[ARM] pxa: Gumstix Verdex PCMCIA support
[linux-2.6/verdex.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
blob798f625e38f70a718a70c21027d9f9aab1ac36d5
1 /*
2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2400pci.h"
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
52 #define WAIT_FOR_BBP(__dev, __reg) \
53 rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
54 #define WAIT_FOR_RF(__dev, __reg) \
55 rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58 const unsigned int word, const u8 value)
60 u32 reg;
62 mutex_lock(&rt2x00dev->csr_mutex);
65 * Wait until the BBP becomes available, afterwards we
66 * can safely write the new data into the register.
68 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
69 reg = 0;
70 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
71 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
72 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
73 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
75 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
78 mutex_unlock(&rt2x00dev->csr_mutex);
81 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82 const unsigned int word, u8 *value)
84 u32 reg;
86 mutex_lock(&rt2x00dev->csr_mutex);
89 * Wait until the BBP becomes available, afterwards we
90 * can safely write the read request into the register.
91 * After the data has been written, we wait until hardware
92 * returns the correct value, if at any time the register
93 * doesn't become available in time, reg will be 0xffffffff
94 * which means we return 0xff to the caller.
96 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
97 reg = 0;
98 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
99 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
100 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104 WAIT_FOR_BBP(rt2x00dev, &reg);
107 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109 mutex_unlock(&rt2x00dev->csr_mutex);
112 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
113 const unsigned int word, const u32 value)
115 u32 reg;
117 mutex_lock(&rt2x00dev->csr_mutex);
120 * Wait until the RF becomes available, afterwards we
121 * can safely write the new data into the register.
123 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
124 reg = 0;
125 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
126 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
127 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
128 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
130 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
131 rt2x00_rf_write(rt2x00dev, word, value);
134 mutex_unlock(&rt2x00dev->csr_mutex);
137 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
139 struct rt2x00_dev *rt2x00dev = eeprom->data;
140 u32 reg;
142 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
144 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
145 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
146 eeprom->reg_data_clock =
147 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
148 eeprom->reg_chip_select =
149 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
152 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
154 struct rt2x00_dev *rt2x00dev = eeprom->data;
155 u32 reg = 0;
157 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
158 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
159 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
160 !!eeprom->reg_data_clock);
161 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
162 !!eeprom->reg_chip_select);
164 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
167 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
168 static const struct rt2x00debug rt2400pci_rt2x00debug = {
169 .owner = THIS_MODULE,
170 .csr = {
171 .read = rt2x00pci_register_read,
172 .write = rt2x00pci_register_write,
173 .flags = RT2X00DEBUGFS_OFFSET,
174 .word_base = CSR_REG_BASE,
175 .word_size = sizeof(u32),
176 .word_count = CSR_REG_SIZE / sizeof(u32),
178 .eeprom = {
179 .read = rt2x00_eeprom_read,
180 .write = rt2x00_eeprom_write,
181 .word_base = EEPROM_BASE,
182 .word_size = sizeof(u16),
183 .word_count = EEPROM_SIZE / sizeof(u16),
185 .bbp = {
186 .read = rt2400pci_bbp_read,
187 .write = rt2400pci_bbp_write,
188 .word_base = BBP_BASE,
189 .word_size = sizeof(u8),
190 .word_count = BBP_SIZE / sizeof(u8),
192 .rf = {
193 .read = rt2x00_rf_read,
194 .write = rt2400pci_rf_write,
195 .word_base = RF_BASE,
196 .word_size = sizeof(u32),
197 .word_count = RF_SIZE / sizeof(u32),
200 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204 u32 reg;
206 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
207 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
210 #ifdef CONFIG_RT2X00_LIB_LEDS
211 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
212 enum led_brightness brightness)
214 struct rt2x00_led *led =
215 container_of(led_cdev, struct rt2x00_led, led_dev);
216 unsigned int enabled = brightness != LED_OFF;
217 u32 reg;
219 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
221 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
222 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
223 else if (led->type == LED_TYPE_ACTIVITY)
224 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
229 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
230 unsigned long *delay_on,
231 unsigned long *delay_off)
233 struct rt2x00_led *led =
234 container_of(led_cdev, struct rt2x00_led, led_dev);
235 u32 reg;
237 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
238 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
239 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
240 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
242 return 0;
245 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
246 struct rt2x00_led *led,
247 enum led_type type)
249 led->rt2x00dev = rt2x00dev;
250 led->type = type;
251 led->led_dev.brightness_set = rt2400pci_brightness_set;
252 led->led_dev.blink_set = rt2400pci_blink_set;
253 led->flags = LED_INITIALIZED;
255 #endif /* CONFIG_RT2X00_LIB_LEDS */
258 * Configuration handlers.
260 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
261 const unsigned int filter_flags)
263 u32 reg;
266 * Start configuration steps.
267 * Note that the version error will always be dropped
268 * since there is no filter for it at this time.
270 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
271 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
272 !(filter_flags & FIF_FCSFAIL));
273 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
274 !(filter_flags & FIF_PLCPFAIL));
275 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
276 !(filter_flags & FIF_CONTROL));
277 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
278 !(filter_flags & FIF_PROMISC_IN_BSS));
279 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
280 !(filter_flags & FIF_PROMISC_IN_BSS) &&
281 !rt2x00dev->intf_ap_count);
282 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
283 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
286 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
287 struct rt2x00_intf *intf,
288 struct rt2x00intf_conf *conf,
289 const unsigned int flags)
291 unsigned int bcn_preload;
292 u32 reg;
294 if (flags & CONFIG_UPDATE_TYPE) {
296 * Enable beacon config
298 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
299 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
300 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
301 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
304 * Enable synchronisation.
306 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
307 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
308 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
309 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
310 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
313 if (flags & CONFIG_UPDATE_MAC)
314 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
315 conf->mac, sizeof(conf->mac));
317 if (flags & CONFIG_UPDATE_BSSID)
318 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
319 conf->bssid, sizeof(conf->bssid));
322 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
323 struct rt2x00lib_erp *erp)
325 int preamble_mask;
326 u32 reg;
329 * When short preamble is enabled, we should set bit 0x08
331 preamble_mask = erp->short_preamble << 3;
333 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
334 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
335 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
336 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
337 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
338 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
340 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
341 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
342 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
343 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
344 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
346 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
347 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
348 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
349 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
350 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
352 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
353 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
354 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
355 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
356 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
358 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
359 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
360 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
361 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
362 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
364 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
366 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
367 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
368 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
370 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
371 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
372 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
373 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
375 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
376 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
377 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
378 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
380 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
381 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
382 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
383 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
386 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
387 struct antenna_setup *ant)
389 u8 r1;
390 u8 r4;
393 * We should never come here because rt2x00lib is supposed
394 * to catch this and send us the correct antenna explicitely.
396 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
397 ant->tx == ANTENNA_SW_DIVERSITY);
399 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
400 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
403 * Configure the TX antenna.
405 switch (ant->tx) {
406 case ANTENNA_HW_DIVERSITY:
407 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
408 break;
409 case ANTENNA_A:
410 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
411 break;
412 case ANTENNA_B:
413 default:
414 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
415 break;
419 * Configure the RX antenna.
421 switch (ant->rx) {
422 case ANTENNA_HW_DIVERSITY:
423 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
424 break;
425 case ANTENNA_A:
426 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
427 break;
428 case ANTENNA_B:
429 default:
430 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
431 break;
434 rt2400pci_bbp_write(rt2x00dev, 4, r4);
435 rt2400pci_bbp_write(rt2x00dev, 1, r1);
438 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
439 struct rf_channel *rf)
442 * Switch on tuning bits.
444 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
445 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
447 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
448 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
449 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
452 * RF2420 chipset don't need any additional actions.
454 if (rt2x00_rf(&rt2x00dev->chip, RF2420))
455 return;
458 * For the RT2421 chipsets we need to write an invalid
459 * reference clock rate to activate auto_tune.
460 * After that we set the value back to the correct channel.
462 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
463 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
464 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
466 msleep(1);
468 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
469 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
470 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
472 msleep(1);
475 * Switch off tuning bits.
477 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
478 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
480 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
481 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
484 * Clear false CRC during channel switch.
486 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
489 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
491 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
494 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
495 struct rt2x00lib_conf *libconf)
497 u32 reg;
499 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
500 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
501 libconf->conf->long_frame_max_tx_count);
502 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
503 libconf->conf->short_frame_max_tx_count);
504 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
507 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
508 struct rt2x00lib_conf *libconf)
510 enum dev_state state =
511 (libconf->conf->flags & IEEE80211_CONF_PS) ?
512 STATE_SLEEP : STATE_AWAKE;
513 u32 reg;
515 if (state == STATE_SLEEP) {
516 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
517 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
518 (rt2x00dev->beacon_int - 20) * 16);
519 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
520 libconf->conf->listen_interval - 1);
522 /* We must first disable autowake before it can be enabled */
523 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
524 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
526 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
527 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
530 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
533 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
534 struct rt2x00lib_conf *libconf,
535 const unsigned int flags)
537 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
538 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
539 if (flags & IEEE80211_CONF_CHANGE_POWER)
540 rt2400pci_config_txpower(rt2x00dev,
541 libconf->conf->power_level);
542 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
543 rt2400pci_config_retry_limit(rt2x00dev, libconf);
544 if (flags & IEEE80211_CONF_CHANGE_PS)
545 rt2400pci_config_ps(rt2x00dev, libconf);
548 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
549 const int cw_min, const int cw_max)
551 u32 reg;
553 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
554 rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
555 rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
556 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
560 * Link tuning
562 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
563 struct link_qual *qual)
565 u32 reg;
566 u8 bbp;
569 * Update FCS error count from register.
571 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
572 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
575 * Update False CCA count from register.
577 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
578 qual->false_cca = bbp;
581 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
582 struct link_qual *qual, u8 vgc_level)
584 rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
585 qual->vgc_level = vgc_level;
586 qual->vgc_level_reg = vgc_level;
589 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
590 struct link_qual *qual)
592 rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
595 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
596 struct link_qual *qual, const u32 count)
599 * The link tuner should not run longer then 60 seconds,
600 * and should run once every 2 seconds.
602 if (count > 60 || !(count & 1))
603 return;
606 * Base r13 link tuning on the false cca count.
608 if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
609 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
610 else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
611 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
615 * Initialization functions.
617 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
619 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
620 u32 word;
622 if (entry->queue->qid == QID_RX) {
623 rt2x00_desc_read(entry_priv->desc, 0, &word);
625 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
626 } else {
627 rt2x00_desc_read(entry_priv->desc, 0, &word);
629 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
630 rt2x00_get_field32(word, TXD_W0_VALID));
634 static void rt2400pci_clear_entry(struct queue_entry *entry)
636 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
637 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
638 u32 word;
640 if (entry->queue->qid == QID_RX) {
641 rt2x00_desc_read(entry_priv->desc, 2, &word);
642 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
643 rt2x00_desc_write(entry_priv->desc, 2, word);
645 rt2x00_desc_read(entry_priv->desc, 1, &word);
646 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
647 rt2x00_desc_write(entry_priv->desc, 1, word);
649 rt2x00_desc_read(entry_priv->desc, 0, &word);
650 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
651 rt2x00_desc_write(entry_priv->desc, 0, word);
652 } else {
653 rt2x00_desc_read(entry_priv->desc, 0, &word);
654 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
655 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
656 rt2x00_desc_write(entry_priv->desc, 0, word);
660 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
662 struct queue_entry_priv_pci *entry_priv;
663 u32 reg;
666 * Initialize registers.
668 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
669 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
670 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
671 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
672 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
673 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
675 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
676 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
677 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
678 entry_priv->desc_dma);
679 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
681 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
682 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
683 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
684 entry_priv->desc_dma);
685 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
687 entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
688 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
689 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
690 entry_priv->desc_dma);
691 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
693 entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
694 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
695 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
696 entry_priv->desc_dma);
697 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
699 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
700 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
701 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
702 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
704 entry_priv = rt2x00dev->rx->entries[0].priv_data;
705 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
706 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
707 entry_priv->desc_dma);
708 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
710 return 0;
713 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
715 u32 reg;
717 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
718 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
719 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
720 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
722 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
723 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
724 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
725 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
726 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
728 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
729 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
730 (rt2x00dev->rx->data_size / 128));
731 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
733 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
734 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
735 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
736 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
737 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
738 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
739 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
740 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
741 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
742 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
744 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
746 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
747 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
748 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
749 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
750 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
751 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
753 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
754 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
755 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
756 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
757 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
758 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
759 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
760 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
762 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
764 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
765 return -EBUSY;
767 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
768 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
770 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
771 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
772 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
774 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
775 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
776 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
777 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
778 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
779 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
781 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
782 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
783 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
784 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
785 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
787 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
788 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
789 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
790 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
793 * We must clear the FCS and FIFO error count.
794 * These registers are cleared on read,
795 * so we may pass a useless variable to store the value.
797 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
798 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
800 return 0;
803 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
805 unsigned int i;
806 u8 value;
808 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
809 rt2400pci_bbp_read(rt2x00dev, 0, &value);
810 if ((value != 0xff) && (value != 0x00))
811 return 0;
812 udelay(REGISTER_BUSY_DELAY);
815 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
816 return -EACCES;
819 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
821 unsigned int i;
822 u16 eeprom;
823 u8 reg_id;
824 u8 value;
826 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
827 return -EACCES;
829 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
830 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
831 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
832 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
833 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
834 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
835 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
836 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
837 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
838 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
839 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
840 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
841 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
842 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
844 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
845 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
847 if (eeprom != 0xffff && eeprom != 0x0000) {
848 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
849 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
850 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
854 return 0;
858 * Device state switch handlers.
860 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
861 enum dev_state state)
863 u32 reg;
865 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
866 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
867 (state == STATE_RADIO_RX_OFF) ||
868 (state == STATE_RADIO_RX_OFF_LINK));
869 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
872 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
873 enum dev_state state)
875 int mask = (state == STATE_RADIO_IRQ_OFF);
876 u32 reg;
879 * When interrupts are being enabled, the interrupt registers
880 * should clear the register to assure a clean state.
882 if (state == STATE_RADIO_IRQ_ON) {
883 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
884 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
888 * Only toggle the interrupts bits we are going to use.
889 * Non-checked interrupt bits are disabled by default.
891 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
892 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
893 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
894 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
895 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
896 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
897 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
900 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
903 * Initialize all registers.
905 if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
906 rt2400pci_init_registers(rt2x00dev) ||
907 rt2400pci_init_bbp(rt2x00dev)))
908 return -EIO;
910 return 0;
913 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
916 * Disable power
918 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
921 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
922 enum dev_state state)
924 u32 reg;
925 unsigned int i;
926 char put_to_sleep;
927 char bbp_state;
928 char rf_state;
930 put_to_sleep = (state != STATE_AWAKE);
932 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
933 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
934 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
935 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
936 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
937 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
940 * Device is not guaranteed to be in the requested state yet.
941 * We must wait until the register indicates that the
942 * device has entered the correct state.
944 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
945 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
946 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
947 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
948 if (bbp_state == state && rf_state == state)
949 return 0;
950 msleep(10);
953 return -EBUSY;
956 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
957 enum dev_state state)
959 int retval = 0;
961 switch (state) {
962 case STATE_RADIO_ON:
963 retval = rt2400pci_enable_radio(rt2x00dev);
964 break;
965 case STATE_RADIO_OFF:
966 rt2400pci_disable_radio(rt2x00dev);
967 break;
968 case STATE_RADIO_RX_ON:
969 case STATE_RADIO_RX_ON_LINK:
970 case STATE_RADIO_RX_OFF:
971 case STATE_RADIO_RX_OFF_LINK:
972 rt2400pci_toggle_rx(rt2x00dev, state);
973 break;
974 case STATE_RADIO_IRQ_ON:
975 case STATE_RADIO_IRQ_OFF:
976 rt2400pci_toggle_irq(rt2x00dev, state);
977 break;
978 case STATE_DEEP_SLEEP:
979 case STATE_SLEEP:
980 case STATE_STANDBY:
981 case STATE_AWAKE:
982 retval = rt2400pci_set_state(rt2x00dev, state);
983 break;
984 default:
985 retval = -ENOTSUPP;
986 break;
989 if (unlikely(retval))
990 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
991 state, retval);
993 return retval;
997 * TX descriptor initialization
999 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1000 struct sk_buff *skb,
1001 struct txentry_desc *txdesc)
1003 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1004 struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1005 __le32 *txd = skbdesc->desc;
1006 u32 word;
1009 * Start writing the descriptor words.
1011 rt2x00_desc_read(entry_priv->desc, 1, &word);
1012 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1013 rt2x00_desc_write(entry_priv->desc, 1, word);
1015 rt2x00_desc_read(txd, 2, &word);
1016 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skb->len);
1017 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skb->len);
1018 rt2x00_desc_write(txd, 2, word);
1020 rt2x00_desc_read(txd, 3, &word);
1021 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1022 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1023 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1024 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1025 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1026 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1027 rt2x00_desc_write(txd, 3, word);
1029 rt2x00_desc_read(txd, 4, &word);
1030 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1031 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1032 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1033 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1034 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1035 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1036 rt2x00_desc_write(txd, 4, word);
1038 rt2x00_desc_read(txd, 0, &word);
1039 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1040 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1041 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1042 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1043 rt2x00_set_field32(&word, TXD_W0_ACK,
1044 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1045 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1046 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1047 rt2x00_set_field32(&word, TXD_W0_RTS,
1048 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1049 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1050 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1051 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1052 rt2x00_desc_write(txd, 0, word);
1056 * TX data initialization
1058 static void rt2400pci_write_beacon(struct queue_entry *entry)
1060 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1061 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1062 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1063 u32 word;
1064 u32 reg;
1067 * Disable beaconing while we are reloading the beacon data,
1068 * otherwise we might be sending out invalid data.
1070 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1071 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1072 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1075 * Replace rt2x00lib allocated descriptor with the
1076 * pointer to the _real_ hardware descriptor.
1077 * After that, map the beacon to DMA and update the
1078 * descriptor.
1080 memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1081 skbdesc->desc = entry_priv->desc;
1083 rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1085 rt2x00_desc_read(entry_priv->desc, 1, &word);
1086 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1087 rt2x00_desc_write(entry_priv->desc, 1, word);
1090 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1091 const enum data_queue_qid queue)
1093 u32 reg;
1095 if (queue == QID_BEACON) {
1096 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1097 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1098 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1099 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1100 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1101 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1103 return;
1106 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1107 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1108 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1109 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1110 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1113 static void rt2400pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1114 const enum data_queue_qid qid)
1116 u32 reg;
1118 if (qid == QID_BEACON) {
1119 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1120 } else {
1121 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1122 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1123 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1128 * RX control handlers
1130 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1131 struct rxdone_entry_desc *rxdesc)
1133 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1134 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1135 u32 word0;
1136 u32 word2;
1137 u32 word3;
1138 u32 word4;
1139 u64 tsf;
1140 u32 rx_low;
1141 u32 rx_high;
1143 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1144 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1145 rt2x00_desc_read(entry_priv->desc, 3, &word3);
1146 rt2x00_desc_read(entry_priv->desc, 4, &word4);
1148 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1149 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1150 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1151 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1154 * We only get the lower 32bits from the timestamp,
1155 * to get the full 64bits we must complement it with
1156 * the timestamp from get_tsf().
1157 * Note that when a wraparound of the lower 32bits
1158 * has occurred between the frame arrival and the get_tsf()
1159 * call, we must decrease the higher 32bits with 1 to get
1160 * to correct value.
1162 tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1163 rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1164 rx_high = upper_32_bits(tsf);
1166 if ((u32)tsf <= rx_low)
1167 rx_high--;
1170 * Obtain the status about this packet.
1171 * The signal is the PLCP value, and needs to be stripped
1172 * of the preamble bit (0x08).
1174 rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1175 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1176 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1177 entry->queue->rt2x00dev->rssi_offset;
1178 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1180 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1181 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1182 rxdesc->dev_flags |= RXDONE_MY_BSS;
1186 * Interrupt functions.
1188 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1189 const enum data_queue_qid queue_idx)
1191 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1192 struct queue_entry_priv_pci *entry_priv;
1193 struct queue_entry *entry;
1194 struct txdone_entry_desc txdesc;
1195 u32 word;
1197 while (!rt2x00queue_empty(queue)) {
1198 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1199 entry_priv = entry->priv_data;
1200 rt2x00_desc_read(entry_priv->desc, 0, &word);
1202 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1203 !rt2x00_get_field32(word, TXD_W0_VALID))
1204 break;
1207 * Obtain the status about this packet.
1209 txdesc.flags = 0;
1210 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1211 case 0: /* Success */
1212 case 1: /* Success with retry */
1213 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1214 break;
1215 case 2: /* Failure, excessive retries */
1216 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1217 /* Don't break, this is a failed frame! */
1218 default: /* Failure */
1219 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1221 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1223 rt2x00lib_txdone(entry, &txdesc);
1227 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1229 struct rt2x00_dev *rt2x00dev = dev_instance;
1230 u32 reg;
1233 * Get the interrupt sources & saved to local variable.
1234 * Write register value back to clear pending interrupts.
1236 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1237 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1239 if (!reg)
1240 return IRQ_NONE;
1242 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1243 return IRQ_HANDLED;
1246 * Handle interrupts, walk through all bits
1247 * and run the tasks, the bits are checked in order of
1248 * priority.
1252 * 1 - Beacon timer expired interrupt.
1254 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1255 rt2x00lib_beacondone(rt2x00dev);
1258 * 2 - Rx ring done interrupt.
1260 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1261 rt2x00pci_rxdone(rt2x00dev);
1264 * 3 - Atim ring transmit done interrupt.
1266 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1267 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1270 * 4 - Priority ring transmit done interrupt.
1272 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1273 rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1276 * 5 - Tx ring transmit done interrupt.
1278 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1279 rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1281 return IRQ_HANDLED;
1285 * Device probe functions.
1287 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1289 struct eeprom_93cx6 eeprom;
1290 u32 reg;
1291 u16 word;
1292 u8 *mac;
1294 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1296 eeprom.data = rt2x00dev;
1297 eeprom.register_read = rt2400pci_eepromregister_read;
1298 eeprom.register_write = rt2400pci_eepromregister_write;
1299 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1300 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1301 eeprom.reg_data_in = 0;
1302 eeprom.reg_data_out = 0;
1303 eeprom.reg_data_clock = 0;
1304 eeprom.reg_chip_select = 0;
1306 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1307 EEPROM_SIZE / sizeof(u16));
1310 * Start validation of the data that has been read.
1312 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1313 if (!is_valid_ether_addr(mac)) {
1314 random_ether_addr(mac);
1315 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1318 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1319 if (word == 0xffff) {
1320 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1321 return -EINVAL;
1324 return 0;
1327 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1329 u32 reg;
1330 u16 value;
1331 u16 eeprom;
1334 * Read EEPROM word for configuration.
1336 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1339 * Identify RF chipset.
1341 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1342 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1343 rt2x00_set_chip_rf(rt2x00dev, value, reg);
1345 if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1346 !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1347 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1348 return -ENODEV;
1352 * Identify default antenna configuration.
1354 rt2x00dev->default_ant.tx =
1355 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1356 rt2x00dev->default_ant.rx =
1357 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1360 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1361 * I am not 100% sure about this, but the legacy drivers do not
1362 * indicate antenna swapping in software is required when
1363 * diversity is enabled.
1365 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1366 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1367 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1368 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1371 * Store led mode, for correct led behaviour.
1373 #ifdef CONFIG_RT2X00_LIB_LEDS
1374 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1376 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1377 if (value == LED_MODE_TXRX_ACTIVITY ||
1378 value == LED_MODE_DEFAULT ||
1379 value == LED_MODE_ASUS)
1380 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1381 LED_TYPE_ACTIVITY);
1382 #endif /* CONFIG_RT2X00_LIB_LEDS */
1385 * Detect if this device has an hardware controlled radio.
1387 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1388 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1391 * Check if the BBP tuning should be enabled.
1393 if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1394 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1396 return 0;
1400 * RF value list for RF2420 & RF2421
1401 * Supports: 2.4 GHz
1403 static const struct rf_channel rf_vals_b[] = {
1404 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1405 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1406 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1407 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1408 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1409 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1410 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1411 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1412 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1413 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1414 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1415 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1416 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1417 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1420 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1422 struct hw_mode_spec *spec = &rt2x00dev->spec;
1423 struct channel_info *info;
1424 char *tx_power;
1425 unsigned int i;
1428 * Initialize all hw fields.
1430 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1431 IEEE80211_HW_SIGNAL_DBM |
1432 IEEE80211_HW_SUPPORTS_PS |
1433 IEEE80211_HW_PS_NULLFUNC_STACK;
1434 rt2x00dev->hw->extra_tx_headroom = 0;
1436 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1437 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1438 rt2x00_eeprom_addr(rt2x00dev,
1439 EEPROM_MAC_ADDR_0));
1442 * Initialize hw_mode information.
1444 spec->supported_bands = SUPPORT_BAND_2GHZ;
1445 spec->supported_rates = SUPPORT_RATE_CCK;
1447 spec->num_channels = ARRAY_SIZE(rf_vals_b);
1448 spec->channels = rf_vals_b;
1451 * Create channel information array
1453 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1454 if (!info)
1455 return -ENOMEM;
1457 spec->channels_info = info;
1459 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1460 for (i = 0; i < 14; i++)
1461 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1463 return 0;
1466 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1468 int retval;
1471 * Allocate eeprom data.
1473 retval = rt2400pci_validate_eeprom(rt2x00dev);
1474 if (retval)
1475 return retval;
1477 retval = rt2400pci_init_eeprom(rt2x00dev);
1478 if (retval)
1479 return retval;
1482 * Initialize hw specifications.
1484 retval = rt2400pci_probe_hw_mode(rt2x00dev);
1485 if (retval)
1486 return retval;
1489 * This device requires the atim queue and DMA-mapped skbs.
1491 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1492 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1495 * Set the rssi offset.
1497 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1499 return 0;
1503 * IEEE80211 stack callback functions.
1505 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1506 const struct ieee80211_tx_queue_params *params)
1508 struct rt2x00_dev *rt2x00dev = hw->priv;
1511 * We don't support variating cw_min and cw_max variables
1512 * per queue. So by default we only configure the TX queue,
1513 * and ignore all other configurations.
1515 if (queue != 0)
1516 return -EINVAL;
1518 if (rt2x00mac_conf_tx(hw, queue, params))
1519 return -EINVAL;
1522 * Write configuration to register.
1524 rt2400pci_config_cw(rt2x00dev,
1525 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1527 return 0;
1530 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1532 struct rt2x00_dev *rt2x00dev = hw->priv;
1533 u64 tsf;
1534 u32 reg;
1536 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1537 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1538 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1539 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1541 return tsf;
1544 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1546 struct rt2x00_dev *rt2x00dev = hw->priv;
1547 u32 reg;
1549 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1550 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1553 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1554 .tx = rt2x00mac_tx,
1555 .start = rt2x00mac_start,
1556 .stop = rt2x00mac_stop,
1557 .add_interface = rt2x00mac_add_interface,
1558 .remove_interface = rt2x00mac_remove_interface,
1559 .config = rt2x00mac_config,
1560 .configure_filter = rt2x00mac_configure_filter,
1561 .set_tim = rt2x00mac_set_tim,
1562 .get_stats = rt2x00mac_get_stats,
1563 .bss_info_changed = rt2x00mac_bss_info_changed,
1564 .conf_tx = rt2400pci_conf_tx,
1565 .get_tx_stats = rt2x00mac_get_tx_stats,
1566 .get_tsf = rt2400pci_get_tsf,
1567 .tx_last_beacon = rt2400pci_tx_last_beacon,
1568 .rfkill_poll = rt2x00mac_rfkill_poll,
1571 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1572 .irq_handler = rt2400pci_interrupt,
1573 .probe_hw = rt2400pci_probe_hw,
1574 .initialize = rt2x00pci_initialize,
1575 .uninitialize = rt2x00pci_uninitialize,
1576 .get_entry_state = rt2400pci_get_entry_state,
1577 .clear_entry = rt2400pci_clear_entry,
1578 .set_device_state = rt2400pci_set_device_state,
1579 .rfkill_poll = rt2400pci_rfkill_poll,
1580 .link_stats = rt2400pci_link_stats,
1581 .reset_tuner = rt2400pci_reset_tuner,
1582 .link_tuner = rt2400pci_link_tuner,
1583 .write_tx_desc = rt2400pci_write_tx_desc,
1584 .write_tx_data = rt2x00pci_write_tx_data,
1585 .write_beacon = rt2400pci_write_beacon,
1586 .kick_tx_queue = rt2400pci_kick_tx_queue,
1587 .kill_tx_queue = rt2400pci_kill_tx_queue,
1588 .fill_rxdone = rt2400pci_fill_rxdone,
1589 .config_filter = rt2400pci_config_filter,
1590 .config_intf = rt2400pci_config_intf,
1591 .config_erp = rt2400pci_config_erp,
1592 .config_ant = rt2400pci_config_ant,
1593 .config = rt2400pci_config,
1596 static const struct data_queue_desc rt2400pci_queue_rx = {
1597 .entry_num = RX_ENTRIES,
1598 .data_size = DATA_FRAME_SIZE,
1599 .desc_size = RXD_DESC_SIZE,
1600 .priv_size = sizeof(struct queue_entry_priv_pci),
1603 static const struct data_queue_desc rt2400pci_queue_tx = {
1604 .entry_num = TX_ENTRIES,
1605 .data_size = DATA_FRAME_SIZE,
1606 .desc_size = TXD_DESC_SIZE,
1607 .priv_size = sizeof(struct queue_entry_priv_pci),
1610 static const struct data_queue_desc rt2400pci_queue_bcn = {
1611 .entry_num = BEACON_ENTRIES,
1612 .data_size = MGMT_FRAME_SIZE,
1613 .desc_size = TXD_DESC_SIZE,
1614 .priv_size = sizeof(struct queue_entry_priv_pci),
1617 static const struct data_queue_desc rt2400pci_queue_atim = {
1618 .entry_num = ATIM_ENTRIES,
1619 .data_size = DATA_FRAME_SIZE,
1620 .desc_size = TXD_DESC_SIZE,
1621 .priv_size = sizeof(struct queue_entry_priv_pci),
1624 static const struct rt2x00_ops rt2400pci_ops = {
1625 .name = KBUILD_MODNAME,
1626 .max_sta_intf = 1,
1627 .max_ap_intf = 1,
1628 .eeprom_size = EEPROM_SIZE,
1629 .rf_size = RF_SIZE,
1630 .tx_queues = NUM_TX_QUEUES,
1631 .rx = &rt2400pci_queue_rx,
1632 .tx = &rt2400pci_queue_tx,
1633 .bcn = &rt2400pci_queue_bcn,
1634 .atim = &rt2400pci_queue_atim,
1635 .lib = &rt2400pci_rt2x00_ops,
1636 .hw = &rt2400pci_mac80211_ops,
1637 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1638 .debugfs = &rt2400pci_rt2x00debug,
1639 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1643 * RT2400pci module information.
1645 static struct pci_device_id rt2400pci_device_table[] = {
1646 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1647 { 0, }
1650 MODULE_AUTHOR(DRV_PROJECT);
1651 MODULE_VERSION(DRV_VERSION);
1652 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1653 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1654 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1655 MODULE_LICENSE("GPL");
1657 static struct pci_driver rt2400pci_driver = {
1658 .name = KBUILD_MODNAME,
1659 .id_table = rt2400pci_device_table,
1660 .probe = rt2x00pci_probe,
1661 .remove = __devexit_p(rt2x00pci_remove),
1662 .suspend = rt2x00pci_suspend,
1663 .resume = rt2x00pci_resume,
1666 static int __init rt2400pci_init(void)
1668 return pci_register_driver(&rt2400pci_driver);
1671 static void __exit rt2400pci_exit(void)
1673 pci_unregister_driver(&rt2400pci_driver);
1676 module_init(rt2400pci_init);
1677 module_exit(rt2400pci_exit);