2 * Intel Wireless WiMAX Connection 2400m
3 * Generic probe/disconnect, reset and message passing
6 * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
7 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License version
11 * 2 as published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
24 * See i2400m.h for driver documentation. This contains helpers for
25 * the driver model glue [_setup()/_release()], handling device resets
26 * [_dev_reset_handle()], and the backends for the WiMAX stack ops
27 * reset [_op_reset()] and message from user [_op_msg_from_user()].
31 * i2400m_op_msg_from_user()
33 * wimax_msg_to_user_send()
38 * i2400m_dev_reset_handle()
39 * __i2400m_dev_reset_handle()
41 * __i2400m_dev_start()
44 * i2400m_bootrom_init()
47 * __i2400m_dev_start()
48 * i2400m_dev_bootstrap()
50 * i2400m->bus_dev_start()
51 * i2400m_firmware_check()
52 * i2400m_check_mac_addr()
59 * i2400m_dev_shutdown()
60 * i2400m->bus_dev_stop()
65 #include <linux/etherdevice.h>
66 #include <linux/wimax/i2400m.h>
67 #include <linux/module.h>
68 #include <linux/moduleparam.h>
70 #define D_SUBMODULE driver
71 #include "debug-levels.h"
74 int i2400m_idle_mode_disabled
; /* 0 (idle mode enabled) by default */
75 module_param_named(idle_mode_disabled
, i2400m_idle_mode_disabled
, int, 0644);
76 MODULE_PARM_DESC(idle_mode_disabled
,
77 "If true, the device will not enable idle mode negotiation "
78 "with the base station (when connected) to save power.");
80 int i2400m_rx_reorder_disabled
; /* 0 (rx reorder enabled) by default */
81 module_param_named(rx_reorder_disabled
, i2400m_rx_reorder_disabled
, int, 0644);
82 MODULE_PARM_DESC(rx_reorder_disabled
,
83 "If true, RX reordering will be disabled.");
85 int i2400m_power_save_disabled
; /* 0 (power saving enabled) by default */
86 module_param_named(power_save_disabled
, i2400m_power_save_disabled
, int, 0644);
87 MODULE_PARM_DESC(power_save_disabled
,
88 "If true, the driver will not tell the device to enter "
89 "power saving mode when it reports it is ready for it. "
90 "False by default (so the device is told to do power "
94 * i2400m_queue_work - schedule work on a i2400m's queue
96 * @i2400m: device descriptor
98 * @fn: function to run to execute work. It gets passed a 'struct
99 * work_struct' that is wrapped in a 'struct i2400m_work'. Once
100 * done, you have to (1) i2400m_put(i2400m_work->i2400m) and then
101 * (2) kfree(i2400m_work).
103 * @gfp_flags: GFP flags for memory allocation.
105 * @pl: pointer to a payload buffer that you want to pass to the _work
106 * function. Use this to pack (for example) a struct with extra
109 * @pl_size: size of the payload buffer.
111 * We do this quite often, so this just saves typing; allocate a
112 * wrapper for a i2400m, get a ref to it, pack arguments and launch
115 * A usual workflow is:
117 * struct my_work_args {
123 * struct my_work_args my_args = {
127 * i2400m_queue_work(i2400m, 1, my_work_function, GFP_KERNEL,
128 * &args, sizeof(args))
130 * And now the work function can unpack the arguments and call the
131 * real function (or do the job itself):
134 * void my_work_fn((struct work_struct *ws)
136 * struct i2400m_work *iw =
137 * container_of(ws, struct i2400m_work, ws);
138 * struct my_work_args *my_args = (void *) iw->pl;
140 * my_work(iw->i2400m, my_args->something, my_args->whatevert);
143 int i2400m_queue_work(struct i2400m
*i2400m
,
144 void (*fn
)(struct work_struct
*), gfp_t gfp_flags
,
145 const void *pl
, size_t pl_size
)
148 struct i2400m_work
*iw
;
150 BUG_ON(i2400m
->work_queue
== NULL
);
152 iw
= kzalloc(sizeof(*iw
) + pl_size
, gfp_flags
);
155 iw
->i2400m
= i2400m_get(i2400m
);
156 memcpy(iw
->pl
, pl
, pl_size
);
157 INIT_WORK(&iw
->ws
, fn
);
158 result
= queue_work(i2400m
->work_queue
, &iw
->ws
);
162 EXPORT_SYMBOL_GPL(i2400m_queue_work
);
166 * Schedule i2400m's specific work on the system's queue.
168 * Used for a few cases where we really need it; otherwise, identical
169 * to i2400m_queue_work().
171 * Returns < 0 errno code on error, 1 if ok.
173 * If it returns zero, something really bad happened, as it means the
174 * works struct was already queued, but we have just allocated it, so
175 * it should not happen.
177 int i2400m_schedule_work(struct i2400m
*i2400m
,
178 void (*fn
)(struct work_struct
*), gfp_t gfp_flags
)
181 struct i2400m_work
*iw
;
184 iw
= kzalloc(sizeof(*iw
), gfp_flags
);
187 iw
->i2400m
= i2400m_get(i2400m
);
188 INIT_WORK(&iw
->ws
, fn
);
189 result
= schedule_work(&iw
->ws
);
198 * WiMAX stack operation: relay a message from user space
200 * @wimax_dev: device descriptor
201 * @pipe_name: named pipe the message is for
202 * @msg_buf: pointer to the message bytes
203 * @msg_len: length of the buffer
204 * @genl_info: passed by the generic netlink layer
206 * The WiMAX stack will call this function when a message was received
209 * For the i2400m, this is an L3L4 message, as specified in
210 * include/linux/wimax/i2400m.h, and thus prefixed with a 'struct
211 * i2400m_l3l4_hdr'. Driver (and device) expect the messages to be
212 * coded in Little Endian.
214 * This function just verifies that the header declaration and the
215 * payload are consistent and then deals with it, either forwarding it
216 * to the device or procesing it locally.
218 * In the i2400m, messages are basically commands that will carry an
219 * ack, so we use i2400m_msg_to_dev() and then deliver the ack back to
220 * user space. The rx.c code might intercept the response and use it
221 * to update the driver's state, but then it will pass it on so it can
222 * be relayed back to user space.
224 * Note that asynchronous events from the device are processed and
225 * sent to user space in rx.c.
228 int i2400m_op_msg_from_user(struct wimax_dev
*wimax_dev
,
229 const char *pipe_name
,
230 const void *msg_buf
, size_t msg_len
,
231 const struct genl_info
*genl_info
)
234 struct i2400m
*i2400m
= wimax_dev_to_i2400m(wimax_dev
);
235 struct device
*dev
= i2400m_dev(i2400m
);
236 struct sk_buff
*ack_skb
;
238 d_fnstart(4, dev
, "(wimax_dev %p [i2400m %p] msg_buf %p "
239 "msg_len %zu genl_info %p)\n", wimax_dev
, i2400m
,
240 msg_buf
, msg_len
, genl_info
);
241 ack_skb
= i2400m_msg_to_dev(i2400m
, msg_buf
, msg_len
);
242 result
= PTR_ERR(ack_skb
);
244 goto error_msg_to_dev
;
245 result
= wimax_msg_send(&i2400m
->wimax_dev
, ack_skb
);
247 d_fnend(4, dev
, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu "
248 "genl_info %p) = %d\n", wimax_dev
, i2400m
, msg_buf
, msg_len
,
255 * Context to wait for a reset to finalize
257 struct i2400m_reset_ctx
{
258 struct completion completion
;
264 * WiMAX stack operation: reset a device
266 * @wimax_dev: device descriptor
268 * See the documentation for wimax_reset() and wimax_dev->op_reset for
269 * the requirements of this function. The WiMAX stack guarantees
270 * serialization on calls to this function.
272 * Do a warm reset on the device; if it fails, resort to a cold reset
273 * and return -ENODEV. On successful warm reset, we need to block
274 * until it is complete.
276 * The bus-driver implementation of reset takes care of falling back
277 * to cold reset if warm fails.
280 int i2400m_op_reset(struct wimax_dev
*wimax_dev
)
283 struct i2400m
*i2400m
= wimax_dev_to_i2400m(wimax_dev
);
284 struct device
*dev
= i2400m_dev(i2400m
);
285 struct i2400m_reset_ctx ctx
= {
286 .completion
= COMPLETION_INITIALIZER_ONSTACK(ctx
.completion
),
290 d_fnstart(4, dev
, "(wimax_dev %p)\n", wimax_dev
);
291 mutex_lock(&i2400m
->init_mutex
);
292 i2400m
->reset_ctx
= &ctx
;
293 mutex_unlock(&i2400m
->init_mutex
);
294 result
= i2400m
->bus_reset(i2400m
, I2400M_RT_WARM
);
297 result
= wait_for_completion_timeout(&ctx
.completion
, 4*HZ
);
302 /* if result < 0, pass it on */
303 mutex_lock(&i2400m
->init_mutex
);
304 i2400m
->reset_ctx
= NULL
;
305 mutex_unlock(&i2400m
->init_mutex
);
307 d_fnend(4, dev
, "(wimax_dev %p) = %d\n", wimax_dev
, result
);
313 * Check the MAC address we got from boot mode is ok
315 * @i2400m: device descriptor
317 * Returns: 0 if ok, < 0 errno code on error.
320 int i2400m_check_mac_addr(struct i2400m
*i2400m
)
323 struct device
*dev
= i2400m_dev(i2400m
);
325 const struct i2400m_tlv_detailed_device_info
*ddi
;
326 struct net_device
*net_dev
= i2400m
->wimax_dev
.net_dev
;
327 const unsigned char zeromac
[ETH_ALEN
] = { 0 };
329 d_fnstart(3, dev
, "(i2400m %p)\n", i2400m
);
330 skb
= i2400m_get_device_info(i2400m
);
332 result
= PTR_ERR(skb
);
333 dev_err(dev
, "Cannot verify MAC address, error reading: %d\n",
337 /* Extract MAC addresss */
338 ddi
= (void *) skb
->data
;
339 BUILD_BUG_ON(ETH_ALEN
!= sizeof(ddi
->mac_address
));
340 d_printf(2, dev
, "GET DEVICE INFO: mac addr "
341 "%02x:%02x:%02x:%02x:%02x:%02x\n",
342 ddi
->mac_address
[0], ddi
->mac_address
[1],
343 ddi
->mac_address
[2], ddi
->mac_address
[3],
344 ddi
->mac_address
[4], ddi
->mac_address
[5]);
345 if (!memcmp(net_dev
->perm_addr
, ddi
->mac_address
,
346 sizeof(ddi
->mac_address
)))
348 dev_warn(dev
, "warning: device reports a different MAC address "
349 "to that of boot mode's\n");
350 dev_warn(dev
, "device reports %02x:%02x:%02x:%02x:%02x:%02x\n",
351 ddi
->mac_address
[0], ddi
->mac_address
[1],
352 ddi
->mac_address
[2], ddi
->mac_address
[3],
353 ddi
->mac_address
[4], ddi
->mac_address
[5]);
354 dev_warn(dev
, "boot mode reported %02x:%02x:%02x:%02x:%02x:%02x\n",
355 net_dev
->perm_addr
[0], net_dev
->perm_addr
[1],
356 net_dev
->perm_addr
[2], net_dev
->perm_addr
[3],
357 net_dev
->perm_addr
[4], net_dev
->perm_addr
[5]);
358 if (!memcmp(zeromac
, ddi
->mac_address
, sizeof(zeromac
)))
359 dev_err(dev
, "device reports an invalid MAC address, "
362 dev_warn(dev
, "updating MAC address\n");
363 net_dev
->addr_len
= ETH_ALEN
;
364 memcpy(net_dev
->perm_addr
, ddi
->mac_address
, ETH_ALEN
);
365 memcpy(net_dev
->dev_addr
, ddi
->mac_address
, ETH_ALEN
);
371 d_fnend(3, dev
, "(i2400m %p) = %d\n", i2400m
, result
);
377 * __i2400m_dev_start - Bring up driver communication with the device
379 * @i2400m: device descriptor
380 * @flags: boot mode flags
382 * Returns: 0 if ok, < 0 errno code on error.
384 * Uploads firmware and brings up all the resources needed to be able
385 * to communicate with the device.
387 * The workqueue has to be setup early, at least before RX handling
388 * (it's only real user for now) so it can process reports as they
389 * arrive. We also want to destroy it if we retry, to make sure it is
390 * flushed...easier like this.
392 * TX needs to be setup before the bus-specific code (otherwise on
393 * shutdown, the bus-tx code could try to access it).
396 int __i2400m_dev_start(struct i2400m
*i2400m
, enum i2400m_bri flags
)
399 struct wimax_dev
*wimax_dev
= &i2400m
->wimax_dev
;
400 struct net_device
*net_dev
= wimax_dev
->net_dev
;
401 struct device
*dev
= i2400m_dev(i2400m
);
402 int times
= i2400m
->bus_bm_retries
;
404 d_fnstart(3, dev
, "(i2400m %p)\n", i2400m
);
406 result
= i2400m_dev_bootstrap(i2400m
, flags
);
408 dev_err(dev
, "cannot bootstrap device: %d\n", result
);
409 goto error_bootstrap
;
411 result
= i2400m_tx_setup(i2400m
);
414 result
= i2400m_rx_setup(i2400m
);
417 i2400m
->work_queue
= create_singlethread_workqueue(wimax_dev
->name
);
418 if (i2400m
->work_queue
== NULL
) {
420 dev_err(dev
, "cannot create workqueue\n");
421 goto error_create_workqueue
;
423 result
= i2400m
->bus_dev_start(i2400m
);
425 goto error_bus_dev_start
;
426 result
= i2400m_firmware_check(i2400m
); /* fw versions ok? */
429 /* At this point is ok to send commands to the device */
430 result
= i2400m_check_mac_addr(i2400m
);
432 goto error_check_mac_addr
;
434 wimax_state_change(wimax_dev
, WIMAX_ST_UNINITIALIZED
);
435 result
= i2400m_dev_initialize(i2400m
);
437 goto error_dev_initialize
;
438 /* At this point, reports will come for the device and set it
439 * to the right state if it is different than UNINITIALIZED */
440 d_fnend(3, dev
, "(net_dev %p [i2400m %p]) = %d\n",
441 net_dev
, i2400m
, result
);
444 error_dev_initialize
:
445 error_check_mac_addr
:
447 i2400m
->bus_dev_stop(i2400m
);
449 destroy_workqueue(i2400m
->work_queue
);
450 error_create_workqueue
:
451 i2400m_rx_release(i2400m
);
453 i2400m_tx_release(i2400m
);
456 if (result
== -EL3RST
&& times
-- > 0) {
457 flags
= I2400M_BRI_SOFT
|I2400M_BRI_MAC_REINIT
;
460 d_fnend(3, dev
, "(net_dev %p [i2400m %p]) = %d\n",
461 net_dev
, i2400m
, result
);
467 int i2400m_dev_start(struct i2400m
*i2400m
, enum i2400m_bri bm_flags
)
470 mutex_lock(&i2400m
->init_mutex
); /* Well, start the device */
471 result
= __i2400m_dev_start(i2400m
, bm_flags
);
474 mutex_unlock(&i2400m
->init_mutex
);
480 * i2400m_dev_stop - Tear down driver communication with the device
482 * @i2400m: device descriptor
484 * Returns: 0 if ok, < 0 errno code on error.
486 * Releases all the resources allocated to communicate with the
487 * device. Note we cannot destroy the workqueue earlier as until RX is
488 * fully destroyed, it could still try to schedule jobs.
491 void __i2400m_dev_stop(struct i2400m
*i2400m
)
493 struct wimax_dev
*wimax_dev
= &i2400m
->wimax_dev
;
494 struct device
*dev
= i2400m_dev(i2400m
);
496 d_fnstart(3, dev
, "(i2400m %p)\n", i2400m
);
497 wimax_state_change(wimax_dev
, __WIMAX_ST_QUIESCING
);
498 i2400m_dev_shutdown(i2400m
);
500 i2400m
->bus_dev_stop(i2400m
);
501 destroy_workqueue(i2400m
->work_queue
);
502 i2400m_rx_release(i2400m
);
503 i2400m_tx_release(i2400m
);
504 wimax_state_change(wimax_dev
, WIMAX_ST_DOWN
);
505 d_fnend(3, dev
, "(i2400m %p) = 0\n", i2400m
);
510 * Watch out -- we only need to stop if there is a need for it. The
511 * device could have reset itself and failed to come up again (see
512 * _i2400m_dev_reset_handle()).
515 void i2400m_dev_stop(struct i2400m
*i2400m
)
517 mutex_lock(&i2400m
->init_mutex
);
518 if (i2400m
->updown
) {
519 __i2400m_dev_stop(i2400m
);
522 mutex_unlock(&i2400m
->init_mutex
);
527 * The device has rebooted; fix up the device and the driver
529 * Tear down the driver communication with the device, reload the
530 * firmware and reinitialize the communication with the device.
532 * If someone calls a reset when the device's firmware is down, in
533 * theory we won't see it because we are not listening. However, just
534 * in case, leave the code to handle it.
536 * If there is a reset context, use it; this means someone is waiting
537 * for us to tell him when the reset operation is complete and the
538 * device is ready to rock again.
540 * NOTE: if we are in the process of bringing up or down the
541 * communication with the device [running i2400m_dev_start() or
542 * _stop()], don't do anything, let it fail and handle it.
544 * This function is ran always in a thread context
547 void __i2400m_dev_reset_handle(struct work_struct
*ws
)
550 struct i2400m_work
*iw
= container_of(ws
, struct i2400m_work
, ws
);
551 struct i2400m
*i2400m
= iw
->i2400m
;
552 struct device
*dev
= i2400m_dev(i2400m
);
553 enum wimax_st wimax_state
;
554 struct i2400m_reset_ctx
*ctx
= i2400m
->reset_ctx
;
556 d_fnstart(3, dev
, "(ws %p i2400m %p)\n", ws
, i2400m
);
558 if (mutex_trylock(&i2400m
->init_mutex
) == 0) {
559 /* We are still in i2400m_dev_start() [let it fail] or
560 * i2400m_dev_stop() [we are shutting down anyway, so
561 * ignore it] or we are resetting somewhere else. */
562 dev_err(dev
, "device rebooted\n");
563 i2400m_msg_to_dev_cancel_wait(i2400m
, -EL3RST
);
564 complete(&i2400m
->msg_completion
);
567 wimax_state
= wimax_state_get(&i2400m
->wimax_dev
);
568 if (wimax_state
< WIMAX_ST_UNINITIALIZED
) {
569 dev_info(dev
, "device rebooted: it is down, ignoring\n");
570 goto out_unlock
; /* ifconfig up/down wasn't called */
572 dev_err(dev
, "device rebooted: reinitializing driver\n");
573 __i2400m_dev_stop(i2400m
);
575 result
= __i2400m_dev_start(i2400m
,
576 I2400M_BRI_SOFT
| I2400M_BRI_MAC_REINIT
);
578 dev_err(dev
, "device reboot: cannot start the device: %d\n",
580 result
= i2400m
->bus_reset(i2400m
, I2400M_RT_BUS
);
586 if (i2400m
->reset_ctx
) {
587 ctx
->result
= result
;
588 complete(&ctx
->completion
);
590 mutex_unlock(&i2400m
->init_mutex
);
594 d_fnend(3, dev
, "(ws %p i2400m %p) = void\n", ws
, i2400m
);
600 * i2400m_dev_reset_handle - Handle a device's reset in a thread context
602 * Schedule a device reset handling out on a thread context, so it
603 * is safe to call from atomic context. We can't use the i2400m's
604 * queue as we are going to destroy it and reinitialize it as part of
605 * the driver bringup/bringup process.
607 * See __i2400m_dev_reset_handle() for details; that takes care of
608 * reinitializing the driver to handle the reset, calling into the
609 * bus-specific functions ops as needed.
611 int i2400m_dev_reset_handle(struct i2400m
*i2400m
)
613 i2400m
->boot_mode
= 1;
614 wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
615 return i2400m_schedule_work(i2400m
, __i2400m_dev_reset_handle
,
618 EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle
);
622 * i2400m_setup - bus-generic setup function for the i2400m device
624 * @i2400m: device descriptor (bus-specific parts have been initialized)
626 * Returns: 0 if ok, < 0 errno code on error.
628 * Initializes the bus-generic parts of the i2400m driver; the
629 * bus-specific parts have been initialized, function pointers filled
630 * out by the bus-specific probe function.
632 * As well, this registers the WiMAX and net device nodes. Once this
633 * function returns, the device is operative and has to be ready to
634 * receive and send network traffic and WiMAX control operations.
636 int i2400m_setup(struct i2400m
*i2400m
, enum i2400m_bri bm_flags
)
638 int result
= -ENODEV
;
639 struct device
*dev
= i2400m_dev(i2400m
);
640 struct wimax_dev
*wimax_dev
= &i2400m
->wimax_dev
;
641 struct net_device
*net_dev
= i2400m
->wimax_dev
.net_dev
;
643 d_fnstart(3, dev
, "(i2400m %p)\n", i2400m
);
645 snprintf(wimax_dev
->name
, sizeof(wimax_dev
->name
),
646 "i2400m-%s:%s", dev
->bus
->name
, dev_name(dev
));
648 i2400m
->bm_cmd_buf
= kzalloc(I2400M_BM_CMD_BUF_SIZE
, GFP_KERNEL
);
649 if (i2400m
->bm_cmd_buf
== NULL
) {
650 dev_err(dev
, "cannot allocate USB command buffer\n");
651 goto error_bm_cmd_kzalloc
;
653 i2400m
->bm_ack_buf
= kzalloc(I2400M_BM_ACK_BUF_SIZE
, GFP_KERNEL
);
654 if (i2400m
->bm_ack_buf
== NULL
) {
655 dev_err(dev
, "cannot allocate USB ack buffer\n");
656 goto error_bm_ack_buf_kzalloc
;
658 result
= i2400m_bootrom_init(i2400m
, bm_flags
);
660 dev_err(dev
, "read mac addr: bootrom init "
661 "failed: %d\n", result
);
662 goto error_bootrom_init
;
664 result
= i2400m_read_mac_addr(i2400m
);
666 goto error_read_mac_addr
;
667 random_ether_addr(i2400m
->src_mac_addr
);
669 result
= register_netdev(net_dev
); /* Okey dokey, bring it up */
671 dev_err(dev
, "cannot register i2400m network device: %d\n",
673 goto error_register_netdev
;
675 netif_carrier_off(net_dev
);
677 result
= i2400m_dev_start(i2400m
, bm_flags
);
679 goto error_dev_start
;
681 i2400m
->wimax_dev
.op_msg_from_user
= i2400m_op_msg_from_user
;
682 i2400m
->wimax_dev
.op_rfkill_sw_toggle
= i2400m_op_rfkill_sw_toggle
;
683 i2400m
->wimax_dev
.op_reset
= i2400m_op_reset
;
684 result
= wimax_dev_add(&i2400m
->wimax_dev
, net_dev
);
686 goto error_wimax_dev_add
;
687 /* User space needs to do some init stuff */
688 wimax_state_change(wimax_dev
, WIMAX_ST_UNINITIALIZED
);
690 /* Now setup all that requires a registered net and wimax device. */
691 result
= sysfs_create_group(&net_dev
->dev
.kobj
, &i2400m_dev_attr_group
);
693 dev_err(dev
, "cannot setup i2400m's sysfs: %d\n", result
);
694 goto error_sysfs_setup
;
696 result
= i2400m_debugfs_add(i2400m
);
698 dev_err(dev
, "cannot setup i2400m's debugfs: %d\n", result
);
699 goto error_debugfs_setup
;
701 d_fnend(3, dev
, "(i2400m %p) = %d\n", i2400m
, result
);
705 sysfs_remove_group(&i2400m
->wimax_dev
.net_dev
->dev
.kobj
,
706 &i2400m_dev_attr_group
);
708 wimax_dev_rm(&i2400m
->wimax_dev
);
710 i2400m_dev_stop(i2400m
);
712 unregister_netdev(net_dev
);
713 error_register_netdev
:
716 kfree(i2400m
->bm_ack_buf
);
717 error_bm_ack_buf_kzalloc
:
718 kfree(i2400m
->bm_cmd_buf
);
719 error_bm_cmd_kzalloc
:
720 d_fnend(3, dev
, "(i2400m %p) = %d\n", i2400m
, result
);
723 EXPORT_SYMBOL_GPL(i2400m_setup
);
727 * i2400m_release - release the bus-generic driver resources
729 * Sends a disconnect message and undoes any setup done by i2400m_setup()
731 void i2400m_release(struct i2400m
*i2400m
)
733 struct device
*dev
= i2400m_dev(i2400m
);
735 d_fnstart(3, dev
, "(i2400m %p)\n", i2400m
);
736 netif_stop_queue(i2400m
->wimax_dev
.net_dev
);
738 i2400m_debugfs_rm(i2400m
);
739 sysfs_remove_group(&i2400m
->wimax_dev
.net_dev
->dev
.kobj
,
740 &i2400m_dev_attr_group
);
741 wimax_dev_rm(&i2400m
->wimax_dev
);
742 i2400m_dev_stop(i2400m
);
743 unregister_netdev(i2400m
->wimax_dev
.net_dev
);
744 kfree(i2400m
->bm_ack_buf
);
745 kfree(i2400m
->bm_cmd_buf
);
746 d_fnend(3, dev
, "(i2400m %p) = void\n", i2400m
);
748 EXPORT_SYMBOL_GPL(i2400m_release
);
752 * Debug levels control; see debug.h
754 struct d_level D_LEVEL
[] = {
755 D_SUBMODULE_DEFINE(control
),
756 D_SUBMODULE_DEFINE(driver
),
757 D_SUBMODULE_DEFINE(debugfs
),
758 D_SUBMODULE_DEFINE(fw
),
759 D_SUBMODULE_DEFINE(netdev
),
760 D_SUBMODULE_DEFINE(rfkill
),
761 D_SUBMODULE_DEFINE(rx
),
762 D_SUBMODULE_DEFINE(tx
),
764 size_t D_LEVEL_SIZE
= ARRAY_SIZE(D_LEVEL
);
768 int __init
i2400m_driver_init(void)
772 module_init(i2400m_driver_init
);
775 void __exit
i2400m_driver_exit(void)
777 /* for scheds i2400m_dev_reset_handle() */
778 flush_scheduled_work();
781 module_exit(i2400m_driver_exit
);
783 MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>");
784 MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver");
785 MODULE_LICENSE("GPL");