2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2500usb device specific routines.
24 Supported chipsets: RT2570.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
39 * Allow hardware encryption to be disabled.
41 static int modparam_nohwcrypt
= 0;
42 module_param_named(nohwcrypt
, modparam_nohwcrypt
, bool, S_IRUGO
);
43 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
47 * All access to the CSR registers will go through the methods
48 * rt2500usb_register_read and rt2500usb_register_write.
49 * BBP and RF register require indirect register access,
50 * and use the CSR registers BBPCSR and RFCSR to achieve this.
51 * These indirect registers work with busy bits,
52 * and we will try maximal REGISTER_BUSY_COUNT times to access
53 * the register while taking a REGISTER_BUSY_DELAY us delay
54 * between each attampt. When the busy bit is still set at that time,
55 * the access attempt is considered to have failed,
56 * and we will print an error.
57 * If the csr_mutex is already held then the _lock variants must
60 static inline void rt2500usb_register_read(struct rt2x00_dev
*rt2x00dev
,
61 const unsigned int offset
,
65 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_READ
,
66 USB_VENDOR_REQUEST_IN
, offset
,
67 ®
, sizeof(reg
), REGISTER_TIMEOUT
);
68 *value
= le16_to_cpu(reg
);
71 static inline void rt2500usb_register_read_lock(struct rt2x00_dev
*rt2x00dev
,
72 const unsigned int offset
,
76 rt2x00usb_vendor_req_buff_lock(rt2x00dev
, USB_MULTI_READ
,
77 USB_VENDOR_REQUEST_IN
, offset
,
78 ®
, sizeof(reg
), REGISTER_TIMEOUT
);
79 *value
= le16_to_cpu(reg
);
82 static inline void rt2500usb_register_multiread(struct rt2x00_dev
*rt2x00dev
,
83 const unsigned int offset
,
84 void *value
, const u16 length
)
86 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_READ
,
87 USB_VENDOR_REQUEST_IN
, offset
,
89 REGISTER_TIMEOUT16(length
));
92 static inline void rt2500usb_register_write(struct rt2x00_dev
*rt2x00dev
,
93 const unsigned int offset
,
96 __le16 reg
= cpu_to_le16(value
);
97 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_WRITE
,
98 USB_VENDOR_REQUEST_OUT
, offset
,
99 ®
, sizeof(reg
), REGISTER_TIMEOUT
);
102 static inline void rt2500usb_register_write_lock(struct rt2x00_dev
*rt2x00dev
,
103 const unsigned int offset
,
106 __le16 reg
= cpu_to_le16(value
);
107 rt2x00usb_vendor_req_buff_lock(rt2x00dev
, USB_MULTI_WRITE
,
108 USB_VENDOR_REQUEST_OUT
, offset
,
109 ®
, sizeof(reg
), REGISTER_TIMEOUT
);
112 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev
*rt2x00dev
,
113 const unsigned int offset
,
114 void *value
, const u16 length
)
116 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_WRITE
,
117 USB_VENDOR_REQUEST_OUT
, offset
,
119 REGISTER_TIMEOUT16(length
));
122 static int rt2500usb_regbusy_read(struct rt2x00_dev
*rt2x00dev
,
123 const unsigned int offset
,
124 struct rt2x00_field16 field
,
129 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
130 rt2500usb_register_read_lock(rt2x00dev
, offset
, reg
);
131 if (!rt2x00_get_field16(*reg
, field
))
133 udelay(REGISTER_BUSY_DELAY
);
136 ERROR(rt2x00dev
, "Indirect register access failed: "
137 "offset=0x%.08x, value=0x%.08x\n", offset
, *reg
);
143 #define WAIT_FOR_BBP(__dev, __reg) \
144 rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
145 #define WAIT_FOR_RF(__dev, __reg) \
146 rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
148 static void rt2500usb_bbp_write(struct rt2x00_dev
*rt2x00dev
,
149 const unsigned int word
, const u8 value
)
153 mutex_lock(&rt2x00dev
->csr_mutex
);
156 * Wait until the BBP becomes available, afterwards we
157 * can safely write the new data into the register.
159 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
161 rt2x00_set_field16(®
, PHY_CSR7_DATA
, value
);
162 rt2x00_set_field16(®
, PHY_CSR7_REG_ID
, word
);
163 rt2x00_set_field16(®
, PHY_CSR7_READ_CONTROL
, 0);
165 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR7
, reg
);
168 mutex_unlock(&rt2x00dev
->csr_mutex
);
171 static void rt2500usb_bbp_read(struct rt2x00_dev
*rt2x00dev
,
172 const unsigned int word
, u8
*value
)
176 mutex_lock(&rt2x00dev
->csr_mutex
);
179 * Wait until the BBP becomes available, afterwards we
180 * can safely write the read request into the register.
181 * After the data has been written, we wait until hardware
182 * returns the correct value, if at any time the register
183 * doesn't become available in time, reg will be 0xffffffff
184 * which means we return 0xff to the caller.
186 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
188 rt2x00_set_field16(®
, PHY_CSR7_REG_ID
, word
);
189 rt2x00_set_field16(®
, PHY_CSR7_READ_CONTROL
, 1);
191 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR7
, reg
);
193 if (WAIT_FOR_BBP(rt2x00dev
, ®
))
194 rt2500usb_register_read_lock(rt2x00dev
, PHY_CSR7
, ®
);
197 *value
= rt2x00_get_field16(reg
, PHY_CSR7_DATA
);
199 mutex_unlock(&rt2x00dev
->csr_mutex
);
202 static void rt2500usb_rf_write(struct rt2x00_dev
*rt2x00dev
,
203 const unsigned int word
, const u32 value
)
207 mutex_lock(&rt2x00dev
->csr_mutex
);
210 * Wait until the RF becomes available, afterwards we
211 * can safely write the new data into the register.
213 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
215 rt2x00_set_field16(®
, PHY_CSR9_RF_VALUE
, value
);
216 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR9
, reg
);
219 rt2x00_set_field16(®
, PHY_CSR10_RF_VALUE
, value
>> 16);
220 rt2x00_set_field16(®
, PHY_CSR10_RF_NUMBER_OF_BITS
, 20);
221 rt2x00_set_field16(®
, PHY_CSR10_RF_IF_SELECT
, 0);
222 rt2x00_set_field16(®
, PHY_CSR10_RF_BUSY
, 1);
224 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR10
, reg
);
225 rt2x00_rf_write(rt2x00dev
, word
, value
);
228 mutex_unlock(&rt2x00dev
->csr_mutex
);
231 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
232 static void _rt2500usb_register_read(struct rt2x00_dev
*rt2x00dev
,
233 const unsigned int offset
,
236 rt2500usb_register_read(rt2x00dev
, offset
, (u16
*)value
);
239 static void _rt2500usb_register_write(struct rt2x00_dev
*rt2x00dev
,
240 const unsigned int offset
,
243 rt2500usb_register_write(rt2x00dev
, offset
, value
);
246 static const struct rt2x00debug rt2500usb_rt2x00debug
= {
247 .owner
= THIS_MODULE
,
249 .read
= _rt2500usb_register_read
,
250 .write
= _rt2500usb_register_write
,
251 .flags
= RT2X00DEBUGFS_OFFSET
,
252 .word_base
= CSR_REG_BASE
,
253 .word_size
= sizeof(u16
),
254 .word_count
= CSR_REG_SIZE
/ sizeof(u16
),
257 .read
= rt2x00_eeprom_read
,
258 .write
= rt2x00_eeprom_write
,
259 .word_base
= EEPROM_BASE
,
260 .word_size
= sizeof(u16
),
261 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
264 .read
= rt2500usb_bbp_read
,
265 .write
= rt2500usb_bbp_write
,
266 .word_base
= BBP_BASE
,
267 .word_size
= sizeof(u8
),
268 .word_count
= BBP_SIZE
/ sizeof(u8
),
271 .read
= rt2x00_rf_read
,
272 .write
= rt2500usb_rf_write
,
273 .word_base
= RF_BASE
,
274 .word_size
= sizeof(u32
),
275 .word_count
= RF_SIZE
/ sizeof(u32
),
278 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
280 static int rt2500usb_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
284 rt2500usb_register_read(rt2x00dev
, MAC_CSR19
, ®
);
285 return rt2x00_get_field32(reg
, MAC_CSR19_BIT7
);
288 #ifdef CONFIG_RT2X00_LIB_LEDS
289 static void rt2500usb_brightness_set(struct led_classdev
*led_cdev
,
290 enum led_brightness brightness
)
292 struct rt2x00_led
*led
=
293 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
294 unsigned int enabled
= brightness
!= LED_OFF
;
297 rt2500usb_register_read(led
->rt2x00dev
, MAC_CSR20
, ®
);
299 if (led
->type
== LED_TYPE_RADIO
|| led
->type
== LED_TYPE_ASSOC
)
300 rt2x00_set_field16(®
, MAC_CSR20_LINK
, enabled
);
301 else if (led
->type
== LED_TYPE_ACTIVITY
)
302 rt2x00_set_field16(®
, MAC_CSR20_ACTIVITY
, enabled
);
304 rt2500usb_register_write(led
->rt2x00dev
, MAC_CSR20
, reg
);
307 static int rt2500usb_blink_set(struct led_classdev
*led_cdev
,
308 unsigned long *delay_on
,
309 unsigned long *delay_off
)
311 struct rt2x00_led
*led
=
312 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
315 rt2500usb_register_read(led
->rt2x00dev
, MAC_CSR21
, ®
);
316 rt2x00_set_field16(®
, MAC_CSR21_ON_PERIOD
, *delay_on
);
317 rt2x00_set_field16(®
, MAC_CSR21_OFF_PERIOD
, *delay_off
);
318 rt2500usb_register_write(led
->rt2x00dev
, MAC_CSR21
, reg
);
323 static void rt2500usb_init_led(struct rt2x00_dev
*rt2x00dev
,
324 struct rt2x00_led
*led
,
327 led
->rt2x00dev
= rt2x00dev
;
329 led
->led_dev
.brightness_set
= rt2500usb_brightness_set
;
330 led
->led_dev
.blink_set
= rt2500usb_blink_set
;
331 led
->flags
= LED_INITIALIZED
;
333 #endif /* CONFIG_RT2X00_LIB_LEDS */
336 * Configuration handlers.
340 * rt2500usb does not differentiate between shared and pairwise
341 * keys, so we should use the same function for both key types.
343 static int rt2500usb_config_key(struct rt2x00_dev
*rt2x00dev
,
344 struct rt2x00lib_crypto
*crypto
,
345 struct ieee80211_key_conf
*key
)
351 if (crypto
->cmd
== SET_KEY
) {
353 * Pairwise key will always be entry 0, but this
354 * could collide with a shared key on the same
357 mask
= TXRX_CSR0_KEY_ID
.bit_mask
;
359 rt2500usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
362 if (reg
&& reg
== mask
)
365 reg
= rt2x00_get_field16(reg
, TXRX_CSR0_KEY_ID
);
367 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
370 * The encryption key doesn't fit within the CSR cache,
371 * this means we should allocate it seperately and use
372 * rt2x00usb_vendor_request() to send the key to the hardware.
374 reg
= KEY_ENTRY(key
->hw_key_idx
);
375 timeout
= REGISTER_TIMEOUT32(sizeof(crypto
->key
));
376 rt2x00usb_vendor_request_large_buff(rt2x00dev
, USB_MULTI_WRITE
,
377 USB_VENDOR_REQUEST_OUT
, reg
,
383 * The driver does not support the IV/EIV generation
384 * in hardware. However it demands the data to be provided
385 * both seperately as well as inside the frame.
386 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
387 * to ensure rt2x00lib will not strip the data from the
388 * frame after the copy, now we must tell mac80211
389 * to generate the IV/EIV data.
391 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
392 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_MMIC
;
396 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
397 * a particular key is valid.
399 rt2500usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
400 rt2x00_set_field16(®
, TXRX_CSR0_ALGORITHM
, crypto
->cipher
);
401 rt2x00_set_field16(®
, TXRX_CSR0_IV_OFFSET
, IEEE80211_HEADER
);
403 mask
= rt2x00_get_field16(reg
, TXRX_CSR0_KEY_ID
);
404 if (crypto
->cmd
== SET_KEY
)
405 mask
|= 1 << key
->hw_key_idx
;
406 else if (crypto
->cmd
== DISABLE_KEY
)
407 mask
&= ~(1 << key
->hw_key_idx
);
408 rt2x00_set_field16(®
, TXRX_CSR0_KEY_ID
, mask
);
409 rt2500usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
414 static void rt2500usb_config_filter(struct rt2x00_dev
*rt2x00dev
,
415 const unsigned int filter_flags
)
420 * Start configuration steps.
421 * Note that the version error will always be dropped
422 * and broadcast frames will always be accepted since
423 * there is no filter for it at this time.
425 rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
426 rt2x00_set_field16(®
, TXRX_CSR2_DROP_CRC
,
427 !(filter_flags
& FIF_FCSFAIL
));
428 rt2x00_set_field16(®
, TXRX_CSR2_DROP_PHYSICAL
,
429 !(filter_flags
& FIF_PLCPFAIL
));
430 rt2x00_set_field16(®
, TXRX_CSR2_DROP_CONTROL
,
431 !(filter_flags
& FIF_CONTROL
));
432 rt2x00_set_field16(®
, TXRX_CSR2_DROP_NOT_TO_ME
,
433 !(filter_flags
& FIF_PROMISC_IN_BSS
));
434 rt2x00_set_field16(®
, TXRX_CSR2_DROP_TODS
,
435 !(filter_flags
& FIF_PROMISC_IN_BSS
) &&
436 !rt2x00dev
->intf_ap_count
);
437 rt2x00_set_field16(®
, TXRX_CSR2_DROP_VERSION_ERROR
, 1);
438 rt2x00_set_field16(®
, TXRX_CSR2_DROP_MULTICAST
,
439 !(filter_flags
& FIF_ALLMULTI
));
440 rt2x00_set_field16(®
, TXRX_CSR2_DROP_BROADCAST
, 0);
441 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
444 static void rt2500usb_config_intf(struct rt2x00_dev
*rt2x00dev
,
445 struct rt2x00_intf
*intf
,
446 struct rt2x00intf_conf
*conf
,
447 const unsigned int flags
)
449 unsigned int bcn_preload
;
452 if (flags
& CONFIG_UPDATE_TYPE
) {
454 * Enable beacon config
456 bcn_preload
= PREAMBLE
+ GET_DURATION(IEEE80211_HEADER
, 20);
457 rt2500usb_register_read(rt2x00dev
, TXRX_CSR20
, ®
);
458 rt2x00_set_field16(®
, TXRX_CSR20_OFFSET
, bcn_preload
>> 6);
459 rt2x00_set_field16(®
, TXRX_CSR20_BCN_EXPECT_WINDOW
,
460 2 * (conf
->type
!= NL80211_IFTYPE_STATION
));
461 rt2500usb_register_write(rt2x00dev
, TXRX_CSR20
, reg
);
464 * Enable synchronisation.
466 rt2500usb_register_read(rt2x00dev
, TXRX_CSR18
, ®
);
467 rt2x00_set_field16(®
, TXRX_CSR18_OFFSET
, 0);
468 rt2500usb_register_write(rt2x00dev
, TXRX_CSR18
, reg
);
470 rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
, ®
);
471 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 1);
472 rt2x00_set_field16(®
, TXRX_CSR19_TSF_SYNC
, conf
->sync
);
473 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 1);
474 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
477 if (flags
& CONFIG_UPDATE_MAC
)
478 rt2500usb_register_multiwrite(rt2x00dev
, MAC_CSR2
, conf
->mac
,
479 (3 * sizeof(__le16
)));
481 if (flags
& CONFIG_UPDATE_BSSID
)
482 rt2500usb_register_multiwrite(rt2x00dev
, MAC_CSR5
, conf
->bssid
,
483 (3 * sizeof(__le16
)));
486 static void rt2500usb_config_erp(struct rt2x00_dev
*rt2x00dev
,
487 struct rt2x00lib_erp
*erp
)
491 rt2500usb_register_read(rt2x00dev
, TXRX_CSR10
, ®
);
492 rt2x00_set_field16(®
, TXRX_CSR10_AUTORESPOND_PREAMBLE
,
493 !!erp
->short_preamble
);
494 rt2500usb_register_write(rt2x00dev
, TXRX_CSR10
, reg
);
496 rt2500usb_register_write(rt2x00dev
, TXRX_CSR11
, erp
->basic_rates
);
498 rt2500usb_register_read(rt2x00dev
, TXRX_CSR18
, ®
);
499 rt2x00_set_field16(®
, TXRX_CSR18_INTERVAL
, erp
->beacon_int
* 4);
500 rt2500usb_register_write(rt2x00dev
, TXRX_CSR18
, reg
);
502 rt2500usb_register_write(rt2x00dev
, MAC_CSR10
, erp
->slot_time
);
503 rt2500usb_register_write(rt2x00dev
, MAC_CSR11
, erp
->sifs
);
504 rt2500usb_register_write(rt2x00dev
, MAC_CSR12
, erp
->eifs
);
507 static void rt2500usb_config_ant(struct rt2x00_dev
*rt2x00dev
,
508 struct antenna_setup
*ant
)
516 * We should never come here because rt2x00lib is supposed
517 * to catch this and send us the correct antenna explicitely.
519 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
520 ant
->tx
== ANTENNA_SW_DIVERSITY
);
522 rt2500usb_bbp_read(rt2x00dev
, 2, &r2
);
523 rt2500usb_bbp_read(rt2x00dev
, 14, &r14
);
524 rt2500usb_register_read(rt2x00dev
, PHY_CSR5
, &csr5
);
525 rt2500usb_register_read(rt2x00dev
, PHY_CSR6
, &csr6
);
528 * Configure the TX antenna.
531 case ANTENNA_HW_DIVERSITY
:
532 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 1);
533 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 1);
534 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 1);
537 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 0);
538 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 0);
539 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 0);
543 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 2);
544 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 2);
545 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 2);
550 * Configure the RX antenna.
553 case ANTENNA_HW_DIVERSITY
:
554 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 1);
557 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 0);
561 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 2);
566 * RT2525E and RT5222 need to flip TX I/Q
568 if (rt2x00_rf(&rt2x00dev
->chip
, RF2525E
) ||
569 rt2x00_rf(&rt2x00dev
->chip
, RF5222
)) {
570 rt2x00_set_field8(&r2
, BBP_R2_TX_IQ_FLIP
, 1);
571 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK_FLIP
, 1);
572 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM_FLIP
, 1);
575 * RT2525E does not need RX I/Q Flip.
577 if (rt2x00_rf(&rt2x00dev
->chip
, RF2525E
))
578 rt2x00_set_field8(&r14
, BBP_R14_RX_IQ_FLIP
, 0);
580 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK_FLIP
, 0);
581 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM_FLIP
, 0);
584 rt2500usb_bbp_write(rt2x00dev
, 2, r2
);
585 rt2500usb_bbp_write(rt2x00dev
, 14, r14
);
586 rt2500usb_register_write(rt2x00dev
, PHY_CSR5
, csr5
);
587 rt2500usb_register_write(rt2x00dev
, PHY_CSR6
, csr6
);
590 static void rt2500usb_config_channel(struct rt2x00_dev
*rt2x00dev
,
591 struct rf_channel
*rf
, const int txpower
)
596 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
599 * For RT2525E we should first set the channel to half band higher.
601 if (rt2x00_rf(&rt2x00dev
->chip
, RF2525E
)) {
602 static const u32 vals
[] = {
603 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
604 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
605 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
606 0x00000902, 0x00000906
609 rt2500usb_rf_write(rt2x00dev
, 2, vals
[rf
->channel
- 1]);
611 rt2500usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
614 rt2500usb_rf_write(rt2x00dev
, 1, rf
->rf1
);
615 rt2500usb_rf_write(rt2x00dev
, 2, rf
->rf2
);
616 rt2500usb_rf_write(rt2x00dev
, 3, rf
->rf3
);
618 rt2500usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
621 static void rt2500usb_config_txpower(struct rt2x00_dev
*rt2x00dev
,
626 rt2x00_rf_read(rt2x00dev
, 3, &rf3
);
627 rt2x00_set_field32(&rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
628 rt2500usb_rf_write(rt2x00dev
, 3, rf3
);
631 static void rt2500usb_config_ps(struct rt2x00_dev
*rt2x00dev
,
632 struct rt2x00lib_conf
*libconf
)
634 enum dev_state state
=
635 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
636 STATE_SLEEP
: STATE_AWAKE
;
639 if (state
== STATE_SLEEP
) {
640 rt2500usb_register_read(rt2x00dev
, MAC_CSR18
, ®
);
641 rt2x00_set_field16(®
, MAC_CSR18_DELAY_AFTER_BEACON
,
642 rt2x00dev
->beacon_int
- 20);
643 rt2x00_set_field16(®
, MAC_CSR18_BEACONS_BEFORE_WAKEUP
,
644 libconf
->conf
->listen_interval
- 1);
646 /* We must first disable autowake before it can be enabled */
647 rt2x00_set_field16(®
, MAC_CSR18_AUTO_WAKE
, 0);
648 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
650 rt2x00_set_field16(®
, MAC_CSR18_AUTO_WAKE
, 1);
651 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
654 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, state
);
657 static void rt2500usb_config(struct rt2x00_dev
*rt2x00dev
,
658 struct rt2x00lib_conf
*libconf
,
659 const unsigned int flags
)
661 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
662 rt2500usb_config_channel(rt2x00dev
, &libconf
->rf
,
663 libconf
->conf
->power_level
);
664 if ((flags
& IEEE80211_CONF_CHANGE_POWER
) &&
665 !(flags
& IEEE80211_CONF_CHANGE_CHANNEL
))
666 rt2500usb_config_txpower(rt2x00dev
,
667 libconf
->conf
->power_level
);
668 if (flags
& IEEE80211_CONF_CHANGE_PS
)
669 rt2500usb_config_ps(rt2x00dev
, libconf
);
675 static void rt2500usb_link_stats(struct rt2x00_dev
*rt2x00dev
,
676 struct link_qual
*qual
)
681 * Update FCS error count from register.
683 rt2500usb_register_read(rt2x00dev
, STA_CSR0
, ®
);
684 qual
->rx_failed
= rt2x00_get_field16(reg
, STA_CSR0_FCS_ERROR
);
687 * Update False CCA count from register.
689 rt2500usb_register_read(rt2x00dev
, STA_CSR3
, ®
);
690 qual
->false_cca
= rt2x00_get_field16(reg
, STA_CSR3_FALSE_CCA_ERROR
);
693 static void rt2500usb_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
694 struct link_qual
*qual
)
699 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R24
, &eeprom
);
700 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R24_LOW
);
701 rt2500usb_bbp_write(rt2x00dev
, 24, value
);
703 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R25
, &eeprom
);
704 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R25_LOW
);
705 rt2500usb_bbp_write(rt2x00dev
, 25, value
);
707 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R61
, &eeprom
);
708 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R61_LOW
);
709 rt2500usb_bbp_write(rt2x00dev
, 61, value
);
711 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_VGC
, &eeprom
);
712 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_VGCUPPER
);
713 rt2500usb_bbp_write(rt2x00dev
, 17, value
);
715 qual
->vgc_level
= value
;
719 * NOTE: This function is directly ported from legacy driver, but
720 * despite it being declared it was never called. Although link tuning
721 * sounds like a good idea, and usually works well for the other drivers,
722 * it does _not_ work with rt2500usb. Enabling this function will result
723 * in TX capabilities only until association kicks in. Immediately
724 * after the successful association all TX frames will be kept in the
725 * hardware queue and never transmitted.
728 static void rt2500usb_link_tuner(struct rt2x00_dev
*rt2x00dev
)
730 int rssi
= rt2x00_get_link_rssi(&rt2x00dev
->link
);
743 * Read current r17 value, as well as the sensitivity values
744 * for the r17 register.
746 rt2500usb_bbp_read(rt2x00dev
, 17, &r17
);
747 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R17
, &r17_sens
);
749 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_VGC
, &vgc_bound
);
750 up_bound
= rt2x00_get_field16(vgc_bound
, EEPROM_BBPTUNE_VGCUPPER
);
751 low_bound
= rt2x00_get_field16(vgc_bound
, EEPROM_BBPTUNE_VGCLOWER
);
754 * If we are not associated, we should go straight to the
755 * dynamic CCA tuning.
757 if (!rt2x00dev
->intf_associated
)
758 goto dynamic_cca_tune
;
761 * Determine the BBP tuning threshold and correctly
762 * set BBP 24, 25 and 61.
764 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE
, &bbp_thresh
);
765 bbp_thresh
= rt2x00_get_field16(bbp_thresh
, EEPROM_BBPTUNE_THRESHOLD
);
767 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R24
, &r24
);
768 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R25
, &r25
);
769 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R61
, &r61
);
771 if ((rssi
+ bbp_thresh
) > 0) {
772 r24
= rt2x00_get_field16(r24
, EEPROM_BBPTUNE_R24_HIGH
);
773 r25
= rt2x00_get_field16(r25
, EEPROM_BBPTUNE_R25_HIGH
);
774 r61
= rt2x00_get_field16(r61
, EEPROM_BBPTUNE_R61_HIGH
);
776 r24
= rt2x00_get_field16(r24
, EEPROM_BBPTUNE_R24_LOW
);
777 r25
= rt2x00_get_field16(r25
, EEPROM_BBPTUNE_R25_LOW
);
778 r61
= rt2x00_get_field16(r61
, EEPROM_BBPTUNE_R61_LOW
);
781 rt2500usb_bbp_write(rt2x00dev
, 24, r24
);
782 rt2500usb_bbp_write(rt2x00dev
, 25, r25
);
783 rt2500usb_bbp_write(rt2x00dev
, 61, r61
);
786 * A too low RSSI will cause too much false CCA which will
787 * then corrupt the R17 tuning. To remidy this the tuning should
788 * be stopped (While making sure the R17 value will not exceed limits)
792 rt2500usb_bbp_write(rt2x00dev
, 17, 0x60);
797 * Special big-R17 for short distance
800 sens
= rt2x00_get_field16(r17_sens
, EEPROM_BBPTUNE_R17_LOW
);
802 rt2500usb_bbp_write(rt2x00dev
, 17, sens
);
807 * Special mid-R17 for middle distance
810 sens
= rt2x00_get_field16(r17_sens
, EEPROM_BBPTUNE_R17_HIGH
);
812 rt2500usb_bbp_write(rt2x00dev
, 17, sens
);
817 * Leave short or middle distance condition, restore r17
818 * to the dynamic tuning range.
822 up_bound
-= (-77 - rssi
);
824 if (up_bound
< low_bound
)
825 up_bound
= low_bound
;
827 if (r17
> up_bound
) {
828 rt2500usb_bbp_write(rt2x00dev
, 17, up_bound
);
829 rt2x00dev
->link
.vgc_level
= up_bound
;
836 * R17 is inside the dynamic tuning range,
837 * start tuning the link based on the false cca counter.
839 if (rt2x00dev
->link
.qual
.false_cca
> 512 && r17
< up_bound
) {
840 rt2500usb_bbp_write(rt2x00dev
, 17, ++r17
);
841 rt2x00dev
->link
.vgc_level
= r17
;
842 } else if (rt2x00dev
->link
.qual
.false_cca
< 100 && r17
> low_bound
) {
843 rt2500usb_bbp_write(rt2x00dev
, 17, --r17
);
844 rt2x00dev
->link
.vgc_level
= r17
;
848 #define rt2500usb_link_tuner NULL
852 * Initialization functions.
854 static int rt2500usb_init_registers(struct rt2x00_dev
*rt2x00dev
)
858 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_DEVICE_MODE
, 0x0001,
859 USB_MODE_TEST
, REGISTER_TIMEOUT
);
860 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_SINGLE_WRITE
, 0x0308,
861 0x00f0, REGISTER_TIMEOUT
);
863 rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
864 rt2x00_set_field16(®
, TXRX_CSR2_DISABLE_RX
, 1);
865 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
867 rt2500usb_register_write(rt2x00dev
, MAC_CSR13
, 0x1111);
868 rt2500usb_register_write(rt2x00dev
, MAC_CSR14
, 0x1e11);
870 rt2500usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
871 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 1);
872 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 1);
873 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 0);
874 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
876 rt2500usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
877 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 0);
878 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 0);
879 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 0);
880 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
882 rt2500usb_register_read(rt2x00dev
, TXRX_CSR5
, ®
);
883 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID0
, 13);
884 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID0_VALID
, 1);
885 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID1
, 12);
886 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID1_VALID
, 1);
887 rt2500usb_register_write(rt2x00dev
, TXRX_CSR5
, reg
);
889 rt2500usb_register_read(rt2x00dev
, TXRX_CSR6
, ®
);
890 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID0
, 10);
891 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID0_VALID
, 1);
892 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID1
, 11);
893 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID1_VALID
, 1);
894 rt2500usb_register_write(rt2x00dev
, TXRX_CSR6
, reg
);
896 rt2500usb_register_read(rt2x00dev
, TXRX_CSR7
, ®
);
897 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID0
, 7);
898 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID0_VALID
, 1);
899 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID1
, 6);
900 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID1_VALID
, 1);
901 rt2500usb_register_write(rt2x00dev
, TXRX_CSR7
, reg
);
903 rt2500usb_register_read(rt2x00dev
, TXRX_CSR8
, ®
);
904 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID0
, 5);
905 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID0_VALID
, 1);
906 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID1
, 0);
907 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID1_VALID
, 0);
908 rt2500usb_register_write(rt2x00dev
, TXRX_CSR8
, reg
);
910 rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
, ®
);
911 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 0);
912 rt2x00_set_field16(®
, TXRX_CSR19_TSF_SYNC
, 0);
913 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 0);
914 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 0);
915 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
917 rt2500usb_register_write(rt2x00dev
, TXRX_CSR21
, 0xe78f);
918 rt2500usb_register_write(rt2x00dev
, MAC_CSR9
, 0xff1d);
920 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
923 rt2500usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
924 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 0);
925 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 0);
926 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 1);
927 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
929 if (rt2x00_rev(&rt2x00dev
->chip
) >= RT2570_VERSION_C
) {
930 rt2500usb_register_read(rt2x00dev
, PHY_CSR2
, ®
);
931 rt2x00_set_field16(®
, PHY_CSR2_LNA
, 0);
934 rt2x00_set_field16(®
, PHY_CSR2_LNA
, 1);
935 rt2x00_set_field16(®
, PHY_CSR2_LNA_MODE
, 3);
937 rt2500usb_register_write(rt2x00dev
, PHY_CSR2
, reg
);
939 rt2500usb_register_write(rt2x00dev
, MAC_CSR11
, 0x0002);
940 rt2500usb_register_write(rt2x00dev
, MAC_CSR22
, 0x0053);
941 rt2500usb_register_write(rt2x00dev
, MAC_CSR15
, 0x01ee);
942 rt2500usb_register_write(rt2x00dev
, MAC_CSR16
, 0x0000);
944 rt2500usb_register_read(rt2x00dev
, MAC_CSR8
, ®
);
945 rt2x00_set_field16(®
, MAC_CSR8_MAX_FRAME_UNIT
,
946 rt2x00dev
->rx
->data_size
);
947 rt2500usb_register_write(rt2x00dev
, MAC_CSR8
, reg
);
949 rt2500usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
950 rt2x00_set_field16(®
, TXRX_CSR0_IV_OFFSET
, IEEE80211_HEADER
);
951 rt2x00_set_field16(®
, TXRX_CSR0_KEY_ID
, 0);
952 rt2500usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
954 rt2500usb_register_read(rt2x00dev
, MAC_CSR18
, ®
);
955 rt2x00_set_field16(®
, MAC_CSR18_DELAY_AFTER_BEACON
, 90);
956 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
958 rt2500usb_register_read(rt2x00dev
, PHY_CSR4
, ®
);
959 rt2x00_set_field16(®
, PHY_CSR4_LOW_RF_LE
, 1);
960 rt2500usb_register_write(rt2x00dev
, PHY_CSR4
, reg
);
962 rt2500usb_register_read(rt2x00dev
, TXRX_CSR1
, ®
);
963 rt2x00_set_field16(®
, TXRX_CSR1_AUTO_SEQUENCE
, 1);
964 rt2500usb_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
969 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
974 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
975 rt2500usb_bbp_read(rt2x00dev
, 0, &value
);
976 if ((value
!= 0xff) && (value
!= 0x00))
978 udelay(REGISTER_BUSY_DELAY
);
981 ERROR(rt2x00dev
, "BBP register access failed, aborting.\n");
985 static int rt2500usb_init_bbp(struct rt2x00_dev
*rt2x00dev
)
992 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev
)))
995 rt2500usb_bbp_write(rt2x00dev
, 3, 0x02);
996 rt2500usb_bbp_write(rt2x00dev
, 4, 0x19);
997 rt2500usb_bbp_write(rt2x00dev
, 14, 0x1c);
998 rt2500usb_bbp_write(rt2x00dev
, 15, 0x30);
999 rt2500usb_bbp_write(rt2x00dev
, 16, 0xac);
1000 rt2500usb_bbp_write(rt2x00dev
, 18, 0x18);
1001 rt2500usb_bbp_write(rt2x00dev
, 19, 0xff);
1002 rt2500usb_bbp_write(rt2x00dev
, 20, 0x1e);
1003 rt2500usb_bbp_write(rt2x00dev
, 21, 0x08);
1004 rt2500usb_bbp_write(rt2x00dev
, 22, 0x08);
1005 rt2500usb_bbp_write(rt2x00dev
, 23, 0x08);
1006 rt2500usb_bbp_write(rt2x00dev
, 24, 0x80);
1007 rt2500usb_bbp_write(rt2x00dev
, 25, 0x50);
1008 rt2500usb_bbp_write(rt2x00dev
, 26, 0x08);
1009 rt2500usb_bbp_write(rt2x00dev
, 27, 0x23);
1010 rt2500usb_bbp_write(rt2x00dev
, 30, 0x10);
1011 rt2500usb_bbp_write(rt2x00dev
, 31, 0x2b);
1012 rt2500usb_bbp_write(rt2x00dev
, 32, 0xb9);
1013 rt2500usb_bbp_write(rt2x00dev
, 34, 0x12);
1014 rt2500usb_bbp_write(rt2x00dev
, 35, 0x50);
1015 rt2500usb_bbp_write(rt2x00dev
, 39, 0xc4);
1016 rt2500usb_bbp_write(rt2x00dev
, 40, 0x02);
1017 rt2500usb_bbp_write(rt2x00dev
, 41, 0x60);
1018 rt2500usb_bbp_write(rt2x00dev
, 53, 0x10);
1019 rt2500usb_bbp_write(rt2x00dev
, 54, 0x18);
1020 rt2500usb_bbp_write(rt2x00dev
, 56, 0x08);
1021 rt2500usb_bbp_write(rt2x00dev
, 57, 0x10);
1022 rt2500usb_bbp_write(rt2x00dev
, 58, 0x08);
1023 rt2500usb_bbp_write(rt2x00dev
, 61, 0x60);
1024 rt2500usb_bbp_write(rt2x00dev
, 62, 0x10);
1025 rt2500usb_bbp_write(rt2x00dev
, 75, 0xff);
1027 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
1028 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
1030 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
1031 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
1032 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
1033 rt2500usb_bbp_write(rt2x00dev
, reg_id
, value
);
1041 * Device state switch handlers.
1043 static void rt2500usb_toggle_rx(struct rt2x00_dev
*rt2x00dev
,
1044 enum dev_state state
)
1048 rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
1049 rt2x00_set_field16(®
, TXRX_CSR2_DISABLE_RX
,
1050 (state
== STATE_RADIO_RX_OFF
) ||
1051 (state
== STATE_RADIO_RX_OFF_LINK
));
1052 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
1055 static int rt2500usb_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1058 * Initialize all registers.
1060 if (unlikely(rt2500usb_init_registers(rt2x00dev
) ||
1061 rt2500usb_init_bbp(rt2x00dev
)))
1067 static void rt2500usb_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1069 rt2500usb_register_write(rt2x00dev
, MAC_CSR13
, 0x2121);
1070 rt2500usb_register_write(rt2x00dev
, MAC_CSR14
, 0x2121);
1073 * Disable synchronisation.
1075 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, 0);
1077 rt2x00usb_disable_radio(rt2x00dev
);
1080 static int rt2500usb_set_state(struct rt2x00_dev
*rt2x00dev
,
1081 enum dev_state state
)
1090 put_to_sleep
= (state
!= STATE_AWAKE
);
1093 rt2x00_set_field16(®
, MAC_CSR17_BBP_DESIRE_STATE
, state
);
1094 rt2x00_set_field16(®
, MAC_CSR17_RF_DESIRE_STATE
, state
);
1095 rt2x00_set_field16(®
, MAC_CSR17_PUT_TO_SLEEP
, put_to_sleep
);
1096 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
1097 rt2x00_set_field16(®
, MAC_CSR17_SET_STATE
, 1);
1098 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
1101 * Device is not guaranteed to be in the requested state yet.
1102 * We must wait until the register indicates that the
1103 * device has entered the correct state.
1105 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1106 rt2500usb_register_read(rt2x00dev
, MAC_CSR17
, ®2
);
1107 bbp_state
= rt2x00_get_field16(reg2
, MAC_CSR17_BBP_CURR_STATE
);
1108 rf_state
= rt2x00_get_field16(reg2
, MAC_CSR17_RF_CURR_STATE
);
1109 if (bbp_state
== state
&& rf_state
== state
)
1111 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
1118 static int rt2500usb_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1119 enum dev_state state
)
1124 case STATE_RADIO_ON
:
1125 retval
= rt2500usb_enable_radio(rt2x00dev
);
1127 case STATE_RADIO_OFF
:
1128 rt2500usb_disable_radio(rt2x00dev
);
1130 case STATE_RADIO_RX_ON
:
1131 case STATE_RADIO_RX_ON_LINK
:
1132 case STATE_RADIO_RX_OFF
:
1133 case STATE_RADIO_RX_OFF_LINK
:
1134 rt2500usb_toggle_rx(rt2x00dev
, state
);
1136 case STATE_RADIO_IRQ_ON
:
1137 case STATE_RADIO_IRQ_OFF
:
1138 /* No support, but no error either */
1140 case STATE_DEEP_SLEEP
:
1144 retval
= rt2500usb_set_state(rt2x00dev
, state
);
1151 if (unlikely(retval
))
1152 ERROR(rt2x00dev
, "Device failed to enter state %d (%d).\n",
1159 * TX descriptor initialization
1161 static void rt2500usb_write_tx_desc(struct rt2x00_dev
*rt2x00dev
,
1162 struct sk_buff
*skb
,
1163 struct txentry_desc
*txdesc
)
1165 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(skb
);
1166 __le32
*txd
= skbdesc
->desc
;
1170 * Start writing the descriptor words.
1172 rt2x00_desc_read(txd
, 1, &word
);
1173 rt2x00_set_field32(&word
, TXD_W1_IV_OFFSET
, txdesc
->iv_offset
);
1174 rt2x00_set_field32(&word
, TXD_W1_AIFS
, txdesc
->aifs
);
1175 rt2x00_set_field32(&word
, TXD_W1_CWMIN
, txdesc
->cw_min
);
1176 rt2x00_set_field32(&word
, TXD_W1_CWMAX
, txdesc
->cw_max
);
1177 rt2x00_desc_write(txd
, 1, word
);
1179 rt2x00_desc_read(txd
, 2, &word
);
1180 rt2x00_set_field32(&word
, TXD_W2_PLCP_SIGNAL
, txdesc
->signal
);
1181 rt2x00_set_field32(&word
, TXD_W2_PLCP_SERVICE
, txdesc
->service
);
1182 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_LOW
, txdesc
->length_low
);
1183 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_HIGH
, txdesc
->length_high
);
1184 rt2x00_desc_write(txd
, 2, word
);
1186 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
->flags
)) {
1187 _rt2x00_desc_write(txd
, 3, skbdesc
->iv
[0]);
1188 _rt2x00_desc_write(txd
, 4, skbdesc
->iv
[1]);
1191 rt2x00_desc_read(txd
, 0, &word
);
1192 rt2x00_set_field32(&word
, TXD_W0_RETRY_LIMIT
, txdesc
->retry_limit
);
1193 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1194 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1195 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1196 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1197 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1198 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1199 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1200 (txdesc
->rate_mode
== RATE_MODE_OFDM
));
1201 rt2x00_set_field32(&word
, TXD_W0_NEW_SEQ
,
1202 test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
));
1203 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->ifs
);
1204 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, skb
->len
);
1205 rt2x00_set_field32(&word
, TXD_W0_CIPHER
, !!txdesc
->cipher
);
1206 rt2x00_set_field32(&word
, TXD_W0_KEY_ID
, txdesc
->key_idx
);
1207 rt2x00_desc_write(txd
, 0, word
);
1211 * TX data initialization
1213 static void rt2500usb_beacondone(struct urb
*urb
);
1215 static void rt2500usb_write_beacon(struct queue_entry
*entry
)
1217 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1218 struct usb_device
*usb_dev
= to_usb_device_intf(rt2x00dev
->dev
);
1219 struct queue_entry_priv_usb_bcn
*bcn_priv
= entry
->priv_data
;
1220 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1221 int pipe
= usb_sndbulkpipe(usb_dev
, entry
->queue
->usb_endpoint
);
1226 * Add the descriptor in front of the skb.
1228 skb_push(entry
->skb
, entry
->queue
->desc_size
);
1229 memcpy(entry
->skb
->data
, skbdesc
->desc
, skbdesc
->desc_len
);
1230 skbdesc
->desc
= entry
->skb
->data
;
1233 * Disable beaconing while we are reloading the beacon data,
1234 * otherwise we might be sending out invalid data.
1236 rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
, ®
);
1237 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 0);
1238 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1241 * USB devices cannot blindly pass the skb->len as the
1242 * length of the data to usb_fill_bulk_urb. Pass the skb
1243 * to the driver to determine what the length should be.
1245 length
= rt2x00dev
->ops
->lib
->get_tx_data_len(entry
);
1247 usb_fill_bulk_urb(bcn_priv
->urb
, usb_dev
, pipe
,
1248 entry
->skb
->data
, length
, rt2500usb_beacondone
,
1252 * Second we need to create the guardian byte.
1253 * We only need a single byte, so lets recycle
1254 * the 'flags' field we are not using for beacons.
1256 bcn_priv
->guardian_data
= 0;
1257 usb_fill_bulk_urb(bcn_priv
->guardian_urb
, usb_dev
, pipe
,
1258 &bcn_priv
->guardian_data
, 1, rt2500usb_beacondone
,
1262 * Send out the guardian byte.
1264 usb_submit_urb(bcn_priv
->guardian_urb
, GFP_ATOMIC
);
1267 static int rt2500usb_get_tx_data_len(struct queue_entry
*entry
)
1272 * The length _must_ be a multiple of 2,
1273 * but it must _not_ be a multiple of the USB packet size.
1275 length
= roundup(entry
->skb
->len
, 2);
1276 length
+= (2 * !(length
% entry
->queue
->usb_maxpacket
));
1281 static void rt2500usb_kick_tx_queue(struct rt2x00_dev
*rt2x00dev
,
1282 const enum data_queue_qid queue
)
1286 if (queue
!= QID_BEACON
) {
1287 rt2x00usb_kick_tx_queue(rt2x00dev
, queue
);
1291 rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
, ®
);
1292 if (!rt2x00_get_field16(reg
, TXRX_CSR19_BEACON_GEN
)) {
1293 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 1);
1294 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 1);
1296 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 1);
1298 * Beacon generation will fail initially.
1299 * To prevent this we need to change the TXRX_CSR19
1300 * register several times (reg0 is the same as reg
1301 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1304 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1305 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg0
);
1306 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1307 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg0
);
1308 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1313 * RX control handlers
1315 static void rt2500usb_fill_rxdone(struct queue_entry
*entry
,
1316 struct rxdone_entry_desc
*rxdesc
)
1318 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1319 struct queue_entry_priv_usb
*entry_priv
= entry
->priv_data
;
1320 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1322 (__le32
*)(entry
->skb
->data
+
1323 (entry_priv
->urb
->actual_length
-
1324 entry
->queue
->desc_size
));
1329 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1330 * frame data in rt2x00usb.
1332 memcpy(skbdesc
->desc
, rxd
, skbdesc
->desc_len
);
1333 rxd
= (__le32
*)skbdesc
->desc
;
1336 * It is now safe to read the descriptor on all architectures.
1338 rt2x00_desc_read(rxd
, 0, &word0
);
1339 rt2x00_desc_read(rxd
, 1, &word1
);
1341 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1342 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1343 if (rt2x00_get_field32(word0
, RXD_W0_PHYSICAL_ERROR
))
1344 rxdesc
->flags
|= RX_FLAG_FAILED_PLCP_CRC
;
1346 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO
, &rt2x00dev
->flags
)) {
1347 rxdesc
->cipher
= rt2x00_get_field32(word0
, RXD_W0_CIPHER
);
1348 if (rt2x00_get_field32(word0
, RXD_W0_CIPHER_ERROR
))
1349 rxdesc
->cipher_status
= RX_CRYPTO_FAIL_KEY
;
1352 if (rxdesc
->cipher
!= CIPHER_NONE
) {
1353 _rt2x00_desc_read(rxd
, 2, &rxdesc
->iv
[0]);
1354 _rt2x00_desc_read(rxd
, 3, &rxdesc
->iv
[1]);
1355 rxdesc
->dev_flags
|= RXDONE_CRYPTO_IV
;
1357 /* ICV is located at the end of frame */
1359 rxdesc
->flags
|= RX_FLAG_MMIC_STRIPPED
;
1360 if (rxdesc
->cipher_status
== RX_CRYPTO_SUCCESS
)
1361 rxdesc
->flags
|= RX_FLAG_DECRYPTED
;
1362 else if (rxdesc
->cipher_status
== RX_CRYPTO_FAIL_MIC
)
1363 rxdesc
->flags
|= RX_FLAG_MMIC_ERROR
;
1367 * Obtain the status about this packet.
1368 * When frame was received with an OFDM bitrate,
1369 * the signal is the PLCP value. If it was received with
1370 * a CCK bitrate the signal is the rate in 100kbit/s.
1372 rxdesc
->signal
= rt2x00_get_field32(word1
, RXD_W1_SIGNAL
);
1374 rt2x00_get_field32(word1
, RXD_W1_RSSI
) - rt2x00dev
->rssi_offset
;
1375 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1377 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
1378 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1380 rxdesc
->dev_flags
|= RXDONE_SIGNAL_BITRATE
;
1381 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1382 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1385 * Adjust the skb memory window to the frame boundaries.
1387 skb_trim(entry
->skb
, rxdesc
->size
);
1391 * Interrupt functions.
1393 static void rt2500usb_beacondone(struct urb
*urb
)
1395 struct queue_entry
*entry
= (struct queue_entry
*)urb
->context
;
1396 struct queue_entry_priv_usb_bcn
*bcn_priv
= entry
->priv_data
;
1398 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &entry
->queue
->rt2x00dev
->flags
))
1402 * Check if this was the guardian beacon,
1403 * if that was the case we need to send the real beacon now.
1404 * Otherwise we should free the sk_buffer, the device
1405 * should be doing the rest of the work now.
1407 if (bcn_priv
->guardian_urb
== urb
) {
1408 usb_submit_urb(bcn_priv
->urb
, GFP_ATOMIC
);
1409 } else if (bcn_priv
->urb
== urb
) {
1410 dev_kfree_skb(entry
->skb
);
1416 * Device probe functions.
1418 static int rt2500usb_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1424 rt2x00usb_eeprom_read(rt2x00dev
, rt2x00dev
->eeprom
, EEPROM_SIZE
);
1427 * Start validation of the data that has been read.
1429 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1430 if (!is_valid_ether_addr(mac
)) {
1431 random_ether_addr(mac
);
1432 EEPROM(rt2x00dev
, "MAC: %pM\n", mac
);
1435 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
1436 if (word
== 0xffff) {
1437 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1438 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
1439 ANTENNA_SW_DIVERSITY
);
1440 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
1441 ANTENNA_SW_DIVERSITY
);
1442 rt2x00_set_field16(&word
, EEPROM_ANTENNA_LED_MODE
,
1444 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1445 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1446 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF2522
);
1447 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1448 EEPROM(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1451 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &word
);
1452 if (word
== 0xffff) {
1453 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
1454 rt2x00_set_field16(&word
, EEPROM_NIC_DYN_BBP_TUNE
, 0);
1455 rt2x00_set_field16(&word
, EEPROM_NIC_CCK_TX_POWER
, 0);
1456 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1457 EEPROM(rt2x00dev
, "NIC: 0x%04x\n", word
);
1460 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &word
);
1461 if (word
== 0xffff) {
1462 rt2x00_set_field16(&word
, EEPROM_CALIBRATE_OFFSET_RSSI
,
1463 DEFAULT_RSSI_OFFSET
);
1464 rt2x00_eeprom_write(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, word
);
1465 EEPROM(rt2x00dev
, "Calibrate offset: 0x%04x\n", word
);
1468 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE
, &word
);
1469 if (word
== 0xffff) {
1470 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_THRESHOLD
, 45);
1471 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE
, word
);
1472 EEPROM(rt2x00dev
, "BBPtune: 0x%04x\n", word
);
1476 * Switch lower vgc bound to current BBP R17 value,
1477 * lower the value a bit for better quality.
1479 rt2500usb_bbp_read(rt2x00dev
, 17, &bbp
);
1482 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_VGC
, &word
);
1483 if (word
== 0xffff) {
1484 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_VGCUPPER
, 0x40);
1485 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_VGCLOWER
, bbp
);
1486 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_VGC
, word
);
1487 EEPROM(rt2x00dev
, "BBPtune vgc: 0x%04x\n", word
);
1489 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_VGCLOWER
, bbp
);
1490 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_VGC
, word
);
1493 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R17
, &word
);
1494 if (word
== 0xffff) {
1495 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R17_LOW
, 0x48);
1496 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R17_HIGH
, 0x41);
1497 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R17
, word
);
1498 EEPROM(rt2x00dev
, "BBPtune r17: 0x%04x\n", word
);
1501 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R24
, &word
);
1502 if (word
== 0xffff) {
1503 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R24_LOW
, 0x40);
1504 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R24_HIGH
, 0x80);
1505 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R24
, word
);
1506 EEPROM(rt2x00dev
, "BBPtune r24: 0x%04x\n", word
);
1509 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R25
, &word
);
1510 if (word
== 0xffff) {
1511 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R25_LOW
, 0x40);
1512 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R25_HIGH
, 0x50);
1513 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R25
, word
);
1514 EEPROM(rt2x00dev
, "BBPtune r25: 0x%04x\n", word
);
1517 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R61
, &word
);
1518 if (word
== 0xffff) {
1519 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R61_LOW
, 0x60);
1520 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R61_HIGH
, 0x6d);
1521 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R61
, word
);
1522 EEPROM(rt2x00dev
, "BBPtune r61: 0x%04x\n", word
);
1528 static int rt2500usb_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1535 * Read EEPROM word for configuration.
1537 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
1540 * Identify RF chipset.
1542 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1543 rt2500usb_register_read(rt2x00dev
, MAC_CSR0
, ®
);
1544 rt2x00_set_chip(rt2x00dev
, RT2570
, value
, reg
);
1546 if (!rt2x00_check_rev(&rt2x00dev
->chip
, 0x000ffff0, 0) ||
1547 rt2x00_check_rev(&rt2x00dev
->chip
, 0x0000000f, 0)) {
1549 ERROR(rt2x00dev
, "Invalid RT chipset detected.\n");
1553 if (!rt2x00_rf(&rt2x00dev
->chip
, RF2522
) &&
1554 !rt2x00_rf(&rt2x00dev
->chip
, RF2523
) &&
1555 !rt2x00_rf(&rt2x00dev
->chip
, RF2524
) &&
1556 !rt2x00_rf(&rt2x00dev
->chip
, RF2525
) &&
1557 !rt2x00_rf(&rt2x00dev
->chip
, RF2525E
) &&
1558 !rt2x00_rf(&rt2x00dev
->chip
, RF5222
)) {
1559 ERROR(rt2x00dev
, "Invalid RF chipset detected.\n");
1564 * Identify default antenna configuration.
1566 rt2x00dev
->default_ant
.tx
=
1567 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1568 rt2x00dev
->default_ant
.rx
=
1569 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1572 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1573 * I am not 100% sure about this, but the legacy drivers do not
1574 * indicate antenna swapping in software is required when
1575 * diversity is enabled.
1577 if (rt2x00dev
->default_ant
.tx
== ANTENNA_SW_DIVERSITY
)
1578 rt2x00dev
->default_ant
.tx
= ANTENNA_HW_DIVERSITY
;
1579 if (rt2x00dev
->default_ant
.rx
== ANTENNA_SW_DIVERSITY
)
1580 rt2x00dev
->default_ant
.rx
= ANTENNA_HW_DIVERSITY
;
1583 * Store led mode, for correct led behaviour.
1585 #ifdef CONFIG_RT2X00_LIB_LEDS
1586 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_LED_MODE
);
1588 rt2500usb_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
1589 if (value
== LED_MODE_TXRX_ACTIVITY
||
1590 value
== LED_MODE_DEFAULT
||
1591 value
== LED_MODE_ASUS
)
1592 rt2500usb_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
1594 #endif /* CONFIG_RT2X00_LIB_LEDS */
1597 * Detect if this device has an hardware controlled radio.
1599 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
1600 __set_bit(CONFIG_SUPPORT_HW_BUTTON
, &rt2x00dev
->flags
);
1603 * Check if the BBP tuning should be disabled.
1605 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &eeprom
);
1606 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_DYN_BBP_TUNE
))
1607 __set_bit(CONFIG_DISABLE_LINK_TUNING
, &rt2x00dev
->flags
);
1610 * Read the RSSI <-> dBm offset information.
1612 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &eeprom
);
1613 rt2x00dev
->rssi_offset
=
1614 rt2x00_get_field16(eeprom
, EEPROM_CALIBRATE_OFFSET_RSSI
);
1620 * RF value list for RF2522
1623 static const struct rf_channel rf_vals_bg_2522
[] = {
1624 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1625 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1626 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1627 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1628 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1629 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1630 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1631 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1632 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1633 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1634 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1635 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1636 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1637 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1641 * RF value list for RF2523
1644 static const struct rf_channel rf_vals_bg_2523
[] = {
1645 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1646 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1647 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1648 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1649 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1650 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1651 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1652 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1653 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1654 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1655 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1656 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1657 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1658 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1662 * RF value list for RF2524
1665 static const struct rf_channel rf_vals_bg_2524
[] = {
1666 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1667 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1668 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1669 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1670 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1671 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1672 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1673 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1674 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1675 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1676 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1677 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1678 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1679 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1683 * RF value list for RF2525
1686 static const struct rf_channel rf_vals_bg_2525
[] = {
1687 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1688 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1689 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1690 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1691 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1692 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1693 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1694 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1695 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1696 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1697 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1698 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1699 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1700 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1704 * RF value list for RF2525e
1707 static const struct rf_channel rf_vals_bg_2525e
[] = {
1708 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1709 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1710 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1711 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1712 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1713 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1714 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1715 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1716 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1717 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1718 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1719 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1720 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1721 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1725 * RF value list for RF5222
1726 * Supports: 2.4 GHz & 5.2 GHz
1728 static const struct rf_channel rf_vals_5222
[] = {
1729 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1730 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1731 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1732 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1733 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1734 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1735 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1736 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1737 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1738 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1739 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1740 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1741 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1742 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1744 /* 802.11 UNI / HyperLan 2 */
1745 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1746 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1747 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1748 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1749 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1750 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1751 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1752 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1754 /* 802.11 HyperLan 2 */
1755 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1756 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1757 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1758 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1759 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1760 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1761 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1762 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1763 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1764 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1767 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1768 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1769 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1770 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1771 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1774 static int rt2500usb_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
1776 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
1777 struct channel_info
*info
;
1782 * Initialize all hw fields.
1784 rt2x00dev
->hw
->flags
=
1785 IEEE80211_HW_RX_INCLUDES_FCS
|
1786 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
|
1787 IEEE80211_HW_SIGNAL_DBM
|
1788 IEEE80211_HW_SUPPORTS_PS
|
1789 IEEE80211_HW_PS_NULLFUNC_STACK
;
1791 rt2x00dev
->hw
->extra_tx_headroom
= TXD_DESC_SIZE
;
1793 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
1794 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
1795 rt2x00_eeprom_addr(rt2x00dev
,
1796 EEPROM_MAC_ADDR_0
));
1799 * Initialize hw_mode information.
1801 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
1802 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
1804 if (rt2x00_rf(&rt2x00dev
->chip
, RF2522
)) {
1805 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2522
);
1806 spec
->channels
= rf_vals_bg_2522
;
1807 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2523
)) {
1808 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2523
);
1809 spec
->channels
= rf_vals_bg_2523
;
1810 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2524
)) {
1811 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2524
);
1812 spec
->channels
= rf_vals_bg_2524
;
1813 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2525
)) {
1814 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525
);
1815 spec
->channels
= rf_vals_bg_2525
;
1816 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2525E
)) {
1817 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525e
);
1818 spec
->channels
= rf_vals_bg_2525e
;
1819 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF5222
)) {
1820 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
1821 spec
->num_channels
= ARRAY_SIZE(rf_vals_5222
);
1822 spec
->channels
= rf_vals_5222
;
1826 * Create channel information array
1828 info
= kzalloc(spec
->num_channels
* sizeof(*info
), GFP_KERNEL
);
1832 spec
->channels_info
= info
;
1834 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_START
);
1835 for (i
= 0; i
< 14; i
++)
1836 info
[i
].tx_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
1838 if (spec
->num_channels
> 14) {
1839 for (i
= 14; i
< spec
->num_channels
; i
++)
1840 info
[i
].tx_power1
= DEFAULT_TXPOWER
;
1846 static int rt2500usb_probe_hw(struct rt2x00_dev
*rt2x00dev
)
1851 * Allocate eeprom data.
1853 retval
= rt2500usb_validate_eeprom(rt2x00dev
);
1857 retval
= rt2500usb_init_eeprom(rt2x00dev
);
1862 * Initialize hw specifications.
1864 retval
= rt2500usb_probe_hw_mode(rt2x00dev
);
1869 * This device requires the atim queue
1871 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE
, &rt2x00dev
->flags
);
1872 __set_bit(DRIVER_REQUIRE_BEACON_GUARD
, &rt2x00dev
->flags
);
1873 if (!modparam_nohwcrypt
) {
1874 __set_bit(CONFIG_SUPPORT_HW_CRYPTO
, &rt2x00dev
->flags
);
1875 __set_bit(DRIVER_REQUIRE_COPY_IV
, &rt2x00dev
->flags
);
1877 __set_bit(CONFIG_DISABLE_LINK_TUNING
, &rt2x00dev
->flags
);
1880 * Set the rssi offset.
1882 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
1887 static const struct ieee80211_ops rt2500usb_mac80211_ops
= {
1889 .start
= rt2x00mac_start
,
1890 .stop
= rt2x00mac_stop
,
1891 .add_interface
= rt2x00mac_add_interface
,
1892 .remove_interface
= rt2x00mac_remove_interface
,
1893 .config
= rt2x00mac_config
,
1894 .configure_filter
= rt2x00mac_configure_filter
,
1895 .set_tim
= rt2x00mac_set_tim
,
1896 .set_key
= rt2x00mac_set_key
,
1897 .get_stats
= rt2x00mac_get_stats
,
1898 .bss_info_changed
= rt2x00mac_bss_info_changed
,
1899 .conf_tx
= rt2x00mac_conf_tx
,
1900 .get_tx_stats
= rt2x00mac_get_tx_stats
,
1901 .rfkill_poll
= rt2x00mac_rfkill_poll
,
1904 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops
= {
1905 .probe_hw
= rt2500usb_probe_hw
,
1906 .initialize
= rt2x00usb_initialize
,
1907 .uninitialize
= rt2x00usb_uninitialize
,
1908 .clear_entry
= rt2x00usb_clear_entry
,
1909 .set_device_state
= rt2500usb_set_device_state
,
1910 .rfkill_poll
= rt2500usb_rfkill_poll
,
1911 .link_stats
= rt2500usb_link_stats
,
1912 .reset_tuner
= rt2500usb_reset_tuner
,
1913 .link_tuner
= rt2500usb_link_tuner
,
1914 .write_tx_desc
= rt2500usb_write_tx_desc
,
1915 .write_tx_data
= rt2x00usb_write_tx_data
,
1916 .write_beacon
= rt2500usb_write_beacon
,
1917 .get_tx_data_len
= rt2500usb_get_tx_data_len
,
1918 .kick_tx_queue
= rt2500usb_kick_tx_queue
,
1919 .kill_tx_queue
= rt2x00usb_kill_tx_queue
,
1920 .fill_rxdone
= rt2500usb_fill_rxdone
,
1921 .config_shared_key
= rt2500usb_config_key
,
1922 .config_pairwise_key
= rt2500usb_config_key
,
1923 .config_filter
= rt2500usb_config_filter
,
1924 .config_intf
= rt2500usb_config_intf
,
1925 .config_erp
= rt2500usb_config_erp
,
1926 .config_ant
= rt2500usb_config_ant
,
1927 .config
= rt2500usb_config
,
1930 static const struct data_queue_desc rt2500usb_queue_rx
= {
1931 .entry_num
= RX_ENTRIES
,
1932 .data_size
= DATA_FRAME_SIZE
,
1933 .desc_size
= RXD_DESC_SIZE
,
1934 .priv_size
= sizeof(struct queue_entry_priv_usb
),
1937 static const struct data_queue_desc rt2500usb_queue_tx
= {
1938 .entry_num
= TX_ENTRIES
,
1939 .data_size
= DATA_FRAME_SIZE
,
1940 .desc_size
= TXD_DESC_SIZE
,
1941 .priv_size
= sizeof(struct queue_entry_priv_usb
),
1944 static const struct data_queue_desc rt2500usb_queue_bcn
= {
1945 .entry_num
= BEACON_ENTRIES
,
1946 .data_size
= MGMT_FRAME_SIZE
,
1947 .desc_size
= TXD_DESC_SIZE
,
1948 .priv_size
= sizeof(struct queue_entry_priv_usb_bcn
),
1951 static const struct data_queue_desc rt2500usb_queue_atim
= {
1952 .entry_num
= ATIM_ENTRIES
,
1953 .data_size
= DATA_FRAME_SIZE
,
1954 .desc_size
= TXD_DESC_SIZE
,
1955 .priv_size
= sizeof(struct queue_entry_priv_usb
),
1958 static const struct rt2x00_ops rt2500usb_ops
= {
1959 .name
= KBUILD_MODNAME
,
1962 .eeprom_size
= EEPROM_SIZE
,
1964 .tx_queues
= NUM_TX_QUEUES
,
1965 .rx
= &rt2500usb_queue_rx
,
1966 .tx
= &rt2500usb_queue_tx
,
1967 .bcn
= &rt2500usb_queue_bcn
,
1968 .atim
= &rt2500usb_queue_atim
,
1969 .lib
= &rt2500usb_rt2x00_ops
,
1970 .hw
= &rt2500usb_mac80211_ops
,
1971 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1972 .debugfs
= &rt2500usb_rt2x00debug
,
1973 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1977 * rt2500usb module information.
1979 static struct usb_device_id rt2500usb_device_table
[] = {
1981 { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops
) },
1982 { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops
) },
1984 { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops
) },
1985 { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops
) },
1986 { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops
) },
1988 { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops
) },
1989 { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops
) },
1990 { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops
) },
1992 { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops
) },
1994 { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops
) },
1996 { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops
) },
1998 { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops
) },
1999 { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops
) },
2001 { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops
) },
2003 { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops
) },
2004 { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops
) },
2005 { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops
) },
2006 { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops
) },
2007 { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops
) },
2009 { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops
) },
2010 { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops
) },
2011 { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops
) },
2013 { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops
) },
2014 { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops
) },
2015 { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops
) },
2016 { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops
) },
2018 { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops
) },
2020 { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops
) },
2022 { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops
) },
2024 { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops
) },
2026 { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops
) },
2028 { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops
) },
2030 { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops
) },
2032 { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops
) },
2036 MODULE_AUTHOR(DRV_PROJECT
);
2037 MODULE_VERSION(DRV_VERSION
);
2038 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
2039 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
2040 MODULE_DEVICE_TABLE(usb
, rt2500usb_device_table
);
2041 MODULE_LICENSE("GPL");
2043 static struct usb_driver rt2500usb_driver
= {
2044 .name
= KBUILD_MODNAME
,
2045 .id_table
= rt2500usb_device_table
,
2046 .probe
= rt2x00usb_probe
,
2047 .disconnect
= rt2x00usb_disconnect
,
2048 .suspend
= rt2x00usb_suspend
,
2049 .resume
= rt2x00usb_resume
,
2052 static int __init
rt2500usb_init(void)
2054 return usb_register(&rt2500usb_driver
);
2057 static void __exit
rt2500usb_exit(void)
2059 usb_deregister(&rt2500usb_driver
);
2062 module_init(rt2500usb_init
);
2063 module_exit(rt2500usb_exit
);