[ARM] pxa: Gumstix Verdex PCMCIA support
[linux-2.6/verdex.git] / drivers / net / stmmac / stmmac_main.c
blobc2f14dc9ba289df6839fad9e9e7eec98c395cf21
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
5 Copyright (C) 2007-2009 STMicroelectronics Ltd
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/kernel.h>
34 #include <linux/interrupt.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/platform_device.h>
38 #include <linux/ip.h>
39 #include <linux/tcp.h>
40 #include <linux/skbuff.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_ether.h>
43 #include <linux/crc32.h>
44 #include <linux/mii.h>
45 #include <linux/phy.h>
46 #include <linux/if_vlan.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/stm/soc.h>
49 #include "stmmac.h"
51 #define STMMAC_RESOURCE_NAME "stmmaceth"
52 #define PHY_RESOURCE_NAME "stmmacphy"
54 #undef STMMAC_DEBUG
55 /*#define STMMAC_DEBUG*/
56 #ifdef STMMAC_DEBUG
57 #define DBG(nlevel, klevel, fmt, args...) \
58 ((void)(netif_msg_##nlevel(priv) && \
59 printk(KERN_##klevel fmt, ## args)))
60 #else
61 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
62 #endif
64 #undef STMMAC_RX_DEBUG
65 /*#define STMMAC_RX_DEBUG*/
66 #ifdef STMMAC_RX_DEBUG
67 #define RX_DBG(fmt, args...) printk(fmt, ## args)
68 #else
69 #define RX_DBG(fmt, args...) do { } while (0)
70 #endif
72 #undef STMMAC_XMIT_DEBUG
73 /*#define STMMAC_XMIT_DEBUG*/
74 #ifdef STMMAC_TX_DEBUG
75 #define TX_DBG(fmt, args...) printk(fmt, ## args)
76 #else
77 #define TX_DBG(fmt, args...) do { } while (0)
78 #endif
80 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
81 #define JUMBO_LEN 9000
83 /* Module parameters */
84 #define TX_TIMEO 5000 /* default 5 seconds */
85 static int watchdog = TX_TIMEO;
86 module_param(watchdog, int, S_IRUGO | S_IWUSR);
87 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
89 static int debug = -1; /* -1: default, 0: no output, 16: all */
90 module_param(debug, int, S_IRUGO | S_IWUSR);
91 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
93 static int phyaddr = -1;
94 module_param(phyaddr, int, S_IRUGO);
95 MODULE_PARM_DESC(phyaddr, "Physical device address");
97 #define DMA_TX_SIZE 256
98 static int dma_txsize = DMA_TX_SIZE;
99 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
100 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
102 #define DMA_RX_SIZE 256
103 static int dma_rxsize = DMA_RX_SIZE;
104 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
107 static int flow_ctrl = FLOW_OFF;
108 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
109 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
111 static int pause = PAUSE_TIME;
112 module_param(pause, int, S_IRUGO | S_IWUSR);
113 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
115 #define TC_DEFAULT 64
116 static int tc = TC_DEFAULT;
117 module_param(tc, int, S_IRUGO | S_IWUSR);
118 MODULE_PARM_DESC(tc, "DMA threshold control value");
120 #define RX_NO_COALESCE 1 /* Always interrupt on completion */
121 #define TX_NO_COALESCE -1 /* No moderation by default */
123 /* Pay attention to tune this parameter; take care of both
124 * hardware capability and network stabitily/performance impact.
125 * Many tests showed that ~4ms latency seems to be good enough. */
126 #ifdef CONFIG_STMMAC_TIMER
127 #define DEFAULT_PERIODIC_RATE 256
128 static int tmrate = DEFAULT_PERIODIC_RATE;
129 module_param(tmrate, int, S_IRUGO | S_IWUSR);
130 MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
131 #endif
133 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
134 static int buf_sz = DMA_BUFFER_SIZE;
135 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
136 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
138 /* In case of Giga ETH, we can enable/disable the COE for the
139 * transmit HW checksum computation.
140 * Note that, if tx csum is off in HW, SG will be still supported. */
141 static int tx_coe = HW_CSUM;
142 module_param(tx_coe, int, S_IRUGO | S_IWUSR);
143 MODULE_PARM_DESC(tx_coe, "GMAC COE type 2 [on/off]");
145 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
146 NETIF_MSG_LINK | NETIF_MSG_IFUP |
147 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
149 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
150 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev);
153 * stmmac_verify_args - verify the driver parameters.
154 * Description: it verifies if some wrong parameter is passed to the driver.
155 * Note that wrong parameters are replaced with the default values.
157 static void stmmac_verify_args(void)
159 if (unlikely(watchdog < 0))
160 watchdog = TX_TIMEO;
161 if (unlikely(dma_rxsize < 0))
162 dma_rxsize = DMA_RX_SIZE;
163 if (unlikely(dma_txsize < 0))
164 dma_txsize = DMA_TX_SIZE;
165 if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
166 buf_sz = DMA_BUFFER_SIZE;
167 if (unlikely(flow_ctrl > 1))
168 flow_ctrl = FLOW_AUTO;
169 else if (likely(flow_ctrl < 0))
170 flow_ctrl = FLOW_OFF;
171 if (unlikely((pause < 0) || (pause > 0xffff)))
172 pause = PAUSE_TIME;
174 return;
177 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
178 static void print_pkt(unsigned char *buf, int len)
180 int j;
181 pr_info("len = %d byte, buf addr: 0x%p", len, buf);
182 for (j = 0; j < len; j++) {
183 if ((j % 16) == 0)
184 pr_info("\n %03x:", j);
185 pr_info(" %02x", buf[j]);
187 pr_info("\n");
188 return;
190 #endif
192 /* minimum number of free TX descriptors required to wake up TX process */
193 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
195 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
197 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
201 * stmmac_adjust_link
202 * @dev: net device structure
203 * Description: it adjusts the link parameters.
205 static void stmmac_adjust_link(struct net_device *dev)
207 struct stmmac_priv *priv = netdev_priv(dev);
208 struct phy_device *phydev = priv->phydev;
209 unsigned long ioaddr = dev->base_addr;
210 unsigned long flags;
211 int new_state = 0;
212 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
214 if (phydev == NULL)
215 return;
217 DBG(probe, DEBUG, "stmmac_adjust_link: called. address %d link %d\n",
218 phydev->addr, phydev->link);
220 spin_lock_irqsave(&priv->lock, flags);
221 if (phydev->link) {
222 u32 ctrl = readl(ioaddr + MAC_CTRL_REG);
224 /* Now we make sure that we can be in full duplex mode.
225 * If not, we operate in half-duplex mode. */
226 if (phydev->duplex != priv->oldduplex) {
227 new_state = 1;
228 if (!(phydev->duplex))
229 ctrl &= ~priv->mac_type->hw.link.duplex;
230 else
231 ctrl |= priv->mac_type->hw.link.duplex;
232 priv->oldduplex = phydev->duplex;
234 /* Flow Control operation */
235 if (phydev->pause)
236 priv->mac_type->ops->flow_ctrl(ioaddr, phydev->duplex,
237 fc, pause_time);
239 if (phydev->speed != priv->speed) {
240 new_state = 1;
241 switch (phydev->speed) {
242 case 1000:
243 if (likely(priv->is_gmac))
244 ctrl &= ~priv->mac_type->hw.link.port;
245 break;
246 case 100:
247 case 10:
248 if (priv->is_gmac) {
249 ctrl |= priv->mac_type->hw.link.port;
250 if (phydev->speed == SPEED_100) {
251 ctrl |=
252 priv->mac_type->hw.link.
253 speed;
254 } else {
255 ctrl &=
256 ~(priv->mac_type->hw.
257 link.speed);
259 } else {
260 ctrl &= ~priv->mac_type->hw.link.port;
262 priv->fix_mac_speed(priv->bsp_priv,
263 phydev->speed);
264 break;
265 default:
266 if (netif_msg_link(priv))
267 pr_warning("%s: Speed (%d) is not 10"
268 " or 100!\n", dev->name, phydev->speed);
269 break;
272 priv->speed = phydev->speed;
275 writel(ctrl, ioaddr + MAC_CTRL_REG);
277 if (!priv->oldlink) {
278 new_state = 1;
279 priv->oldlink = 1;
281 } else if (priv->oldlink) {
282 new_state = 1;
283 priv->oldlink = 0;
284 priv->speed = 0;
285 priv->oldduplex = -1;
288 if (new_state && netif_msg_link(priv))
289 phy_print_status(phydev);
291 spin_unlock_irqrestore(&priv->lock, flags);
293 DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
297 * stmmac_init_phy - PHY initialization
298 * @dev: net device structure
299 * Description: it initializes the driver's PHY state, and attaches the PHY
300 * to the mac driver.
301 * Return value:
302 * 0 on success
304 static int stmmac_init_phy(struct net_device *dev)
306 struct stmmac_priv *priv = netdev_priv(dev);
307 struct phy_device *phydev;
308 char phy_id[BUS_ID_SIZE]; /* PHY to connect */
309 char bus_id[BUS_ID_SIZE];
311 priv->oldlink = 0;
312 priv->speed = 0;
313 priv->oldduplex = -1;
315 if (priv->phy_addr == -1) {
316 /* We don't have a PHY, so do nothing */
317 return 0;
320 snprintf(bus_id, MII_BUS_ID_SIZE, "%x", priv->bus_id);
321 snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, bus_id, priv->phy_addr);
322 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id);
324 phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0,
325 priv->phy_interface);
327 if (IS_ERR(phydev)) {
328 pr_err("%s: Could not attach to PHY\n", dev->name);
329 return PTR_ERR(phydev);
333 * Broken HW is sometimes missing the pull-up resistor on the
334 * MDIO line, which results in reads to non-existent devices returning
335 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
336 * device as well.
337 * Note: phydev->phy_id is the result of reading the UID PHY registers.
339 if (phydev->phy_id == 0) {
340 phy_disconnect(phydev);
341 return -ENODEV;
343 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
344 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
346 priv->phydev = phydev;
348 return 0;
351 static inline void stmmac_mac_enable_rx(unsigned long ioaddr)
353 u32 value = readl(ioaddr + MAC_CTRL_REG);
354 value |= MAC_RNABLE_RX;
355 /* Set the RE (receive enable bit into the MAC CTRL register). */
356 writel(value, ioaddr + MAC_CTRL_REG);
359 static inline void stmmac_mac_enable_tx(unsigned long ioaddr)
361 u32 value = readl(ioaddr + MAC_CTRL_REG);
362 value |= MAC_ENABLE_TX;
363 /* Set the TE (transmit enable bit into the MAC CTRL register). */
364 writel(value, ioaddr + MAC_CTRL_REG);
367 static inline void stmmac_mac_disable_rx(unsigned long ioaddr)
369 u32 value = readl(ioaddr + MAC_CTRL_REG);
370 value &= ~MAC_RNABLE_RX;
371 writel(value, ioaddr + MAC_CTRL_REG);
374 static inline void stmmac_mac_disable_tx(unsigned long ioaddr)
376 u32 value = readl(ioaddr + MAC_CTRL_REG);
377 value &= ~MAC_ENABLE_TX;
378 writel(value, ioaddr + MAC_CTRL_REG);
382 * display_ring
383 * @p: pointer to the ring.
384 * @size: size of the ring.
385 * Description: display all the descriptors within the ring.
387 static void display_ring(struct dma_desc *p, int size)
389 struct tmp_s {
390 u64 a;
391 unsigned int b;
392 unsigned int c;
394 int i;
395 for (i = 0; i < size; i++) {
396 struct tmp_s *x = (struct tmp_s *)(p + i);
397 pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
398 i, (unsigned int)virt_to_phys(&p[i]),
399 (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
400 x->b, x->c);
401 pr_info("\n");
406 * init_dma_desc_rings - init the RX/TX descriptor rings
407 * @dev: net device structure
408 * Description: this function initializes the DMA RX/TX descriptors
409 * and allocates the socket buffers.
411 static void init_dma_desc_rings(struct net_device *dev)
413 int i;
414 struct stmmac_priv *priv = netdev_priv(dev);
415 struct sk_buff *skb;
416 unsigned int txsize = priv->dma_tx_size;
417 unsigned int rxsize = priv->dma_rx_size;
418 unsigned int bfsize = priv->dma_buf_sz;
419 int buff2_needed = 0;
420 int dis_ic = 0;
422 #ifdef CONFIG_STMMAC_TIMER
423 /* Using Timers disable interrupts on completion for the reception */
424 dis_ic = 1;
425 #endif
426 /* Set the Buffer size according to the MTU;
427 * indeed, in case of jumbo we need to bump-up the buffer sizes.
429 if (unlikely(dev->mtu >= BUF_SIZE_8KiB))
430 bfsize = BUF_SIZE_16KiB;
431 else if (unlikely(dev->mtu >= BUF_SIZE_4KiB))
432 bfsize = BUF_SIZE_8KiB;
433 else if (unlikely(dev->mtu >= BUF_SIZE_2KiB))
434 bfsize = BUF_SIZE_4KiB;
435 else if (unlikely(dev->mtu >= DMA_BUFFER_SIZE))
436 bfsize = BUF_SIZE_2KiB;
437 else
438 bfsize = DMA_BUFFER_SIZE;
440 /* If the MTU exceeds 8k so use the second buffer in the chain */
441 if (bfsize >= BUF_SIZE_8KiB)
442 buff2_needed = 1;
444 DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
445 txsize, rxsize, bfsize);
447 priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
448 priv->rx_skbuff =
449 kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
450 priv->dma_rx =
451 (struct dma_desc *)dma_alloc_coherent(priv->device,
452 rxsize *
453 sizeof(struct dma_desc),
454 &priv->dma_rx_phy,
455 GFP_KERNEL);
456 priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
457 GFP_KERNEL);
458 priv->dma_tx =
459 (struct dma_desc *)dma_alloc_coherent(priv->device,
460 txsize *
461 sizeof(struct dma_desc),
462 &priv->dma_tx_phy,
463 GFP_KERNEL);
465 if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
466 pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
467 return;
470 DBG(probe, INFO, "stmmac (%s) DMA desc rings: virt addr (Rx %p, "
471 "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
472 dev->name, priv->dma_rx, priv->dma_tx,
473 (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
475 /* RX INITIALIZATION */
476 DBG(probe, INFO, "stmmac: SKB addresses:\n"
477 "skb\t\tskb data\tdma data\n");
479 for (i = 0; i < rxsize; i++) {
480 struct dma_desc *p = priv->dma_rx + i;
482 skb = netdev_alloc_skb_ip_align(dev, bfsize);
483 if (unlikely(skb == NULL)) {
484 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
485 break;
487 priv->rx_skbuff[i] = skb;
488 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
489 bfsize, DMA_FROM_DEVICE);
491 p->des2 = priv->rx_skbuff_dma[i];
492 if (unlikely(buff2_needed))
493 p->des3 = p->des2 + BUF_SIZE_8KiB;
494 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
495 priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
497 priv->cur_rx = 0;
498 priv->dirty_rx = (unsigned int)(i - rxsize);
499 priv->dma_buf_sz = bfsize;
500 buf_sz = bfsize;
502 /* TX INITIALIZATION */
503 for (i = 0; i < txsize; i++) {
504 priv->tx_skbuff[i] = NULL;
505 priv->dma_tx[i].des2 = 0;
507 priv->dirty_tx = 0;
508 priv->cur_tx = 0;
510 /* Clear the Rx/Tx descriptors */
511 priv->mac_type->ops->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
512 priv->mac_type->ops->init_tx_desc(priv->dma_tx, txsize);
514 if (netif_msg_hw(priv)) {
515 pr_info("RX descriptor ring:\n");
516 display_ring(priv->dma_rx, rxsize);
517 pr_info("TX descriptor ring:\n");
518 display_ring(priv->dma_tx, txsize);
520 return;
523 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
525 int i;
527 for (i = 0; i < priv->dma_rx_size; i++) {
528 if (priv->rx_skbuff[i]) {
529 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
530 priv->dma_buf_sz, DMA_FROM_DEVICE);
531 dev_kfree_skb_any(priv->rx_skbuff[i]);
533 priv->rx_skbuff[i] = NULL;
535 return;
538 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
540 int i;
542 for (i = 0; i < priv->dma_tx_size; i++) {
543 if (priv->tx_skbuff[i] != NULL) {
544 struct dma_desc *p = priv->dma_tx + i;
545 if (p->des2)
546 dma_unmap_single(priv->device, p->des2,
547 priv->mac_type->ops->get_tx_len(p),
548 DMA_TO_DEVICE);
549 dev_kfree_skb_any(priv->tx_skbuff[i]);
550 priv->tx_skbuff[i] = NULL;
553 return;
556 static void free_dma_desc_resources(struct stmmac_priv *priv)
558 /* Release the DMA TX/RX socket buffers */
559 dma_free_rx_skbufs(priv);
560 dma_free_tx_skbufs(priv);
562 /* Free the region of consistent memory previously allocated for
563 * the DMA */
564 dma_free_coherent(priv->device,
565 priv->dma_tx_size * sizeof(struct dma_desc),
566 priv->dma_tx, priv->dma_tx_phy);
567 dma_free_coherent(priv->device,
568 priv->dma_rx_size * sizeof(struct dma_desc),
569 priv->dma_rx, priv->dma_rx_phy);
570 kfree(priv->rx_skbuff_dma);
571 kfree(priv->rx_skbuff);
572 kfree(priv->tx_skbuff);
574 return;
578 * stmmac_dma_start_tx
579 * @ioaddr: device I/O address
580 * Description: this function starts the DMA tx process.
582 static void stmmac_dma_start_tx(unsigned long ioaddr)
584 u32 value = readl(ioaddr + DMA_CONTROL);
585 value |= DMA_CONTROL_ST;
586 writel(value, ioaddr + DMA_CONTROL);
587 return;
590 static void stmmac_dma_stop_tx(unsigned long ioaddr)
592 u32 value = readl(ioaddr + DMA_CONTROL);
593 value &= ~DMA_CONTROL_ST;
594 writel(value, ioaddr + DMA_CONTROL);
595 return;
599 * stmmac_dma_start_rx
600 * @ioaddr: device I/O address
601 * Description: this function starts the DMA rx process.
603 static void stmmac_dma_start_rx(unsigned long ioaddr)
605 u32 value = readl(ioaddr + DMA_CONTROL);
606 value |= DMA_CONTROL_SR;
607 writel(value, ioaddr + DMA_CONTROL);
609 return;
612 static void stmmac_dma_stop_rx(unsigned long ioaddr)
614 u32 value = readl(ioaddr + DMA_CONTROL);
615 value &= ~DMA_CONTROL_SR;
616 writel(value, ioaddr + DMA_CONTROL);
618 return;
622 * stmmac_dma_operation_mode - HW DMA operation mode
623 * @priv : pointer to the private device structure.
624 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
625 * or Store-And-Forward capability. It also verifies the COE for the
626 * transmission in case of Giga ETH.
628 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
630 if (!priv->is_gmac) {
631 /* MAC 10/100 */
632 priv->mac_type->ops->dma_mode(priv->dev->base_addr, tc, 0);
633 priv->tx_coe = NO_HW_CSUM;
634 } else {
635 if ((priv->dev->mtu <= ETH_DATA_LEN) && (tx_coe)) {
636 priv->mac_type->ops->dma_mode(priv->dev->base_addr,
637 SF_DMA_MODE, SF_DMA_MODE);
638 tc = SF_DMA_MODE;
639 priv->tx_coe = HW_CSUM;
640 } else {
641 /* Checksum computation is performed in software. */
642 priv->mac_type->ops->dma_mode(priv->dev->base_addr, tc,
643 SF_DMA_MODE);
644 priv->tx_coe = NO_HW_CSUM;
647 tx_coe = priv->tx_coe;
649 return;
652 #ifdef STMMAC_DEBUG
654 * show_tx_process_state
655 * @status: tx descriptor status field
656 * Description: it shows the Transmit Process State for CSR5[22:20]
658 static void show_tx_process_state(unsigned int status)
660 unsigned int state;
661 state = (status & DMA_STATUS_TS_MASK) >> DMA_STATUS_TS_SHIFT;
663 switch (state) {
664 case 0:
665 pr_info("- TX (Stopped): Reset or Stop command\n");
666 break;
667 case 1:
668 pr_info("- TX (Running):Fetching the Tx desc\n");
669 break;
670 case 2:
671 pr_info("- TX (Running): Waiting for end of tx\n");
672 break;
673 case 3:
674 pr_info("- TX (Running): Reading the data "
675 "and queuing the data into the Tx buf\n");
676 break;
677 case 6:
678 pr_info("- TX (Suspended): Tx Buff Underflow "
679 "or an unavailable Transmit descriptor\n");
680 break;
681 case 7:
682 pr_info("- TX (Running): Closing Tx descriptor\n");
683 break;
684 default:
685 break;
687 return;
691 * show_rx_process_state
692 * @status: rx descriptor status field
693 * Description: it shows the Receive Process State for CSR5[19:17]
695 static void show_rx_process_state(unsigned int status)
697 unsigned int state;
698 state = (status & DMA_STATUS_RS_MASK) >> DMA_STATUS_RS_SHIFT;
700 switch (state) {
701 case 0:
702 pr_info("- RX (Stopped): Reset or Stop command\n");
703 break;
704 case 1:
705 pr_info("- RX (Running): Fetching the Rx desc\n");
706 break;
707 case 2:
708 pr_info("- RX (Running):Checking for end of pkt\n");
709 break;
710 case 3:
711 pr_info("- RX (Running): Waiting for Rx pkt\n");
712 break;
713 case 4:
714 pr_info("- RX (Suspended): Unavailable Rx buf\n");
715 break;
716 case 5:
717 pr_info("- RX (Running): Closing Rx descriptor\n");
718 break;
719 case 6:
720 pr_info("- RX(Running): Flushing the current frame"
721 " from the Rx buf\n");
722 break;
723 case 7:
724 pr_info("- RX (Running): Queuing the Rx frame"
725 " from the Rx buf into memory\n");
726 break;
727 default:
728 break;
730 return;
732 #endif
735 * stmmac_tx:
736 * @priv: private driver structure
737 * Description: it reclaims resources after transmission completes.
739 static void stmmac_tx(struct stmmac_priv *priv)
741 unsigned int txsize = priv->dma_tx_size;
742 unsigned long ioaddr = priv->dev->base_addr;
744 while (priv->dirty_tx != priv->cur_tx) {
745 int last;
746 unsigned int entry = priv->dirty_tx % txsize;
747 struct sk_buff *skb = priv->tx_skbuff[entry];
748 struct dma_desc *p = priv->dma_tx + entry;
750 /* Check if the descriptor is owned by the DMA. */
751 if (priv->mac_type->ops->get_tx_owner(p))
752 break;
754 /* Verify tx error by looking at the last segment */
755 last = priv->mac_type->ops->get_tx_ls(p);
756 if (likely(last)) {
757 int tx_error =
758 priv->mac_type->ops->tx_status(&priv->dev->stats,
759 &priv->xstats,
760 p, ioaddr);
761 if (likely(tx_error == 0)) {
762 priv->dev->stats.tx_packets++;
763 priv->xstats.tx_pkt_n++;
764 } else
765 priv->dev->stats.tx_errors++;
767 TX_DBG("%s: curr %d, dirty %d\n", __func__,
768 priv->cur_tx, priv->dirty_tx);
770 if (likely(p->des2))
771 dma_unmap_single(priv->device, p->des2,
772 priv->mac_type->ops->get_tx_len(p),
773 DMA_TO_DEVICE);
774 if (unlikely(p->des3))
775 p->des3 = 0;
777 if (likely(skb != NULL)) {
779 * If there's room in the queue (limit it to size)
780 * we add this skb back into the pool,
781 * if it's the right size.
783 if ((skb_queue_len(&priv->rx_recycle) <
784 priv->dma_rx_size) &&
785 skb_recycle_check(skb, priv->dma_buf_sz))
786 __skb_queue_head(&priv->rx_recycle, skb);
787 else
788 dev_kfree_skb(skb);
790 priv->tx_skbuff[entry] = NULL;
793 priv->mac_type->ops->release_tx_desc(p);
795 entry = (++priv->dirty_tx) % txsize;
797 if (unlikely(netif_queue_stopped(priv->dev) &&
798 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
799 netif_tx_lock(priv->dev);
800 if (netif_queue_stopped(priv->dev) &&
801 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
802 TX_DBG("%s: restart transmit\n", __func__);
803 netif_wake_queue(priv->dev);
805 netif_tx_unlock(priv->dev);
807 return;
810 static inline void stmmac_enable_irq(struct stmmac_priv *priv)
812 #ifndef CONFIG_STMMAC_TIMER
813 writel(DMA_INTR_DEFAULT_MASK, priv->dev->base_addr + DMA_INTR_ENA);
814 #else
815 priv->tm->timer_start(tmrate);
816 #endif
819 static inline void stmmac_disable_irq(struct stmmac_priv *priv)
821 #ifndef CONFIG_STMMAC_TIMER
822 writel(0, priv->dev->base_addr + DMA_INTR_ENA);
823 #else
824 priv->tm->timer_stop();
825 #endif
828 static int stmmac_has_work(struct stmmac_priv *priv)
830 unsigned int has_work = 0;
831 int rxret, tx_work = 0;
833 rxret = priv->mac_type->ops->get_rx_owner(priv->dma_rx +
834 (priv->cur_rx % priv->dma_rx_size));
836 if (priv->dirty_tx != priv->cur_tx)
837 tx_work = 1;
839 if (likely(!rxret || tx_work))
840 has_work = 1;
842 return has_work;
845 static inline void _stmmac_schedule(struct stmmac_priv *priv)
847 if (likely(stmmac_has_work(priv))) {
848 stmmac_disable_irq(priv);
849 napi_schedule(&priv->napi);
853 #ifdef CONFIG_STMMAC_TIMER
854 void stmmac_schedule(struct net_device *dev)
856 struct stmmac_priv *priv = netdev_priv(dev);
858 priv->xstats.sched_timer_n++;
860 _stmmac_schedule(priv);
862 return;
865 static void stmmac_no_timer_started(unsigned int x)
869 static void stmmac_no_timer_stopped(void)
872 #endif
875 * stmmac_tx_err:
876 * @priv: pointer to the private device structure
877 * Description: it cleans the descriptors and restarts the transmission
878 * in case of errors.
880 static void stmmac_tx_err(struct stmmac_priv *priv)
882 netif_stop_queue(priv->dev);
884 stmmac_dma_stop_tx(priv->dev->base_addr);
885 dma_free_tx_skbufs(priv);
886 priv->mac_type->ops->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
887 priv->dirty_tx = 0;
888 priv->cur_tx = 0;
889 stmmac_dma_start_tx(priv->dev->base_addr);
891 priv->dev->stats.tx_errors++;
892 netif_wake_queue(priv->dev);
894 return;
898 * stmmac_dma_interrupt - Interrupt handler for the driver
899 * @dev: net device structure
900 * Description: Interrupt handler for the driver (DMA).
902 static void stmmac_dma_interrupt(struct net_device *dev)
904 unsigned long ioaddr = dev->base_addr;
905 struct stmmac_priv *priv = netdev_priv(dev);
906 /* read the status register (CSR5) */
907 u32 intr_status = readl(ioaddr + DMA_STATUS);
909 DBG(intr, INFO, "%s: [CSR5: 0x%08x]\n", __func__, intr_status);
911 #ifdef STMMAC_DEBUG
912 /* It displays the DMA transmit process state (CSR5 register) */
913 if (netif_msg_tx_done(priv))
914 show_tx_process_state(intr_status);
915 if (netif_msg_rx_status(priv))
916 show_rx_process_state(intr_status);
917 #endif
918 /* ABNORMAL interrupts */
919 if (unlikely(intr_status & DMA_STATUS_AIS)) {
920 DBG(intr, INFO, "CSR5[15] DMA ABNORMAL IRQ: ");
921 if (unlikely(intr_status & DMA_STATUS_UNF)) {
922 DBG(intr, INFO, "transmit underflow\n");
923 if (unlikely(tc != SF_DMA_MODE)
924 && (tc <= 256)) {
925 /* Try to bump up the threshold */
926 tc += 64;
927 priv->mac_type->ops->dma_mode(ioaddr, tc,
928 SF_DMA_MODE);
929 priv->xstats.threshold = tc;
931 stmmac_tx_err(priv);
932 priv->xstats.tx_undeflow_irq++;
934 if (unlikely(intr_status & DMA_STATUS_TJT)) {
935 DBG(intr, INFO, "transmit jabber\n");
936 priv->xstats.tx_jabber_irq++;
938 if (unlikely(intr_status & DMA_STATUS_OVF)) {
939 DBG(intr, INFO, "recv overflow\n");
940 priv->xstats.rx_overflow_irq++;
942 if (unlikely(intr_status & DMA_STATUS_RU)) {
943 DBG(intr, INFO, "receive buffer unavailable\n");
944 priv->xstats.rx_buf_unav_irq++;
946 if (unlikely(intr_status & DMA_STATUS_RPS)) {
947 DBG(intr, INFO, "receive process stopped\n");
948 priv->xstats.rx_process_stopped_irq++;
950 if (unlikely(intr_status & DMA_STATUS_RWT)) {
951 DBG(intr, INFO, "receive watchdog\n");
952 priv->xstats.rx_watchdog_irq++;
954 if (unlikely(intr_status & DMA_STATUS_ETI)) {
955 DBG(intr, INFO, "transmit early interrupt\n");
956 priv->xstats.tx_early_irq++;
958 if (unlikely(intr_status & DMA_STATUS_TPS)) {
959 DBG(intr, INFO, "transmit process stopped\n");
960 priv->xstats.tx_process_stopped_irq++;
961 stmmac_tx_err(priv);
963 if (unlikely(intr_status & DMA_STATUS_FBI)) {
964 DBG(intr, INFO, "fatal bus error\n");
965 priv->xstats.fatal_bus_error_irq++;
966 stmmac_tx_err(priv);
970 /* TX/RX NORMAL interrupts */
971 if (intr_status & DMA_STATUS_NIS) {
972 priv->xstats.normal_irq_n++;
973 if (likely((intr_status & DMA_STATUS_RI) ||
974 (intr_status & (DMA_STATUS_TI))))
975 _stmmac_schedule(priv);
978 /* Optional hardware blocks, interrupts should be disabled */
979 if (unlikely(intr_status &
980 (DMA_STATUS_GPI | DMA_STATUS_GMI | DMA_STATUS_GLI)))
981 pr_info("%s: unexpected status %08x\n", __func__, intr_status);
983 /* Clear the interrupt by writing a logic 1 to the CSR5[15-0] */
984 writel((intr_status & 0x1ffff), ioaddr + DMA_STATUS);
986 DBG(intr, INFO, "\n\n");
988 return;
992 * stmmac_open - open entry point of the driver
993 * @dev : pointer to the device structure.
994 * Description:
995 * This function is the open entry point of the driver.
996 * Return value:
997 * 0 on success and an appropriate (-)ve integer as defined in errno.h
998 * file on failure.
1000 static int stmmac_open(struct net_device *dev)
1002 struct stmmac_priv *priv = netdev_priv(dev);
1003 unsigned long ioaddr = dev->base_addr;
1004 int ret;
1006 /* Check that the MAC address is valid. If its not, refuse
1007 * to bring the device up. The user must specify an
1008 * address using the following linux command:
1009 * ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx */
1010 if (!is_valid_ether_addr(dev->dev_addr)) {
1011 random_ether_addr(dev->dev_addr);
1012 pr_warning("%s: generated random MAC address %pM\n", dev->name,
1013 dev->dev_addr);
1016 stmmac_verify_args();
1018 ret = stmmac_init_phy(dev);
1019 if (unlikely(ret)) {
1020 pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
1021 return ret;
1024 /* Request the IRQ lines */
1025 ret = request_irq(dev->irq, &stmmac_interrupt,
1026 IRQF_SHARED, dev->name, dev);
1027 if (unlikely(ret < 0)) {
1028 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1029 __func__, dev->irq, ret);
1030 return ret;
1033 #ifdef CONFIG_STMMAC_TIMER
1034 priv->tm = kmalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
1035 if (unlikely(priv->tm == NULL)) {
1036 pr_err("%s: ERROR: timer memory alloc failed \n", __func__);
1037 return -ENOMEM;
1039 priv->tm->freq = tmrate;
1041 /* Test if the HW timer can be actually used.
1042 * In case of failure continue with no timer. */
1043 if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
1044 pr_warning("stmmaceth: cannot attach the HW timer\n");
1045 tmrate = 0;
1046 priv->tm->freq = 0;
1047 priv->tm->timer_start = stmmac_no_timer_started;
1048 priv->tm->timer_stop = stmmac_no_timer_stopped;
1050 #endif
1052 /* Create and initialize the TX/RX descriptors chains. */
1053 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1054 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1055 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1056 init_dma_desc_rings(dev);
1058 /* DMA initialization and SW reset */
1059 if (unlikely(priv->mac_type->ops->dma_init(ioaddr,
1060 priv->pbl, priv->dma_tx_phy, priv->dma_rx_phy) < 0)) {
1062 pr_err("%s: DMA initialization failed\n", __func__);
1063 return -1;
1066 /* Copy the MAC addr into the HW */
1067 priv->mac_type->ops->set_umac_addr(ioaddr, dev->dev_addr, 0);
1068 /* Initialize the MAC Core */
1069 priv->mac_type->ops->core_init(ioaddr);
1071 priv->shutdown = 0;
1073 /* Initialise the MMC (if present) to disable all interrupts. */
1074 writel(0xffffffff, ioaddr + MMC_HIGH_INTR_MASK);
1075 writel(0xffffffff, ioaddr + MMC_LOW_INTR_MASK);
1077 /* Enable the MAC Rx/Tx */
1078 stmmac_mac_enable_rx(ioaddr);
1079 stmmac_mac_enable_tx(ioaddr);
1081 /* Set the HW DMA mode and the COE */
1082 stmmac_dma_operation_mode(priv);
1084 /* Extra statistics */
1085 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1086 priv->xstats.threshold = tc;
1088 /* Start the ball rolling... */
1089 DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1090 stmmac_dma_start_tx(ioaddr);
1091 stmmac_dma_start_rx(ioaddr);
1093 #ifdef CONFIG_STMMAC_TIMER
1094 priv->tm->timer_start(tmrate);
1095 #endif
1096 /* Dump DMA/MAC registers */
1097 if (netif_msg_hw(priv)) {
1098 priv->mac_type->ops->dump_mac_regs(ioaddr);
1099 priv->mac_type->ops->dump_dma_regs(ioaddr);
1102 if (priv->phydev)
1103 phy_start(priv->phydev);
1105 napi_enable(&priv->napi);
1106 skb_queue_head_init(&priv->rx_recycle);
1107 netif_start_queue(dev);
1108 return 0;
1112 * stmmac_release - close entry point of the driver
1113 * @dev : device pointer.
1114 * Description:
1115 * This is the stop entry point of the driver.
1117 static int stmmac_release(struct net_device *dev)
1119 struct stmmac_priv *priv = netdev_priv(dev);
1121 /* Stop and disconnect the PHY */
1122 if (priv->phydev) {
1123 phy_stop(priv->phydev);
1124 phy_disconnect(priv->phydev);
1125 priv->phydev = NULL;
1128 netif_stop_queue(dev);
1130 #ifdef CONFIG_STMMAC_TIMER
1131 /* Stop and release the timer */
1132 stmmac_close_ext_timer();
1133 if (priv->tm != NULL)
1134 kfree(priv->tm);
1135 #endif
1136 napi_disable(&priv->napi);
1137 skb_queue_purge(&priv->rx_recycle);
1139 /* Free the IRQ lines */
1140 free_irq(dev->irq, dev);
1142 /* Stop TX/RX DMA and clear the descriptors */
1143 stmmac_dma_stop_tx(dev->base_addr);
1144 stmmac_dma_stop_rx(dev->base_addr);
1146 /* Release and free the Rx/Tx resources */
1147 free_dma_desc_resources(priv);
1149 /* Disable the MAC core */
1150 stmmac_mac_disable_tx(dev->base_addr);
1151 stmmac_mac_disable_rx(dev->base_addr);
1153 netif_carrier_off(dev);
1155 return 0;
1159 * To perform emulated hardware segmentation on skb.
1161 static int stmmac_sw_tso(struct stmmac_priv *priv, struct sk_buff *skb)
1163 struct sk_buff *segs, *curr_skb;
1164 int gso_segs = skb_shinfo(skb)->gso_segs;
1166 /* Estimate the number of fragments in the worst case */
1167 if (unlikely(stmmac_tx_avail(priv) < gso_segs)) {
1168 netif_stop_queue(priv->dev);
1169 TX_DBG(KERN_ERR "%s: TSO BUG! Tx Ring full when queue awake\n",
1170 __func__);
1171 if (stmmac_tx_avail(priv) < gso_segs)
1172 return NETDEV_TX_BUSY;
1174 netif_wake_queue(priv->dev);
1176 TX_DBG("\tstmmac_sw_tso: segmenting: skb %p (len %d)\n",
1177 skb, skb->len);
1179 segs = skb_gso_segment(skb, priv->dev->features & ~NETIF_F_TSO);
1180 if (unlikely(IS_ERR(segs)))
1181 goto sw_tso_end;
1183 do {
1184 curr_skb = segs;
1185 segs = segs->next;
1186 TX_DBG("\t\tcurrent skb->len: %d, *curr %p,"
1187 "*next %p\n", curr_skb->len, curr_skb, segs);
1188 curr_skb->next = NULL;
1189 stmmac_xmit(curr_skb, priv->dev);
1190 } while (segs);
1192 sw_tso_end:
1193 dev_kfree_skb(skb);
1195 return NETDEV_TX_OK;
1198 static unsigned int stmmac_handle_jumbo_frames(struct sk_buff *skb,
1199 struct net_device *dev,
1200 int csum_insertion)
1202 struct stmmac_priv *priv = netdev_priv(dev);
1203 unsigned int nopaged_len = skb_headlen(skb);
1204 unsigned int txsize = priv->dma_tx_size;
1205 unsigned int entry = priv->cur_tx % txsize;
1206 struct dma_desc *desc = priv->dma_tx + entry;
1208 if (nopaged_len > BUF_SIZE_8KiB) {
1210 int buf2_size = nopaged_len - BUF_SIZE_8KiB;
1212 desc->des2 = dma_map_single(priv->device, skb->data,
1213 BUF_SIZE_8KiB, DMA_TO_DEVICE);
1214 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1215 priv->mac_type->ops->prepare_tx_desc(desc, 1, BUF_SIZE_8KiB,
1216 csum_insertion);
1218 entry = (++priv->cur_tx) % txsize;
1219 desc = priv->dma_tx + entry;
1221 desc->des2 = dma_map_single(priv->device,
1222 skb->data + BUF_SIZE_8KiB,
1223 buf2_size, DMA_TO_DEVICE);
1224 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1225 priv->mac_type->ops->prepare_tx_desc(desc, 0,
1226 buf2_size, csum_insertion);
1227 priv->mac_type->ops->set_tx_owner(desc);
1228 priv->tx_skbuff[entry] = NULL;
1229 } else {
1230 desc->des2 = dma_map_single(priv->device, skb->data,
1231 nopaged_len, DMA_TO_DEVICE);
1232 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1233 priv->mac_type->ops->prepare_tx_desc(desc, 1, nopaged_len,
1234 csum_insertion);
1236 return entry;
1240 * stmmac_xmit:
1241 * @skb : the socket buffer
1242 * @dev : device pointer
1243 * Description : Tx entry point of the driver.
1245 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1247 struct stmmac_priv *priv = netdev_priv(dev);
1248 unsigned int txsize = priv->dma_tx_size;
1249 unsigned int entry;
1250 int i, csum_insertion = 0;
1251 int nfrags = skb_shinfo(skb)->nr_frags;
1252 struct dma_desc *desc, *first;
1254 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1255 if (!netif_queue_stopped(dev)) {
1256 netif_stop_queue(dev);
1257 /* This is a hard error, log it. */
1258 pr_err("%s: BUG! Tx Ring full when queue awake\n",
1259 __func__);
1261 return NETDEV_TX_BUSY;
1264 entry = priv->cur_tx % txsize;
1266 #ifdef STMMAC_XMIT_DEBUG
1267 if ((skb->len > ETH_FRAME_LEN) || nfrags)
1268 pr_info("stmmac xmit:\n"
1269 "\tskb addr %p - len: %d - nopaged_len: %d\n"
1270 "\tn_frags: %d - ip_summed: %d - %s gso\n",
1271 skb, skb->len, skb_headlen(skb), nfrags, skb->ip_summed,
1272 !skb_is_gso(skb) ? "isn't" : "is");
1273 #endif
1275 if (unlikely(skb_is_gso(skb)))
1276 return stmmac_sw_tso(priv, skb);
1278 if (likely((skb->ip_summed == CHECKSUM_PARTIAL))) {
1279 if (likely(priv->tx_coe == NO_HW_CSUM))
1280 skb_checksum_help(skb);
1281 else
1282 csum_insertion = 1;
1285 desc = priv->dma_tx + entry;
1286 first = desc;
1288 #ifdef STMMAC_XMIT_DEBUG
1289 if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1290 pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1291 "\t\tn_frags: %d, ip_summed: %d\n",
1292 skb->len, skb_headlen(skb), nfrags, skb->ip_summed);
1293 #endif
1294 priv->tx_skbuff[entry] = skb;
1295 if (unlikely(skb->len >= BUF_SIZE_4KiB)) {
1296 entry = stmmac_handle_jumbo_frames(skb, dev, csum_insertion);
1297 desc = priv->dma_tx + entry;
1298 } else {
1299 unsigned int nopaged_len = skb_headlen(skb);
1300 desc->des2 = dma_map_single(priv->device, skb->data,
1301 nopaged_len, DMA_TO_DEVICE);
1302 priv->mac_type->ops->prepare_tx_desc(desc, 1, nopaged_len,
1303 csum_insertion);
1306 for (i = 0; i < nfrags; i++) {
1307 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1308 int len = frag->size;
1310 entry = (++priv->cur_tx) % txsize;
1311 desc = priv->dma_tx + entry;
1313 TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1314 desc->des2 = dma_map_page(priv->device, frag->page,
1315 frag->page_offset,
1316 len, DMA_TO_DEVICE);
1317 priv->tx_skbuff[entry] = NULL;
1318 priv->mac_type->ops->prepare_tx_desc(desc, 0, len,
1319 csum_insertion);
1320 priv->mac_type->ops->set_tx_owner(desc);
1323 /* Interrupt on completition only for the latest segment */
1324 priv->mac_type->ops->close_tx_desc(desc);
1325 #ifdef CONFIG_STMMAC_TIMER
1326 /* Clean IC while using timers */
1327 priv->mac_type->ops->clear_tx_ic(desc);
1328 #endif
1329 /* To avoid raise condition */
1330 priv->mac_type->ops->set_tx_owner(first);
1332 priv->cur_tx++;
1334 #ifdef STMMAC_XMIT_DEBUG
1335 if (netif_msg_pktdata(priv)) {
1336 pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1337 "first=%p, nfrags=%d\n",
1338 (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1339 entry, first, nfrags);
1340 display_ring(priv->dma_tx, txsize);
1341 pr_info(">>> frame to be transmitted: ");
1342 print_pkt(skb->data, skb->len);
1344 #endif
1345 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1346 TX_DBG("%s: stop transmitted packets\n", __func__);
1347 netif_stop_queue(dev);
1350 dev->stats.tx_bytes += skb->len;
1352 /* CSR1 enables the transmit DMA to check for new descriptor */
1353 writel(1, dev->base_addr + DMA_XMT_POLL_DEMAND);
1355 return NETDEV_TX_OK;
1358 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1360 unsigned int rxsize = priv->dma_rx_size;
1361 int bfsize = priv->dma_buf_sz;
1362 struct dma_desc *p = priv->dma_rx;
1364 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1365 unsigned int entry = priv->dirty_rx % rxsize;
1366 if (likely(priv->rx_skbuff[entry] == NULL)) {
1367 struct sk_buff *skb;
1369 skb = __skb_dequeue(&priv->rx_recycle);
1370 if (skb == NULL)
1371 skb = netdev_alloc_skb_ip_align(priv->dev,
1372 bfsize);
1374 if (unlikely(skb == NULL))
1375 break;
1377 priv->rx_skbuff[entry] = skb;
1378 priv->rx_skbuff_dma[entry] =
1379 dma_map_single(priv->device, skb->data, bfsize,
1380 DMA_FROM_DEVICE);
1382 (p + entry)->des2 = priv->rx_skbuff_dma[entry];
1383 if (unlikely(priv->is_gmac)) {
1384 if (bfsize >= BUF_SIZE_8KiB)
1385 (p + entry)->des3 =
1386 (p + entry)->des2 + BUF_SIZE_8KiB;
1388 RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1390 priv->mac_type->ops->set_rx_owner(p + entry);
1392 return;
1395 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1397 unsigned int rxsize = priv->dma_rx_size;
1398 unsigned int entry = priv->cur_rx % rxsize;
1399 unsigned int next_entry;
1400 unsigned int count = 0;
1401 struct dma_desc *p = priv->dma_rx + entry;
1402 struct dma_desc *p_next;
1404 #ifdef STMMAC_RX_DEBUG
1405 if (netif_msg_hw(priv)) {
1406 pr_debug(">>> stmmac_rx: descriptor ring:\n");
1407 display_ring(priv->dma_rx, rxsize);
1409 #endif
1410 count = 0;
1411 while (!priv->mac_type->ops->get_rx_owner(p)) {
1412 int status;
1414 if (count >= limit)
1415 break;
1417 count++;
1419 next_entry = (++priv->cur_rx) % rxsize;
1420 p_next = priv->dma_rx + next_entry;
1421 prefetch(p_next);
1423 /* read the status of the incoming frame */
1424 status = (priv->mac_type->ops->rx_status(&priv->dev->stats,
1425 &priv->xstats, p));
1426 if (unlikely(status == discard_frame))
1427 priv->dev->stats.rx_errors++;
1428 else {
1429 struct sk_buff *skb;
1430 /* Length should omit the CRC */
1431 int frame_len =
1432 priv->mac_type->ops->get_rx_frame_len(p) - 4;
1434 #ifdef STMMAC_RX_DEBUG
1435 if (frame_len > ETH_FRAME_LEN)
1436 pr_debug("\tRX frame size %d, COE status: %d\n",
1437 frame_len, status);
1439 if (netif_msg_hw(priv))
1440 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1441 p, entry, p->des2);
1442 #endif
1443 skb = priv->rx_skbuff[entry];
1444 if (unlikely(!skb)) {
1445 pr_err("%s: Inconsistent Rx descriptor chain\n",
1446 priv->dev->name);
1447 priv->dev->stats.rx_dropped++;
1448 break;
1450 prefetch(skb->data - NET_IP_ALIGN);
1451 priv->rx_skbuff[entry] = NULL;
1453 skb_put(skb, frame_len);
1454 dma_unmap_single(priv->device,
1455 priv->rx_skbuff_dma[entry],
1456 priv->dma_buf_sz, DMA_FROM_DEVICE);
1457 #ifdef STMMAC_RX_DEBUG
1458 if (netif_msg_pktdata(priv)) {
1459 pr_info(" frame received (%dbytes)", frame_len);
1460 print_pkt(skb->data, frame_len);
1462 #endif
1463 skb->protocol = eth_type_trans(skb, priv->dev);
1465 if (unlikely(status == csum_none)) {
1466 /* always for the old mac 10/100 */
1467 skb->ip_summed = CHECKSUM_NONE;
1468 netif_receive_skb(skb);
1469 } else {
1470 skb->ip_summed = CHECKSUM_UNNECESSARY;
1471 napi_gro_receive(&priv->napi, skb);
1474 priv->dev->stats.rx_packets++;
1475 priv->dev->stats.rx_bytes += frame_len;
1476 priv->dev->last_rx = jiffies;
1478 entry = next_entry;
1479 p = p_next; /* use prefetched values */
1482 stmmac_rx_refill(priv);
1484 priv->xstats.rx_pkt_n += count;
1486 return count;
1490 * stmmac_poll - stmmac poll method (NAPI)
1491 * @napi : pointer to the napi structure.
1492 * @budget : maximum number of packets that the current CPU can receive from
1493 * all interfaces.
1494 * Description :
1495 * This function implements the the reception process.
1496 * Also it runs the TX completion thread
1498 static int stmmac_poll(struct napi_struct *napi, int budget)
1500 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1501 int work_done = 0;
1503 priv->xstats.poll_n++;
1504 stmmac_tx(priv);
1505 work_done = stmmac_rx(priv, budget);
1507 if (work_done < budget) {
1508 napi_complete(napi);
1509 stmmac_enable_irq(priv);
1511 return work_done;
1515 * stmmac_tx_timeout
1516 * @dev : Pointer to net device structure
1517 * Description: this function is called when a packet transmission fails to
1518 * complete within a reasonable tmrate. The driver will mark the error in the
1519 * netdev structure and arrange for the device to be reset to a sane state
1520 * in order to transmit a new packet.
1522 static void stmmac_tx_timeout(struct net_device *dev)
1524 struct stmmac_priv *priv = netdev_priv(dev);
1526 /* Clear Tx resources and restart transmitting again */
1527 stmmac_tx_err(priv);
1528 return;
1531 /* Configuration changes (passed on by ifconfig) */
1532 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1534 if (dev->flags & IFF_UP) /* can't act on a running interface */
1535 return -EBUSY;
1537 /* Don't allow changing the I/O address */
1538 if (map->base_addr != dev->base_addr) {
1539 pr_warning("%s: can't change I/O address\n", dev->name);
1540 return -EOPNOTSUPP;
1543 /* Don't allow changing the IRQ */
1544 if (map->irq != dev->irq) {
1545 pr_warning("%s: can't change IRQ number %d\n",
1546 dev->name, dev->irq);
1547 return -EOPNOTSUPP;
1550 /* ignore other fields */
1551 return 0;
1555 * stmmac_multicast_list - entry point for multicast addressing
1556 * @dev : pointer to the device structure
1557 * Description:
1558 * This function is a driver entry point which gets called by the kernel
1559 * whenever multicast addresses must be enabled/disabled.
1560 * Return value:
1561 * void.
1563 static void stmmac_multicast_list(struct net_device *dev)
1565 struct stmmac_priv *priv = netdev_priv(dev);
1567 spin_lock(&priv->lock);
1568 priv->mac_type->ops->set_filter(dev);
1569 spin_unlock(&priv->lock);
1570 return;
1574 * stmmac_change_mtu - entry point to change MTU size for the device.
1575 * @dev : device pointer.
1576 * @new_mtu : the new MTU size for the device.
1577 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
1578 * to drive packet transmission. Ethernet has an MTU of 1500 octets
1579 * (ETH_DATA_LEN). This value can be changed with ifconfig.
1580 * Return value:
1581 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1582 * file on failure.
1584 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1586 struct stmmac_priv *priv = netdev_priv(dev);
1587 int max_mtu;
1589 if (netif_running(dev)) {
1590 pr_err("%s: must be stopped to change its MTU\n", dev->name);
1591 return -EBUSY;
1594 if (priv->is_gmac)
1595 max_mtu = JUMBO_LEN;
1596 else
1597 max_mtu = ETH_DATA_LEN;
1599 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1600 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1601 return -EINVAL;
1604 dev->mtu = new_mtu;
1606 return 0;
1609 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1611 struct net_device *dev = (struct net_device *)dev_id;
1612 struct stmmac_priv *priv = netdev_priv(dev);
1614 if (unlikely(!dev)) {
1615 pr_err("%s: invalid dev pointer\n", __func__);
1616 return IRQ_NONE;
1619 if (priv->is_gmac) {
1620 unsigned long ioaddr = dev->base_addr;
1621 /* To handle GMAC own interrupts */
1622 priv->mac_type->ops->host_irq_status(ioaddr);
1624 stmmac_dma_interrupt(dev);
1626 return IRQ_HANDLED;
1629 #ifdef CONFIG_NET_POLL_CONTROLLER
1630 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1631 * to allow network I/O with interrupts disabled. */
1632 static void stmmac_poll_controller(struct net_device *dev)
1634 disable_irq(dev->irq);
1635 stmmac_interrupt(dev->irq, dev);
1636 enable_irq(dev->irq);
1638 #endif
1641 * stmmac_ioctl - Entry point for the Ioctl
1642 * @dev: Device pointer.
1643 * @rq: An IOCTL specefic structure, that can contain a pointer to
1644 * a proprietary structure used to pass information to the driver.
1645 * @cmd: IOCTL command
1646 * Description:
1647 * Currently there are no special functionality supported in IOCTL, just the
1648 * phy_mii_ioctl(...) can be invoked.
1650 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1652 struct stmmac_priv *priv = netdev_priv(dev);
1653 int ret = -EOPNOTSUPP;
1655 if (!netif_running(dev))
1656 return -EINVAL;
1658 switch (cmd) {
1659 case SIOCGMIIPHY:
1660 case SIOCGMIIREG:
1661 case SIOCSMIIREG:
1662 if (!priv->phydev)
1663 return -EINVAL;
1665 spin_lock(&priv->lock);
1666 ret = phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
1667 spin_unlock(&priv->lock);
1668 default:
1669 break;
1671 return ret;
1674 #ifdef STMMAC_VLAN_TAG_USED
1675 static void stmmac_vlan_rx_register(struct net_device *dev,
1676 struct vlan_group *grp)
1678 struct stmmac_priv *priv = netdev_priv(dev);
1680 DBG(probe, INFO, "%s: Setting vlgrp to %p\n", dev->name, grp);
1682 spin_lock(&priv->lock);
1683 priv->vlgrp = grp;
1684 spin_unlock(&priv->lock);
1686 return;
1688 #endif
1690 static const struct net_device_ops stmmac_netdev_ops = {
1691 .ndo_open = stmmac_open,
1692 .ndo_start_xmit = stmmac_xmit,
1693 .ndo_stop = stmmac_release,
1694 .ndo_change_mtu = stmmac_change_mtu,
1695 .ndo_set_multicast_list = stmmac_multicast_list,
1696 .ndo_tx_timeout = stmmac_tx_timeout,
1697 .ndo_do_ioctl = stmmac_ioctl,
1698 .ndo_set_config = stmmac_config,
1699 #ifdef STMMAC_VLAN_TAG_USED
1700 .ndo_vlan_rx_register = stmmac_vlan_rx_register,
1701 #endif
1702 #ifdef CONFIG_NET_POLL_CONTROLLER
1703 .ndo_poll_controller = stmmac_poll_controller,
1704 #endif
1705 .ndo_set_mac_address = eth_mac_addr,
1709 * stmmac_probe - Initialization of the adapter .
1710 * @dev : device pointer
1711 * Description: The function initializes the network device structure for
1712 * the STMMAC driver. It also calls the low level routines
1713 * in order to init the HW (i.e. the DMA engine)
1715 static int stmmac_probe(struct net_device *dev)
1717 int ret = 0;
1718 struct stmmac_priv *priv = netdev_priv(dev);
1720 ether_setup(dev);
1722 dev->netdev_ops = &stmmac_netdev_ops;
1723 stmmac_set_ethtool_ops(dev);
1725 dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HIGHDMA);
1726 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1727 #ifdef STMMAC_VLAN_TAG_USED
1728 /* Both mac100 and gmac support receive VLAN tag detection */
1729 dev->features |= NETIF_F_HW_VLAN_RX;
1730 #endif
1731 priv->msg_enable = netif_msg_init(debug, default_msg_level);
1733 if (priv->is_gmac)
1734 priv->rx_csum = 1;
1736 if (flow_ctrl)
1737 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
1739 priv->pause = pause;
1740 netif_napi_add(dev, &priv->napi, stmmac_poll, 64);
1742 /* Get the MAC address */
1743 priv->mac_type->ops->get_umac_addr(dev->base_addr, dev->dev_addr, 0);
1745 if (!is_valid_ether_addr(dev->dev_addr))
1746 pr_warning("\tno valid MAC address;"
1747 "please, use ifconfig or nwhwconfig!\n");
1749 ret = register_netdev(dev);
1750 if (ret) {
1751 pr_err("%s: ERROR %i registering the device\n",
1752 __func__, ret);
1753 return -ENODEV;
1756 DBG(probe, DEBUG, "%s: Scatter/Gather: %s - HW checksums: %s\n",
1757 dev->name, (dev->features & NETIF_F_SG) ? "on" : "off",
1758 (dev->features & NETIF_F_HW_CSUM) ? "on" : "off");
1760 spin_lock_init(&priv->lock);
1762 return ret;
1766 * stmmac_mac_device_setup
1767 * @dev : device pointer
1768 * Description: select and initialise the mac device (mac100 or Gmac).
1770 static int stmmac_mac_device_setup(struct net_device *dev)
1772 struct stmmac_priv *priv = netdev_priv(dev);
1773 unsigned long ioaddr = dev->base_addr;
1775 struct mac_device_info *device;
1777 if (priv->is_gmac)
1778 device = gmac_setup(ioaddr);
1779 else
1780 device = mac100_setup(ioaddr);
1782 if (!device)
1783 return -ENOMEM;
1785 priv->mac_type = device;
1787 priv->wolenabled = priv->mac_type->hw.pmt; /* PMT supported */
1788 if (priv->wolenabled == PMT_SUPPORTED)
1789 priv->wolopts = WAKE_MAGIC; /* Magic Frame */
1791 return 0;
1794 static int stmmacphy_dvr_probe(struct platform_device *pdev)
1796 struct plat_stmmacphy_data *plat_dat;
1797 plat_dat = (struct plat_stmmacphy_data *)((pdev->dev).platform_data);
1799 pr_debug("stmmacphy_dvr_probe: added phy for bus %d\n",
1800 plat_dat->bus_id);
1802 return 0;
1805 static int stmmacphy_dvr_remove(struct platform_device *pdev)
1807 return 0;
1810 static struct platform_driver stmmacphy_driver = {
1811 .driver = {
1812 .name = PHY_RESOURCE_NAME,
1814 .probe = stmmacphy_dvr_probe,
1815 .remove = stmmacphy_dvr_remove,
1819 * stmmac_associate_phy
1820 * @dev: pointer to device structure
1821 * @data: points to the private structure.
1822 * Description: Scans through all the PHYs we have registered and checks if
1823 * any are associated with our MAC. If so, then just fill in
1824 * the blanks in our local context structure
1826 static int stmmac_associate_phy(struct device *dev, void *data)
1828 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1829 struct plat_stmmacphy_data *plat_dat;
1831 plat_dat = (struct plat_stmmacphy_data *)(dev->platform_data);
1833 DBG(probe, DEBUG, "%s: checking phy for bus %d\n", __func__,
1834 plat_dat->bus_id);
1836 /* Check that this phy is for the MAC being initialised */
1837 if (priv->bus_id != plat_dat->bus_id)
1838 return 0;
1840 /* OK, this PHY is connected to the MAC.
1841 Go ahead and get the parameters */
1842 DBG(probe, DEBUG, "%s: OK. Found PHY config\n", __func__);
1843 priv->phy_irq =
1844 platform_get_irq_byname(to_platform_device(dev), "phyirq");
1845 DBG(probe, DEBUG, "%s: PHY irq on bus %d is %d\n", __func__,
1846 plat_dat->bus_id, priv->phy_irq);
1848 /* Override with kernel parameters if supplied XXX CRS XXX
1849 * this needs to have multiple instances */
1850 if ((phyaddr >= 0) && (phyaddr <= 31))
1851 plat_dat->phy_addr = phyaddr;
1853 priv->phy_addr = plat_dat->phy_addr;
1854 priv->phy_mask = plat_dat->phy_mask;
1855 priv->phy_interface = plat_dat->interface;
1856 priv->phy_reset = plat_dat->phy_reset;
1858 DBG(probe, DEBUG, "%s: exiting\n", __func__);
1859 return 1; /* forces exit of driver_for_each_device() */
1863 * stmmac_dvr_probe
1864 * @pdev: platform device pointer
1865 * Description: the driver is initialized through platform_device.
1867 static int stmmac_dvr_probe(struct platform_device *pdev)
1869 int ret = 0;
1870 struct resource *res;
1871 unsigned int *addr = NULL;
1872 struct net_device *ndev = NULL;
1873 struct stmmac_priv *priv;
1874 struct plat_stmmacenet_data *plat_dat;
1876 pr_info("STMMAC driver:\n\tplatform registration... ");
1877 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1878 if (!res) {
1879 ret = -ENODEV;
1880 goto out;
1882 pr_info("done!\n");
1884 if (!request_mem_region(res->start, (res->end - res->start),
1885 pdev->name)) {
1886 pr_err("%s: ERROR: memory allocation failed"
1887 "cannot get the I/O addr 0x%x\n",
1888 __func__, (unsigned int)res->start);
1889 ret = -EBUSY;
1890 goto out;
1893 addr = ioremap(res->start, (res->end - res->start));
1894 if (!addr) {
1895 pr_err("%s: ERROR: memory mapping failed \n", __func__);
1896 ret = -ENOMEM;
1897 goto out;
1900 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1901 if (!ndev) {
1902 pr_err("%s: ERROR: allocating the device\n", __func__);
1903 ret = -ENOMEM;
1904 goto out;
1907 SET_NETDEV_DEV(ndev, &pdev->dev);
1909 /* Get the MAC information */
1910 ndev->irq = platform_get_irq_byname(pdev, "macirq");
1911 if (ndev->irq == -ENXIO) {
1912 pr_err("%s: ERROR: MAC IRQ configuration "
1913 "information not found\n", __func__);
1914 ret = -ENODEV;
1915 goto out;
1918 priv = netdev_priv(ndev);
1919 priv->device = &(pdev->dev);
1920 priv->dev = ndev;
1921 plat_dat = (struct plat_stmmacenet_data *)((pdev->dev).platform_data);
1922 priv->bus_id = plat_dat->bus_id;
1923 priv->pbl = plat_dat->pbl; /* TLI */
1924 priv->is_gmac = plat_dat->has_gmac; /* GMAC is on board */
1926 platform_set_drvdata(pdev, ndev);
1928 /* Set the I/O base addr */
1929 ndev->base_addr = (unsigned long)addr;
1931 /* MAC HW revice detection */
1932 ret = stmmac_mac_device_setup(ndev);
1933 if (ret < 0)
1934 goto out;
1936 /* Network Device Registration */
1937 ret = stmmac_probe(ndev);
1938 if (ret < 0)
1939 goto out;
1941 /* associate a PHY - it is provided by another platform bus */
1942 if (!driver_for_each_device
1943 (&(stmmacphy_driver.driver), NULL, (void *)priv,
1944 stmmac_associate_phy)) {
1945 pr_err("No PHY device is associated with this MAC!\n");
1946 ret = -ENODEV;
1947 goto out;
1950 priv->fix_mac_speed = plat_dat->fix_mac_speed;
1951 priv->bsp_priv = plat_dat->bsp_priv;
1953 pr_info("\t%s - (dev. name: %s - id: %d, IRQ #%d\n"
1954 "\tIO base addr: 0x%08x)\n", ndev->name, pdev->name,
1955 pdev->id, ndev->irq, (unsigned int)addr);
1957 /* MDIO bus Registration */
1958 pr_debug("\tMDIO bus (id: %d)...", priv->bus_id);
1959 ret = stmmac_mdio_register(ndev);
1960 if (ret < 0)
1961 goto out;
1962 pr_debug("registered!\n");
1964 out:
1965 if (ret < 0) {
1966 platform_set_drvdata(pdev, NULL);
1967 release_mem_region(res->start, (res->end - res->start));
1968 if (addr != NULL)
1969 iounmap(addr);
1972 return ret;
1976 * stmmac_dvr_remove
1977 * @pdev: platform device pointer
1978 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1979 * changes the link status, releases the DMA descriptor rings,
1980 * unregisters the MDIO bus and unmaps the allocated memory.
1982 static int stmmac_dvr_remove(struct platform_device *pdev)
1984 struct net_device *ndev = platform_get_drvdata(pdev);
1985 struct resource *res;
1987 pr_info("%s:\n\tremoving driver", __func__);
1989 stmmac_dma_stop_rx(ndev->base_addr);
1990 stmmac_dma_stop_tx(ndev->base_addr);
1992 stmmac_mac_disable_rx(ndev->base_addr);
1993 stmmac_mac_disable_tx(ndev->base_addr);
1995 netif_carrier_off(ndev);
1997 stmmac_mdio_unregister(ndev);
1999 platform_set_drvdata(pdev, NULL);
2000 unregister_netdev(ndev);
2002 iounmap((void *)ndev->base_addr);
2003 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2004 release_mem_region(res->start, (res->end - res->start));
2006 free_netdev(ndev);
2008 return 0;
2011 #ifdef CONFIG_PM
2012 static int stmmac_suspend(struct platform_device *pdev, pm_message_t state)
2014 struct net_device *dev = platform_get_drvdata(pdev);
2015 struct stmmac_priv *priv = netdev_priv(dev);
2016 int dis_ic = 0;
2018 if (!dev || !netif_running(dev))
2019 return 0;
2021 spin_lock(&priv->lock);
2023 if (state.event == PM_EVENT_SUSPEND) {
2024 netif_device_detach(dev);
2025 netif_stop_queue(dev);
2026 if (priv->phydev)
2027 phy_stop(priv->phydev);
2029 #ifdef CONFIG_STMMAC_TIMER
2030 priv->tm->timer_stop();
2031 dis_ic = 1;
2032 #endif
2033 napi_disable(&priv->napi);
2035 /* Stop TX/RX DMA */
2036 stmmac_dma_stop_tx(dev->base_addr);
2037 stmmac_dma_stop_rx(dev->base_addr);
2038 /* Clear the Rx/Tx descriptors */
2039 priv->mac_type->ops->init_rx_desc(priv->dma_rx,
2040 priv->dma_rx_size, dis_ic);
2041 priv->mac_type->ops->init_tx_desc(priv->dma_tx,
2042 priv->dma_tx_size);
2044 stmmac_mac_disable_tx(dev->base_addr);
2046 if (device_may_wakeup(&(pdev->dev))) {
2047 /* Enable Power down mode by programming the PMT regs */
2048 if (priv->wolenabled == PMT_SUPPORTED)
2049 priv->mac_type->ops->pmt(dev->base_addr,
2050 priv->wolopts);
2051 } else {
2052 stmmac_mac_disable_rx(dev->base_addr);
2054 } else {
2055 priv->shutdown = 1;
2056 /* Although this can appear slightly redundant it actually
2057 * makes fast the standby operation and guarantees the driver
2058 * working if hibernation is on media. */
2059 stmmac_release(dev);
2062 spin_unlock(&priv->lock);
2063 return 0;
2066 static int stmmac_resume(struct platform_device *pdev)
2068 struct net_device *dev = platform_get_drvdata(pdev);
2069 struct stmmac_priv *priv = netdev_priv(dev);
2070 unsigned long ioaddr = dev->base_addr;
2072 if (!netif_running(dev))
2073 return 0;
2075 spin_lock(&priv->lock);
2077 if (priv->shutdown) {
2078 /* Re-open the interface and re-init the MAC/DMA
2079 and the rings. */
2080 stmmac_open(dev);
2081 goto out_resume;
2084 /* Power Down bit, into the PM register, is cleared
2085 * automatically as soon as a magic packet or a Wake-up frame
2086 * is received. Anyway, it's better to manually clear
2087 * this bit because it can generate problems while resuming
2088 * from another devices (e.g. serial console). */
2089 if (device_may_wakeup(&(pdev->dev)))
2090 if (priv->wolenabled == PMT_SUPPORTED)
2091 priv->mac_type->ops->pmt(dev->base_addr, 0);
2093 netif_device_attach(dev);
2095 /* Enable the MAC and DMA */
2096 stmmac_mac_enable_rx(ioaddr);
2097 stmmac_mac_enable_tx(ioaddr);
2098 stmmac_dma_start_tx(ioaddr);
2099 stmmac_dma_start_rx(ioaddr);
2101 #ifdef CONFIG_STMMAC_TIMER
2102 priv->tm->timer_start(tmrate);
2103 #endif
2104 napi_enable(&priv->napi);
2106 if (priv->phydev)
2107 phy_start(priv->phydev);
2109 netif_start_queue(dev);
2111 out_resume:
2112 spin_unlock(&priv->lock);
2113 return 0;
2115 #endif
2117 static struct platform_driver stmmac_driver = {
2118 .driver = {
2119 .name = STMMAC_RESOURCE_NAME,
2121 .probe = stmmac_dvr_probe,
2122 .remove = stmmac_dvr_remove,
2123 #ifdef CONFIG_PM
2124 .suspend = stmmac_suspend,
2125 .resume = stmmac_resume,
2126 #endif
2131 * stmmac_init_module - Entry point for the driver
2132 * Description: This function is the entry point for the driver.
2134 static int __init stmmac_init_module(void)
2136 int ret;
2138 if (platform_driver_register(&stmmacphy_driver)) {
2139 pr_err("No PHY devices registered!\n");
2140 return -ENODEV;
2143 ret = platform_driver_register(&stmmac_driver);
2144 return ret;
2148 * stmmac_cleanup_module - Cleanup routine for the driver
2149 * Description: This function is the cleanup routine for the driver.
2151 static void __exit stmmac_cleanup_module(void)
2153 platform_driver_unregister(&stmmacphy_driver);
2154 platform_driver_unregister(&stmmac_driver);
2157 #ifndef MODULE
2158 static int __init stmmac_cmdline_opt(char *str)
2160 char *opt;
2162 if (!str || !*str)
2163 return -EINVAL;
2164 while ((opt = strsep(&str, ",")) != NULL) {
2165 if (!strncmp(opt, "debug:", 6))
2166 strict_strtoul(opt + 6, 0, (unsigned long *)&debug);
2167 else if (!strncmp(opt, "phyaddr:", 8))
2168 strict_strtoul(opt + 8, 0, (unsigned long *)&phyaddr);
2169 else if (!strncmp(opt, "dma_txsize:", 11))
2170 strict_strtoul(opt + 11, 0,
2171 (unsigned long *)&dma_txsize);
2172 else if (!strncmp(opt, "dma_rxsize:", 11))
2173 strict_strtoul(opt + 11, 0,
2174 (unsigned long *)&dma_rxsize);
2175 else if (!strncmp(opt, "buf_sz:", 7))
2176 strict_strtoul(opt + 7, 0, (unsigned long *)&buf_sz);
2177 else if (!strncmp(opt, "tc:", 3))
2178 strict_strtoul(opt + 3, 0, (unsigned long *)&tc);
2179 else if (!strncmp(opt, "tx_coe:", 7))
2180 strict_strtoul(opt + 7, 0, (unsigned long *)&tx_coe);
2181 else if (!strncmp(opt, "watchdog:", 9))
2182 strict_strtoul(opt + 9, 0, (unsigned long *)&watchdog);
2183 else if (!strncmp(opt, "flow_ctrl:", 10))
2184 strict_strtoul(opt + 10, 0,
2185 (unsigned long *)&flow_ctrl);
2186 else if (!strncmp(opt, "pause:", 6))
2187 strict_strtoul(opt + 6, 0, (unsigned long *)&pause);
2188 #ifdef CONFIG_STMMAC_TIMER
2189 else if (!strncmp(opt, "tmrate:", 7))
2190 strict_strtoul(opt + 7, 0, (unsigned long *)&tmrate);
2191 #endif
2193 return 0;
2196 __setup("stmmaceth=", stmmac_cmdline_opt);
2197 #endif
2199 module_init(stmmac_init_module);
2200 module_exit(stmmac_cleanup_module);
2202 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet driver");
2203 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2204 MODULE_LICENSE("GPL");