition %d are not valid\n", partid,
1410 sn_partition_id);
1411 return xpInvalidAddress;
1414 /* the variables we imported look to be valid */
1416 part_sn2->remote_GPs_pa = pulled_entry->GPs_pa;
1417 part_sn2->remote_openclose_args_pa =
1418 pulled_entry->openclose_args_pa;
1419 part_sn2->remote_chctl_amo_va =
1420 (struct amo *)__va(pulled_entry->chctl_amo_pa);
1421 part_sn2->notify_IRQ_nasid = pulled_entry->notify_IRQ_nasid;
1422 part_sn2->notify_IRQ_phys_cpuid =
1423 pulled_entry->notify_IRQ_phys_cpuid;
1425 if (part->nchannels > pulled_entry->nchannels)
1426 part->nchannels = pulled_entry->nchannels;
1428 /* let the other side know that we've pulled their variables */
1430 xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC2_SN2;
1433 if (pulled_entry->magic == XPC_VP_MAGIC1_SN2)
1434 return xpRetry;
1436 return xpSuccess;
1440 * Establish first contact with the remote partititon. This involves pulling
1441 * the XPC per partition variables from the remote partition and waiting for
1442 * the remote partition to pull ours.
1444 static enum xp_retval
1445 xpc_make_first_contact_sn2(struct xpc_partition *part)
1447 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1448 enum xp_retval ret;
1451 * Register the remote partition's amos with SAL so it can handle
1452 * and cleanup errors within that address range should the remote
1453 * partition go down. We don't unregister this range because it is
1454 * difficult to tell when outstanding writes to the remote partition
1455 * are finished and thus when it is safe to unregister. This should
1456 * not result in wasted space in the SAL xp_addr_region table because
1457 * we should get the same page for remote_amos_page_pa after module
1458 * reloads and system reboots.
1460 if (sn_register_xp_addr_region(part_sn2->remote_amos_page_pa,
1461 PAGE_SIZE, 1) < 0) {
1462 dev_warn(xpc_part, "xpc_activating(%d) failed to register "
1463 "xp_addr region\n", XPC_PARTID(part));
1465 ret = xpPhysAddrRegFailed;
1466 XPC_DEACTIVATE_PARTITION(part, ret);
1467 return ret;
1471 * Send activate IRQ to get other side to activate if they've not
1472 * already begun to do so.
1474 xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
1475 cnodeid_to_nasid(0),
1476 part_sn2->activate_IRQ_nasid,
1477 part_sn2->activate_IRQ_phys_cpuid);
1479 while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) {
1480 if (ret != xpRetry) {
1481 XPC_DEACTIVATE_PARTITION(part, ret);
1482 return ret;
1485 dev_dbg(xpc_part, "waiting to make first contact with "
1486 "partition %d\n", XPC_PARTID(part));
1488 /* wait a 1/4 of a second or so */
1489 (void)msleep_interruptible(250);
1491 if (part->act_state == XPC_P_AS_DEACTIVATING)
1492 return part->reason;
1495 return xpSuccess;
1499 * Get the chctl flags and pull the openclose args and/or remote GPs as needed.
1501 static u64
1502 xpc_get_chctl_all_flags_sn2(struct xpc_partition *part)
1504 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1505 unsigned long irq_flags;
1506 union xpc_channel_ctl_flags chctl;
1507 enum xp_retval ret;
1510 * See if there are any chctl flags to be handled.
1513 spin_lock_irqsave(&part->chctl_lock, irq_flags);
1514 chctl = part->chctl;
1515 if (chctl.all_flags != 0)
1516 part->chctl.all_flags = 0;
1518 spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
1520 if (xpc_any_openclose_chctl_flags_set(&chctl)) {
1521 ret = xpc_pull_remote_cachelines_sn2(part, part->
1522 remote_openclose_args,
1523 part_sn2->
1524 remote_openclose_args_pa,
1525 XPC_OPENCLOSE_ARGS_SIZE);
1526 if (ret != xpSuccess) {
1527 XPC_DEACTIVATE_PARTITION(part, ret);
1529 dev_dbg(xpc_chan, "failed to pull openclose args from "
1530 "partition %d, ret=%d\n", XPC_PARTID(part),
1531 ret);
1533 /* don't bother processing chctl flags anymore */
1534 chctl.all_flags = 0;
1538 if (xpc_any_msg_chctl_flags_set(&chctl)) {
1539 ret = xpc_pull_remote_cachelines_sn2(part, part_sn2->remote_GPs,
1540 part_sn2->remote_GPs_pa,
1541 XPC_GP_SIZE);
1542 if (ret != xpSuccess) {
1543 XPC_DEACTIVATE_PARTITION(part, ret);
1545 dev_dbg(xpc_chan, "failed to pull GPs from partition "
1546 "%d, ret=%d\n", XPC_PARTID(part), ret);
1548 /* don't bother processing chctl flags anymore */
1549 chctl.all_flags = 0;
1553 return chctl.all_flags;
1557 * Allocate the local message queue and the notify queue.
1559 static enum xp_retval
1560 xpc_allocate_local_msgqueue_sn2(struct xpc_channel *ch)
1562 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1563 unsigned long irq_flags;
1564 int nentries;
1565 size_t nbytes;
1567 for (nentries = ch->local_nentries; nentries > 0; nentries--) {
1569 nbytes = nentries * ch->entry_size;
1570 ch_sn2->local_msgqueue =
1571 xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL,
1572 &ch_sn2->local_msgqueue_base);
1573 if (ch_sn2->local_msgqueue == NULL)
1574 continue;
1576 nbytes = nentries * sizeof(struct xpc_notify_sn2);
1577 ch_sn2->notify_queue = kzalloc(nbytes, GFP_KERNEL);
1578 if (ch_sn2->notify_queue == NULL) {
1579 kfree(ch_sn2->local_msgqueue_base);
1580 ch_sn2->local_msgqueue = NULL;
1581 continue;
1584 spin_lock_irqsave(&ch->lock, irq_flags);
1585 if (nentries < ch->local_nentries) {
1586 dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, "
1587 "partid=%d, channel=%d\n", nentries,
1588 ch->local_nentries, ch->partid, ch->number);
1590 ch->local_nentries = nentries;
1592 spin_unlock_irqrestore(&ch->lock, irq_flags);
1593 return xpSuccess;
1596 dev_dbg(xpc_chan, "can't get memory for local message queue and notify "
1597 "queue, partid=%d, channel=%d\n", ch->partid, ch->number);
1598 return xpNoMemory;
1602 * Allocate the cached remote message queue.
1604 static enum xp_retval
1605 xpc_allocate_remote_msgqueue_sn2(struct xpc_channel *ch)
1607 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1608 unsigned long irq_flags;
1609 int nentries;
1610 size_t nbytes;
1612 DBUG_ON(ch->remote_nentries <= 0);
1614 for (nentries = ch->remote_nentries; nentries > 0; nentries--) {
1616 nbytes = nentries * ch->entry_size;
1617 ch_sn2->remote_msgqueue =
1618 xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL, &ch_sn2->
1619 remote_msgqueue_base);
1620 if (ch_sn2->remote_msgqueue == NULL)
1621 continue;
1623 spin_lock_irqsave(&ch->lock, irq_flags);
1624 if (nentries < ch->remote_nentries) {
1625 dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, "
1626 "partid=%d, channel=%d\n", nentries,
1627 ch->remote_nentries, ch->partid, ch->number);
1629 ch->remote_nentries = nentries;
1631 spin_unlock_irqrestore(&ch->lock, irq_flags);
1632 return xpSuccess;
1635 dev_dbg(xpc_chan, "can't get memory for cached remote message queue, "
1636 "partid=%d, channel=%d\n", ch->partid, ch->number);
1637 return xpNoMemory;
1641 * Allocate message queues and other stuff associated with a channel.
1643 * Note: Assumes all of the channel sizes are filled in.
1645 static enum xp_retval
1646 xpc_setup_msg_structures_sn2(struct xpc_channel *ch)
1648 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1649 enum xp_retval ret;
1651 DBUG_ON(ch->flags & XPC_C_SETUP);
1653 ret = xpc_allocate_local_msgqueue_sn2(ch);
1654 if (ret == xpSuccess) {
1656 ret = xpc_allocate_remote_msgqueue_sn2(ch);
1657 if (ret != xpSuccess) {
1658 kfree(ch_sn2->local_msgqueue_base);
1659 ch_sn2->local_msgqueue = NULL;
1660 kfree(ch_sn2->notify_queue);
1661 ch_sn2->notify_queue = NULL;
1664 return ret;
1668 * Free up message queues and other stuff that were allocated for the specified
1669 * channel.
1671 static void
1672 xpc_teardown_msg_structures_sn2(struct xpc_channel *ch)
1674 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1676 DBUG_ON(!spin_is_locked(&ch->lock));
1678 ch_sn2->remote_msgqueue_pa = 0;
1680 ch_sn2->local_GP->get = 0;
1681 ch_sn2->local_GP->put = 0;
1682 ch_sn2->remote_GP.get = 0;
1683 ch_sn2->remote_GP.put = 0;
1684 ch_sn2->w_local_GP.get = 0;
1685 ch_sn2->w_local_GP.put = 0;
1686 ch_sn2->w_remote_GP.get = 0;
1687 ch_sn2->w_remote_GP.put = 0;
1688 ch_sn2->next_msg_to_pull = 0;
1690 if (ch->flags & XPC_C_SETUP) {
1691 dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n",
1692 ch->flags, ch->partid, ch->number);
1694 kfree(ch_sn2->local_msgqueue_base);
1695 ch_sn2->local_msgqueue = NULL;
1696 kfree(ch_sn2->remote_msgqueue_base);
1697 ch_sn2->remote_msgqueue = NULL;
1698 kfree(ch_sn2->notify_queue);
1699 ch_sn2->notify_queue = NULL;
1704 * Notify those who wanted to be notified upon delivery of their message.
1706 static void
1707 xpc_notify_senders_sn2(struct xpc_channel *ch, enum xp_retval reason, s64 put)
1709 struct xpc_notify_sn2 *notify;
1710 u8 notify_type;
1711 s64 get = ch->sn.sn2.w_remote_GP.get - 1;
1713 while (++get < put && atomic_read(&ch->n_to_notify) > 0) {
1715 notify = &ch->sn.sn2.notify_queue[get % ch->local_nentries];
1718 * See if the notify entry indicates it was associated with
1719 * a message who's sender wants to be notified. It is possible
1720 * that it is, but someone else is doing or has done the
1721 * notification.
1723 notify_type = notify->type;
1724 if (notify_type == 0 ||
1725 cmpxchg(&notify->type, notify_type, 0) != notify_type) {
1726 continue;
1729 DBUG_ON(notify_type != XPC_N_CALL);
1731 atomic_dec(&ch->n_to_notify);
1733 if (notify->func != NULL) {
1734 dev_dbg(xpc_chan, "notify->func() called, notify=0x%p "
1735 "msg_number=%lld partid=%d channel=%d\n",
1736 (void *)notify, get, ch->partid, ch->number);
1738 notify->func(reason, ch->partid, ch->number,
1739 notify->key);
1741 dev_dbg(xpc_chan, "notify->func() returned, notify=0x%p"
1742 " msg_number=%lld partid=%d channel=%d\n",
1743 (void *)notify, get, ch->partid, ch->number);
1748 static void
1749 xpc_notify_senders_of_disconnect_sn2(struct xpc_channel *ch)
1751 xpc_notify_senders_sn2(ch, ch->reason, ch->sn.sn2.w_local_GP.put);
1755 * Clear some of the msg flags in the local message queue.
1757 static inline void
1758 xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel *ch)
1760 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1761 struct xpc_msg_sn2 *msg;
1762 s64 get;
1764 get = ch_sn2->w_remote_GP.get;
1765 do {
1766 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
1767 (get % ch->local_nentries) *
1768 ch->entry_size);
1769 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1770 msg->flags = 0;
1771 } while (++get < ch_sn2->remote_GP.get);
1775 * Clear some of the msg flags in the remote message queue.
1777 static inline void
1778 xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel *ch)
1780 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1781 struct xpc_msg_sn2 *msg;
1782 s64 put, remote_nentries = ch->remote_nentries;
1784 /* flags are zeroed when the buffer is allocated */
1785 if (ch_sn2->remote_GP.put < remote_nentries)
1786 return;
1788 put = max(ch_sn2->w_remote_GP.put, remote_nentries);
1789 do {
1790 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1791 (put % remote_nentries) *
1792 ch->entry_size);
1793 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1794 DBUG_ON(!(msg->flags & XPC_M_SN2_DONE));
1795 DBUG_ON(msg->number != put - remote_nentries);
1796 msg->flags = 0;
1797 } while (++put < ch_sn2->remote_GP.put);
1800 static int
1801 xpc_n_of_deliverable_payloads_sn2(struct xpc_channel *ch)
1803 return ch->sn.sn2.w_remote_GP.put - ch->sn.sn2.w_local_GP.get;
1806 static void
1807 xpc_process_msg_chctl_flags_sn2(struct xpc_partition *part, int ch_number)
1809 struct xpc_channel *ch = &part->channels[ch_number];
1810 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1811 int npayloads_sent;
1813 ch_sn2->remote_GP = part->sn.sn2.remote_GPs[ch_number];
1815 /* See what, if anything, has changed for each connected channel */
1817 xpc_msgqueue_ref(ch);
1819 if (ch_sn2->w_remote_GP.get == ch_sn2->remote_GP.get &&
1820 ch_sn2->w_remote_GP.put == ch_sn2->remote_GP.put) {
1821 /* nothing changed since GPs were last pulled */
1822 xpc_msgqueue_deref(ch);
1823 return;
1826 if (!(ch->flags & XPC_C_CONNECTED)) {
1827 xpc_msgqueue_deref(ch);
1828 return;
1832 * First check to see if messages recently sent by us have been
1833 * received by the other side. (The remote GET value will have
1834 * changed since we last looked at it.)
1837 if (ch_sn2->w_remote_GP.get != ch_sn2->remote_GP.get) {
1840 * We need to notify any senders that want to be notified
1841 * that their sent messages have been received by their
1842 * intended recipients. We need to do this before updating
1843 * w_remote_GP.get so that we don't allocate the same message
1844 * queue entries prematurely (see xpc_allocate_msg()).
1846 if (atomic_read(&ch->n_to_notify) > 0) {
1848 * Notify senders that messages sent have been
1849 * received and delivered by the other side.
1851 xpc_notify_senders_sn2(ch, xpMsgDelivered,
1852 ch_sn2->remote_GP.get);
1856 * Clear msg->flags in previously sent messages, so that
1857 * they're ready for xpc_allocate_msg().
1859 xpc_clear_local_msgqueue_flags_sn2(ch);
1861 ch_sn2->w_remote_GP.get = ch_sn2->remote_GP.get;
1863 dev_dbg(xpc_chan, "w_remote_GP.get changed to %lld, partid=%d, "
1864 "channel=%d\n", ch_sn2->w_remote_GP.get, ch->partid,
1865 ch->number);
1868 * If anyone was waiting for message queue entries to become
1869 * available, wake them up.
1871 if (atomic_read(&ch->n_on_msg_allocate_wq) > 0)
1872 wake_up(&ch->msg_allocate_wq);
1876 * Now check for newly sent messages by the other side. (The remote
1877 * PUT value will have changed since we last looked at it.)
1880 if (ch_sn2->w_remote_GP.put != ch_sn2->remote_GP.put) {
1882 * Clear msg->flags in previously received messages, so that
1883 * they're ready for xpc_get_deliverable_payload_sn2().
1885 xpc_clear_remote_msgqueue_flags_sn2(ch);
1887 smp_wmb(); /* ensure flags have been cleared before bte_copy */
1888 ch_sn2->w_remote_GP.put = ch_sn2->remote_GP.put;
1890 dev_dbg(xpc_chan, "w_remote_GP.put changed to %lld, partid=%d, "
1891 "channel=%d\n", ch_sn2->w_remote_GP.put, ch->partid,
1892 ch->number);
1894 npayloads_sent = xpc_n_of_deliverable_payloads_sn2(ch);
1895 if (npayloads_sent > 0) {
1896 dev_dbg(xpc_chan, "msgs waiting to be copied and "
1897 "delivered=%d, partid=%d, channel=%d\n",
1898 npayloads_sent, ch->partid, ch->number);
1900 if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE)
1901 xpc_activate_kthreads(ch, npayloads_sent);
1905 xpc_msgqueue_deref(ch);
1908 static struct xpc_msg_sn2 *
1909 xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get)
1911 struct xpc_partition *part = &xpc_partitions[ch->partid];
1912 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1913 unsigned long remote_msg_pa;
1914 struct xpc_msg_sn2 *msg;
1915 u32 msg_index;
1916 u32 nmsgs;
1917 u64 msg_offset;
1918 enum xp_retval ret;
1920 if (mutex_lock_interruptible(&ch_sn2->msg_to_pull_mutex) != 0) {
1921 /* we were interrupted by a signal */
1922 return NULL;
1925 while (get >= ch_sn2->next_msg_to_pull) {
1927 /* pull as many messages as are ready and able to be pulled */
1929 msg_index = ch_sn2->next_msg_to_pull % ch->remote_nentries;
1931 DBUG_ON(ch_sn2->next_msg_to_pull >= ch_sn2->w_remote_GP.put);
1932 nmsgs = ch_sn2->w_remote_GP.put - ch_sn2->next_msg_to_pull;
1933 if (msg_index + nmsgs > ch->remote_nentries) {
1934 /* ignore the ones that wrap the msg queue for now */
1935 nmsgs = ch->remote_nentries - msg_index;
1938 msg_offset = msg_index * ch->entry_size;
1939 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1940 msg_offset);
1941 remote_msg_pa = ch_sn2->remote_msgqueue_pa + msg_offset;
1943 ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg_pa,
1944 nmsgs * ch->entry_size);
1945 if (ret != xpSuccess) {
1947 dev_dbg(xpc_chan, "failed to pull %d msgs starting with"
1948 " msg %lld from partition %d, channel=%d, "
1949 "ret=%d\n", nmsgs, ch_sn2->next_msg_to_pull,
1950 ch->partid, ch->number, ret);
1952 XPC_DEACTIVATE_PARTITION(part, ret);
1954 mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1955 return NULL;
1958 ch_sn2->next_msg_to_pull += nmsgs;
1961 mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1963 /* return the message we were looking for */
1964 msg_offset = (get % ch->remote_nentries) * ch->entry_size;
1965 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue + msg_offset);
1967 return msg;
1971 * Get the next deliverable message's payload.
1973 static void *
1974 xpc_get_deliverable_payload_sn2(struct xpc_channel *ch)
1976 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1977 struct xpc_msg_sn2 *msg;
1978 void *payload = NULL;
1979 s64 get;
1981 do {
1982 if (ch->flags & XPC_C_DISCONNECTING)
1983 break;
1985 get = ch_sn2->w_local_GP.get;
1986 smp_rmb(); /* guarantee that .get loads before .put */
1987 if (get == ch_sn2->w_remote_GP.put)
1988 break;
1990 /* There are messages waiting to be pulled and delivered.
1991 * We need to try to secure one for ourselves. We'll do this
1992 * by trying to increment w_local_GP.get and hope that no one
1993 * else beats us to it. If they do, we'll we'll simply have
1994 * to try again for the next one.
1997 if (cmpxchg(&ch_sn2->w_local_GP.get, get, get + 1) == get) {
1998 /* we got the entry referenced by get */
2000 dev_dbg(xpc_chan, "w_local_GP.get changed to %lld, "
2001 "partid=%d, channel=%d\n", get + 1,
2002 ch->partid, ch->number);
2004 /* pull the message from the remote partition */
2006 msg = xpc_pull_remote_msg_sn2(ch, get);
2008 if (msg != NULL) {
2009 DBUG_ON(msg->number != get);
2010 DBUG_ON(msg->flags & XPC_M_SN2_DONE);
2011 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
2013 payload = &msg->payload;
2015 break;
2018 } while (1);
2020 return payload;
2024 * Now we actually send the messages that are ready to be sent by advancing
2025 * the local message queue's Put value and then send a chctl msgrequest to the
2026 * recipient partition.
2028 static void
2029 xpc_send_msgs_sn2(struct xpc_channel *ch, s64 initial_put)
2031 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2032 struct xpc_msg_sn2 *msg;
2033 s64 put = initial_put + 1;
2034 int send_msgrequest = 0;
2036 while (1) {
2038 while (1) {
2039 if (put == ch_sn2->w_local_GP.put)
2040 break;
2042 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
2043 local_msgqueue + (put %
2044 ch->local_nentries) *
2045 ch->entry_size);
2047 if (!(msg->flags & XPC_M_SN2_READY))
2048 break;
2050 put++;
2053 if (put == initial_put) {
2054 /* nothing's changed */
2055 break;
2058 if (cmpxchg_rel(&ch_sn2->local_GP->put, initial_put, put) !=
2059 initial_put) {
2060 /* someone else beat us to it */
2061 DBUG_ON(ch_sn2->local_GP->put < initial_put);
2062 break;
2065 /* we just set the new value of local_GP->put */
2067 dev_dbg(xpc_chan, "local_GP->put changed to %lld, partid=%d, "
2068 "channel=%d\n", put, ch->partid, ch->number);
2070 send_msgrequest = 1;
2073 * We need to ensure that the message referenced by
2074 * local_GP->put is not XPC_M_SN2_READY or that local_GP->put
2075 * equals w_local_GP.put, so we'll go have a look.
2077 initial_put = put;
2080 if (send_msgrequest)
2081 xpc_send_chctl_msgrequest_sn2(ch);
2085 * Allocate an entry for a message from the message queue associated with the
2086 * specified channel.
2088 static enum xp_retval
2089 xpc_allocate_msg_sn2(struct xpc_channel *ch, u32 flags,
2090 struct xpc_msg_sn2 **address_of_msg)
2092 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2093 struct xpc_msg_sn2 *msg;
2094 enum xp_retval ret;
2095 s64 put;
2098 * Get the next available message entry from the local message queue.
2099 * If none are available, we'll make sure that we grab the latest
2100 * GP values.
2102 ret = xpTimeout;
2104 while (1) {
2106 put = ch_sn2->w_local_GP.put;
2107 smp_rmb(); /* guarantee that .put loads before .get */
2108 if (put - ch_sn2->w_remote_GP.get < ch->local_nentries) {
2110 /* There are available message entries. We need to try
2111 * to secure one for ourselves. We'll do this by trying
2112 * to increment w_local_GP.put as long as someone else
2113 * doesn't beat us to it. If they do, we'll have to
2114 * try again.
2116 if (cmpxchg(&ch_sn2->w_local_GP.put, put, put + 1) ==
2117 put) {
2118 /* we got the entry referenced by put */
2119 break;
2121 continue; /* try again */
2125 * There aren't any available msg entries at this time.
2127 * In waiting for a message entry to become available,
2128 * we set a timeout in case the other side is not sending
2129 * completion interrupts. This lets us fake a notify IRQ
2130 * that will cause the notify IRQ handler to fetch the latest
2131 * GP values as if an interrupt was sent by the other side.
2133 if (ret == xpTimeout)
2134 xpc_send_chctl_local_msgrequest_sn2(ch);
2136 if (flags & XPC_NOWAIT)
2137 return xpNoWait;
2139 ret = xpc_allocate_msg_wait(ch);
2140 if (ret != xpInterrupted && ret != xpTimeout)
2141 return ret;
2144 /* get the message's address and initialize it */
2145 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
2146 (put % ch->local_nentries) *
2147 ch->entry_size);
2149 DBUG_ON(msg->flags != 0);
2150 msg->number = put;
2152 dev_dbg(xpc_chan, "w_local_GP.put changed to %lld; msg=0x%p, "
2153 "msg_number=%lld, partid=%d, channel=%d\n", put + 1,
2154 (void *)msg, msg->number, ch->partid, ch->number);
2156 *address_of_msg = msg;
2157 return xpSuccess;
2161 * Common code that does the actual sending of the message by advancing the
2162 * local message queue's Put value and sends a chctl msgrequest to the
2163 * partition the message is being sent to.
2165 static enum xp_retval
2166 xpc_send_payload_sn2(struct xpc_channel *ch, u32 flags, void *payload,
2167 u16 payload_size, u8 notify_type, xpc_notify_func func,
2168 void *key)
2170 enum xp_retval ret = xpSuccess;
2171 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2172 struct xpc_msg_sn2 *msg = msg;
2173 struct xpc_notify_sn2 *notify = notify;
2174 s64 msg_number;
2175 s64 put;
2177 DBUG_ON(notify_type == XPC_N_CALL && func == NULL);
2179 if (XPC_MSG_SIZE(payload_size) > ch->entry_size)
2180 return xpPayloadTooBig;
2182 xpc_msgqueue_ref(ch);
2184 if (ch->flags & XPC_C_DISCONNECTING) {
2185 ret = ch->reason;
2186 goto out_1;
2188 if (!(ch->flags & XPC_C_CONNECTED)) {
2189 ret = xpNotConnected;
2190 goto out_1;
2193 ret = xpc_allocate_msg_sn2(ch, flags, &msg);
2194 if (ret != xpSuccess)
2195 goto out_1;
2197 msg_number = msg->number;
2199 if (notify_type != 0) {
2201 * Tell the remote side to send an ACK interrupt when the
2202 * message has been delivered.
2204 msg->flags |= XPC_M_SN2_INTERRUPT;
2206 atomic_inc(&ch->n_to_notify);
2208 notify = &ch_sn2->notify_queue[msg_number % ch->local_nentries];
2209 notify->func = func;
2210 notify->key = key;
2211 notify->type = notify_type;
2213 /* ??? Is a mb() needed here? */
2215 if (ch->flags & XPC_C_DISCONNECTING) {
2217 * An error occurred between our last error check and
2218 * this one. We will try to clear the type field from
2219 * the notify entry. If we succeed then
2220 * xpc_disconnect_channel() didn't already process
2221 * the notify entry.
2223 if (cmpxchg(&notify->type, notify_type, 0) ==
2224 notify_type) {
2225 atomic_dec(&ch->n_to_notify);
2226 ret = ch->reason;
2228 goto out_1;
2232 memcpy(&msg->payload, payload, payload_size);
2234 msg->flags |= XPC_M_SN2_READY;
2237 * The preceding store of msg->flags must occur before the following
2238 * load of local_GP->put.
2240 smp_mb();
2242 /* see if the message is next in line to be sent, if so send it */
2244 put = ch_sn2->local_GP->put;
2245 if (put == msg_number)
2246 xpc_send_msgs_sn2(ch, put);
2248 out_1:
2249 xpc_msgqueue_deref(ch);
2250 return ret;
2254 * Now we actually acknowledge the messages that have been delivered and ack'd
2255 * by advancing the cached remote message queue's Get value and if requested
2256 * send a chctl msgrequest to the message sender's partition.
2258 * If a message has XPC_M_SN2_INTERRUPT set, send an interrupt to the partition
2259 * that sent the message.
2261 static void
2262 xpc_acknowledge_msgs_sn2(struct xpc_channel *ch, s64 initial_get, u8 msg_flags)
2264 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2265 struct xpc_msg_sn2 *msg;
2266 s64 get = initial_get + 1;
2267 int send_msgrequest = 0;
2269 while (1) {
2271 while (1) {
2272 if (get == ch_sn2->w_local_GP.get)
2273 break;
2275 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
2276 remote_msgqueue + (get %
2277 ch->remote_nentries) *
2278 ch->entry_size);
2280 if (!(msg->flags & XPC_M_SN2_DONE))
2281 break;
2283 msg_flags |= msg->flags;
2284 get++;
2287 if (get == initial_get) {
2288 /* nothing's changed */
2289 break;
2292 if (cmpxchg_rel(&ch_sn2->local_GP->get, initial_get, get) !=
2293 initial_get) {
2294 /* someone else beat us to it */
2295 DBUG_ON(ch_sn2->local_GP->get <= initial_get);
2296 break;
2299 /* we just set the new value of local_GP->get */
2301 dev_dbg(xpc_chan, "local_GP->get changed to %lld, partid=%d, "
2302 "channel=%d\n", get, ch->partid, ch->number);
2304 send_msgrequest = (msg_flags & XPC_M_SN2_INTERRUPT);
2307 * We need to ensure that the message referenced by
2308 * local_GP->get is not XPC_M_SN2_DONE or that local_GP->get
2309 * equals w_local_GP.get, so we'll go have a look.
2311 initial_get = get;
2314 if (send_msgrequest)
2315 xpc_send_chctl_msgrequest_sn2(ch);
2318 static void
2319 xpc_received_payload_sn2(struct xpc_channel *ch, void *payload)
2321 struct xpc_msg_sn2 *msg;
2322 s64 msg_number;
2323 s64 get;
2325 msg = container_of(payload, struct xpc_msg_sn2, payload);
2326 msg_number = msg->number;
2328 dev_dbg(xpc_chan, "msg=0x%p, msg_number=%lld, partid=%d, channel=%d\n",
2329 (void *)msg, msg_number, ch->partid, ch->number);
2331 DBUG_ON((((u64)msg - (u64)ch->sn.sn2.remote_msgqueue) / ch->entry_size) !=
2332 msg_number % ch->remote_nentries);
2333 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
2334 DBUG_ON(msg->flags & XPC_M_SN2_DONE);
2336 msg->flags |= XPC_M_SN2_DONE;
2339 * The preceding store of msg->flags must occur before the following
2340 * load of local_GP->get.
2342 smp_mb();
2345 * See if this message is next in line to be acknowledged as having
2346 * been delivered.
2348 get = ch->sn.sn2.local_GP->get;
2349 if (get == msg_number)
2350 xpc_acknowledge_msgs_sn2(ch, get, msg->flags);
2353 static struct xpc_arch_operations xpc_arch_ops_sn2 = {
2354 .setup_partitions = xpc_setup_partitions_sn2,
2355 .teardown_partitions = xpc_teardown_partitions_sn2,
2356 .process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_sn2,
2357 .get_partition_rsvd_page_pa = xpc_get_partition_rsvd_page_pa_sn2,
2358 .setup_rsvd_page = xpc_setup_rsvd_page_sn2,
2360 .allow_hb = xpc_allow_hb_sn2,
2361 .disallow_hb = xpc_disallow_hb_sn2,
2362 .disallow_all_hbs = xpc_disallow_all_hbs_sn2,
2363 .increment_heartbeat = xpc_increment_heartbeat_sn2,
2364 .offline_heartbeat = xpc_offline_heartbeat_sn2,
2365 .online_heartbeat = xpc_online_heartbeat_sn2,
2366 .heartbeat_init = xpc_heartbeat_init_sn2,
2367 .heartbeat_exit = xpc_heartbeat_exit_sn2,
2368 .get_remote_heartbeat = xpc_get_remote_heartbeat_sn2,
2370 .request_partition_activation =
2371 xpc_request_partition_activation_sn2,
2372 .request_partition_reactivation =
2373 xpc_request_partition_reactivation_sn2,
2374 .request_partition_deactivation =
2375 xpc_request_partition_deactivation_sn2,
2376 .cancel_partition_deactivation_request =
2377 xpc_cancel_partition_deactivation_request_sn2,
2379 .setup_ch_structures = xpc_setup_ch_structures_sn2,
2380 .teardown_ch_structures = xpc_teardown_ch_structures_sn2,
2382 .make_first_contact = xpc_make_first_contact_sn2,
2384 .get_chctl_all_flags = xpc_get_chctl_all_flags_sn2,
2385 .send_chctl_closerequest = xpc_send_chctl_closerequest_sn2,
2386 .send_chctl_closereply = xpc_send_chctl_closereply_sn2,
2387 .send_chctl_openrequest = xpc_send_chctl_openrequest_sn2,
2388 .send_chctl_openreply = xpc_send_chctl_openreply_sn2,
2389 .send_chctl_opencomplete = xpc_send_chctl_opencomplete_sn2,
2390 .process_msg_chctl_flags = xpc_process_msg_chctl_flags_sn2,
2392 .save_remote_msgqueue_pa = xpc_save_remote_msgqueue_pa_sn2,
2394 .setup_msg_structures = xpc_setup_msg_structures_sn2,
2395 .teardown_msg_structures = xpc_teardown_msg_structures_sn2,
2397 .indicate_partition_engaged = xpc_indicate_partition_engaged_sn2,
2398 .indicate_partition_disengaged = xpc_indicate_partition_disengaged_sn2,
2399 .partition_engaged = xpc_partition_engaged_sn2,
2400 .any_partition_engaged = xpc_any_partition_engaged_sn2,
2401 .assume_partition_disengaged = xpc_assume_partition_disengaged_sn2,
2403 .n_of_deliverable_payloads = xpc_n_of_deliverable_payloads_sn2,
2404 .send_payload = xpc_send_payload_sn2,
2405 .get_deliverable_payload = xpc_get_deliverable_payload_sn2,
2406 .received_payload = xpc_received_payload_sn2,
2407 .notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_sn2,
2411 xpc_init_sn2(void)
2413 int ret;
2414 size_t buf_size;
2416 xpc_arch_ops = xpc_arch_ops_sn2;
2418 if (offsetof(struct xpc_msg_sn2, payload) > XPC_MSG_HDR_MAX_SIZE) {
2419 dev_err(xpc_part, "header portion of struct xpc_msg_sn2 is "
2420 "larger than %d\n", XPC_MSG_HDR_MAX_SIZE);
2421 return -E2BIG;
2424 buf_size = max(XPC_RP_VARS_SIZE,
2425 XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES_SN2);
2426 xpc_remote_copy_buffer_sn2 = xpc_kmalloc_cacheline_aligned(buf_size,
2427 GFP_KERNEL,
2428 &xpc_remote_copy_buffer_base_sn2);
2429 if (xpc_remote_copy_buffer_sn2 == NULL) {
2430 dev_err(xpc_part, "can't get memory for remote copy buffer\n");
2431 return -ENOMEM;
2434 /* open up protections for IPI and [potentially] amo operations */
2435 xpc_allow_IPI_ops_sn2();
2436 xpc_allow_amo_ops_shub_wars_1_1_sn2();
2439 * This is safe to do before the xpc_hb_checker thread has started
2440 * because the handler releases a wait queue. If an interrupt is
2441 * received before the thread is waiting, it will not go to sleep,
2442 * but rather immediately process the interrupt.
2444 ret = request_irq(SGI_XPC_ACTIVATE, xpc_handle_activate_IRQ_sn2, 0,
2445 "xpc hb", NULL);
2446 if (ret != 0) {
2447 dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
2448 "errno=%d\n", -ret);
2449 xpc_disallow_IPI_ops_sn2();
2450 kfree(xpc_remote_copy_buffer_base_sn2);
2452 return ret;
2455 void
2456 xpc_exit_sn2(void)
2458 free_irq(SGI_XPC_ACTIVATE, NULL);
2459 xpc_disallow_IPI_ops_sn2();
2460 kfree(xpc_remote_copy_buffer_base_sn2);