1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
57 #include <linux/netdevice.h>
58 #include <linux/ethtool.h>
59 #include <linux/delay.h>
60 #include <linux/pci.h>
64 #define ICH_FLASH_GFPREG 0x0000
65 #define ICH_FLASH_HSFSTS 0x0004
66 #define ICH_FLASH_HSFCTL 0x0006
67 #define ICH_FLASH_FADDR 0x0008
68 #define ICH_FLASH_FDATA0 0x0010
69 #define ICH_FLASH_PR0 0x0074
71 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
72 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
73 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
74 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
75 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
77 #define ICH_CYCLE_READ 0
78 #define ICH_CYCLE_WRITE 2
79 #define ICH_CYCLE_ERASE 3
81 #define FLASH_GFPREG_BASE_MASK 0x1FFF
82 #define FLASH_SECTOR_ADDR_SHIFT 12
84 #define ICH_FLASH_SEG_SIZE_256 256
85 #define ICH_FLASH_SEG_SIZE_4K 4096
86 #define ICH_FLASH_SEG_SIZE_8K 8192
87 #define ICH_FLASH_SEG_SIZE_64K 65536
90 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
92 #define E1000_ICH_MNG_IAMT_MODE 0x2
94 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
95 (ID_LED_DEF1_OFF2 << 8) | \
96 (ID_LED_DEF1_ON2 << 4) | \
99 #define E1000_ICH_NVM_SIG_WORD 0x13
100 #define E1000_ICH_NVM_SIG_MASK 0xC000
101 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
102 #define E1000_ICH_NVM_SIG_VALUE 0x80
104 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
106 #define E1000_FEXTNVM_SW_CONFIG 1
107 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
109 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
111 #define E1000_ICH_RAR_ENTRIES 7
113 #define PHY_PAGE_SHIFT 5
114 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
115 ((reg) & MAX_PHY_REG_ADDRESS))
116 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
117 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
119 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
120 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
121 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
123 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
125 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
126 /* Offset 04h HSFSTS */
127 union ich8_hws_flash_status
{
129 u16 flcdone
:1; /* bit 0 Flash Cycle Done */
130 u16 flcerr
:1; /* bit 1 Flash Cycle Error */
131 u16 dael
:1; /* bit 2 Direct Access error Log */
132 u16 berasesz
:2; /* bit 4:3 Sector Erase Size */
133 u16 flcinprog
:1; /* bit 5 flash cycle in Progress */
134 u16 reserved1
:2; /* bit 13:6 Reserved */
135 u16 reserved2
:6; /* bit 13:6 Reserved */
136 u16 fldesvalid
:1; /* bit 14 Flash Descriptor Valid */
137 u16 flockdn
:1; /* bit 15 Flash Config Lock-Down */
142 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
143 /* Offset 06h FLCTL */
144 union ich8_hws_flash_ctrl
{
145 struct ich8_hsflctl
{
146 u16 flcgo
:1; /* 0 Flash Cycle Go */
147 u16 flcycle
:2; /* 2:1 Flash Cycle */
148 u16 reserved
:5; /* 7:3 Reserved */
149 u16 fldbcount
:2; /* 9:8 Flash Data Byte Count */
150 u16 flockdn
:6; /* 15:10 Reserved */
155 /* ICH Flash Region Access Permissions */
156 union ich8_hws_flash_regacc
{
158 u32 grra
:8; /* 0:7 GbE region Read Access */
159 u32 grwa
:8; /* 8:15 GbE region Write Access */
160 u32 gmrag
:8; /* 23:16 GbE Master Read Access Grant */
161 u32 gmwag
:8; /* 31:24 GbE Master Write Access Grant */
166 /* ICH Flash Protected Region */
167 union ich8_flash_protected_range
{
169 u32 base
:13; /* 0:12 Protected Range Base */
170 u32 reserved1
:2; /* 13:14 Reserved */
171 u32 rpe
:1; /* 15 Read Protection Enable */
172 u32 limit
:13; /* 16:28 Protected Range Limit */
173 u32 reserved2
:2; /* 29:30 Reserved */
174 u32 wpe
:1; /* 31 Write Protection Enable */
179 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
);
180 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
);
181 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
);
182 static s32
e1000_check_polarity_ife_ich8lan(struct e1000_hw
*hw
);
183 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
);
184 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
185 u32 offset
, u8 byte
);
186 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
188 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
190 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
192 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
);
193 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
);
194 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
);
195 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
);
196 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
);
197 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
);
198 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
);
199 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
);
200 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
);
201 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
);
202 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
);
204 static inline u16
__er16flash(struct e1000_hw
*hw
, unsigned long reg
)
206 return readw(hw
->flash_address
+ reg
);
209 static inline u32
__er32flash(struct e1000_hw
*hw
, unsigned long reg
)
211 return readl(hw
->flash_address
+ reg
);
214 static inline void __ew16flash(struct e1000_hw
*hw
, unsigned long reg
, u16 val
)
216 writew(val
, hw
->flash_address
+ reg
);
219 static inline void __ew32flash(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
221 writel(val
, hw
->flash_address
+ reg
);
224 #define er16flash(reg) __er16flash(hw, (reg))
225 #define er32flash(reg) __er32flash(hw, (reg))
226 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
227 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
230 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
231 * @hw: pointer to the HW structure
233 * Initialize family-specific PHY parameters and function pointers.
235 static s32
e1000_init_phy_params_pchlan(struct e1000_hw
*hw
)
237 struct e1000_phy_info
*phy
= &hw
->phy
;
241 phy
->reset_delay_us
= 100;
243 phy
->ops
.check_polarity
= e1000_check_polarity_ife_ich8lan
;
244 phy
->ops
.read_phy_reg
= e1000_read_phy_reg_hv
;
245 phy
->ops
.write_phy_reg
= e1000_write_phy_reg_hv
;
246 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
248 phy
->id
= e1000_phy_unknown
;
249 e1000e_get_phy_id(hw
);
250 phy
->type
= e1000e_get_phy_type_from_id(phy
->id
);
252 if (phy
->type
== e1000_phy_82577
) {
253 phy
->ops
.check_polarity
= e1000_check_polarity_82577
;
254 phy
->ops
.force_speed_duplex
=
255 e1000_phy_force_speed_duplex_82577
;
256 phy
->ops
.get_cable_length
= e1000_get_cable_length_82577
;
257 phy
->ops
.get_phy_info
= e1000_get_phy_info_82577
;
258 phy
->ops
.commit_phy
= e1000e_phy_sw_reset
;
265 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
266 * @hw: pointer to the HW structure
268 * Initialize family-specific PHY parameters and function pointers.
270 static s32
e1000_init_phy_params_ich8lan(struct e1000_hw
*hw
)
272 struct e1000_phy_info
*phy
= &hw
->phy
;
277 phy
->reset_delay_us
= 100;
280 * We may need to do this twice - once for IGP and if that fails,
281 * we'll set BM func pointers and try again
283 ret_val
= e1000e_determine_phy_address(hw
);
285 hw
->phy
.ops
.write_phy_reg
= e1000e_write_phy_reg_bm
;
286 hw
->phy
.ops
.read_phy_reg
= e1000e_read_phy_reg_bm
;
287 ret_val
= e1000e_determine_phy_address(hw
);
293 while ((e1000_phy_unknown
== e1000e_get_phy_type_from_id(phy
->id
)) &&
296 ret_val
= e1000e_get_phy_id(hw
);
303 case IGP03E1000_E_PHY_ID
:
304 phy
->type
= e1000_phy_igp_3
;
305 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
308 case IFE_PLUS_E_PHY_ID
:
310 phy
->type
= e1000_phy_ife
;
311 phy
->autoneg_mask
= E1000_ALL_NOT_GIG
;
313 case BME1000_E_PHY_ID
:
314 phy
->type
= e1000_phy_bm
;
315 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
316 hw
->phy
.ops
.read_phy_reg
= e1000e_read_phy_reg_bm
;
317 hw
->phy
.ops
.write_phy_reg
= e1000e_write_phy_reg_bm
;
318 hw
->phy
.ops
.commit_phy
= e1000e_phy_sw_reset
;
321 return -E1000_ERR_PHY
;
325 phy
->ops
.check_polarity
= e1000_check_polarity_ife_ich8lan
;
331 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
332 * @hw: pointer to the HW structure
334 * Initialize family-specific NVM parameters and function
337 static s32
e1000_init_nvm_params_ich8lan(struct e1000_hw
*hw
)
339 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
340 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
341 u32 gfpreg
, sector_base_addr
, sector_end_addr
;
344 /* Can't read flash registers if the register set isn't mapped. */
345 if (!hw
->flash_address
) {
346 hw_dbg(hw
, "ERROR: Flash registers not mapped\n");
347 return -E1000_ERR_CONFIG
;
350 nvm
->type
= e1000_nvm_flash_sw
;
352 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
355 * sector_X_addr is a "sector"-aligned address (4096 bytes)
356 * Add 1 to sector_end_addr since this sector is included in
359 sector_base_addr
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
360 sector_end_addr
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
) + 1;
362 /* flash_base_addr is byte-aligned */
363 nvm
->flash_base_addr
= sector_base_addr
<< FLASH_SECTOR_ADDR_SHIFT
;
366 * find total size of the NVM, then cut in half since the total
367 * size represents two separate NVM banks.
369 nvm
->flash_bank_size
= (sector_end_addr
- sector_base_addr
)
370 << FLASH_SECTOR_ADDR_SHIFT
;
371 nvm
->flash_bank_size
/= 2;
372 /* Adjust to word count */
373 nvm
->flash_bank_size
/= sizeof(u16
);
375 nvm
->word_size
= E1000_ICH8_SHADOW_RAM_WORDS
;
377 /* Clear shadow ram */
378 for (i
= 0; i
< nvm
->word_size
; i
++) {
379 dev_spec
->shadow_ram
[i
].modified
= 0;
380 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
387 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
388 * @hw: pointer to the HW structure
390 * Initialize family-specific MAC parameters and function
393 static s32
e1000_init_mac_params_ich8lan(struct e1000_adapter
*adapter
)
395 struct e1000_hw
*hw
= &adapter
->hw
;
396 struct e1000_mac_info
*mac
= &hw
->mac
;
398 /* Set media type function pointer */
399 hw
->phy
.media_type
= e1000_media_type_copper
;
401 /* Set mta register count */
402 mac
->mta_reg_count
= 32;
403 /* Set rar entry count */
404 mac
->rar_entry_count
= E1000_ICH_RAR_ENTRIES
;
405 if (mac
->type
== e1000_ich8lan
)
406 mac
->rar_entry_count
--;
407 /* Set if manageability features are enabled. */
408 mac
->arc_subsystem_valid
= 1;
416 mac
->ops
.id_led_init
= e1000e_id_led_init
;
418 mac
->ops
.setup_led
= e1000e_setup_led_generic
;
420 mac
->ops
.cleanup_led
= e1000_cleanup_led_ich8lan
;
421 /* turn on/off LED */
422 mac
->ops
.led_on
= e1000_led_on_ich8lan
;
423 mac
->ops
.led_off
= e1000_led_off_ich8lan
;
427 mac
->ops
.id_led_init
= e1000_id_led_init_pchlan
;
429 mac
->ops
.setup_led
= e1000_setup_led_pchlan
;
431 mac
->ops
.cleanup_led
= e1000_cleanup_led_pchlan
;
432 /* turn on/off LED */
433 mac
->ops
.led_on
= e1000_led_on_pchlan
;
434 mac
->ops
.led_off
= e1000_led_off_pchlan
;
440 /* Enable PCS Lock-loss workaround for ICH8 */
441 if (mac
->type
== e1000_ich8lan
)
442 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw
, 1);
448 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
449 * @hw: pointer to the HW structure
451 * Checks to see of the link status of the hardware has changed. If a
452 * change in link status has been detected, then we read the PHY registers
453 * to get the current speed/duplex if link exists.
455 static s32
e1000_check_for_copper_link_ich8lan(struct e1000_hw
*hw
)
457 struct e1000_mac_info
*mac
= &hw
->mac
;
462 * We only want to go out to the PHY registers to see if Auto-Neg
463 * has completed and/or if our link status has changed. The
464 * get_link_status flag is set upon receiving a Link Status
465 * Change or Rx Sequence Error interrupt.
467 if (!mac
->get_link_status
) {
472 if (hw
->mac
.type
== e1000_pchlan
) {
473 ret_val
= e1000e_write_kmrn_reg(hw
,
474 E1000_KMRNCTRLSTA_K1_CONFIG
,
475 E1000_KMRNCTRLSTA_K1_ENABLE
);
481 * First we want to see if the MII Status Register reports
482 * link. If so, then we want to get the current speed/duplex
485 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
490 goto out
; /* No link detected */
492 mac
->get_link_status
= false;
494 if (hw
->phy
.type
== e1000_phy_82578
) {
495 ret_val
= e1000_link_stall_workaround_hv(hw
);
501 * Check if there was DownShift, must be checked
502 * immediately after link-up
504 e1000e_check_downshift(hw
);
507 * If we are forcing speed/duplex, then we simply return since
508 * we have already determined whether we have link or not.
511 ret_val
= -E1000_ERR_CONFIG
;
516 * Auto-Neg is enabled. Auto Speed Detection takes care
517 * of MAC speed/duplex configuration. So we only need to
518 * configure Collision Distance in the MAC.
520 e1000e_config_collision_dist(hw
);
523 * Configure Flow Control now that Auto-Neg has completed.
524 * First, we need to restore the desired flow control
525 * settings because we may have had to re-autoneg with a
526 * different link partner.
528 ret_val
= e1000e_config_fc_after_link_up(hw
);
530 hw_dbg(hw
, "Error configuring flow control\n");
536 static s32
e1000_get_variants_ich8lan(struct e1000_adapter
*adapter
)
538 struct e1000_hw
*hw
= &adapter
->hw
;
541 rc
= e1000_init_mac_params_ich8lan(adapter
);
545 rc
= e1000_init_nvm_params_ich8lan(hw
);
549 if (hw
->mac
.type
== e1000_pchlan
)
550 rc
= e1000_init_phy_params_pchlan(hw
);
552 rc
= e1000_init_phy_params_ich8lan(hw
);
556 if (adapter
->hw
.phy
.type
== e1000_phy_ife
) {
557 adapter
->flags
&= ~FLAG_HAS_JUMBO_FRAMES
;
558 adapter
->max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
;
561 if ((adapter
->hw
.mac
.type
== e1000_ich8lan
) &&
562 (adapter
->hw
.phy
.type
== e1000_phy_igp_3
))
563 adapter
->flags
|= FLAG_LSC_GIG_SPEED_DROP
;
568 static DEFINE_MUTEX(nvm_mutex
);
571 * e1000_acquire_swflag_ich8lan - Acquire software control flag
572 * @hw: pointer to the HW structure
574 * Acquires the software control flag for performing NVM and PHY
575 * operations. This is a function pointer entry point only called by
576 * read/write routines for the PHY and NVM parts.
578 static s32
e1000_acquire_swflag_ich8lan(struct e1000_hw
*hw
)
580 u32 extcnf_ctrl
, timeout
= PHY_CFG_TIMEOUT
;
585 mutex_lock(&nvm_mutex
);
588 extcnf_ctrl
= er32(EXTCNF_CTRL
);
589 if (!(extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
))
597 hw_dbg(hw
, "SW/FW/HW has locked the resource for too long.\n");
598 ret_val
= -E1000_ERR_CONFIG
;
602 timeout
= PHY_CFG_TIMEOUT
* 2;
604 extcnf_ctrl
|= E1000_EXTCNF_CTRL_SWFLAG
;
605 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
608 extcnf_ctrl
= er32(EXTCNF_CTRL
);
609 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)
617 hw_dbg(hw
, "Failed to acquire the semaphore.\n");
618 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
619 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
620 ret_val
= -E1000_ERR_CONFIG
;
626 mutex_unlock(&nvm_mutex
);
632 * e1000_release_swflag_ich8lan - Release software control flag
633 * @hw: pointer to the HW structure
635 * Releases the software control flag for performing NVM and PHY operations.
636 * This is a function pointer entry point only called by read/write
637 * routines for the PHY and NVM parts.
639 static void e1000_release_swflag_ich8lan(struct e1000_hw
*hw
)
643 extcnf_ctrl
= er32(EXTCNF_CTRL
);
644 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
645 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
647 mutex_unlock(&nvm_mutex
);
651 * e1000_check_mng_mode_ich8lan - Checks management mode
652 * @hw: pointer to the HW structure
654 * This checks if the adapter has manageability enabled.
655 * This is a function pointer entry point only called by read/write
656 * routines for the PHY and NVM parts.
658 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
)
660 u32 fwsm
= er32(FWSM
);
662 return (fwsm
& E1000_FWSM_MODE_MASK
) ==
663 (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
);
667 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
668 * @hw: pointer to the HW structure
670 * Checks if firmware is blocking the reset of the PHY.
671 * This is a function pointer entry point only called by
674 static s32
e1000_check_reset_block_ich8lan(struct e1000_hw
*hw
)
680 return (fwsm
& E1000_ICH_FWSM_RSPCIPHY
) ? 0 : E1000_BLK_PHY_RESET
;
684 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
685 * @hw: pointer to the HW structure
687 * Forces the speed and duplex settings of the PHY.
688 * This is a function pointer entry point only called by
689 * PHY setup routines.
691 static s32
e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw
*hw
)
693 struct e1000_phy_info
*phy
= &hw
->phy
;
698 if (phy
->type
!= e1000_phy_ife
) {
699 ret_val
= e1000e_phy_force_speed_duplex_igp(hw
);
703 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &data
);
707 e1000e_phy_force_speed_duplex_setup(hw
, &data
);
709 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, data
);
713 /* Disable MDI-X support for 10/100 */
714 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
718 data
&= ~IFE_PMC_AUTO_MDIX
;
719 data
&= ~IFE_PMC_FORCE_MDIX
;
721 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, data
);
725 hw_dbg(hw
, "IFE PMC: %X\n", data
);
729 if (phy
->autoneg_wait_to_complete
) {
730 hw_dbg(hw
, "Waiting for forced speed/duplex link on IFE phy.\n");
732 ret_val
= e1000e_phy_has_link_generic(hw
,
740 hw_dbg(hw
, "Link taking longer than expected.\n");
743 ret_val
= e1000e_phy_has_link_generic(hw
,
755 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
756 * done after every PHY reset.
758 static s32
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
762 if (hw
->mac
.type
!= e1000_pchlan
)
765 if (((hw
->phy
.type
== e1000_phy_82577
) &&
766 ((hw
->phy
.revision
== 1) || (hw
->phy
.revision
== 2))) ||
767 ((hw
->phy
.type
== e1000_phy_82578
) && (hw
->phy
.revision
== 1))) {
768 /* Disable generation of early preamble */
769 ret_val
= e1e_wphy(hw
, PHY_REG(769, 25), 0x4431);
773 /* Preamble tuning for SSC */
774 ret_val
= e1e_wphy(hw
, PHY_REG(770, 16), 0xA204);
779 if (hw
->phy
.type
== e1000_phy_82578
) {
781 * Return registers to default by doing a soft reset then
782 * writing 0x3140 to the control register.
784 if (hw
->phy
.revision
< 2) {
785 e1000e_phy_sw_reset(hw
);
786 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, 0x3140);
791 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
795 e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0);
796 hw
->phy
.ops
.release_phy(hw
);
802 * e1000_lan_init_done_ich8lan - Check for PHY config completion
803 * @hw: pointer to the HW structure
805 * Check the appropriate indication the MAC has finished configuring the
806 * PHY after a software reset.
808 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
)
810 u32 data
, loop
= E1000_ICH8_LAN_INIT_TIMEOUT
;
812 /* Wait for basic configuration completes before proceeding */
815 data
&= E1000_STATUS_LAN_INIT_DONE
;
817 } while ((!data
) && --loop
);
820 * If basic configuration is incomplete before the above loop
821 * count reaches 0, loading the configuration from NVM will
822 * leave the PHY in a bad state possibly resulting in no link.
825 hw_dbg(hw
, "LAN_INIT_DONE not set, increase timeout\n");
827 /* Clear the Init Done bit for the next init event */
829 data
&= ~E1000_STATUS_LAN_INIT_DONE
;
834 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
835 * @hw: pointer to the HW structure
838 * This is a function pointer entry point called by drivers
839 * or other shared routines.
841 static s32
e1000_phy_hw_reset_ich8lan(struct e1000_hw
*hw
)
843 struct e1000_phy_info
*phy
= &hw
->phy
;
845 u32 data
, cnf_size
, cnf_base_addr
, sw_cfg_mask
;
847 u16 word_addr
, reg_data
, reg_addr
, phy_page
= 0;
849 ret_val
= e1000e_phy_hw_reset_generic(hw
);
853 /* Allow time for h/w to get to a quiescent state after reset */
856 if (hw
->mac
.type
== e1000_pchlan
) {
857 ret_val
= e1000_hv_phy_workarounds_ich8lan(hw
);
863 * Initialize the PHY from the NVM on ICH platforms. This
864 * is needed due to an issue where the NVM configuration is
865 * not properly autoloaded after power transitions.
866 * Therefore, after each PHY reset, we will load the
867 * configuration data out of the NVM manually.
869 if (hw
->mac
.type
== e1000_ich8lan
&& phy
->type
== e1000_phy_igp_3
) {
870 struct e1000_adapter
*adapter
= hw
->adapter
;
872 /* Check if SW needs configure the PHY */
873 if ((adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_M_AMT
) ||
874 (adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_M
))
875 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG_ICH8M
;
877 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG
;
879 data
= er32(FEXTNVM
);
880 if (!(data
& sw_cfg_mask
))
883 /* Wait for basic configuration completes before proceeding */
884 e1000_lan_init_done_ich8lan(hw
);
887 * Make sure HW does not configure LCD from PHY
888 * extended configuration before SW configuration
890 data
= er32(EXTCNF_CTRL
);
891 if (data
& E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE
)
894 cnf_size
= er32(EXTCNF_SIZE
);
895 cnf_size
&= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK
;
896 cnf_size
>>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT
;
900 cnf_base_addr
= data
& E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK
;
901 cnf_base_addr
>>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT
;
903 /* Configure LCD from extended configuration region. */
905 /* cnf_base_addr is in DWORD */
906 word_addr
= (u16
)(cnf_base_addr
<< 1);
908 for (i
= 0; i
< cnf_size
; i
++) {
909 ret_val
= e1000_read_nvm(hw
,
916 ret_val
= e1000_read_nvm(hw
,
917 (word_addr
+ i
* 2 + 1),
923 /* Save off the PHY page for future writes. */
924 if (reg_addr
== IGP01E1000_PHY_PAGE_SELECT
) {
929 reg_addr
|= phy_page
;
931 ret_val
= e1e_wphy(hw
, (u32
)reg_addr
, reg_data
);
941 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
942 * @hw: pointer to the HW structure
944 * Populates "phy" structure with various feature states.
945 * This function is only called by other family-specific
948 static s32
e1000_get_phy_info_ife_ich8lan(struct e1000_hw
*hw
)
950 struct e1000_phy_info
*phy
= &hw
->phy
;
955 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
960 hw_dbg(hw
, "Phy info is only valid if link is up\n");
961 return -E1000_ERR_CONFIG
;
964 ret_val
= e1e_rphy(hw
, IFE_PHY_SPECIAL_CONTROL
, &data
);
967 phy
->polarity_correction
= (!(data
& IFE_PSC_AUTO_POLARITY_DISABLE
));
969 if (phy
->polarity_correction
) {
970 ret_val
= phy
->ops
.check_polarity(hw
);
974 /* Polarity is forced */
975 phy
->cable_polarity
= (data
& IFE_PSC_FORCE_POLARITY
)
976 ? e1000_rev_polarity_reversed
977 : e1000_rev_polarity_normal
;
980 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
984 phy
->is_mdix
= (data
& IFE_PMC_MDIX_STATUS
);
986 /* The following parameters are undefined for 10/100 operation. */
987 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
988 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
989 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
995 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
996 * @hw: pointer to the HW structure
998 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
999 * This is a function pointer entry point called by drivers
1000 * or other shared routines.
1002 static s32
e1000_get_phy_info_ich8lan(struct e1000_hw
*hw
)
1004 switch (hw
->phy
.type
) {
1006 return e1000_get_phy_info_ife_ich8lan(hw
);
1008 case e1000_phy_igp_3
:
1010 case e1000_phy_82578
:
1011 case e1000_phy_82577
:
1012 return e1000e_get_phy_info_igp(hw
);
1018 return -E1000_ERR_PHY_TYPE
;
1022 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
1023 * @hw: pointer to the HW structure
1025 * Polarity is determined on the polarity reversal feature being enabled.
1026 * This function is only called by other family-specific
1029 static s32
e1000_check_polarity_ife_ich8lan(struct e1000_hw
*hw
)
1031 struct e1000_phy_info
*phy
= &hw
->phy
;
1033 u16 phy_data
, offset
, mask
;
1036 * Polarity is determined based on the reversal feature being enabled.
1038 if (phy
->polarity_correction
) {
1039 offset
= IFE_PHY_EXTENDED_STATUS_CONTROL
;
1040 mask
= IFE_PESC_POLARITY_REVERSED
;
1042 offset
= IFE_PHY_SPECIAL_CONTROL
;
1043 mask
= IFE_PSC_FORCE_POLARITY
;
1046 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1049 phy
->cable_polarity
= (phy_data
& mask
)
1050 ? e1000_rev_polarity_reversed
1051 : e1000_rev_polarity_normal
;
1057 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1058 * @hw: pointer to the HW structure
1059 * @active: TRUE to enable LPLU, FALSE to disable
1061 * Sets the LPLU D0 state according to the active flag. When
1062 * activating LPLU this function also disables smart speed
1063 * and vice versa. LPLU will not be activated unless the
1064 * device autonegotiation advertisement meets standards of
1065 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1066 * This is a function pointer entry point only called by
1067 * PHY setup routines.
1069 static s32
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
1071 struct e1000_phy_info
*phy
= &hw
->phy
;
1076 if (phy
->type
== e1000_phy_ife
)
1079 phy_ctrl
= er32(PHY_CTRL
);
1082 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
;
1083 ew32(PHY_CTRL
, phy_ctrl
);
1085 if (phy
->type
!= e1000_phy_igp_3
)
1089 * Call gig speed drop workaround on LPLU before accessing
1092 if (hw
->mac
.type
== e1000_ich8lan
)
1093 e1000e_gig_downshift_workaround_ich8lan(hw
);
1095 /* When LPLU is enabled, we should disable SmartSpeed */
1096 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1097 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1098 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1102 phy_ctrl
&= ~E1000_PHY_CTRL_D0A_LPLU
;
1103 ew32(PHY_CTRL
, phy_ctrl
);
1105 if (phy
->type
!= e1000_phy_igp_3
)
1109 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1110 * during Dx states where the power conservation is most
1111 * important. During driver activity we should enable
1112 * SmartSpeed, so performance is maintained.
1114 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1115 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1120 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1121 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1125 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1126 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1131 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1132 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1143 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1144 * @hw: pointer to the HW structure
1145 * @active: TRUE to enable LPLU, FALSE to disable
1147 * Sets the LPLU D3 state according to the active flag. When
1148 * activating LPLU this function also disables smart speed
1149 * and vice versa. LPLU will not be activated unless the
1150 * device autonegotiation advertisement meets standards of
1151 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1152 * This is a function pointer entry point only called by
1153 * PHY setup routines.
1155 static s32
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
1157 struct e1000_phy_info
*phy
= &hw
->phy
;
1162 phy_ctrl
= er32(PHY_CTRL
);
1165 phy_ctrl
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
1166 ew32(PHY_CTRL
, phy_ctrl
);
1168 if (phy
->type
!= e1000_phy_igp_3
)
1172 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1173 * during Dx states where the power conservation is most
1174 * important. During driver activity we should enable
1175 * SmartSpeed, so performance is maintained.
1177 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1178 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1183 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1184 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1188 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1189 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1194 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1195 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1200 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1201 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1202 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1203 phy_ctrl
|= E1000_PHY_CTRL_NOND0A_LPLU
;
1204 ew32(PHY_CTRL
, phy_ctrl
);
1206 if (phy
->type
!= e1000_phy_igp_3
)
1210 * Call gig speed drop workaround on LPLU before accessing
1213 if (hw
->mac
.type
== e1000_ich8lan
)
1214 e1000e_gig_downshift_workaround_ich8lan(hw
);
1216 /* When LPLU is enabled, we should disable SmartSpeed */
1217 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1221 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1222 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1229 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1230 * @hw: pointer to the HW structure
1231 * @bank: pointer to the variable that returns the active bank
1233 * Reads signature byte from the NVM using the flash access registers.
1234 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1236 static s32
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw
*hw
, u32
*bank
)
1239 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1240 u32 bank1_offset
= nvm
->flash_bank_size
* sizeof(u16
);
1241 u32 act_offset
= E1000_ICH_NVM_SIG_WORD
* 2 + 1;
1245 switch (hw
->mac
.type
) {
1249 if ((eecd
& E1000_EECD_SEC1VAL_VALID_MASK
) ==
1250 E1000_EECD_SEC1VAL_VALID_MASK
) {
1251 if (eecd
& E1000_EECD_SEC1VAL
)
1258 hw_dbg(hw
, "Unable to determine valid NVM bank via EEC - "
1259 "reading flash signature\n");
1262 /* set bank to 0 in case flash read fails */
1266 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
,
1270 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
1271 E1000_ICH_NVM_SIG_VALUE
) {
1277 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
+
1282 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
1283 E1000_ICH_NVM_SIG_VALUE
) {
1288 hw_dbg(hw
, "ERROR: No valid NVM bank present\n");
1289 return -E1000_ERR_NVM
;
1296 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1297 * @hw: pointer to the HW structure
1298 * @offset: The offset (in bytes) of the word(s) to read.
1299 * @words: Size of data to read in words
1300 * @data: Pointer to the word(s) to read at offset.
1302 * Reads a word(s) from the NVM using the flash access registers.
1304 static s32
e1000_read_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
1307 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1308 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1314 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
1316 hw_dbg(hw
, "nvm parameter(s) out of bounds\n");
1317 return -E1000_ERR_NVM
;
1320 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1324 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
1326 hw_dbg(hw
, "Could not detect valid bank, assuming bank 0\n");
1330 act_offset
= (bank
) ? nvm
->flash_bank_size
: 0;
1331 act_offset
+= offset
;
1334 for (i
= 0; i
< words
; i
++) {
1335 if ((dev_spec
->shadow_ram
) &&
1336 (dev_spec
->shadow_ram
[offset
+i
].modified
)) {
1337 data
[i
] = dev_spec
->shadow_ram
[offset
+i
].value
;
1339 ret_val
= e1000_read_flash_word_ich8lan(hw
,
1348 e1000_release_swflag_ich8lan(hw
);
1352 hw_dbg(hw
, "NVM read error: %d\n", ret_val
);
1358 * e1000_flash_cycle_init_ich8lan - Initialize flash
1359 * @hw: pointer to the HW structure
1361 * This function does initial flash setup so that a new read/write/erase cycle
1364 static s32
e1000_flash_cycle_init_ich8lan(struct e1000_hw
*hw
)
1366 union ich8_hws_flash_status hsfsts
;
1367 s32 ret_val
= -E1000_ERR_NVM
;
1370 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1372 /* Check if the flash descriptor is valid */
1373 if (hsfsts
.hsf_status
.fldesvalid
== 0) {
1374 hw_dbg(hw
, "Flash descriptor invalid. "
1375 "SW Sequencing must be used.");
1376 return -E1000_ERR_NVM
;
1379 /* Clear FCERR and DAEL in hw status by writing 1 */
1380 hsfsts
.hsf_status
.flcerr
= 1;
1381 hsfsts
.hsf_status
.dael
= 1;
1383 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1386 * Either we should have a hardware SPI cycle in progress
1387 * bit to check against, in order to start a new cycle or
1388 * FDONE bit should be changed in the hardware so that it
1389 * is 1 after hardware reset, which can then be used as an
1390 * indication whether a cycle is in progress or has been
1394 if (hsfsts
.hsf_status
.flcinprog
== 0) {
1396 * There is no cycle running at present,
1397 * so we can start a cycle
1398 * Begin by setting Flash Cycle Done.
1400 hsfsts
.hsf_status
.flcdone
= 1;
1401 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1405 * otherwise poll for sometime so the current
1406 * cycle has a chance to end before giving up.
1408 for (i
= 0; i
< ICH_FLASH_READ_COMMAND_TIMEOUT
; i
++) {
1409 hsfsts
.regval
= __er16flash(hw
, ICH_FLASH_HSFSTS
);
1410 if (hsfsts
.hsf_status
.flcinprog
== 0) {
1418 * Successful in waiting for previous cycle to timeout,
1419 * now set the Flash Cycle Done.
1421 hsfsts
.hsf_status
.flcdone
= 1;
1422 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1424 hw_dbg(hw
, "Flash controller busy, cannot get access");
1432 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1433 * @hw: pointer to the HW structure
1434 * @timeout: maximum time to wait for completion
1436 * This function starts a flash cycle and waits for its completion.
1438 static s32
e1000_flash_cycle_ich8lan(struct e1000_hw
*hw
, u32 timeout
)
1440 union ich8_hws_flash_ctrl hsflctl
;
1441 union ich8_hws_flash_status hsfsts
;
1442 s32 ret_val
= -E1000_ERR_NVM
;
1445 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1446 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1447 hsflctl
.hsf_ctrl
.flcgo
= 1;
1448 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1450 /* wait till FDONE bit is set to 1 */
1452 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1453 if (hsfsts
.hsf_status
.flcdone
== 1)
1456 } while (i
++ < timeout
);
1458 if (hsfsts
.hsf_status
.flcdone
== 1 && hsfsts
.hsf_status
.flcerr
== 0)
1465 * e1000_read_flash_word_ich8lan - Read word from flash
1466 * @hw: pointer to the HW structure
1467 * @offset: offset to data location
1468 * @data: pointer to the location for storing the data
1470 * Reads the flash word at offset into data. Offset is converted
1471 * to bytes before read.
1473 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1476 /* Must convert offset into bytes. */
1479 return e1000_read_flash_data_ich8lan(hw
, offset
, 2, data
);
1483 * e1000_read_flash_byte_ich8lan - Read byte from flash
1484 * @hw: pointer to the HW structure
1485 * @offset: The offset of the byte to read.
1486 * @data: Pointer to a byte to store the value read.
1488 * Reads a single byte from the NVM using the flash access registers.
1490 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1496 ret_val
= e1000_read_flash_data_ich8lan(hw
, offset
, 1, &word
);
1506 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1507 * @hw: pointer to the HW structure
1508 * @offset: The offset (in bytes) of the byte or word to read.
1509 * @size: Size of data to read, 1=byte 2=word
1510 * @data: Pointer to the word to store the value read.
1512 * Reads a byte or word from the NVM using the flash access registers.
1514 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1517 union ich8_hws_flash_status hsfsts
;
1518 union ich8_hws_flash_ctrl hsflctl
;
1519 u32 flash_linear_addr
;
1521 s32 ret_val
= -E1000_ERR_NVM
;
1524 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
1525 return -E1000_ERR_NVM
;
1527 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
1528 hw
->nvm
.flash_base_addr
;
1533 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
1537 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1538 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1539 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
1540 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
1541 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1543 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
1545 ret_val
= e1000_flash_cycle_ich8lan(hw
,
1546 ICH_FLASH_READ_COMMAND_TIMEOUT
);
1549 * Check if FCERR is set to 1, if set to 1, clear it
1550 * and try the whole sequence a few more times, else
1551 * read in (shift in) the Flash Data0, the order is
1552 * least significant byte first msb to lsb
1555 flash_data
= er32flash(ICH_FLASH_FDATA0
);
1557 *data
= (u8
)(flash_data
& 0x000000FF);
1558 } else if (size
== 2) {
1559 *data
= (u16
)(flash_data
& 0x0000FFFF);
1564 * If we've gotten here, then things are probably
1565 * completely hosed, but if the error condition is
1566 * detected, it won't hurt to give it another try...
1567 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1569 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1570 if (hsfsts
.hsf_status
.flcerr
== 1) {
1571 /* Repeat for some time before giving up. */
1573 } else if (hsfsts
.hsf_status
.flcdone
== 0) {
1574 hw_dbg(hw
, "Timeout error - flash cycle "
1575 "did not complete.");
1579 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
1585 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1586 * @hw: pointer to the HW structure
1587 * @offset: The offset (in bytes) of the word(s) to write.
1588 * @words: Size of data to write in words
1589 * @data: Pointer to the word(s) to write at offset.
1591 * Writes a byte or word to the NVM using the flash access registers.
1593 static s32
e1000_write_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
1596 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1597 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1600 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
1602 hw_dbg(hw
, "nvm parameter(s) out of bounds\n");
1603 return -E1000_ERR_NVM
;
1606 for (i
= 0; i
< words
; i
++) {
1607 dev_spec
->shadow_ram
[offset
+i
].modified
= 1;
1608 dev_spec
->shadow_ram
[offset
+i
].value
= data
[i
];
1615 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1616 * @hw: pointer to the HW structure
1618 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1619 * which writes the checksum to the shadow ram. The changes in the shadow
1620 * ram are then committed to the EEPROM by processing each bank at a time
1621 * checking for the modified bit and writing only the pending changes.
1622 * After a successful commit, the shadow ram is cleared and is ready for
1625 static s32
e1000_update_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
1627 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1628 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1629 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
, bank
;
1633 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
1637 if (nvm
->type
!= e1000_nvm_flash_sw
)
1640 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1645 * We're writing to the opposite bank so if we're on bank 1,
1646 * write to bank 0 etc. We also need to erase the segment that
1647 * is going to be written
1649 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
1651 hw_dbg(hw
, "Could not detect valid bank, assuming bank 0\n");
1656 new_bank_offset
= nvm
->flash_bank_size
;
1657 old_bank_offset
= 0;
1658 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 1);
1660 e1000_release_swflag_ich8lan(hw
);
1664 old_bank_offset
= nvm
->flash_bank_size
;
1665 new_bank_offset
= 0;
1666 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 0);
1668 e1000_release_swflag_ich8lan(hw
);
1673 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
1675 * Determine whether to write the value stored
1676 * in the other NVM bank or a modified value stored
1679 if (dev_spec
->shadow_ram
[i
].modified
) {
1680 data
= dev_spec
->shadow_ram
[i
].value
;
1682 ret_val
= e1000_read_flash_word_ich8lan(hw
, i
+
1690 * If the word is 0x13, then make sure the signature bits
1691 * (15:14) are 11b until the commit has completed.
1692 * This will allow us to write 10b which indicates the
1693 * signature is valid. We want to do this after the write
1694 * has completed so that we don't mark the segment valid
1695 * while the write is still in progress
1697 if (i
== E1000_ICH_NVM_SIG_WORD
)
1698 data
|= E1000_ICH_NVM_SIG_MASK
;
1700 /* Convert offset to bytes. */
1701 act_offset
= (i
+ new_bank_offset
) << 1;
1704 /* Write the bytes to the new bank. */
1705 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1712 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1720 * Don't bother writing the segment valid bits if sector
1721 * programming failed.
1724 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1725 hw_dbg(hw
, "Flash commit failed.\n");
1726 e1000_release_swflag_ich8lan(hw
);
1731 * Finally validate the new segment by setting bit 15:14
1732 * to 10b in word 0x13 , this can be done without an
1733 * erase as well since these bits are 11 to start with
1734 * and we need to change bit 14 to 0b
1736 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
1737 ret_val
= e1000_read_flash_word_ich8lan(hw
, act_offset
, &data
);
1739 e1000_release_swflag_ich8lan(hw
);
1743 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1747 e1000_release_swflag_ich8lan(hw
);
1752 * And invalidate the previously valid segment by setting
1753 * its signature word (0x13) high_byte to 0b. This can be
1754 * done without an erase because flash erase sets all bits
1755 * to 1's. We can write 1's to 0's without an erase
1757 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
1758 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
, act_offset
, 0);
1760 e1000_release_swflag_ich8lan(hw
);
1764 /* Great! Everything worked, we can now clear the cached entries. */
1765 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
1766 dev_spec
->shadow_ram
[i
].modified
= 0;
1767 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
1770 e1000_release_swflag_ich8lan(hw
);
1773 * Reload the EEPROM, or else modifications will not appear
1774 * until after the next adapter reset.
1776 e1000e_reload_nvm(hw
);
1781 hw_dbg(hw
, "NVM update error: %d\n", ret_val
);
1787 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1788 * @hw: pointer to the HW structure
1790 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1791 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1792 * calculated, in which case we need to calculate the checksum and set bit 6.
1794 static s32
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
1800 * Read 0x19 and check bit 6. If this bit is 0, the checksum
1801 * needs to be fixed. This bit is an indication that the NVM
1802 * was prepared by OEM software and did not calculate the
1803 * checksum...a likely scenario.
1805 ret_val
= e1000_read_nvm(hw
, 0x19, 1, &data
);
1809 if ((data
& 0x40) == 0) {
1811 ret_val
= e1000_write_nvm(hw
, 0x19, 1, &data
);
1814 ret_val
= e1000e_update_nvm_checksum(hw
);
1819 return e1000e_validate_nvm_checksum_generic(hw
);
1823 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1824 * @hw: pointer to the HW structure
1826 * To prevent malicious write/erase of the NVM, set it to be read-only
1827 * so that the hardware ignores all write/erase cycles of the NVM via
1828 * the flash control registers. The shadow-ram copy of the NVM will
1829 * still be updated, however any updates to this copy will not stick
1830 * across driver reloads.
1832 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw
*hw
)
1834 union ich8_flash_protected_range pr0
;
1835 union ich8_hws_flash_status hsfsts
;
1839 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1843 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
1845 /* Write-protect GbE Sector of NVM */
1846 pr0
.regval
= er32flash(ICH_FLASH_PR0
);
1847 pr0
.range
.base
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
1848 pr0
.range
.limit
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
);
1849 pr0
.range
.wpe
= true;
1850 ew32flash(ICH_FLASH_PR0
, pr0
.regval
);
1853 * Lock down a subset of GbE Flash Control Registers, e.g.
1854 * PR0 to prevent the write-protection from being lifted.
1855 * Once FLOCKDN is set, the registers protected by it cannot
1856 * be written until FLOCKDN is cleared by a hardware reset.
1858 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1859 hsfsts
.hsf_status
.flockdn
= true;
1860 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1862 e1000_release_swflag_ich8lan(hw
);
1866 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1867 * @hw: pointer to the HW structure
1868 * @offset: The offset (in bytes) of the byte/word to read.
1869 * @size: Size of data to read, 1=byte 2=word
1870 * @data: The byte(s) to write to the NVM.
1872 * Writes one/two bytes to the NVM using the flash access registers.
1874 static s32
e1000_write_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1877 union ich8_hws_flash_status hsfsts
;
1878 union ich8_hws_flash_ctrl hsflctl
;
1879 u32 flash_linear_addr
;
1884 if (size
< 1 || size
> 2 || data
> size
* 0xff ||
1885 offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
1886 return -E1000_ERR_NVM
;
1888 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
1889 hw
->nvm
.flash_base_addr
;
1894 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
1898 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1899 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1900 hsflctl
.hsf_ctrl
.fldbcount
= size
-1;
1901 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
1902 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1904 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
1907 flash_data
= (u32
)data
& 0x00FF;
1909 flash_data
= (u32
)data
;
1911 ew32flash(ICH_FLASH_FDATA0
, flash_data
);
1914 * check if FCERR is set to 1 , if set to 1, clear it
1915 * and try the whole sequence a few more times else done
1917 ret_val
= e1000_flash_cycle_ich8lan(hw
,
1918 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
1923 * If we're here, then things are most likely
1924 * completely hosed, but if the error condition
1925 * is detected, it won't hurt to give it another
1926 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1928 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1929 if (hsfsts
.hsf_status
.flcerr
== 1)
1930 /* Repeat for some time before giving up. */
1932 if (hsfsts
.hsf_status
.flcdone
== 0) {
1933 hw_dbg(hw
, "Timeout error - flash cycle "
1934 "did not complete.");
1937 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
1943 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1944 * @hw: pointer to the HW structure
1945 * @offset: The index of the byte to read.
1946 * @data: The byte to write to the NVM.
1948 * Writes a single byte to the NVM using the flash access registers.
1950 static s32
e1000_write_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1953 u16 word
= (u16
)data
;
1955 return e1000_write_flash_data_ich8lan(hw
, offset
, 1, word
);
1959 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1960 * @hw: pointer to the HW structure
1961 * @offset: The offset of the byte to write.
1962 * @byte: The byte to write to the NVM.
1964 * Writes a single byte to the NVM using the flash access registers.
1965 * Goes through a retry algorithm before giving up.
1967 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
1968 u32 offset
, u8 byte
)
1971 u16 program_retries
;
1973 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
1977 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
1978 hw_dbg(hw
, "Retrying Byte %2.2X at offset %u\n", byte
, offset
);
1980 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
1984 if (program_retries
== 100)
1985 return -E1000_ERR_NVM
;
1991 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1992 * @hw: pointer to the HW structure
1993 * @bank: 0 for first bank, 1 for second bank, etc.
1995 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1996 * bank N is 4096 * N + flash_reg_addr.
1998 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
)
2000 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2001 union ich8_hws_flash_status hsfsts
;
2002 union ich8_hws_flash_ctrl hsflctl
;
2003 u32 flash_linear_addr
;
2004 /* bank size is in 16bit words - adjust to bytes */
2005 u32 flash_bank_size
= nvm
->flash_bank_size
* 2;
2012 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2015 * Determine HW Sector size: Read BERASE bits of hw flash status
2017 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2018 * consecutive sectors. The start index for the nth Hw sector
2019 * can be calculated as = bank * 4096 + n * 256
2020 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2021 * The start index for the nth Hw sector can be calculated
2023 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2024 * (ich9 only, otherwise error condition)
2025 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2027 switch (hsfsts
.hsf_status
.berasesz
) {
2029 /* Hw sector size 256 */
2030 sector_size
= ICH_FLASH_SEG_SIZE_256
;
2031 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_256
;
2034 sector_size
= ICH_FLASH_SEG_SIZE_4K
;
2038 sector_size
= ICH_FLASH_SEG_SIZE_8K
;
2042 sector_size
= ICH_FLASH_SEG_SIZE_64K
;
2046 return -E1000_ERR_NVM
;
2049 /* Start with the base address, then add the sector offset. */
2050 flash_linear_addr
= hw
->nvm
.flash_base_addr
;
2051 flash_linear_addr
+= (bank
) ? flash_bank_size
: 0;
2053 for (j
= 0; j
< iteration
; j
++) {
2056 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2061 * Write a value 11 (block Erase) in Flash
2062 * Cycle field in hw flash control
2064 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2065 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_ERASE
;
2066 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2069 * Write the last 24 bits of an index within the
2070 * block into Flash Linear address field in Flash
2073 flash_linear_addr
+= (j
* sector_size
);
2074 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2076 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2077 ICH_FLASH_ERASE_COMMAND_TIMEOUT
);
2082 * Check if FCERR is set to 1. If 1,
2083 * clear it and try the whole sequence
2084 * a few more times else Done
2086 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2087 if (hsfsts
.hsf_status
.flcerr
== 1)
2088 /* repeat for some time before giving up */
2090 else if (hsfsts
.hsf_status
.flcdone
== 0)
2092 } while (++count
< ICH_FLASH_CYCLE_REPEAT_COUNT
);
2099 * e1000_valid_led_default_ich8lan - Set the default LED settings
2100 * @hw: pointer to the HW structure
2101 * @data: Pointer to the LED settings
2103 * Reads the LED default settings from the NVM to data. If the NVM LED
2104 * settings is all 0's or F's, set the LED default to a valid LED default
2107 static s32
e1000_valid_led_default_ich8lan(struct e1000_hw
*hw
, u16
*data
)
2111 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
2113 hw_dbg(hw
, "NVM Read Error\n");
2117 if (*data
== ID_LED_RESERVED_0000
||
2118 *data
== ID_LED_RESERVED_FFFF
)
2119 *data
= ID_LED_DEFAULT_ICH8LAN
;
2125 * e1000_id_led_init_pchlan - store LED configurations
2126 * @hw: pointer to the HW structure
2128 * PCH does not control LEDs via the LEDCTL register, rather it uses
2129 * the PHY LED configuration register.
2131 * PCH also does not have an "always on" or "always off" mode which
2132 * complicates the ID feature. Instead of using the "on" mode to indicate
2133 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2134 * use "link_up" mode. The LEDs will still ID on request if there is no
2135 * link based on logic in e1000_led_[on|off]_pchlan().
2137 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
)
2139 struct e1000_mac_info
*mac
= &hw
->mac
;
2141 const u32 ledctl_on
= E1000_LEDCTL_MODE_LINK_UP
;
2142 const u32 ledctl_off
= E1000_LEDCTL_MODE_LINK_UP
| E1000_PHY_LED0_IVRT
;
2143 u16 data
, i
, temp
, shift
;
2145 /* Get default ID LED modes */
2146 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
2150 mac
->ledctl_default
= er32(LEDCTL
);
2151 mac
->ledctl_mode1
= mac
->ledctl_default
;
2152 mac
->ledctl_mode2
= mac
->ledctl_default
;
2154 for (i
= 0; i
< 4; i
++) {
2155 temp
= (data
>> (i
<< 2)) & E1000_LEDCTL_LED0_MODE_MASK
;
2158 case ID_LED_ON1_DEF2
:
2159 case ID_LED_ON1_ON2
:
2160 case ID_LED_ON1_OFF2
:
2161 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2162 mac
->ledctl_mode1
|= (ledctl_on
<< shift
);
2164 case ID_LED_OFF1_DEF2
:
2165 case ID_LED_OFF1_ON2
:
2166 case ID_LED_OFF1_OFF2
:
2167 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2168 mac
->ledctl_mode1
|= (ledctl_off
<< shift
);
2175 case ID_LED_DEF1_ON2
:
2176 case ID_LED_ON1_ON2
:
2177 case ID_LED_OFF1_ON2
:
2178 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2179 mac
->ledctl_mode2
|= (ledctl_on
<< shift
);
2181 case ID_LED_DEF1_OFF2
:
2182 case ID_LED_ON1_OFF2
:
2183 case ID_LED_OFF1_OFF2
:
2184 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2185 mac
->ledctl_mode2
|= (ledctl_off
<< shift
);
2198 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2199 * @hw: pointer to the HW structure
2201 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2202 * register, so the the bus width is hard coded.
2204 static s32
e1000_get_bus_info_ich8lan(struct e1000_hw
*hw
)
2206 struct e1000_bus_info
*bus
= &hw
->bus
;
2209 ret_val
= e1000e_get_bus_info_pcie(hw
);
2212 * ICH devices are "PCI Express"-ish. They have
2213 * a configuration space, but do not contain
2214 * PCI Express Capability registers, so bus width
2215 * must be hardcoded.
2217 if (bus
->width
== e1000_bus_width_unknown
)
2218 bus
->width
= e1000_bus_width_pcie_x1
;
2224 * e1000_reset_hw_ich8lan - Reset the hardware
2225 * @hw: pointer to the HW structure
2227 * Does a full reset of the hardware which includes a reset of the PHY and
2230 static s32
e1000_reset_hw_ich8lan(struct e1000_hw
*hw
)
2236 * Prevent the PCI-E bus from sticking if there is no TLP connection
2237 * on the last TLP read/write transaction when MAC is reset.
2239 ret_val
= e1000e_disable_pcie_master(hw
);
2241 hw_dbg(hw
, "PCI-E Master disable polling has failed.\n");
2244 hw_dbg(hw
, "Masking off all interrupts\n");
2245 ew32(IMC
, 0xffffffff);
2248 * Disable the Transmit and Receive units. Then delay to allow
2249 * any pending transactions to complete before we hit the MAC
2250 * with the global reset.
2253 ew32(TCTL
, E1000_TCTL_PSP
);
2258 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2259 if (hw
->mac
.type
== e1000_ich8lan
) {
2260 /* Set Tx and Rx buffer allocation to 8k apiece. */
2261 ew32(PBA
, E1000_PBA_8K
);
2262 /* Set Packet Buffer Size to 16k. */
2263 ew32(PBS
, E1000_PBS_16K
);
2268 if (!e1000_check_reset_block(hw
)) {
2269 /* Clear PHY Reset Asserted bit */
2270 if (hw
->mac
.type
>= e1000_pchlan
) {
2271 u32 status
= er32(STATUS
);
2272 ew32(STATUS
, status
& ~E1000_STATUS_PHYRA
);
2276 * PHY HW reset requires MAC CORE reset at the same
2277 * time to make sure the interface between MAC and the
2278 * external PHY is reset.
2280 ctrl
|= E1000_CTRL_PHY_RST
;
2282 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
2283 /* Whether or not the swflag was acquired, we need to reset the part */
2284 hw_dbg(hw
, "Issuing a global reset to ich8lan\n");
2285 ew32(CTRL
, (ctrl
| E1000_CTRL_RST
));
2289 e1000_release_swflag_ich8lan(hw
);
2291 if (ctrl
& E1000_CTRL_PHY_RST
)
2292 ret_val
= hw
->phy
.ops
.get_cfg_done(hw
);
2294 if (hw
->mac
.type
>= e1000_ich10lan
) {
2295 e1000_lan_init_done_ich8lan(hw
);
2297 ret_val
= e1000e_get_auto_rd_done(hw
);
2300 * When auto config read does not complete, do not
2301 * return with an error. This can happen in situations
2302 * where there is no eeprom and prevents getting link.
2304 hw_dbg(hw
, "Auto Read Done did not complete\n");
2309 * For PCH, this write will make sure that any noise
2310 * will be detected as a CRC error and be dropped rather than show up
2311 * as a bad packet to the DMA engine.
2313 if (hw
->mac
.type
== e1000_pchlan
)
2314 ew32(CRC_OFFSET
, 0x65656565);
2316 ew32(IMC
, 0xffffffff);
2319 kab
= er32(KABGTXD
);
2320 kab
|= E1000_KABGTXD_BGSQLBIAS
;
2323 if (hw
->mac
.type
== e1000_pchlan
)
2324 ret_val
= e1000_hv_phy_workarounds_ich8lan(hw
);
2330 * e1000_init_hw_ich8lan - Initialize the hardware
2331 * @hw: pointer to the HW structure
2333 * Prepares the hardware for transmit and receive by doing the following:
2334 * - initialize hardware bits
2335 * - initialize LED identification
2336 * - setup receive address registers
2337 * - setup flow control
2338 * - setup transmit descriptors
2339 * - clear statistics
2341 static s32
e1000_init_hw_ich8lan(struct e1000_hw
*hw
)
2343 struct e1000_mac_info
*mac
= &hw
->mac
;
2344 u32 ctrl_ext
, txdctl
, snoop
;
2348 e1000_initialize_hw_bits_ich8lan(hw
);
2350 /* Initialize identification LED */
2351 ret_val
= mac
->ops
.id_led_init(hw
);
2353 hw_dbg(hw
, "Error initializing identification LED\n");
2357 /* Setup the receive address. */
2358 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
2360 /* Zero out the Multicast HASH table */
2361 hw_dbg(hw
, "Zeroing the MTA\n");
2362 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
2363 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
2366 * The 82578 Rx buffer will stall if wakeup is enabled in host and
2367 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
2368 * Reset the phy after disabling host wakeup to reset the Rx buffer.
2370 if (hw
->phy
.type
== e1000_phy_82578
) {
2371 hw
->phy
.ops
.read_phy_reg(hw
, BM_WUC
, &i
);
2372 ret_val
= e1000_phy_hw_reset_ich8lan(hw
);
2377 /* Setup link and flow control */
2378 ret_val
= e1000_setup_link_ich8lan(hw
);
2380 /* Set the transmit descriptor write-back policy for both queues */
2381 txdctl
= er32(TXDCTL(0));
2382 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
2383 E1000_TXDCTL_FULL_TX_DESC_WB
;
2384 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
2385 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
2386 ew32(TXDCTL(0), txdctl
);
2387 txdctl
= er32(TXDCTL(1));
2388 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
2389 E1000_TXDCTL_FULL_TX_DESC_WB
;
2390 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
2391 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
2392 ew32(TXDCTL(1), txdctl
);
2395 * ICH8 has opposite polarity of no_snoop bits.
2396 * By default, we should use snoop behavior.
2398 if (mac
->type
== e1000_ich8lan
)
2399 snoop
= PCIE_ICH8_SNOOP_ALL
;
2401 snoop
= (u32
) ~(PCIE_NO_SNOOP_ALL
);
2402 e1000e_set_pcie_no_snoop(hw
, snoop
);
2404 ctrl_ext
= er32(CTRL_EXT
);
2405 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
2406 ew32(CTRL_EXT
, ctrl_ext
);
2409 * Clear all of the statistics registers (clear on read). It is
2410 * important that we do this after we have tried to establish link
2411 * because the symbol error count will increment wildly if there
2414 e1000_clear_hw_cntrs_ich8lan(hw
);
2419 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2420 * @hw: pointer to the HW structure
2422 * Sets/Clears required hardware bits necessary for correctly setting up the
2423 * hardware for transmit and receive.
2425 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
)
2429 /* Extended Device Control */
2430 reg
= er32(CTRL_EXT
);
2432 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2433 if (hw
->mac
.type
>= e1000_pchlan
)
2434 reg
|= E1000_CTRL_EXT_PHYPDEN
;
2435 ew32(CTRL_EXT
, reg
);
2437 /* Transmit Descriptor Control 0 */
2438 reg
= er32(TXDCTL(0));
2440 ew32(TXDCTL(0), reg
);
2442 /* Transmit Descriptor Control 1 */
2443 reg
= er32(TXDCTL(1));
2445 ew32(TXDCTL(1), reg
);
2447 /* Transmit Arbitration Control 0 */
2448 reg
= er32(TARC(0));
2449 if (hw
->mac
.type
== e1000_ich8lan
)
2450 reg
|= (1 << 28) | (1 << 29);
2451 reg
|= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2454 /* Transmit Arbitration Control 1 */
2455 reg
= er32(TARC(1));
2456 if (er32(TCTL
) & E1000_TCTL_MULR
)
2460 reg
|= (1 << 24) | (1 << 26) | (1 << 30);
2464 if (hw
->mac
.type
== e1000_ich8lan
) {
2472 * e1000_setup_link_ich8lan - Setup flow control and link settings
2473 * @hw: pointer to the HW structure
2475 * Determines which flow control settings to use, then configures flow
2476 * control. Calls the appropriate media-specific link configuration
2477 * function. Assuming the adapter has a valid link partner, a valid link
2478 * should be established. Assumes the hardware has previously been reset
2479 * and the transmitter and receiver are not enabled.
2481 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
)
2485 if (e1000_check_reset_block(hw
))
2489 * ICH parts do not have a word in the NVM to determine
2490 * the default flow control setting, so we explicitly
2493 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
2494 /* Workaround h/w hang when Tx flow control enabled */
2495 if (hw
->mac
.type
== e1000_pchlan
)
2496 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
2498 hw
->fc
.requested_mode
= e1000_fc_full
;
2502 * Save off the requested flow control mode for use later. Depending
2503 * on the link partner's capabilities, we may or may not use this mode.
2505 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
2507 hw_dbg(hw
, "After fix-ups FlowControl is now = %x\n",
2508 hw
->fc
.current_mode
);
2510 /* Continue to configure the copper link. */
2511 ret_val
= e1000_setup_copper_link_ich8lan(hw
);
2515 ew32(FCTTV
, hw
->fc
.pause_time
);
2516 if ((hw
->phy
.type
== e1000_phy_82578
) ||
2517 (hw
->phy
.type
== e1000_phy_82577
)) {
2518 ret_val
= hw
->phy
.ops
.write_phy_reg(hw
,
2519 PHY_REG(BM_PORT_CTRL_PAGE
, 27),
2525 return e1000e_set_fc_watermarks(hw
);
2529 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2530 * @hw: pointer to the HW structure
2532 * Configures the kumeran interface to the PHY to wait the appropriate time
2533 * when polling the PHY, then call the generic setup_copper_link to finish
2534 * configuring the copper link.
2536 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
)
2543 ctrl
|= E1000_CTRL_SLU
;
2544 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
2548 * Set the mac to wait the maximum time between each iteration
2549 * and increase the max iterations when polling the phy;
2550 * this fixes erroneous timeouts at 10Mbps.
2552 ret_val
= e1000e_write_kmrn_reg(hw
, GG82563_REG(0x34, 4), 0xFFFF);
2555 ret_val
= e1000e_read_kmrn_reg(hw
, GG82563_REG(0x34, 9), ®_data
);
2559 ret_val
= e1000e_write_kmrn_reg(hw
, GG82563_REG(0x34, 9), reg_data
);
2563 switch (hw
->phy
.type
) {
2564 case e1000_phy_igp_3
:
2565 ret_val
= e1000e_copper_link_setup_igp(hw
);
2570 case e1000_phy_82578
:
2571 ret_val
= e1000e_copper_link_setup_m88(hw
);
2575 case e1000_phy_82577
:
2576 ret_val
= e1000_copper_link_setup_82577(hw
);
2581 ret_val
= hw
->phy
.ops
.read_phy_reg(hw
, IFE_PHY_MDIX_CONTROL
,
2586 reg_data
&= ~IFE_PMC_AUTO_MDIX
;
2588 switch (hw
->phy
.mdix
) {
2590 reg_data
&= ~IFE_PMC_FORCE_MDIX
;
2593 reg_data
|= IFE_PMC_FORCE_MDIX
;
2597 reg_data
|= IFE_PMC_AUTO_MDIX
;
2600 ret_val
= hw
->phy
.ops
.write_phy_reg(hw
, IFE_PHY_MDIX_CONTROL
,
2608 return e1000e_setup_copper_link(hw
);
2612 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2613 * @hw: pointer to the HW structure
2614 * @speed: pointer to store current link speed
2615 * @duplex: pointer to store the current link duplex
2617 * Calls the generic get_speed_and_duplex to retrieve the current link
2618 * information and then calls the Kumeran lock loss workaround for links at
2621 static s32
e1000_get_link_up_info_ich8lan(struct e1000_hw
*hw
, u16
*speed
,
2626 ret_val
= e1000e_get_speed_and_duplex_copper(hw
, speed
, duplex
);
2630 if ((hw
->mac
.type
== e1000_pchlan
) && (*speed
== SPEED_1000
)) {
2631 ret_val
= e1000e_write_kmrn_reg(hw
,
2632 E1000_KMRNCTRLSTA_K1_CONFIG
,
2633 E1000_KMRNCTRLSTA_K1_DISABLE
);
2638 if ((hw
->mac
.type
== e1000_ich8lan
) &&
2639 (hw
->phy
.type
== e1000_phy_igp_3
) &&
2640 (*speed
== SPEED_1000
)) {
2641 ret_val
= e1000_kmrn_lock_loss_workaround_ich8lan(hw
);
2648 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2649 * @hw: pointer to the HW structure
2651 * Work-around for 82566 Kumeran PCS lock loss:
2652 * On link status change (i.e. PCI reset, speed change) and link is up and
2654 * 0) if workaround is optionally disabled do nothing
2655 * 1) wait 1ms for Kumeran link to come up
2656 * 2) check Kumeran Diagnostic register PCS lock loss bit
2657 * 3) if not set the link is locked (all is good), otherwise...
2659 * 5) repeat up to 10 times
2660 * Note: this is only called for IGP3 copper when speed is 1gb.
2662 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
)
2664 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2670 if (!dev_spec
->kmrn_lock_loss_workaround_enabled
)
2674 * Make sure link is up before proceeding. If not just return.
2675 * Attempting this while link is negotiating fouled up link
2678 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
2682 for (i
= 0; i
< 10; i
++) {
2683 /* read once to clear */
2684 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
2687 /* and again to get new status */
2688 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
2692 /* check for PCS lock */
2693 if (!(data
& IGP3_KMRN_DIAG_PCS_LOCK_LOSS
))
2696 /* Issue PHY reset */
2697 e1000_phy_hw_reset(hw
);
2700 /* Disable GigE link negotiation */
2701 phy_ctrl
= er32(PHY_CTRL
);
2702 phy_ctrl
|= (E1000_PHY_CTRL_GBE_DISABLE
|
2703 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
2704 ew32(PHY_CTRL
, phy_ctrl
);
2707 * Call gig speed drop workaround on Gig disable before accessing
2710 e1000e_gig_downshift_workaround_ich8lan(hw
);
2712 /* unable to acquire PCS lock */
2713 return -E1000_ERR_PHY
;
2717 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2718 * @hw: pointer to the HW structure
2719 * @state: boolean value used to set the current Kumeran workaround state
2721 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2722 * /disabled - FALSE).
2724 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
,
2727 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2729 if (hw
->mac
.type
!= e1000_ich8lan
) {
2730 hw_dbg(hw
, "Workaround applies to ICH8 only.\n");
2734 dev_spec
->kmrn_lock_loss_workaround_enabled
= state
;
2738 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2739 * @hw: pointer to the HW structure
2741 * Workaround for 82566 power-down on D3 entry:
2742 * 1) disable gigabit link
2743 * 2) write VR power-down enable
2745 * Continue if successful, else issue LCD reset and repeat
2747 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw
*hw
)
2753 if (hw
->phy
.type
!= e1000_phy_igp_3
)
2756 /* Try the workaround twice (if needed) */
2759 reg
= er32(PHY_CTRL
);
2760 reg
|= (E1000_PHY_CTRL_GBE_DISABLE
|
2761 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
2762 ew32(PHY_CTRL
, reg
);
2765 * Call gig speed drop workaround on Gig disable before
2766 * accessing any PHY registers
2768 if (hw
->mac
.type
== e1000_ich8lan
)
2769 e1000e_gig_downshift_workaround_ich8lan(hw
);
2771 /* Write VR power-down enable */
2772 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
2773 data
&= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
2774 e1e_wphy(hw
, IGP3_VR_CTRL
, data
| IGP3_VR_CTRL_MODE_SHUTDOWN
);
2776 /* Read it back and test */
2777 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
2778 data
&= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
2779 if ((data
== IGP3_VR_CTRL_MODE_SHUTDOWN
) || retry
)
2782 /* Issue PHY reset and repeat at most one more time */
2784 ew32(CTRL
, reg
| E1000_CTRL_PHY_RST
);
2790 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2791 * @hw: pointer to the HW structure
2793 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2794 * LPLU, Gig disable, MDIC PHY reset):
2795 * 1) Set Kumeran Near-end loopback
2796 * 2) Clear Kumeran Near-end loopback
2797 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2799 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw
*hw
)
2804 if ((hw
->mac
.type
!= e1000_ich8lan
) ||
2805 (hw
->phy
.type
!= e1000_phy_igp_3
))
2808 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
2812 reg_data
|= E1000_KMRNCTRLSTA_DIAG_NELPBK
;
2813 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
2817 reg_data
&= ~E1000_KMRNCTRLSTA_DIAG_NELPBK
;
2818 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
2823 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2824 * @hw: pointer to the HW structure
2826 * During S0 to Sx transition, it is possible the link remains at gig
2827 * instead of negotiating to a lower speed. Before going to Sx, set
2828 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2831 * Should only be called for applicable parts.
2833 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw
*hw
)
2837 switch (hw
->mac
.type
) {
2839 case e1000_ich10lan
:
2841 phy_ctrl
= er32(PHY_CTRL
);
2842 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
|
2843 E1000_PHY_CTRL_GBE_DISABLE
;
2844 ew32(PHY_CTRL
, phy_ctrl
);
2846 /* Workaround SWFLAG unexpectedly set during S0->Sx */
2847 if (hw
->mac
.type
== e1000_pchlan
)
2857 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2858 * @hw: pointer to the HW structure
2860 * Return the LED back to the default configuration.
2862 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
)
2864 if (hw
->phy
.type
== e1000_phy_ife
)
2865 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
2867 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
2872 * e1000_led_on_ich8lan - Turn LEDs on
2873 * @hw: pointer to the HW structure
2877 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
)
2879 if (hw
->phy
.type
== e1000_phy_ife
)
2880 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
2881 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_ON
));
2883 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
2888 * e1000_led_off_ich8lan - Turn LEDs off
2889 * @hw: pointer to the HW structure
2891 * Turn off the LEDs.
2893 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
)
2895 if (hw
->phy
.type
== e1000_phy_ife
)
2896 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
2897 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_OFF
));
2899 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
2904 * e1000_setup_led_pchlan - Configures SW controllable LED
2905 * @hw: pointer to the HW structure
2907 * This prepares the SW controllable LED for use.
2909 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
)
2911 return hw
->phy
.ops
.write_phy_reg(hw
, HV_LED_CONFIG
,
2912 (u16
)hw
->mac
.ledctl_mode1
);
2916 * e1000_cleanup_led_pchlan - Restore the default LED operation
2917 * @hw: pointer to the HW structure
2919 * Return the LED back to the default configuration.
2921 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
)
2923 return hw
->phy
.ops
.write_phy_reg(hw
, HV_LED_CONFIG
,
2924 (u16
)hw
->mac
.ledctl_default
);
2928 * e1000_led_on_pchlan - Turn LEDs on
2929 * @hw: pointer to the HW structure
2933 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
)
2935 u16 data
= (u16
)hw
->mac
.ledctl_mode2
;
2939 * If no link, then turn LED on by setting the invert bit
2940 * for each LED that's mode is "link_up" in ledctl_mode2.
2942 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
2943 for (i
= 0; i
< 3; i
++) {
2944 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
2945 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
2946 E1000_LEDCTL_MODE_LINK_UP
)
2948 if (led
& E1000_PHY_LED0_IVRT
)
2949 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
2951 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
2955 return hw
->phy
.ops
.write_phy_reg(hw
, HV_LED_CONFIG
, data
);
2959 * e1000_led_off_pchlan - Turn LEDs off
2960 * @hw: pointer to the HW structure
2962 * Turn off the LEDs.
2964 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
)
2966 u16 data
= (u16
)hw
->mac
.ledctl_mode1
;
2970 * If no link, then turn LED off by clearing the invert bit
2971 * for each LED that's mode is "link_up" in ledctl_mode1.
2973 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
2974 for (i
= 0; i
< 3; i
++) {
2975 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
2976 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
2977 E1000_LEDCTL_MODE_LINK_UP
)
2979 if (led
& E1000_PHY_LED0_IVRT
)
2980 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
2982 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
2986 return hw
->phy
.ops
.write_phy_reg(hw
, HV_LED_CONFIG
, data
);
2990 * e1000_get_cfg_done_ich8lan - Read config done bit
2991 * @hw: pointer to the HW structure
2993 * Read the management control register for the config done bit for
2994 * completion status. NOTE: silicon which is EEPROM-less will fail trying
2995 * to read the config done bit, so an error is *ONLY* logged and returns
2996 * 0. If we were to return with error, EEPROM-less silicon
2997 * would not be able to be reset or change link.
2999 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
)
3003 if (hw
->mac
.type
>= e1000_pchlan
) {
3004 u32 status
= er32(STATUS
);
3006 if (status
& E1000_STATUS_PHYRA
)
3007 ew32(STATUS
, status
& ~E1000_STATUS_PHYRA
);
3010 "PHY Reset Asserted not set - needs delay\n");
3013 e1000e_get_cfg_done(hw
);
3015 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3016 if ((hw
->mac
.type
!= e1000_ich10lan
) &&
3017 (hw
->mac
.type
!= e1000_pchlan
)) {
3018 if (((er32(EECD
) & E1000_EECD_PRES
) == 0) &&
3019 (hw
->phy
.type
== e1000_phy_igp_3
)) {
3020 e1000e_phy_init_script_igp3(hw
);
3023 if (e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
)) {
3024 /* Maybe we should do a basic PHY config */
3025 hw_dbg(hw
, "EEPROM not present\n");
3026 return -E1000_ERR_CONFIG
;
3034 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3035 * @hw: pointer to the HW structure
3037 * Clears hardware counters specific to the silicon family and calls
3038 * clear_hw_cntrs_generic to clear all general purpose counters.
3040 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
)
3045 e1000e_clear_hw_cntrs_base(hw
);
3047 temp
= er32(ALGNERRC
);
3048 temp
= er32(RXERRC
);
3050 temp
= er32(CEXTERR
);
3052 temp
= er32(TSCTFC
);
3054 temp
= er32(MGTPRC
);
3055 temp
= er32(MGTPDC
);
3056 temp
= er32(MGTPTC
);
3059 temp
= er32(ICRXOC
);
3061 /* Clear PHY statistics registers */
3062 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3063 (hw
->phy
.type
== e1000_phy_82577
)) {
3064 hw
->phy
.ops
.read_phy_reg(hw
, HV_SCC_UPPER
, &phy_data
);
3065 hw
->phy
.ops
.read_phy_reg(hw
, HV_SCC_LOWER
, &phy_data
);
3066 hw
->phy
.ops
.read_phy_reg(hw
, HV_ECOL_UPPER
, &phy_data
);
3067 hw
->phy
.ops
.read_phy_reg(hw
, HV_ECOL_LOWER
, &phy_data
);
3068 hw
->phy
.ops
.read_phy_reg(hw
, HV_MCC_UPPER
, &phy_data
);
3069 hw
->phy
.ops
.read_phy_reg(hw
, HV_MCC_LOWER
, &phy_data
);
3070 hw
->phy
.ops
.read_phy_reg(hw
, HV_LATECOL_UPPER
, &phy_data
);
3071 hw
->phy
.ops
.read_phy_reg(hw
, HV_LATECOL_LOWER
, &phy_data
);
3072 hw
->phy
.ops
.read_phy_reg(hw
, HV_COLC_UPPER
, &phy_data
);
3073 hw
->phy
.ops
.read_phy_reg(hw
, HV_COLC_LOWER
, &phy_data
);
3074 hw
->phy
.ops
.read_phy_reg(hw
, HV_DC_UPPER
, &phy_data
);
3075 hw
->phy
.ops
.read_phy_reg(hw
, HV_DC_LOWER
, &phy_data
);
3076 hw
->phy
.ops
.read_phy_reg(hw
, HV_TNCRS_UPPER
, &phy_data
);
3077 hw
->phy
.ops
.read_phy_reg(hw
, HV_TNCRS_LOWER
, &phy_data
);
3081 static struct e1000_mac_operations ich8_mac_ops
= {
3082 .id_led_init
= e1000e_id_led_init
,
3083 .check_mng_mode
= e1000_check_mng_mode_ich8lan
,
3084 .check_for_link
= e1000_check_for_copper_link_ich8lan
,
3085 /* cleanup_led dependent on mac type */
3086 .clear_hw_cntrs
= e1000_clear_hw_cntrs_ich8lan
,
3087 .get_bus_info
= e1000_get_bus_info_ich8lan
,
3088 .get_link_up_info
= e1000_get_link_up_info_ich8lan
,
3089 /* led_on dependent on mac type */
3090 /* led_off dependent on mac type */
3091 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
3092 .reset_hw
= e1000_reset_hw_ich8lan
,
3093 .init_hw
= e1000_init_hw_ich8lan
,
3094 .setup_link
= e1000_setup_link_ich8lan
,
3095 .setup_physical_interface
= e1000_setup_copper_link_ich8lan
,
3096 /* id_led_init dependent on mac type */
3099 static struct e1000_phy_operations ich8_phy_ops
= {
3100 .acquire_phy
= e1000_acquire_swflag_ich8lan
,
3101 .check_reset_block
= e1000_check_reset_block_ich8lan
,
3103 .force_speed_duplex
= e1000_phy_force_speed_duplex_ich8lan
,
3104 .get_cfg_done
= e1000_get_cfg_done_ich8lan
,
3105 .get_cable_length
= e1000e_get_cable_length_igp_2
,
3106 .get_phy_info
= e1000_get_phy_info_ich8lan
,
3107 .read_phy_reg
= e1000e_read_phy_reg_igp
,
3108 .release_phy
= e1000_release_swflag_ich8lan
,
3109 .reset_phy
= e1000_phy_hw_reset_ich8lan
,
3110 .set_d0_lplu_state
= e1000_set_d0_lplu_state_ich8lan
,
3111 .set_d3_lplu_state
= e1000_set_d3_lplu_state_ich8lan
,
3112 .write_phy_reg
= e1000e_write_phy_reg_igp
,
3115 static struct e1000_nvm_operations ich8_nvm_ops
= {
3116 .acquire_nvm
= e1000_acquire_swflag_ich8lan
,
3117 .read_nvm
= e1000_read_nvm_ich8lan
,
3118 .release_nvm
= e1000_release_swflag_ich8lan
,
3119 .update_nvm
= e1000_update_nvm_checksum_ich8lan
,
3120 .valid_led_default
= e1000_valid_led_default_ich8lan
,
3121 .validate_nvm
= e1000_validate_nvm_checksum_ich8lan
,
3122 .write_nvm
= e1000_write_nvm_ich8lan
,
3125 struct e1000_info e1000_ich8_info
= {
3126 .mac
= e1000_ich8lan
,
3127 .flags
= FLAG_HAS_WOL
3129 | FLAG_RX_CSUM_ENABLED
3130 | FLAG_HAS_CTRLEXT_ON_LOAD
3135 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
3136 .get_variants
= e1000_get_variants_ich8lan
,
3137 .mac_ops
= &ich8_mac_ops
,
3138 .phy_ops
= &ich8_phy_ops
,
3139 .nvm_ops
= &ich8_nvm_ops
,
3142 struct e1000_info e1000_ich9_info
= {
3143 .mac
= e1000_ich9lan
,
3144 .flags
= FLAG_HAS_JUMBO_FRAMES
3147 | FLAG_RX_CSUM_ENABLED
3148 | FLAG_HAS_CTRLEXT_ON_LOAD
3154 .max_hw_frame_size
= DEFAULT_JUMBO
,
3155 .get_variants
= e1000_get_variants_ich8lan
,
3156 .mac_ops
= &ich8_mac_ops
,
3157 .phy_ops
= &ich8_phy_ops
,
3158 .nvm_ops
= &ich8_nvm_ops
,
3161 struct e1000_info e1000_ich10_info
= {
3162 .mac
= e1000_ich10lan
,
3163 .flags
= FLAG_HAS_JUMBO_FRAMES
3166 | FLAG_RX_CSUM_ENABLED
3167 | FLAG_HAS_CTRLEXT_ON_LOAD
3173 .max_hw_frame_size
= DEFAULT_JUMBO
,
3174 .get_variants
= e1000_get_variants_ich8lan
,
3175 .mac_ops
= &ich8_mac_ops
,
3176 .phy_ops
= &ich8_phy_ops
,
3177 .nvm_ops
= &ich8_nvm_ops
,
3180 struct e1000_info e1000_pch_info
= {
3181 .mac
= e1000_pchlan
,
3182 .flags
= FLAG_IS_ICH
3184 | FLAG_RX_CSUM_ENABLED
3185 | FLAG_HAS_CTRLEXT_ON_LOAD
3188 | FLAG_HAS_JUMBO_FRAMES
3191 .max_hw_frame_size
= 4096,
3192 .get_variants
= e1000_get_variants_ich8lan
,
3193 .mac_ops
= &ich8_mac_ops
,
3194 .phy_ops
= &ich8_phy_ops
,
3195 .nvm_ops
= &ich8_nvm_ops
,