1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
31 #define EFX_MAX_MTU (9 * 1024)
33 /* RX slow fill workqueue. If memory allocation fails in the fast path,
34 * a work item is pushed onto this work queue to retry the allocation later,
35 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
36 * workqueue, there is nothing to be gained in making it per NIC
38 static struct workqueue_struct
*refill_workqueue
;
40 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
41 * queued onto this work queue. This is not a per-nic work queue, because
42 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
44 static struct workqueue_struct
*reset_workqueue
;
46 /**************************************************************************
50 *************************************************************************/
53 * Use separate channels for TX and RX events
55 * Set this to 1 to use separate channels for TX and RX. It allows us
56 * to control interrupt affinity separately for TX and RX.
58 * This is only used in MSI-X interrupt mode
60 static unsigned int separate_tx_channels
;
61 module_param(separate_tx_channels
, uint
, 0644);
62 MODULE_PARM_DESC(separate_tx_channels
,
63 "Use separate channels for TX and RX");
65 /* This is the weight assigned to each of the (per-channel) virtual
68 static int napi_weight
= 64;
70 /* This is the time (in jiffies) between invocations of the hardware
71 * monitor, which checks for known hardware bugs and resets the
72 * hardware and driver as necessary.
74 unsigned int efx_monitor_interval
= 1 * HZ
;
76 /* This controls whether or not the driver will initialise devices
77 * with invalid MAC addresses stored in the EEPROM or flash. If true,
78 * such devices will be initialised with a random locally-generated
79 * MAC address. This allows for loading the sfc_mtd driver to
80 * reprogram the flash, even if the flash contents (including the MAC
81 * address) have previously been erased.
83 static unsigned int allow_bad_hwaddr
;
85 /* Initial interrupt moderation settings. They can be modified after
86 * module load with ethtool.
88 * The default for RX should strike a balance between increasing the
89 * round-trip latency and reducing overhead.
91 static unsigned int rx_irq_mod_usec
= 60;
93 /* Initial interrupt moderation settings. They can be modified after
94 * module load with ethtool.
96 * This default is chosen to ensure that a 10G link does not go idle
97 * while a TX queue is stopped after it has become full. A queue is
98 * restarted when it drops below half full. The time this takes (assuming
99 * worst case 3 descriptors per packet and 1024 descriptors) is
100 * 512 / 3 * 1.2 = 205 usec.
102 static unsigned int tx_irq_mod_usec
= 150;
104 /* This is the first interrupt mode to try out of:
109 static unsigned int interrupt_mode
;
111 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
112 * i.e. the number of CPUs among which we may distribute simultaneous
113 * interrupt handling.
115 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
116 * The default (0) means to assign an interrupt to each package (level II cache)
118 static unsigned int rss_cpus
;
119 module_param(rss_cpus
, uint
, 0444);
120 MODULE_PARM_DESC(rss_cpus
, "Number of CPUs to use for Receive-Side Scaling");
122 static int phy_flash_cfg
;
123 module_param(phy_flash_cfg
, int, 0644);
124 MODULE_PARM_DESC(phy_flash_cfg
, "Set PHYs into reflash mode initially");
126 static unsigned irq_adapt_low_thresh
= 10000;
127 module_param(irq_adapt_low_thresh
, uint
, 0644);
128 MODULE_PARM_DESC(irq_adapt_low_thresh
,
129 "Threshold score for reducing IRQ moderation");
131 static unsigned irq_adapt_high_thresh
= 20000;
132 module_param(irq_adapt_high_thresh
, uint
, 0644);
133 MODULE_PARM_DESC(irq_adapt_high_thresh
,
134 "Threshold score for increasing IRQ moderation");
136 /**************************************************************************
138 * Utility functions and prototypes
140 *************************************************************************/
141 static void efx_remove_channel(struct efx_channel
*channel
);
142 static void efx_remove_port(struct efx_nic
*efx
);
143 static void efx_fini_napi(struct efx_nic
*efx
);
144 static void efx_fini_channels(struct efx_nic
*efx
);
146 #define EFX_ASSERT_RESET_SERIALISED(efx) \
148 if (efx->state == STATE_RUNNING) \
152 /**************************************************************************
154 * Event queue processing
156 *************************************************************************/
158 /* Process channel's event queue
160 * This function is responsible for processing the event queue of a
161 * single channel. The caller must guarantee that this function will
162 * never be concurrently called more than once on the same channel,
163 * though different channels may be being processed concurrently.
165 static int efx_process_channel(struct efx_channel
*channel
, int rx_quota
)
167 struct efx_nic
*efx
= channel
->efx
;
170 if (unlikely(efx
->reset_pending
!= RESET_TYPE_NONE
||
174 rx_packets
= falcon_process_eventq(channel
, rx_quota
);
178 /* Deliver last RX packet. */
179 if (channel
->rx_pkt
) {
180 __efx_rx_packet(channel
, channel
->rx_pkt
,
181 channel
->rx_pkt_csummed
);
182 channel
->rx_pkt
= NULL
;
185 efx_rx_strategy(channel
);
187 efx_fast_push_rx_descriptors(&efx
->rx_queue
[channel
->channel
]);
192 /* Mark channel as finished processing
194 * Note that since we will not receive further interrupts for this
195 * channel before we finish processing and call the eventq_read_ack()
196 * method, there is no need to use the interrupt hold-off timers.
198 static inline void efx_channel_processed(struct efx_channel
*channel
)
200 /* The interrupt handler for this channel may set work_pending
201 * as soon as we acknowledge the events we've seen. Make sure
202 * it's cleared before then. */
203 channel
->work_pending
= false;
206 falcon_eventq_read_ack(channel
);
211 * NAPI guarantees serialisation of polls of the same device, which
212 * provides the guarantee required by efx_process_channel().
214 static int efx_poll(struct napi_struct
*napi
, int budget
)
216 struct efx_channel
*channel
=
217 container_of(napi
, struct efx_channel
, napi_str
);
220 EFX_TRACE(channel
->efx
, "channel %d NAPI poll executing on CPU %d\n",
221 channel
->channel
, raw_smp_processor_id());
223 rx_packets
= efx_process_channel(channel
, budget
);
225 if (rx_packets
< budget
) {
226 struct efx_nic
*efx
= channel
->efx
;
228 if (channel
->used_flags
& EFX_USED_BY_RX
&&
229 efx
->irq_rx_adaptive
&&
230 unlikely(++channel
->irq_count
== 1000)) {
231 unsigned old_irq_moderation
= channel
->irq_moderation
;
233 if (unlikely(channel
->irq_mod_score
<
234 irq_adapt_low_thresh
)) {
235 channel
->irq_moderation
=
237 channel
->irq_moderation
-
238 FALCON_IRQ_MOD_RESOLUTION
,
239 FALCON_IRQ_MOD_RESOLUTION
);
240 } else if (unlikely(channel
->irq_mod_score
>
241 irq_adapt_high_thresh
)) {
242 channel
->irq_moderation
=
243 min(channel
->irq_moderation
+
244 FALCON_IRQ_MOD_RESOLUTION
,
245 efx
->irq_rx_moderation
);
248 if (channel
->irq_moderation
!= old_irq_moderation
)
249 falcon_set_int_moderation(channel
);
251 channel
->irq_count
= 0;
252 channel
->irq_mod_score
= 0;
255 /* There is no race here; although napi_disable() will
256 * only wait for napi_complete(), this isn't a problem
257 * since efx_channel_processed() will have no effect if
258 * interrupts have already been disabled.
261 efx_channel_processed(channel
);
267 /* Process the eventq of the specified channel immediately on this CPU
269 * Disable hardware generated interrupts, wait for any existing
270 * processing to finish, then directly poll (and ack ) the eventq.
271 * Finally reenable NAPI and interrupts.
273 * Since we are touching interrupts the caller should hold the suspend lock
275 void efx_process_channel_now(struct efx_channel
*channel
)
277 struct efx_nic
*efx
= channel
->efx
;
279 BUG_ON(!channel
->used_flags
);
280 BUG_ON(!channel
->enabled
);
282 /* Disable interrupts and wait for ISRs to complete */
283 falcon_disable_interrupts(efx
);
285 synchronize_irq(efx
->legacy_irq
);
287 synchronize_irq(channel
->irq
);
289 /* Wait for any NAPI processing to complete */
290 napi_disable(&channel
->napi_str
);
292 /* Poll the channel */
293 efx_process_channel(channel
, efx
->type
->evq_size
);
295 /* Ack the eventq. This may cause an interrupt to be generated
296 * when they are reenabled */
297 efx_channel_processed(channel
);
299 napi_enable(&channel
->napi_str
);
300 falcon_enable_interrupts(efx
);
303 /* Create event queue
304 * Event queue memory allocations are done only once. If the channel
305 * is reset, the memory buffer will be reused; this guards against
306 * errors during channel reset and also simplifies interrupt handling.
308 static int efx_probe_eventq(struct efx_channel
*channel
)
310 EFX_LOG(channel
->efx
, "chan %d create event queue\n", channel
->channel
);
312 return falcon_probe_eventq(channel
);
315 /* Prepare channel's event queue */
316 static void efx_init_eventq(struct efx_channel
*channel
)
318 EFX_LOG(channel
->efx
, "chan %d init event queue\n", channel
->channel
);
320 channel
->eventq_read_ptr
= 0;
322 falcon_init_eventq(channel
);
325 static void efx_fini_eventq(struct efx_channel
*channel
)
327 EFX_LOG(channel
->efx
, "chan %d fini event queue\n", channel
->channel
);
329 falcon_fini_eventq(channel
);
332 static void efx_remove_eventq(struct efx_channel
*channel
)
334 EFX_LOG(channel
->efx
, "chan %d remove event queue\n", channel
->channel
);
336 falcon_remove_eventq(channel
);
339 /**************************************************************************
343 *************************************************************************/
345 static int efx_probe_channel(struct efx_channel
*channel
)
347 struct efx_tx_queue
*tx_queue
;
348 struct efx_rx_queue
*rx_queue
;
351 EFX_LOG(channel
->efx
, "creating channel %d\n", channel
->channel
);
353 rc
= efx_probe_eventq(channel
);
357 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
358 rc
= efx_probe_tx_queue(tx_queue
);
363 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
364 rc
= efx_probe_rx_queue(rx_queue
);
369 channel
->n_rx_frm_trunc
= 0;
374 efx_for_each_channel_rx_queue(rx_queue
, channel
)
375 efx_remove_rx_queue(rx_queue
);
377 efx_for_each_channel_tx_queue(tx_queue
, channel
)
378 efx_remove_tx_queue(tx_queue
);
384 static void efx_set_channel_names(struct efx_nic
*efx
)
386 struct efx_channel
*channel
;
387 const char *type
= "";
390 efx_for_each_channel(channel
, efx
) {
391 number
= channel
->channel
;
392 if (efx
->n_channels
> efx
->n_rx_queues
) {
393 if (channel
->channel
< efx
->n_rx_queues
) {
397 number
-= efx
->n_rx_queues
;
400 snprintf(channel
->name
, sizeof(channel
->name
),
401 "%s%s-%d", efx
->name
, type
, number
);
405 /* Channels are shutdown and reinitialised whilst the NIC is running
406 * to propagate configuration changes (mtu, checksum offload), or
407 * to clear hardware error conditions
409 static void efx_init_channels(struct efx_nic
*efx
)
411 struct efx_tx_queue
*tx_queue
;
412 struct efx_rx_queue
*rx_queue
;
413 struct efx_channel
*channel
;
415 /* Calculate the rx buffer allocation parameters required to
416 * support the current MTU, including padding for header
417 * alignment and overruns.
419 efx
->rx_buffer_len
= (max(EFX_PAGE_IP_ALIGN
, NET_IP_ALIGN
) +
420 EFX_MAX_FRAME_LEN(efx
->net_dev
->mtu
) +
421 efx
->type
->rx_buffer_padding
);
422 efx
->rx_buffer_order
= get_order(efx
->rx_buffer_len
);
424 /* Initialise the channels */
425 efx_for_each_channel(channel
, efx
) {
426 EFX_LOG(channel
->efx
, "init chan %d\n", channel
->channel
);
428 efx_init_eventq(channel
);
430 efx_for_each_channel_tx_queue(tx_queue
, channel
)
431 efx_init_tx_queue(tx_queue
);
433 /* The rx buffer allocation strategy is MTU dependent */
434 efx_rx_strategy(channel
);
436 efx_for_each_channel_rx_queue(rx_queue
, channel
)
437 efx_init_rx_queue(rx_queue
);
439 WARN_ON(channel
->rx_pkt
!= NULL
);
440 efx_rx_strategy(channel
);
444 /* This enables event queue processing and packet transmission.
446 * Note that this function is not allowed to fail, since that would
447 * introduce too much complexity into the suspend/resume path.
449 static void efx_start_channel(struct efx_channel
*channel
)
451 struct efx_rx_queue
*rx_queue
;
453 EFX_LOG(channel
->efx
, "starting chan %d\n", channel
->channel
);
455 /* The interrupt handler for this channel may set work_pending
456 * as soon as we enable it. Make sure it's cleared before
457 * then. Similarly, make sure it sees the enabled flag set. */
458 channel
->work_pending
= false;
459 channel
->enabled
= true;
462 napi_enable(&channel
->napi_str
);
464 /* Load up RX descriptors */
465 efx_for_each_channel_rx_queue(rx_queue
, channel
)
466 efx_fast_push_rx_descriptors(rx_queue
);
469 /* This disables event queue processing and packet transmission.
470 * This function does not guarantee that all queue processing
471 * (e.g. RX refill) is complete.
473 static void efx_stop_channel(struct efx_channel
*channel
)
475 struct efx_rx_queue
*rx_queue
;
477 if (!channel
->enabled
)
480 EFX_LOG(channel
->efx
, "stop chan %d\n", channel
->channel
);
482 channel
->enabled
= false;
483 napi_disable(&channel
->napi_str
);
485 /* Ensure that any worker threads have exited or will be no-ops */
486 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
487 spin_lock_bh(&rx_queue
->add_lock
);
488 spin_unlock_bh(&rx_queue
->add_lock
);
492 static void efx_fini_channels(struct efx_nic
*efx
)
494 struct efx_channel
*channel
;
495 struct efx_tx_queue
*tx_queue
;
496 struct efx_rx_queue
*rx_queue
;
499 EFX_ASSERT_RESET_SERIALISED(efx
);
500 BUG_ON(efx
->port_enabled
);
502 rc
= falcon_flush_queues(efx
);
504 EFX_ERR(efx
, "failed to flush queues\n");
506 EFX_LOG(efx
, "successfully flushed all queues\n");
508 efx_for_each_channel(channel
, efx
) {
509 EFX_LOG(channel
->efx
, "shut down chan %d\n", channel
->channel
);
511 efx_for_each_channel_rx_queue(rx_queue
, channel
)
512 efx_fini_rx_queue(rx_queue
);
513 efx_for_each_channel_tx_queue(tx_queue
, channel
)
514 efx_fini_tx_queue(tx_queue
);
515 efx_fini_eventq(channel
);
519 static void efx_remove_channel(struct efx_channel
*channel
)
521 struct efx_tx_queue
*tx_queue
;
522 struct efx_rx_queue
*rx_queue
;
524 EFX_LOG(channel
->efx
, "destroy chan %d\n", channel
->channel
);
526 efx_for_each_channel_rx_queue(rx_queue
, channel
)
527 efx_remove_rx_queue(rx_queue
);
528 efx_for_each_channel_tx_queue(tx_queue
, channel
)
529 efx_remove_tx_queue(tx_queue
);
530 efx_remove_eventq(channel
);
532 channel
->used_flags
= 0;
535 void efx_schedule_slow_fill(struct efx_rx_queue
*rx_queue
, int delay
)
537 queue_delayed_work(refill_workqueue
, &rx_queue
->work
, delay
);
540 /**************************************************************************
544 **************************************************************************/
546 /* This ensures that the kernel is kept informed (via
547 * netif_carrier_on/off) of the link status, and also maintains the
548 * link status's stop on the port's TX queue.
550 static void efx_link_status_changed(struct efx_nic
*efx
)
552 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
553 * that no events are triggered between unregister_netdev() and the
554 * driver unloading. A more general condition is that NETDEV_CHANGE
555 * can only be generated between NETDEV_UP and NETDEV_DOWN */
556 if (!netif_running(efx
->net_dev
))
559 if (efx
->port_inhibited
) {
560 netif_carrier_off(efx
->net_dev
);
564 if (efx
->link_up
!= netif_carrier_ok(efx
->net_dev
)) {
565 efx
->n_link_state_changes
++;
568 netif_carrier_on(efx
->net_dev
);
570 netif_carrier_off(efx
->net_dev
);
573 /* Status message for kernel log */
575 EFX_INFO(efx
, "link up at %uMbps %s-duplex (MTU %d)%s\n",
576 efx
->link_speed
, efx
->link_fd
? "full" : "half",
578 (efx
->promiscuous
? " [PROMISC]" : ""));
580 EFX_INFO(efx
, "link down\n");
585 static void efx_fini_port(struct efx_nic
*efx
);
587 /* This call reinitialises the MAC to pick up new PHY settings. The
588 * caller must hold the mac_lock */
589 void __efx_reconfigure_port(struct efx_nic
*efx
)
591 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
593 EFX_LOG(efx
, "reconfiguring MAC from PHY settings on CPU %d\n",
594 raw_smp_processor_id());
596 /* Serialise the promiscuous flag with efx_set_multicast_list. */
597 if (efx_dev_registered(efx
)) {
598 netif_addr_lock_bh(efx
->net_dev
);
599 netif_addr_unlock_bh(efx
->net_dev
);
602 falcon_deconfigure_mac_wrapper(efx
);
604 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
605 if (LOOPBACK_INTERNAL(efx
))
606 efx
->phy_mode
|= PHY_MODE_TX_DISABLED
;
608 efx
->phy_mode
&= ~PHY_MODE_TX_DISABLED
;
609 efx
->phy_op
->reconfigure(efx
);
611 if (falcon_switch_mac(efx
))
614 efx
->mac_op
->reconfigure(efx
);
616 /* Inform kernel of loss/gain of carrier */
617 efx_link_status_changed(efx
);
621 EFX_ERR(efx
, "failed to reconfigure MAC\n");
622 efx
->port_enabled
= false;
626 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
628 void efx_reconfigure_port(struct efx_nic
*efx
)
630 EFX_ASSERT_RESET_SERIALISED(efx
);
632 mutex_lock(&efx
->mac_lock
);
633 __efx_reconfigure_port(efx
);
634 mutex_unlock(&efx
->mac_lock
);
637 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
638 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
639 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
640 static void efx_phy_work(struct work_struct
*data
)
642 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, phy_work
);
644 mutex_lock(&efx
->mac_lock
);
645 if (efx
->port_enabled
)
646 __efx_reconfigure_port(efx
);
647 mutex_unlock(&efx
->mac_lock
);
650 static void efx_mac_work(struct work_struct
*data
)
652 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, mac_work
);
654 mutex_lock(&efx
->mac_lock
);
655 if (efx
->port_enabled
)
656 efx
->mac_op
->irq(efx
);
657 mutex_unlock(&efx
->mac_lock
);
660 static int efx_probe_port(struct efx_nic
*efx
)
664 EFX_LOG(efx
, "create port\n");
666 /* Connect up MAC/PHY operations table and read MAC address */
667 rc
= falcon_probe_port(efx
);
672 efx
->phy_mode
= PHY_MODE_SPECIAL
;
674 /* Sanity check MAC address */
675 if (is_valid_ether_addr(efx
->mac_address
)) {
676 memcpy(efx
->net_dev
->dev_addr
, efx
->mac_address
, ETH_ALEN
);
678 EFX_ERR(efx
, "invalid MAC address %pM\n",
680 if (!allow_bad_hwaddr
) {
684 random_ether_addr(efx
->net_dev
->dev_addr
);
685 EFX_INFO(efx
, "using locally-generated MAC %pM\n",
686 efx
->net_dev
->dev_addr
);
692 efx_remove_port(efx
);
696 static int efx_init_port(struct efx_nic
*efx
)
700 EFX_LOG(efx
, "init port\n");
702 rc
= efx
->phy_op
->init(efx
);
705 mutex_lock(&efx
->mac_lock
);
706 efx
->phy_op
->reconfigure(efx
);
707 rc
= falcon_switch_mac(efx
);
708 mutex_unlock(&efx
->mac_lock
);
711 efx
->mac_op
->reconfigure(efx
);
713 efx
->port_initialized
= true;
714 efx_stats_enable(efx
);
718 efx
->phy_op
->fini(efx
);
722 /* Allow efx_reconfigure_port() to be scheduled, and close the window
723 * between efx_stop_port and efx_flush_all whereby a previously scheduled
724 * efx_phy_work()/efx_mac_work() may have been cancelled */
725 static void efx_start_port(struct efx_nic
*efx
)
727 EFX_LOG(efx
, "start port\n");
728 BUG_ON(efx
->port_enabled
);
730 mutex_lock(&efx
->mac_lock
);
731 efx
->port_enabled
= true;
732 __efx_reconfigure_port(efx
);
733 efx
->mac_op
->irq(efx
);
734 mutex_unlock(&efx
->mac_lock
);
737 /* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
738 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
739 * and efx_mac_work may still be scheduled via NAPI processing until
740 * efx_flush_all() is called */
741 static void efx_stop_port(struct efx_nic
*efx
)
743 EFX_LOG(efx
, "stop port\n");
745 mutex_lock(&efx
->mac_lock
);
746 efx
->port_enabled
= false;
747 mutex_unlock(&efx
->mac_lock
);
749 /* Serialise against efx_set_multicast_list() */
750 if (efx_dev_registered(efx
)) {
751 netif_addr_lock_bh(efx
->net_dev
);
752 netif_addr_unlock_bh(efx
->net_dev
);
756 static void efx_fini_port(struct efx_nic
*efx
)
758 EFX_LOG(efx
, "shut down port\n");
760 if (!efx
->port_initialized
)
763 efx_stats_disable(efx
);
764 efx
->phy_op
->fini(efx
);
765 efx
->port_initialized
= false;
767 efx
->link_up
= false;
768 efx_link_status_changed(efx
);
771 static void efx_remove_port(struct efx_nic
*efx
)
773 EFX_LOG(efx
, "destroying port\n");
775 falcon_remove_port(efx
);
778 /**************************************************************************
782 **************************************************************************/
784 /* This configures the PCI device to enable I/O and DMA. */
785 static int efx_init_io(struct efx_nic
*efx
)
787 struct pci_dev
*pci_dev
= efx
->pci_dev
;
788 dma_addr_t dma_mask
= efx
->type
->max_dma_mask
;
791 EFX_LOG(efx
, "initialising I/O\n");
793 rc
= pci_enable_device(pci_dev
);
795 EFX_ERR(efx
, "failed to enable PCI device\n");
799 pci_set_master(pci_dev
);
801 /* Set the PCI DMA mask. Try all possibilities from our
802 * genuine mask down to 32 bits, because some architectures
803 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
804 * masks event though they reject 46 bit masks.
806 while (dma_mask
> 0x7fffffffUL
) {
807 if (pci_dma_supported(pci_dev
, dma_mask
) &&
808 ((rc
= pci_set_dma_mask(pci_dev
, dma_mask
)) == 0))
813 EFX_ERR(efx
, "could not find a suitable DMA mask\n");
816 EFX_LOG(efx
, "using DMA mask %llx\n", (unsigned long long) dma_mask
);
817 rc
= pci_set_consistent_dma_mask(pci_dev
, dma_mask
);
819 /* pci_set_consistent_dma_mask() is not *allowed* to
820 * fail with a mask that pci_set_dma_mask() accepted,
821 * but just in case...
823 EFX_ERR(efx
, "failed to set consistent DMA mask\n");
827 efx
->membase_phys
= pci_resource_start(efx
->pci_dev
,
829 rc
= pci_request_region(pci_dev
, efx
->type
->mem_bar
, "sfc");
831 EFX_ERR(efx
, "request for memory BAR failed\n");
835 efx
->membase
= ioremap_nocache(efx
->membase_phys
,
836 efx
->type
->mem_map_size
);
838 EFX_ERR(efx
, "could not map memory BAR %d at %llx+%x\n",
840 (unsigned long long)efx
->membase_phys
,
841 efx
->type
->mem_map_size
);
845 EFX_LOG(efx
, "memory BAR %u at %llx+%x (virtual %p)\n",
846 efx
->type
->mem_bar
, (unsigned long long)efx
->membase_phys
,
847 efx
->type
->mem_map_size
, efx
->membase
);
852 pci_release_region(efx
->pci_dev
, efx
->type
->mem_bar
);
854 efx
->membase_phys
= 0;
856 pci_disable_device(efx
->pci_dev
);
861 static void efx_fini_io(struct efx_nic
*efx
)
863 EFX_LOG(efx
, "shutting down I/O\n");
866 iounmap(efx
->membase
);
870 if (efx
->membase_phys
) {
871 pci_release_region(efx
->pci_dev
, efx
->type
->mem_bar
);
872 efx
->membase_phys
= 0;
875 pci_disable_device(efx
->pci_dev
);
878 /* Get number of RX queues wanted. Return number of online CPU
879 * packages in the expectation that an IRQ balancer will spread
880 * interrupts across them. */
881 static int efx_wanted_rx_queues(void)
883 cpumask_var_t core_mask
;
887 if (unlikely(!zalloc_cpumask_var(&core_mask
, GFP_KERNEL
))) {
889 "sfc: RSS disabled due to allocation failure\n");
894 for_each_online_cpu(cpu
) {
895 if (!cpumask_test_cpu(cpu
, core_mask
)) {
897 cpumask_or(core_mask
, core_mask
,
898 topology_core_cpumask(cpu
));
902 free_cpumask_var(core_mask
);
906 /* Probe the number and type of interrupts we are able to obtain, and
907 * the resulting numbers of channels and RX queues.
909 static void efx_probe_interrupts(struct efx_nic
*efx
)
912 min_t(int, efx
->type
->phys_addr_channels
, EFX_MAX_CHANNELS
);
915 if (efx
->interrupt_mode
== EFX_INT_MODE_MSIX
) {
916 struct msix_entry xentries
[EFX_MAX_CHANNELS
];
920 /* We want one RX queue and interrupt per CPU package
921 * (or as specified by the rss_cpus module parameter).
922 * We will need one channel per interrupt.
924 rx_queues
= rss_cpus
? rss_cpus
: efx_wanted_rx_queues();
925 wanted_ints
= rx_queues
+ (separate_tx_channels
? 1 : 0);
926 wanted_ints
= min(wanted_ints
, max_channels
);
928 for (i
= 0; i
< wanted_ints
; i
++)
929 xentries
[i
].entry
= i
;
930 rc
= pci_enable_msix(efx
->pci_dev
, xentries
, wanted_ints
);
932 EFX_ERR(efx
, "WARNING: Insufficient MSI-X vectors"
933 " available (%d < %d).\n", rc
, wanted_ints
);
934 EFX_ERR(efx
, "WARNING: Performance may be reduced.\n");
935 EFX_BUG_ON_PARANOID(rc
>= wanted_ints
);
937 rc
= pci_enable_msix(efx
->pci_dev
, xentries
,
942 efx
->n_rx_queues
= min(rx_queues
, wanted_ints
);
943 efx
->n_channels
= wanted_ints
;
944 for (i
= 0; i
< wanted_ints
; i
++)
945 efx
->channel
[i
].irq
= xentries
[i
].vector
;
947 /* Fall back to single channel MSI */
948 efx
->interrupt_mode
= EFX_INT_MODE_MSI
;
949 EFX_ERR(efx
, "could not enable MSI-X\n");
953 /* Try single interrupt MSI */
954 if (efx
->interrupt_mode
== EFX_INT_MODE_MSI
) {
955 efx
->n_rx_queues
= 1;
957 rc
= pci_enable_msi(efx
->pci_dev
);
959 efx
->channel
[0].irq
= efx
->pci_dev
->irq
;
961 EFX_ERR(efx
, "could not enable MSI\n");
962 efx
->interrupt_mode
= EFX_INT_MODE_LEGACY
;
966 /* Assume legacy interrupts */
967 if (efx
->interrupt_mode
== EFX_INT_MODE_LEGACY
) {
968 efx
->n_rx_queues
= 1;
969 efx
->n_channels
= 1 + (separate_tx_channels
? 1 : 0);
970 efx
->legacy_irq
= efx
->pci_dev
->irq
;
974 static void efx_remove_interrupts(struct efx_nic
*efx
)
976 struct efx_channel
*channel
;
978 /* Remove MSI/MSI-X interrupts */
979 efx_for_each_channel(channel
, efx
)
981 pci_disable_msi(efx
->pci_dev
);
982 pci_disable_msix(efx
->pci_dev
);
984 /* Remove legacy interrupt */
988 static void efx_set_channels(struct efx_nic
*efx
)
990 struct efx_tx_queue
*tx_queue
;
991 struct efx_rx_queue
*rx_queue
;
993 efx_for_each_tx_queue(tx_queue
, efx
) {
994 if (separate_tx_channels
)
995 tx_queue
->channel
= &efx
->channel
[efx
->n_channels
-1];
997 tx_queue
->channel
= &efx
->channel
[0];
998 tx_queue
->channel
->used_flags
|= EFX_USED_BY_TX
;
1001 efx_for_each_rx_queue(rx_queue
, efx
) {
1002 rx_queue
->channel
= &efx
->channel
[rx_queue
->queue
];
1003 rx_queue
->channel
->used_flags
|= EFX_USED_BY_RX
;
1007 static int efx_probe_nic(struct efx_nic
*efx
)
1011 EFX_LOG(efx
, "creating NIC\n");
1013 /* Carry out hardware-type specific initialisation */
1014 rc
= falcon_probe_nic(efx
);
1018 /* Determine the number of channels and RX queues by trying to hook
1019 * in MSI-X interrupts. */
1020 efx_probe_interrupts(efx
);
1022 efx_set_channels(efx
);
1024 /* Initialise the interrupt moderation settings */
1025 efx_init_irq_moderation(efx
, tx_irq_mod_usec
, rx_irq_mod_usec
, true);
1030 static void efx_remove_nic(struct efx_nic
*efx
)
1032 EFX_LOG(efx
, "destroying NIC\n");
1034 efx_remove_interrupts(efx
);
1035 falcon_remove_nic(efx
);
1038 /**************************************************************************
1040 * NIC startup/shutdown
1042 *************************************************************************/
1044 static int efx_probe_all(struct efx_nic
*efx
)
1046 struct efx_channel
*channel
;
1050 rc
= efx_probe_nic(efx
);
1052 EFX_ERR(efx
, "failed to create NIC\n");
1057 rc
= efx_probe_port(efx
);
1059 EFX_ERR(efx
, "failed to create port\n");
1063 /* Create channels */
1064 efx_for_each_channel(channel
, efx
) {
1065 rc
= efx_probe_channel(channel
);
1067 EFX_ERR(efx
, "failed to create channel %d\n",
1072 efx_set_channel_names(efx
);
1077 efx_for_each_channel(channel
, efx
)
1078 efx_remove_channel(channel
);
1079 efx_remove_port(efx
);
1081 efx_remove_nic(efx
);
1086 /* Called after previous invocation(s) of efx_stop_all, restarts the
1087 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1088 * and ensures that the port is scheduled to be reconfigured.
1089 * This function is safe to call multiple times when the NIC is in any
1091 static void efx_start_all(struct efx_nic
*efx
)
1093 struct efx_channel
*channel
;
1095 EFX_ASSERT_RESET_SERIALISED(efx
);
1097 /* Check that it is appropriate to restart the interface. All
1098 * of these flags are safe to read under just the rtnl lock */
1099 if (efx
->port_enabled
)
1101 if ((efx
->state
!= STATE_RUNNING
) && (efx
->state
!= STATE_INIT
))
1103 if (efx_dev_registered(efx
) && !netif_running(efx
->net_dev
))
1106 /* Mark the port as enabled so port reconfigurations can start, then
1107 * restart the transmit interface early so the watchdog timer stops */
1108 efx_start_port(efx
);
1109 if (efx_dev_registered(efx
))
1110 efx_wake_queue(efx
);
1112 efx_for_each_channel(channel
, efx
)
1113 efx_start_channel(channel
);
1115 falcon_enable_interrupts(efx
);
1117 /* Start hardware monitor if we're in RUNNING */
1118 if (efx
->state
== STATE_RUNNING
)
1119 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1120 efx_monitor_interval
);
1123 /* Flush all delayed work. Should only be called when no more delayed work
1124 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1125 * since we're holding the rtnl_lock at this point. */
1126 static void efx_flush_all(struct efx_nic
*efx
)
1128 struct efx_rx_queue
*rx_queue
;
1130 /* Make sure the hardware monitor is stopped */
1131 cancel_delayed_work_sync(&efx
->monitor_work
);
1133 /* Ensure that all RX slow refills are complete. */
1134 efx_for_each_rx_queue(rx_queue
, efx
)
1135 cancel_delayed_work_sync(&rx_queue
->work
);
1137 /* Stop scheduled port reconfigurations */
1138 cancel_work_sync(&efx
->mac_work
);
1139 cancel_work_sync(&efx
->phy_work
);
1143 /* Quiesce hardware and software without bringing the link down.
1144 * Safe to call multiple times, when the nic and interface is in any
1145 * state. The caller is guaranteed to subsequently be in a position
1146 * to modify any hardware and software state they see fit without
1148 static void efx_stop_all(struct efx_nic
*efx
)
1150 struct efx_channel
*channel
;
1152 EFX_ASSERT_RESET_SERIALISED(efx
);
1154 /* port_enabled can be read safely under the rtnl lock */
1155 if (!efx
->port_enabled
)
1158 /* Disable interrupts and wait for ISR to complete */
1159 falcon_disable_interrupts(efx
);
1160 if (efx
->legacy_irq
)
1161 synchronize_irq(efx
->legacy_irq
);
1162 efx_for_each_channel(channel
, efx
) {
1164 synchronize_irq(channel
->irq
);
1167 /* Stop all NAPI processing and synchronous rx refills */
1168 efx_for_each_channel(channel
, efx
)
1169 efx_stop_channel(channel
);
1171 /* Stop all asynchronous port reconfigurations. Since all
1172 * event processing has already been stopped, there is no
1173 * window to loose phy events */
1176 /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
1179 /* Isolate the MAC from the TX and RX engines, so that queue
1180 * flushes will complete in a timely fashion. */
1181 falcon_deconfigure_mac_wrapper(efx
);
1182 msleep(10); /* Let the Rx FIFO drain */
1183 falcon_drain_tx_fifo(efx
);
1185 /* Stop the kernel transmit interface late, so the watchdog
1186 * timer isn't ticking over the flush */
1187 if (efx_dev_registered(efx
)) {
1188 efx_stop_queue(efx
);
1189 netif_tx_lock_bh(efx
->net_dev
);
1190 netif_tx_unlock_bh(efx
->net_dev
);
1194 static void efx_remove_all(struct efx_nic
*efx
)
1196 struct efx_channel
*channel
;
1198 efx_for_each_channel(channel
, efx
)
1199 efx_remove_channel(channel
);
1200 efx_remove_port(efx
);
1201 efx_remove_nic(efx
);
1204 /* A convinience function to safely flush all the queues */
1205 void efx_flush_queues(struct efx_nic
*efx
)
1207 EFX_ASSERT_RESET_SERIALISED(efx
);
1211 efx_fini_channels(efx
);
1212 efx_init_channels(efx
);
1217 /**************************************************************************
1219 * Interrupt moderation
1221 **************************************************************************/
1223 /* Set interrupt moderation parameters */
1224 void efx_init_irq_moderation(struct efx_nic
*efx
, int tx_usecs
, int rx_usecs
,
1227 struct efx_tx_queue
*tx_queue
;
1228 struct efx_rx_queue
*rx_queue
;
1230 EFX_ASSERT_RESET_SERIALISED(efx
);
1232 efx_for_each_tx_queue(tx_queue
, efx
)
1233 tx_queue
->channel
->irq_moderation
= tx_usecs
;
1235 efx
->irq_rx_adaptive
= rx_adaptive
;
1236 efx
->irq_rx_moderation
= rx_usecs
;
1237 efx_for_each_rx_queue(rx_queue
, efx
)
1238 rx_queue
->channel
->irq_moderation
= rx_usecs
;
1241 /**************************************************************************
1245 **************************************************************************/
1247 /* Run periodically off the general workqueue. Serialised against
1248 * efx_reconfigure_port via the mac_lock */
1249 static void efx_monitor(struct work_struct
*data
)
1251 struct efx_nic
*efx
= container_of(data
, struct efx_nic
,
1255 EFX_TRACE(efx
, "hardware monitor executing on CPU %d\n",
1256 raw_smp_processor_id());
1258 /* If the mac_lock is already held then it is likely a port
1259 * reconfiguration is already in place, which will likely do
1260 * most of the work of check_hw() anyway. */
1261 if (!mutex_trylock(&efx
->mac_lock
))
1263 if (!efx
->port_enabled
)
1265 rc
= efx
->board_info
.monitor(efx
);
1267 EFX_ERR(efx
, "Board sensor %s; shutting down PHY\n",
1268 (rc
== -ERANGE
) ? "reported fault" : "failed");
1269 efx
->phy_mode
|= PHY_MODE_LOW_POWER
;
1270 falcon_sim_phy_event(efx
);
1272 efx
->phy_op
->poll(efx
);
1273 efx
->mac_op
->poll(efx
);
1276 mutex_unlock(&efx
->mac_lock
);
1278 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1279 efx_monitor_interval
);
1282 /**************************************************************************
1286 *************************************************************************/
1289 * Context: process, rtnl_lock() held.
1291 static int efx_ioctl(struct net_device
*net_dev
, struct ifreq
*ifr
, int cmd
)
1293 struct efx_nic
*efx
= netdev_priv(net_dev
);
1294 struct mii_ioctl_data
*data
= if_mii(ifr
);
1296 EFX_ASSERT_RESET_SERIALISED(efx
);
1298 /* Convert phy_id from older PRTAD/DEVAD format */
1299 if ((cmd
== SIOCGMIIREG
|| cmd
== SIOCSMIIREG
) &&
1300 (data
->phy_id
& 0xfc00) == 0x0400)
1301 data
->phy_id
^= MDIO_PHY_ID_C45
| 0x0400;
1303 return mdio_mii_ioctl(&efx
->mdio
, data
, cmd
);
1306 /**************************************************************************
1310 **************************************************************************/
1312 static int efx_init_napi(struct efx_nic
*efx
)
1314 struct efx_channel
*channel
;
1316 efx_for_each_channel(channel
, efx
) {
1317 channel
->napi_dev
= efx
->net_dev
;
1318 netif_napi_add(channel
->napi_dev
, &channel
->napi_str
,
1319 efx_poll
, napi_weight
);
1324 static void efx_fini_napi(struct efx_nic
*efx
)
1326 struct efx_channel
*channel
;
1328 efx_for_each_channel(channel
, efx
) {
1329 if (channel
->napi_dev
)
1330 netif_napi_del(&channel
->napi_str
);
1331 channel
->napi_dev
= NULL
;
1335 /**************************************************************************
1337 * Kernel netpoll interface
1339 *************************************************************************/
1341 #ifdef CONFIG_NET_POLL_CONTROLLER
1343 /* Although in the common case interrupts will be disabled, this is not
1344 * guaranteed. However, all our work happens inside the NAPI callback,
1345 * so no locking is required.
1347 static void efx_netpoll(struct net_device
*net_dev
)
1349 struct efx_nic
*efx
= netdev_priv(net_dev
);
1350 struct efx_channel
*channel
;
1352 efx_for_each_channel(channel
, efx
)
1353 efx_schedule_channel(channel
);
1358 /**************************************************************************
1360 * Kernel net device interface
1362 *************************************************************************/
1364 /* Context: process, rtnl_lock() held. */
1365 static int efx_net_open(struct net_device
*net_dev
)
1367 struct efx_nic
*efx
= netdev_priv(net_dev
);
1368 EFX_ASSERT_RESET_SERIALISED(efx
);
1370 EFX_LOG(efx
, "opening device %s on CPU %d\n", net_dev
->name
,
1371 raw_smp_processor_id());
1373 if (efx
->state
== STATE_DISABLED
)
1375 if (efx
->phy_mode
& PHY_MODE_SPECIAL
)
1382 /* Context: process, rtnl_lock() held.
1383 * Note that the kernel will ignore our return code; this method
1384 * should really be a void.
1386 static int efx_net_stop(struct net_device
*net_dev
)
1388 struct efx_nic
*efx
= netdev_priv(net_dev
);
1390 EFX_LOG(efx
, "closing %s on CPU %d\n", net_dev
->name
,
1391 raw_smp_processor_id());
1393 if (efx
->state
!= STATE_DISABLED
) {
1394 /* Stop the device and flush all the channels */
1396 efx_fini_channels(efx
);
1397 efx_init_channels(efx
);
1403 void efx_stats_disable(struct efx_nic
*efx
)
1405 spin_lock(&efx
->stats_lock
);
1406 ++efx
->stats_disable_count
;
1407 spin_unlock(&efx
->stats_lock
);
1410 void efx_stats_enable(struct efx_nic
*efx
)
1412 spin_lock(&efx
->stats_lock
);
1413 --efx
->stats_disable_count
;
1414 spin_unlock(&efx
->stats_lock
);
1417 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1418 static struct net_device_stats
*efx_net_stats(struct net_device
*net_dev
)
1420 struct efx_nic
*efx
= netdev_priv(net_dev
);
1421 struct efx_mac_stats
*mac_stats
= &efx
->mac_stats
;
1422 struct net_device_stats
*stats
= &net_dev
->stats
;
1424 /* Update stats if possible, but do not wait if another thread
1425 * is updating them or if MAC stats fetches are temporarily
1426 * disabled; slightly stale stats are acceptable.
1428 if (!spin_trylock(&efx
->stats_lock
))
1430 if (!efx
->stats_disable_count
) {
1431 efx
->mac_op
->update_stats(efx
);
1432 falcon_update_nic_stats(efx
);
1434 spin_unlock(&efx
->stats_lock
);
1436 stats
->rx_packets
= mac_stats
->rx_packets
;
1437 stats
->tx_packets
= mac_stats
->tx_packets
;
1438 stats
->rx_bytes
= mac_stats
->rx_bytes
;
1439 stats
->tx_bytes
= mac_stats
->tx_bytes
;
1440 stats
->multicast
= mac_stats
->rx_multicast
;
1441 stats
->collisions
= mac_stats
->tx_collision
;
1442 stats
->rx_length_errors
= (mac_stats
->rx_gtjumbo
+
1443 mac_stats
->rx_length_error
);
1444 stats
->rx_over_errors
= efx
->n_rx_nodesc_drop_cnt
;
1445 stats
->rx_crc_errors
= mac_stats
->rx_bad
;
1446 stats
->rx_frame_errors
= mac_stats
->rx_align_error
;
1447 stats
->rx_fifo_errors
= mac_stats
->rx_overflow
;
1448 stats
->rx_missed_errors
= mac_stats
->rx_missed
;
1449 stats
->tx_window_errors
= mac_stats
->tx_late_collision
;
1451 stats
->rx_errors
= (stats
->rx_length_errors
+
1452 stats
->rx_over_errors
+
1453 stats
->rx_crc_errors
+
1454 stats
->rx_frame_errors
+
1455 stats
->rx_fifo_errors
+
1456 stats
->rx_missed_errors
+
1457 mac_stats
->rx_symbol_error
);
1458 stats
->tx_errors
= (stats
->tx_window_errors
+
1464 /* Context: netif_tx_lock held, BHs disabled. */
1465 static void efx_watchdog(struct net_device
*net_dev
)
1467 struct efx_nic
*efx
= netdev_priv(net_dev
);
1469 EFX_ERR(efx
, "TX stuck with stop_count=%d port_enabled=%d:"
1470 " resetting channels\n",
1471 atomic_read(&efx
->netif_stop_count
), efx
->port_enabled
);
1473 efx_schedule_reset(efx
, RESET_TYPE_TX_WATCHDOG
);
1477 /* Context: process, rtnl_lock() held. */
1478 static int efx_change_mtu(struct net_device
*net_dev
, int new_mtu
)
1480 struct efx_nic
*efx
= netdev_priv(net_dev
);
1483 EFX_ASSERT_RESET_SERIALISED(efx
);
1485 if (new_mtu
> EFX_MAX_MTU
)
1490 EFX_LOG(efx
, "changing MTU to %d\n", new_mtu
);
1492 efx_fini_channels(efx
);
1493 net_dev
->mtu
= new_mtu
;
1494 efx_init_channels(efx
);
1500 static int efx_set_mac_address(struct net_device
*net_dev
, void *data
)
1502 struct efx_nic
*efx
= netdev_priv(net_dev
);
1503 struct sockaddr
*addr
= data
;
1504 char *new_addr
= addr
->sa_data
;
1506 EFX_ASSERT_RESET_SERIALISED(efx
);
1508 if (!is_valid_ether_addr(new_addr
)) {
1509 EFX_ERR(efx
, "invalid ethernet MAC address requested: %pM\n",
1514 memcpy(net_dev
->dev_addr
, new_addr
, net_dev
->addr_len
);
1516 /* Reconfigure the MAC */
1517 efx_reconfigure_port(efx
);
1522 /* Context: netif_addr_lock held, BHs disabled. */
1523 static void efx_set_multicast_list(struct net_device
*net_dev
)
1525 struct efx_nic
*efx
= netdev_priv(net_dev
);
1526 struct dev_mc_list
*mc_list
= net_dev
->mc_list
;
1527 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
1528 bool promiscuous
= !!(net_dev
->flags
& IFF_PROMISC
);
1529 bool changed
= (efx
->promiscuous
!= promiscuous
);
1534 efx
->promiscuous
= promiscuous
;
1536 /* Build multicast hash table */
1537 if (promiscuous
|| (net_dev
->flags
& IFF_ALLMULTI
)) {
1538 memset(mc_hash
, 0xff, sizeof(*mc_hash
));
1540 memset(mc_hash
, 0x00, sizeof(*mc_hash
));
1541 for (i
= 0; i
< net_dev
->mc_count
; i
++) {
1542 crc
= ether_crc_le(ETH_ALEN
, mc_list
->dmi_addr
);
1543 bit
= crc
& (EFX_MCAST_HASH_ENTRIES
- 1);
1544 set_bit_le(bit
, mc_hash
->byte
);
1545 mc_list
= mc_list
->next
;
1549 if (!efx
->port_enabled
)
1550 /* Delay pushing settings until efx_start_port() */
1554 queue_work(efx
->workqueue
, &efx
->phy_work
);
1556 /* Create and activate new global multicast hash table */
1557 falcon_set_multicast_hash(efx
);
1560 static const struct net_device_ops efx_netdev_ops
= {
1561 .ndo_open
= efx_net_open
,
1562 .ndo_stop
= efx_net_stop
,
1563 .ndo_get_stats
= efx_net_stats
,
1564 .ndo_tx_timeout
= efx_watchdog
,
1565 .ndo_start_xmit
= efx_hard_start_xmit
,
1566 .ndo_validate_addr
= eth_validate_addr
,
1567 .ndo_do_ioctl
= efx_ioctl
,
1568 .ndo_change_mtu
= efx_change_mtu
,
1569 .ndo_set_mac_address
= efx_set_mac_address
,
1570 .ndo_set_multicast_list
= efx_set_multicast_list
,
1571 #ifdef CONFIG_NET_POLL_CONTROLLER
1572 .ndo_poll_controller
= efx_netpoll
,
1576 static void efx_update_name(struct efx_nic
*efx
)
1578 strcpy(efx
->name
, efx
->net_dev
->name
);
1579 efx_mtd_rename(efx
);
1580 efx_set_channel_names(efx
);
1583 static int efx_netdev_event(struct notifier_block
*this,
1584 unsigned long event
, void *ptr
)
1586 struct net_device
*net_dev
= ptr
;
1588 if (net_dev
->netdev_ops
== &efx_netdev_ops
&&
1589 event
== NETDEV_CHANGENAME
)
1590 efx_update_name(netdev_priv(net_dev
));
1595 static struct notifier_block efx_netdev_notifier
= {
1596 .notifier_call
= efx_netdev_event
,
1600 show_phy_type(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
1602 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
1603 return sprintf(buf
, "%d\n", efx
->phy_type
);
1605 static DEVICE_ATTR(phy_type
, 0644, show_phy_type
, NULL
);
1607 static int efx_register_netdev(struct efx_nic
*efx
)
1609 struct net_device
*net_dev
= efx
->net_dev
;
1612 net_dev
->watchdog_timeo
= 5 * HZ
;
1613 net_dev
->irq
= efx
->pci_dev
->irq
;
1614 net_dev
->netdev_ops
= &efx_netdev_ops
;
1615 SET_NETDEV_DEV(net_dev
, &efx
->pci_dev
->dev
);
1616 SET_ETHTOOL_OPS(net_dev
, &efx_ethtool_ops
);
1618 /* Clear MAC statistics */
1619 efx
->mac_op
->update_stats(efx
);
1620 memset(&efx
->mac_stats
, 0, sizeof(efx
->mac_stats
));
1624 rc
= dev_alloc_name(net_dev
, net_dev
->name
);
1627 efx_update_name(efx
);
1629 rc
= register_netdevice(net_dev
);
1633 /* Always start with carrier off; PHY events will detect the link */
1634 netif_carrier_off(efx
->net_dev
);
1638 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
1640 EFX_ERR(efx
, "failed to init net dev attributes\n");
1641 goto fail_registered
;
1648 EFX_ERR(efx
, "could not register net dev\n");
1652 unregister_netdev(net_dev
);
1656 static void efx_unregister_netdev(struct efx_nic
*efx
)
1658 struct efx_tx_queue
*tx_queue
;
1663 BUG_ON(netdev_priv(efx
->net_dev
) != efx
);
1665 /* Free up any skbs still remaining. This has to happen before
1666 * we try to unregister the netdev as running their destructors
1667 * may be needed to get the device ref. count to 0. */
1668 efx_for_each_tx_queue(tx_queue
, efx
)
1669 efx_release_tx_buffers(tx_queue
);
1671 if (efx_dev_registered(efx
)) {
1672 strlcpy(efx
->name
, pci_name(efx
->pci_dev
), sizeof(efx
->name
));
1673 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
1674 unregister_netdev(efx
->net_dev
);
1678 /**************************************************************************
1680 * Device reset and suspend
1682 **************************************************************************/
1684 /* Tears down the entire software state and most of the hardware state
1686 void efx_reset_down(struct efx_nic
*efx
, enum reset_type method
,
1687 struct ethtool_cmd
*ecmd
)
1689 EFX_ASSERT_RESET_SERIALISED(efx
);
1691 efx_stats_disable(efx
);
1693 mutex_lock(&efx
->mac_lock
);
1694 mutex_lock(&efx
->spi_lock
);
1696 efx
->phy_op
->get_settings(efx
, ecmd
);
1698 efx_fini_channels(efx
);
1699 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
)
1700 efx
->phy_op
->fini(efx
);
1703 /* This function will always ensure that the locks acquired in
1704 * efx_reset_down() are released. A failure return code indicates
1705 * that we were unable to reinitialise the hardware, and the
1706 * driver should be disabled. If ok is false, then the rx and tx
1707 * engines are not restarted, pending a RESET_DISABLE. */
1708 int efx_reset_up(struct efx_nic
*efx
, enum reset_type method
,
1709 struct ethtool_cmd
*ecmd
, bool ok
)
1713 EFX_ASSERT_RESET_SERIALISED(efx
);
1715 rc
= falcon_init_nic(efx
);
1717 EFX_ERR(efx
, "failed to initialise NIC\n");
1721 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
) {
1723 rc
= efx
->phy_op
->init(efx
);
1728 efx
->port_initialized
= false;
1732 efx_init_channels(efx
);
1734 if (efx
->phy_op
->set_settings(efx
, ecmd
))
1735 EFX_ERR(efx
, "could not restore PHY settings\n");
1738 mutex_unlock(&efx
->spi_lock
);
1739 mutex_unlock(&efx
->mac_lock
);
1743 efx_stats_enable(efx
);
1748 /* Reset the NIC as transparently as possible. Do not reset the PHY
1749 * Note that the reset may fail, in which case the card will be left
1750 * in a most-probably-unusable state.
1752 * This function will sleep. You cannot reset from within an atomic
1753 * state; use efx_schedule_reset() instead.
1755 * Grabs the rtnl_lock.
1757 static int efx_reset(struct efx_nic
*efx
)
1759 struct ethtool_cmd ecmd
;
1760 enum reset_type method
= efx
->reset_pending
;
1763 /* Serialise with kernel interfaces */
1766 /* If we're not RUNNING then don't reset. Leave the reset_pending
1767 * flag set so that efx_pci_probe_main will be retried */
1768 if (efx
->state
!= STATE_RUNNING
) {
1769 EFX_INFO(efx
, "scheduled reset quenched. NIC not RUNNING\n");
1773 EFX_INFO(efx
, "resetting (%d)\n", method
);
1775 efx_reset_down(efx
, method
, &ecmd
);
1777 rc
= falcon_reset_hw(efx
, method
);
1779 EFX_ERR(efx
, "failed to reset hardware\n");
1783 /* Allow resets to be rescheduled. */
1784 efx
->reset_pending
= RESET_TYPE_NONE
;
1786 /* Reinitialise bus-mastering, which may have been turned off before
1787 * the reset was scheduled. This is still appropriate, even in the
1788 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1789 * can respond to requests. */
1790 pci_set_master(efx
->pci_dev
);
1792 /* Leave device stopped if necessary */
1793 if (method
== RESET_TYPE_DISABLE
) {
1794 efx_reset_up(efx
, method
, &ecmd
, false);
1797 rc
= efx_reset_up(efx
, method
, &ecmd
, true);
1802 EFX_ERR(efx
, "has been disabled\n");
1803 efx
->state
= STATE_DISABLED
;
1804 dev_close(efx
->net_dev
);
1806 EFX_LOG(efx
, "reset complete\n");
1814 /* The worker thread exists so that code that cannot sleep can
1815 * schedule a reset for later.
1817 static void efx_reset_work(struct work_struct
*data
)
1819 struct efx_nic
*nic
= container_of(data
, struct efx_nic
, reset_work
);
1824 void efx_schedule_reset(struct efx_nic
*efx
, enum reset_type type
)
1826 enum reset_type method
;
1828 if (efx
->reset_pending
!= RESET_TYPE_NONE
) {
1829 EFX_INFO(efx
, "quenching already scheduled reset\n");
1834 case RESET_TYPE_INVISIBLE
:
1835 case RESET_TYPE_ALL
:
1836 case RESET_TYPE_WORLD
:
1837 case RESET_TYPE_DISABLE
:
1840 case RESET_TYPE_RX_RECOVERY
:
1841 case RESET_TYPE_RX_DESC_FETCH
:
1842 case RESET_TYPE_TX_DESC_FETCH
:
1843 case RESET_TYPE_TX_SKIP
:
1844 method
= RESET_TYPE_INVISIBLE
;
1847 method
= RESET_TYPE_ALL
;
1852 EFX_LOG(efx
, "scheduling reset (%d:%d)\n", type
, method
);
1854 EFX_LOG(efx
, "scheduling reset (%d)\n", method
);
1856 efx
->reset_pending
= method
;
1858 queue_work(reset_workqueue
, &efx
->reset_work
);
1861 /**************************************************************************
1863 * List of NICs we support
1865 **************************************************************************/
1867 /* PCI device ID table */
1868 static struct pci_device_id efx_pci_table
[] __devinitdata
= {
1869 {PCI_DEVICE(EFX_VENDID_SFC
, FALCON_A_P_DEVID
),
1870 .driver_data
= (unsigned long) &falcon_a_nic_type
},
1871 {PCI_DEVICE(EFX_VENDID_SFC
, FALCON_B_P_DEVID
),
1872 .driver_data
= (unsigned long) &falcon_b_nic_type
},
1873 {0} /* end of list */
1876 /**************************************************************************
1878 * Dummy PHY/MAC/Board operations
1880 * Can be used for some unimplemented operations
1881 * Needed so all function pointers are valid and do not have to be tested
1884 **************************************************************************/
1885 int efx_port_dummy_op_int(struct efx_nic
*efx
)
1889 void efx_port_dummy_op_void(struct efx_nic
*efx
) {}
1890 void efx_port_dummy_op_blink(struct efx_nic
*efx
, bool blink
) {}
1892 static struct efx_mac_operations efx_dummy_mac_operations
= {
1893 .reconfigure
= efx_port_dummy_op_void
,
1894 .poll
= efx_port_dummy_op_void
,
1895 .irq
= efx_port_dummy_op_void
,
1898 static struct efx_phy_operations efx_dummy_phy_operations
= {
1899 .init
= efx_port_dummy_op_int
,
1900 .reconfigure
= efx_port_dummy_op_void
,
1901 .poll
= efx_port_dummy_op_void
,
1902 .fini
= efx_port_dummy_op_void
,
1903 .clear_interrupt
= efx_port_dummy_op_void
,
1906 static struct efx_board efx_dummy_board_info
= {
1907 .init
= efx_port_dummy_op_int
,
1908 .init_leds
= efx_port_dummy_op_void
,
1909 .set_id_led
= efx_port_dummy_op_blink
,
1910 .monitor
= efx_port_dummy_op_int
,
1911 .blink
= efx_port_dummy_op_blink
,
1912 .fini
= efx_port_dummy_op_void
,
1915 /**************************************************************************
1919 **************************************************************************/
1921 /* This zeroes out and then fills in the invariants in a struct
1922 * efx_nic (including all sub-structures).
1924 static int efx_init_struct(struct efx_nic
*efx
, struct efx_nic_type
*type
,
1925 struct pci_dev
*pci_dev
, struct net_device
*net_dev
)
1927 struct efx_channel
*channel
;
1928 struct efx_tx_queue
*tx_queue
;
1929 struct efx_rx_queue
*rx_queue
;
1932 /* Initialise common structures */
1933 memset(efx
, 0, sizeof(*efx
));
1934 spin_lock_init(&efx
->biu_lock
);
1935 spin_lock_init(&efx
->phy_lock
);
1936 mutex_init(&efx
->spi_lock
);
1937 INIT_WORK(&efx
->reset_work
, efx_reset_work
);
1938 INIT_DELAYED_WORK(&efx
->monitor_work
, efx_monitor
);
1939 efx
->pci_dev
= pci_dev
;
1940 efx
->state
= STATE_INIT
;
1941 efx
->reset_pending
= RESET_TYPE_NONE
;
1942 strlcpy(efx
->name
, pci_name(pci_dev
), sizeof(efx
->name
));
1943 efx
->board_info
= efx_dummy_board_info
;
1945 efx
->net_dev
= net_dev
;
1946 efx
->rx_checksum_enabled
= true;
1947 spin_lock_init(&efx
->netif_stop_lock
);
1948 spin_lock_init(&efx
->stats_lock
);
1949 efx
->stats_disable_count
= 1;
1950 mutex_init(&efx
->mac_lock
);
1951 efx
->mac_op
= &efx_dummy_mac_operations
;
1952 efx
->phy_op
= &efx_dummy_phy_operations
;
1953 efx
->mdio
.dev
= net_dev
;
1954 INIT_WORK(&efx
->phy_work
, efx_phy_work
);
1955 INIT_WORK(&efx
->mac_work
, efx_mac_work
);
1956 atomic_set(&efx
->netif_stop_count
, 1);
1958 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++) {
1959 channel
= &efx
->channel
[i
];
1961 channel
->channel
= i
;
1962 channel
->work_pending
= false;
1964 for (i
= 0; i
< EFX_TX_QUEUE_COUNT
; i
++) {
1965 tx_queue
= &efx
->tx_queue
[i
];
1966 tx_queue
->efx
= efx
;
1967 tx_queue
->queue
= i
;
1968 tx_queue
->buffer
= NULL
;
1969 tx_queue
->channel
= &efx
->channel
[0]; /* for safety */
1970 tx_queue
->tso_headers_free
= NULL
;
1972 for (i
= 0; i
< EFX_MAX_RX_QUEUES
; i
++) {
1973 rx_queue
= &efx
->rx_queue
[i
];
1974 rx_queue
->efx
= efx
;
1975 rx_queue
->queue
= i
;
1976 rx_queue
->channel
= &efx
->channel
[0]; /* for safety */
1977 rx_queue
->buffer
= NULL
;
1978 spin_lock_init(&rx_queue
->add_lock
);
1979 INIT_DELAYED_WORK(&rx_queue
->work
, efx_rx_work
);
1984 /* Sanity-check NIC type */
1985 EFX_BUG_ON_PARANOID(efx
->type
->txd_ring_mask
&
1986 (efx
->type
->txd_ring_mask
+ 1));
1987 EFX_BUG_ON_PARANOID(efx
->type
->rxd_ring_mask
&
1988 (efx
->type
->rxd_ring_mask
+ 1));
1989 EFX_BUG_ON_PARANOID(efx
->type
->evq_size
&
1990 (efx
->type
->evq_size
- 1));
1991 /* As close as we can get to guaranteeing that we don't overflow */
1992 EFX_BUG_ON_PARANOID(efx
->type
->evq_size
<
1993 (efx
->type
->txd_ring_mask
+ 1 +
1994 efx
->type
->rxd_ring_mask
+ 1));
1995 EFX_BUG_ON_PARANOID(efx
->type
->phys_addr_channels
> EFX_MAX_CHANNELS
);
1997 /* Higher numbered interrupt modes are less capable! */
1998 efx
->interrupt_mode
= max(efx
->type
->max_interrupt_mode
,
2001 /* Would be good to use the net_dev name, but we're too early */
2002 snprintf(efx
->workqueue_name
, sizeof(efx
->workqueue_name
), "sfc%s",
2004 efx
->workqueue
= create_singlethread_workqueue(efx
->workqueue_name
);
2005 if (!efx
->workqueue
)
2011 static void efx_fini_struct(struct efx_nic
*efx
)
2013 if (efx
->workqueue
) {
2014 destroy_workqueue(efx
->workqueue
);
2015 efx
->workqueue
= NULL
;
2019 /**************************************************************************
2023 **************************************************************************/
2025 /* Main body of final NIC shutdown code
2026 * This is called only at module unload (or hotplug removal).
2028 static void efx_pci_remove_main(struct efx_nic
*efx
)
2030 EFX_ASSERT_RESET_SERIALISED(efx
);
2032 /* Skip everything if we never obtained a valid membase */
2036 efx_fini_channels(efx
);
2039 /* Shutdown the board, then the NIC and board state */
2040 efx
->board_info
.fini(efx
);
2041 falcon_fini_interrupt(efx
);
2044 efx_remove_all(efx
);
2047 /* Final NIC shutdown
2048 * This is called only at module unload (or hotplug removal).
2050 static void efx_pci_remove(struct pci_dev
*pci_dev
)
2052 struct efx_nic
*efx
;
2054 efx
= pci_get_drvdata(pci_dev
);
2058 /* Mark the NIC as fini, then stop the interface */
2060 efx
->state
= STATE_FINI
;
2061 dev_close(efx
->net_dev
);
2063 /* Allow any queued efx_resets() to complete */
2066 if (efx
->membase
== NULL
)
2069 efx_unregister_netdev(efx
);
2071 efx_mtd_remove(efx
);
2073 /* Wait for any scheduled resets to complete. No more will be
2074 * scheduled from this point because efx_stop_all() has been
2075 * called, we are no longer registered with driverlink, and
2076 * the net_device's have been removed. */
2077 cancel_work_sync(&efx
->reset_work
);
2079 efx_pci_remove_main(efx
);
2083 EFX_LOG(efx
, "shutdown successful\n");
2085 pci_set_drvdata(pci_dev
, NULL
);
2086 efx_fini_struct(efx
);
2087 free_netdev(efx
->net_dev
);
2090 /* Main body of NIC initialisation
2091 * This is called at module load (or hotplug insertion, theoretically).
2093 static int efx_pci_probe_main(struct efx_nic
*efx
)
2097 /* Do start-of-day initialisation */
2098 rc
= efx_probe_all(efx
);
2102 rc
= efx_init_napi(efx
);
2106 /* Initialise the board */
2107 rc
= efx
->board_info
.init(efx
);
2109 EFX_ERR(efx
, "failed to initialise board\n");
2113 rc
= falcon_init_nic(efx
);
2115 EFX_ERR(efx
, "failed to initialise NIC\n");
2119 rc
= efx_init_port(efx
);
2121 EFX_ERR(efx
, "failed to initialise port\n");
2125 efx_init_channels(efx
);
2127 rc
= falcon_init_interrupt(efx
);
2134 efx_fini_channels(efx
);
2138 efx
->board_info
.fini(efx
);
2142 efx_remove_all(efx
);
2147 /* NIC initialisation
2149 * This is called at module load (or hotplug insertion,
2150 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2151 * sets up and registers the network devices with the kernel and hooks
2152 * the interrupt service routine. It does not prepare the device for
2153 * transmission; this is left to the first time one of the network
2154 * interfaces is brought up (i.e. efx_net_open).
2156 static int __devinit
efx_pci_probe(struct pci_dev
*pci_dev
,
2157 const struct pci_device_id
*entry
)
2159 struct efx_nic_type
*type
= (struct efx_nic_type
*) entry
->driver_data
;
2160 struct net_device
*net_dev
;
2161 struct efx_nic
*efx
;
2164 /* Allocate and initialise a struct net_device and struct efx_nic */
2165 net_dev
= alloc_etherdev(sizeof(*efx
));
2168 net_dev
->features
|= (NETIF_F_IP_CSUM
| NETIF_F_SG
|
2169 NETIF_F_HIGHDMA
| NETIF_F_TSO
|
2171 /* Mask for features that also apply to VLAN devices */
2172 net_dev
->vlan_features
|= (NETIF_F_ALL_CSUM
| NETIF_F_SG
|
2173 NETIF_F_HIGHDMA
| NETIF_F_TSO
);
2174 efx
= netdev_priv(net_dev
);
2175 pci_set_drvdata(pci_dev
, efx
);
2176 rc
= efx_init_struct(efx
, type
, pci_dev
, net_dev
);
2180 EFX_INFO(efx
, "Solarflare Communications NIC detected\n");
2182 /* Set up basic I/O (BAR mappings etc) */
2183 rc
= efx_init_io(efx
);
2187 /* No serialisation is required with the reset path because
2188 * we're in STATE_INIT. */
2189 for (i
= 0; i
< 5; i
++) {
2190 rc
= efx_pci_probe_main(efx
);
2192 /* Serialise against efx_reset(). No more resets will be
2193 * scheduled since efx_stop_all() has been called, and we
2194 * have not and never have been registered with either
2195 * the rtnetlink or driverlink layers. */
2196 cancel_work_sync(&efx
->reset_work
);
2199 if (efx
->reset_pending
!= RESET_TYPE_NONE
) {
2200 /* If there was a scheduled reset during
2201 * probe, the NIC is probably hosed anyway */
2202 efx_pci_remove_main(efx
);
2209 /* Retry if a recoverably reset event has been scheduled */
2210 if ((efx
->reset_pending
!= RESET_TYPE_INVISIBLE
) &&
2211 (efx
->reset_pending
!= RESET_TYPE_ALL
))
2214 efx
->reset_pending
= RESET_TYPE_NONE
;
2218 EFX_ERR(efx
, "Could not reset NIC\n");
2222 /* Switch to the running state before we expose the device to
2223 * the OS. This is to ensure that the initial gathering of
2224 * MAC stats succeeds. */
2225 efx
->state
= STATE_RUNNING
;
2227 efx_mtd_probe(efx
); /* allowed to fail */
2229 rc
= efx_register_netdev(efx
);
2233 EFX_LOG(efx
, "initialisation successful\n");
2237 efx_pci_remove_main(efx
);
2242 efx_fini_struct(efx
);
2244 EFX_LOG(efx
, "initialisation failed. rc=%d\n", rc
);
2245 free_netdev(net_dev
);
2249 static struct pci_driver efx_pci_driver
= {
2250 .name
= EFX_DRIVER_NAME
,
2251 .id_table
= efx_pci_table
,
2252 .probe
= efx_pci_probe
,
2253 .remove
= efx_pci_remove
,
2256 /**************************************************************************
2258 * Kernel module interface
2260 *************************************************************************/
2262 module_param(interrupt_mode
, uint
, 0444);
2263 MODULE_PARM_DESC(interrupt_mode
,
2264 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2266 static int __init
efx_init_module(void)
2270 printk(KERN_INFO
"Solarflare NET driver v" EFX_DRIVER_VERSION
"\n");
2272 rc
= register_netdevice_notifier(&efx_netdev_notifier
);
2276 refill_workqueue
= create_workqueue("sfc_refill");
2277 if (!refill_workqueue
) {
2281 reset_workqueue
= create_singlethread_workqueue("sfc_reset");
2282 if (!reset_workqueue
) {
2287 rc
= pci_register_driver(&efx_pci_driver
);
2294 destroy_workqueue(reset_workqueue
);
2296 destroy_workqueue(refill_workqueue
);
2298 unregister_netdevice_notifier(&efx_netdev_notifier
);
2303 static void __exit
efx_exit_module(void)
2305 printk(KERN_INFO
"Solarflare NET driver unloading\n");
2307 pci_unregister_driver(&efx_pci_driver
);
2308 destroy_workqueue(reset_workqueue
);
2309 destroy_workqueue(refill_workqueue
);
2310 unregister_netdevice_notifier(&efx_netdev_notifier
);
2314 module_init(efx_init_module
);
2315 module_exit(efx_exit_module
);
2317 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2318 "Solarflare Communications");
2319 MODULE_DESCRIPTION("Solarflare Communications network driver");
2320 MODULE_LICENSE("GPL");
2321 MODULE_DEVICE_TABLE(pci
, efx_pci_table
);