[ARM] pxa: Gumstix Verdex PCMCIA support
[linux-2.6/verdex.git] / drivers / pci / pci.c
blob4e4c295a049f7bfba524f24efe8379530e3dc906
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include <linux/device.h>
24 #include <asm/setup.h>
25 #include "pci.h"
27 const char *pci_power_names[] = {
28 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
30 EXPORT_SYMBOL_GPL(pci_power_names);
32 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
34 #ifdef CONFIG_PCI_DOMAINS
35 int pci_domains_supported = 1;
36 #endif
38 #define DEFAULT_CARDBUS_IO_SIZE (256)
39 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
40 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
41 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
42 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
44 #define DEFAULT_HOTPLUG_IO_SIZE (256)
45 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
46 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
47 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
48 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
50 /**
51 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
52 * @bus: pointer to PCI bus structure to search
54 * Given a PCI bus, returns the highest PCI bus number present in the set
55 * including the given PCI bus and its list of child PCI buses.
57 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
59 struct list_head *tmp;
60 unsigned char max, n;
62 max = bus->subordinate;
63 list_for_each(tmp, &bus->children) {
64 n = pci_bus_max_busnr(pci_bus_b(tmp));
65 if(n > max)
66 max = n;
68 return max;
70 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
72 #ifdef CONFIG_HAS_IOMEM
73 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
76 * Make sure the BAR is actually a memory resource, not an IO resource
78 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
79 WARN_ON(1);
80 return NULL;
82 return ioremap_nocache(pci_resource_start(pdev, bar),
83 pci_resource_len(pdev, bar));
85 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
86 #endif
88 #if 0
89 /**
90 * pci_max_busnr - returns maximum PCI bus number
92 * Returns the highest PCI bus number present in the system global list of
93 * PCI buses.
95 unsigned char __devinit
96 pci_max_busnr(void)
98 struct pci_bus *bus = NULL;
99 unsigned char max, n;
101 max = 0;
102 while ((bus = pci_find_next_bus(bus)) != NULL) {
103 n = pci_bus_max_busnr(bus);
104 if(n > max)
105 max = n;
107 return max;
110 #endif /* 0 */
112 #define PCI_FIND_CAP_TTL 48
114 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
115 u8 pos, int cap, int *ttl)
117 u8 id;
119 while ((*ttl)--) {
120 pci_bus_read_config_byte(bus, devfn, pos, &pos);
121 if (pos < 0x40)
122 break;
123 pos &= ~3;
124 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
125 &id);
126 if (id == 0xff)
127 break;
128 if (id == cap)
129 return pos;
130 pos += PCI_CAP_LIST_NEXT;
132 return 0;
135 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
136 u8 pos, int cap)
138 int ttl = PCI_FIND_CAP_TTL;
140 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
143 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
145 return __pci_find_next_cap(dev->bus, dev->devfn,
146 pos + PCI_CAP_LIST_NEXT, cap);
148 EXPORT_SYMBOL_GPL(pci_find_next_capability);
150 static int __pci_bus_find_cap_start(struct pci_bus *bus,
151 unsigned int devfn, u8 hdr_type)
153 u16 status;
155 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
156 if (!(status & PCI_STATUS_CAP_LIST))
157 return 0;
159 switch (hdr_type) {
160 case PCI_HEADER_TYPE_NORMAL:
161 case PCI_HEADER_TYPE_BRIDGE:
162 return PCI_CAPABILITY_LIST;
163 case PCI_HEADER_TYPE_CARDBUS:
164 return PCI_CB_CAPABILITY_LIST;
165 default:
166 return 0;
169 return 0;
173 * pci_find_capability - query for devices' capabilities
174 * @dev: PCI device to query
175 * @cap: capability code
177 * Tell if a device supports a given PCI capability.
178 * Returns the address of the requested capability structure within the
179 * device's PCI configuration space or 0 in case the device does not
180 * support it. Possible values for @cap:
182 * %PCI_CAP_ID_PM Power Management
183 * %PCI_CAP_ID_AGP Accelerated Graphics Port
184 * %PCI_CAP_ID_VPD Vital Product Data
185 * %PCI_CAP_ID_SLOTID Slot Identification
186 * %PCI_CAP_ID_MSI Message Signalled Interrupts
187 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
188 * %PCI_CAP_ID_PCIX PCI-X
189 * %PCI_CAP_ID_EXP PCI Express
191 int pci_find_capability(struct pci_dev *dev, int cap)
193 int pos;
195 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
196 if (pos)
197 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
199 return pos;
203 * pci_bus_find_capability - query for devices' capabilities
204 * @bus: the PCI bus to query
205 * @devfn: PCI device to query
206 * @cap: capability code
208 * Like pci_find_capability() but works for pci devices that do not have a
209 * pci_dev structure set up yet.
211 * Returns the address of the requested capability structure within the
212 * device's PCI configuration space or 0 in case the device does not
213 * support it.
215 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
217 int pos;
218 u8 hdr_type;
220 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
222 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
223 if (pos)
224 pos = __pci_find_next_cap(bus, devfn, pos, cap);
226 return pos;
230 * pci_find_ext_capability - Find an extended capability
231 * @dev: PCI device to query
232 * @cap: capability code
234 * Returns the address of the requested extended capability structure
235 * within the device's PCI configuration space or 0 if the device does
236 * not support it. Possible values for @cap:
238 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
239 * %PCI_EXT_CAP_ID_VC Virtual Channel
240 * %PCI_EXT_CAP_ID_DSN Device Serial Number
241 * %PCI_EXT_CAP_ID_PWR Power Budgeting
243 int pci_find_ext_capability(struct pci_dev *dev, int cap)
245 u32 header;
246 int ttl;
247 int pos = PCI_CFG_SPACE_SIZE;
249 /* minimum 8 bytes per capability */
250 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
252 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
253 return 0;
255 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
256 return 0;
259 * If we have no capabilities, this is indicated by cap ID,
260 * cap version and next pointer all being 0.
262 if (header == 0)
263 return 0;
265 while (ttl-- > 0) {
266 if (PCI_EXT_CAP_ID(header) == cap)
267 return pos;
269 pos = PCI_EXT_CAP_NEXT(header);
270 if (pos < PCI_CFG_SPACE_SIZE)
271 break;
273 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
274 break;
277 return 0;
279 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
281 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
283 int rc, ttl = PCI_FIND_CAP_TTL;
284 u8 cap, mask;
286 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
287 mask = HT_3BIT_CAP_MASK;
288 else
289 mask = HT_5BIT_CAP_MASK;
291 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
292 PCI_CAP_ID_HT, &ttl);
293 while (pos) {
294 rc = pci_read_config_byte(dev, pos + 3, &cap);
295 if (rc != PCIBIOS_SUCCESSFUL)
296 return 0;
298 if ((cap & mask) == ht_cap)
299 return pos;
301 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
302 pos + PCI_CAP_LIST_NEXT,
303 PCI_CAP_ID_HT, &ttl);
306 return 0;
309 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
310 * @dev: PCI device to query
311 * @pos: Position from which to continue searching
312 * @ht_cap: Hypertransport capability code
314 * To be used in conjunction with pci_find_ht_capability() to search for
315 * all capabilities matching @ht_cap. @pos should always be a value returned
316 * from pci_find_ht_capability().
318 * NB. To be 100% safe against broken PCI devices, the caller should take
319 * steps to avoid an infinite loop.
321 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
323 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
325 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
328 * pci_find_ht_capability - query a device's Hypertransport capabilities
329 * @dev: PCI device to query
330 * @ht_cap: Hypertransport capability code
332 * Tell if a device supports a given Hypertransport capability.
333 * Returns an address within the device's PCI configuration space
334 * or 0 in case the device does not support the request capability.
335 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
336 * which has a Hypertransport capability matching @ht_cap.
338 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
340 int pos;
342 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
343 if (pos)
344 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
346 return pos;
348 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
351 * pci_find_parent_resource - return resource region of parent bus of given region
352 * @dev: PCI device structure contains resources to be searched
353 * @res: child resource record for which parent is sought
355 * For given resource region of given device, return the resource
356 * region of parent bus the given region is contained in or where
357 * it should be allocated from.
359 struct resource *
360 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
362 const struct pci_bus *bus = dev->bus;
363 int i;
364 struct resource *best = NULL;
366 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
367 struct resource *r = bus->resource[i];
368 if (!r)
369 continue;
370 if (res->start && !(res->start >= r->start && res->end <= r->end))
371 continue; /* Not contained */
372 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
373 continue; /* Wrong type */
374 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
375 return r; /* Exact match */
376 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
377 best = r; /* Approximating prefetchable by non-prefetchable */
379 return best;
383 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
384 * @dev: PCI device to have its BARs restored
386 * Restore the BAR values for a given device, so as to make it
387 * accessible by its driver.
389 static void
390 pci_restore_bars(struct pci_dev *dev)
392 int i;
394 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
395 pci_update_resource(dev, i);
398 static struct pci_platform_pm_ops *pci_platform_pm;
400 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
402 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
403 || !ops->sleep_wake || !ops->can_wakeup)
404 return -EINVAL;
405 pci_platform_pm = ops;
406 return 0;
409 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
411 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
414 static inline int platform_pci_set_power_state(struct pci_dev *dev,
415 pci_power_t t)
417 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
420 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
422 return pci_platform_pm ?
423 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
426 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
428 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
431 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
433 return pci_platform_pm ?
434 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
438 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
439 * given PCI device
440 * @dev: PCI device to handle.
441 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
443 * RETURN VALUE:
444 * -EINVAL if the requested state is invalid.
445 * -EIO if device does not support PCI PM or its PM capabilities register has a
446 * wrong version, or device doesn't support the requested state.
447 * 0 if device already is in the requested state.
448 * 0 if device's power state has been successfully changed.
450 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
452 u16 pmcsr;
453 bool need_restore = false;
455 /* Check if we're already there */
456 if (dev->current_state == state)
457 return 0;
459 if (!dev->pm_cap)
460 return -EIO;
462 if (state < PCI_D0 || state > PCI_D3hot)
463 return -EINVAL;
465 /* Validate current state:
466 * Can enter D0 from any state, but if we can only go deeper
467 * to sleep if we're already in a low power state
469 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
470 && dev->current_state > state) {
471 dev_err(&dev->dev, "invalid power transition "
472 "(from state %d to %d)\n", dev->current_state, state);
473 return -EINVAL;
476 /* check if this device supports the desired state */
477 if ((state == PCI_D1 && !dev->d1_support)
478 || (state == PCI_D2 && !dev->d2_support))
479 return -EIO;
481 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
483 /* If we're (effectively) in D3, force entire word to 0.
484 * This doesn't affect PME_Status, disables PME_En, and
485 * sets PowerState to 0.
487 switch (dev->current_state) {
488 case PCI_D0:
489 case PCI_D1:
490 case PCI_D2:
491 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
492 pmcsr |= state;
493 break;
494 case PCI_D3hot:
495 case PCI_D3cold:
496 case PCI_UNKNOWN: /* Boot-up */
497 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
498 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
499 need_restore = true;
500 /* Fall-through: force to D0 */
501 default:
502 pmcsr = 0;
503 break;
506 /* enter specified state */
507 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
509 /* Mandatory power management transition delays */
510 /* see PCI PM 1.1 5.6.1 table 18 */
511 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
512 msleep(pci_pm_d3_delay);
513 else if (state == PCI_D2 || dev->current_state == PCI_D2)
514 udelay(PCI_PM_D2_DELAY);
516 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
517 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
518 if (dev->current_state != state && printk_ratelimit())
519 dev_info(&dev->dev, "Refused to change power state, "
520 "currently in D%d\n", dev->current_state);
522 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
523 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
524 * from D3hot to D0 _may_ perform an internal reset, thereby
525 * going to "D0 Uninitialized" rather than "D0 Initialized".
526 * For example, at least some versions of the 3c905B and the
527 * 3c556B exhibit this behaviour.
529 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
530 * devices in a D3hot state at boot. Consequently, we need to
531 * restore at least the BARs so that the device will be
532 * accessible to its driver.
534 if (need_restore)
535 pci_restore_bars(dev);
537 if (dev->bus->self)
538 pcie_aspm_pm_state_change(dev->bus->self);
540 return 0;
544 * pci_update_current_state - Read PCI power state of given device from its
545 * PCI PM registers and cache it
546 * @dev: PCI device to handle.
547 * @state: State to cache in case the device doesn't have the PM capability
549 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
551 if (dev->pm_cap) {
552 u16 pmcsr;
554 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
555 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
556 } else {
557 dev->current_state = state;
562 * pci_platform_power_transition - Use platform to change device power state
563 * @dev: PCI device to handle.
564 * @state: State to put the device into.
566 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
568 int error;
570 if (platform_pci_power_manageable(dev)) {
571 error = platform_pci_set_power_state(dev, state);
572 if (!error)
573 pci_update_current_state(dev, state);
574 } else {
575 error = -ENODEV;
576 /* Fall back to PCI_D0 if native PM is not supported */
577 if (!dev->pm_cap)
578 dev->current_state = PCI_D0;
581 return error;
585 * __pci_start_power_transition - Start power transition of a PCI device
586 * @dev: PCI device to handle.
587 * @state: State to put the device into.
589 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
591 if (state == PCI_D0)
592 pci_platform_power_transition(dev, PCI_D0);
596 * __pci_complete_power_transition - Complete power transition of a PCI device
597 * @dev: PCI device to handle.
598 * @state: State to put the device into.
600 * This function should not be called directly by device drivers.
602 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
604 return state > PCI_D0 ?
605 pci_platform_power_transition(dev, state) : -EINVAL;
607 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
610 * pci_set_power_state - Set the power state of a PCI device
611 * @dev: PCI device to handle.
612 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
614 * Transition a device to a new power state, using the platform firmware and/or
615 * the device's PCI PM registers.
617 * RETURN VALUE:
618 * -EINVAL if the requested state is invalid.
619 * -EIO if device does not support PCI PM or its PM capabilities register has a
620 * wrong version, or device doesn't support the requested state.
621 * 0 if device already is in the requested state.
622 * 0 if device's power state has been successfully changed.
624 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
626 int error;
628 /* bound the state we're entering */
629 if (state > PCI_D3hot)
630 state = PCI_D3hot;
631 else if (state < PCI_D0)
632 state = PCI_D0;
633 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
635 * If the device or the parent bridge do not support PCI PM,
636 * ignore the request if we're doing anything other than putting
637 * it into D0 (which would only happen on boot).
639 return 0;
641 /* Check if we're already there */
642 if (dev->current_state == state)
643 return 0;
645 __pci_start_power_transition(dev, state);
647 /* This device is quirked not to be put into D3, so
648 don't put it in D3 */
649 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
650 return 0;
652 error = pci_raw_set_power_state(dev, state);
654 if (!__pci_complete_power_transition(dev, state))
655 error = 0;
657 return error;
661 * pci_choose_state - Choose the power state of a PCI device
662 * @dev: PCI device to be suspended
663 * @state: target sleep state for the whole system. This is the value
664 * that is passed to suspend() function.
666 * Returns PCI power state suitable for given device and given system
667 * message.
670 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
672 pci_power_t ret;
674 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
675 return PCI_D0;
677 ret = platform_pci_choose_state(dev);
678 if (ret != PCI_POWER_ERROR)
679 return ret;
681 switch (state.event) {
682 case PM_EVENT_ON:
683 return PCI_D0;
684 case PM_EVENT_FREEZE:
685 case PM_EVENT_PRETHAW:
686 /* REVISIT both freeze and pre-thaw "should" use D0 */
687 case PM_EVENT_SUSPEND:
688 case PM_EVENT_HIBERNATE:
689 return PCI_D3hot;
690 default:
691 dev_info(&dev->dev, "unrecognized suspend event %d\n",
692 state.event);
693 BUG();
695 return PCI_D0;
698 EXPORT_SYMBOL(pci_choose_state);
700 #define PCI_EXP_SAVE_REGS 7
702 #define pcie_cap_has_devctl(type, flags) 1
703 #define pcie_cap_has_lnkctl(type, flags) \
704 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
705 (type == PCI_EXP_TYPE_ROOT_PORT || \
706 type == PCI_EXP_TYPE_ENDPOINT || \
707 type == PCI_EXP_TYPE_LEG_END))
708 #define pcie_cap_has_sltctl(type, flags) \
709 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
710 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
711 (type == PCI_EXP_TYPE_DOWNSTREAM && \
712 (flags & PCI_EXP_FLAGS_SLOT))))
713 #define pcie_cap_has_rtctl(type, flags) \
714 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
715 (type == PCI_EXP_TYPE_ROOT_PORT || \
716 type == PCI_EXP_TYPE_RC_EC))
717 #define pcie_cap_has_devctl2(type, flags) \
718 ((flags & PCI_EXP_FLAGS_VERS) > 1)
719 #define pcie_cap_has_lnkctl2(type, flags) \
720 ((flags & PCI_EXP_FLAGS_VERS) > 1)
721 #define pcie_cap_has_sltctl2(type, flags) \
722 ((flags & PCI_EXP_FLAGS_VERS) > 1)
724 static int pci_save_pcie_state(struct pci_dev *dev)
726 int pos, i = 0;
727 struct pci_cap_saved_state *save_state;
728 u16 *cap;
729 u16 flags;
731 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
732 if (pos <= 0)
733 return 0;
735 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
736 if (!save_state) {
737 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
738 return -ENOMEM;
740 cap = (u16 *)&save_state->data[0];
742 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
744 if (pcie_cap_has_devctl(dev->pcie_type, flags))
745 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
746 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
747 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
748 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
749 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
750 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
751 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
752 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
753 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
754 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
755 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
756 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
757 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
759 return 0;
762 static void pci_restore_pcie_state(struct pci_dev *dev)
764 int i = 0, pos;
765 struct pci_cap_saved_state *save_state;
766 u16 *cap;
767 u16 flags;
769 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
770 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
771 if (!save_state || pos <= 0)
772 return;
773 cap = (u16 *)&save_state->data[0];
775 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
777 if (pcie_cap_has_devctl(dev->pcie_type, flags))
778 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
779 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
780 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
781 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
782 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
783 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
784 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
785 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
786 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
787 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
788 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
789 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
790 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
794 static int pci_save_pcix_state(struct pci_dev *dev)
796 int pos;
797 struct pci_cap_saved_state *save_state;
799 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
800 if (pos <= 0)
801 return 0;
803 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
804 if (!save_state) {
805 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
806 return -ENOMEM;
809 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
811 return 0;
814 static void pci_restore_pcix_state(struct pci_dev *dev)
816 int i = 0, pos;
817 struct pci_cap_saved_state *save_state;
818 u16 *cap;
820 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
821 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
822 if (!save_state || pos <= 0)
823 return;
824 cap = (u16 *)&save_state->data[0];
826 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
831 * pci_save_state - save the PCI configuration space of a device before suspending
832 * @dev: - PCI device that we're dealing with
835 pci_save_state(struct pci_dev *dev)
837 int i;
838 /* XXX: 100% dword access ok here? */
839 for (i = 0; i < 16; i++)
840 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
841 dev->state_saved = true;
842 if ((i = pci_save_pcie_state(dev)) != 0)
843 return i;
844 if ((i = pci_save_pcix_state(dev)) != 0)
845 return i;
846 return 0;
849 /**
850 * pci_restore_state - Restore the saved state of a PCI device
851 * @dev: - PCI device that we're dealing with
853 int
854 pci_restore_state(struct pci_dev *dev)
856 int i;
857 u32 val;
859 if (!dev->state_saved)
860 return 0;
862 /* PCI Express register must be restored first */
863 pci_restore_pcie_state(dev);
866 * The Base Address register should be programmed before the command
867 * register(s)
869 for (i = 15; i >= 0; i--) {
870 pci_read_config_dword(dev, i * 4, &val);
871 if (val != dev->saved_config_space[i]) {
872 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
873 "space at offset %#x (was %#x, writing %#x)\n",
874 i, val, (int)dev->saved_config_space[i]);
875 pci_write_config_dword(dev,i * 4,
876 dev->saved_config_space[i]);
879 pci_restore_pcix_state(dev);
880 pci_restore_msi_state(dev);
881 pci_restore_iov_state(dev);
883 dev->state_saved = false;
885 return 0;
888 static int do_pci_enable_device(struct pci_dev *dev, int bars)
890 int err;
892 err = pci_set_power_state(dev, PCI_D0);
893 if (err < 0 && err != -EIO)
894 return err;
895 err = pcibios_enable_device(dev, bars);
896 if (err < 0)
897 return err;
898 pci_fixup_device(pci_fixup_enable, dev);
900 return 0;
904 * pci_reenable_device - Resume abandoned device
905 * @dev: PCI device to be resumed
907 * Note this function is a backend of pci_default_resume and is not supposed
908 * to be called by normal code, write proper resume handler and use it instead.
910 int pci_reenable_device(struct pci_dev *dev)
912 if (pci_is_enabled(dev))
913 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
914 return 0;
917 static int __pci_enable_device_flags(struct pci_dev *dev,
918 resource_size_t flags)
920 int err;
921 int i, bars = 0;
923 if (atomic_add_return(1, &dev->enable_cnt) > 1)
924 return 0; /* already enabled */
926 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
927 if (dev->resource[i].flags & flags)
928 bars |= (1 << i);
930 err = do_pci_enable_device(dev, bars);
931 if (err < 0)
932 atomic_dec(&dev->enable_cnt);
933 return err;
937 * pci_enable_device_io - Initialize a device for use with IO space
938 * @dev: PCI device to be initialized
940 * Initialize device before it's used by a driver. Ask low-level code
941 * to enable I/O resources. Wake up the device if it was suspended.
942 * Beware, this function can fail.
944 int pci_enable_device_io(struct pci_dev *dev)
946 return __pci_enable_device_flags(dev, IORESOURCE_IO);
950 * pci_enable_device_mem - Initialize a device for use with Memory space
951 * @dev: PCI device to be initialized
953 * Initialize device before it's used by a driver. Ask low-level code
954 * to enable Memory resources. Wake up the device if it was suspended.
955 * Beware, this function can fail.
957 int pci_enable_device_mem(struct pci_dev *dev)
959 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
963 * pci_enable_device - Initialize device before it's used by a driver.
964 * @dev: PCI device to be initialized
966 * Initialize device before it's used by a driver. Ask low-level code
967 * to enable I/O and memory. Wake up the device if it was suspended.
968 * Beware, this function can fail.
970 * Note we don't actually enable the device many times if we call
971 * this function repeatedly (we just increment the count).
973 int pci_enable_device(struct pci_dev *dev)
975 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
979 * Managed PCI resources. This manages device on/off, intx/msi/msix
980 * on/off and BAR regions. pci_dev itself records msi/msix status, so
981 * there's no need to track it separately. pci_devres is initialized
982 * when a device is enabled using managed PCI device enable interface.
984 struct pci_devres {
985 unsigned int enabled:1;
986 unsigned int pinned:1;
987 unsigned int orig_intx:1;
988 unsigned int restore_intx:1;
989 u32 region_mask;
992 static void pcim_release(struct device *gendev, void *res)
994 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
995 struct pci_devres *this = res;
996 int i;
998 if (dev->msi_enabled)
999 pci_disable_msi(dev);
1000 if (dev->msix_enabled)
1001 pci_disable_msix(dev);
1003 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1004 if (this->region_mask & (1 << i))
1005 pci_release_region(dev, i);
1007 if (this->restore_intx)
1008 pci_intx(dev, this->orig_intx);
1010 if (this->enabled && !this->pinned)
1011 pci_disable_device(dev);
1014 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1016 struct pci_devres *dr, *new_dr;
1018 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1019 if (dr)
1020 return dr;
1022 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1023 if (!new_dr)
1024 return NULL;
1025 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1028 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1030 if (pci_is_managed(pdev))
1031 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1032 return NULL;
1036 * pcim_enable_device - Managed pci_enable_device()
1037 * @pdev: PCI device to be initialized
1039 * Managed pci_enable_device().
1041 int pcim_enable_device(struct pci_dev *pdev)
1043 struct pci_devres *dr;
1044 int rc;
1046 dr = get_pci_dr(pdev);
1047 if (unlikely(!dr))
1048 return -ENOMEM;
1049 if (dr->enabled)
1050 return 0;
1052 rc = pci_enable_device(pdev);
1053 if (!rc) {
1054 pdev->is_managed = 1;
1055 dr->enabled = 1;
1057 return rc;
1061 * pcim_pin_device - Pin managed PCI device
1062 * @pdev: PCI device to pin
1064 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1065 * driver detach. @pdev must have been enabled with
1066 * pcim_enable_device().
1068 void pcim_pin_device(struct pci_dev *pdev)
1070 struct pci_devres *dr;
1072 dr = find_pci_dr(pdev);
1073 WARN_ON(!dr || !dr->enabled);
1074 if (dr)
1075 dr->pinned = 1;
1079 * pcibios_disable_device - disable arch specific PCI resources for device dev
1080 * @dev: the PCI device to disable
1082 * Disables architecture specific PCI resources for the device. This
1083 * is the default implementation. Architecture implementations can
1084 * override this.
1086 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1088 static void do_pci_disable_device(struct pci_dev *dev)
1090 u16 pci_command;
1092 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1093 if (pci_command & PCI_COMMAND_MASTER) {
1094 pci_command &= ~PCI_COMMAND_MASTER;
1095 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1098 pcibios_disable_device(dev);
1102 * pci_disable_enabled_device - Disable device without updating enable_cnt
1103 * @dev: PCI device to disable
1105 * NOTE: This function is a backend of PCI power management routines and is
1106 * not supposed to be called drivers.
1108 void pci_disable_enabled_device(struct pci_dev *dev)
1110 if (pci_is_enabled(dev))
1111 do_pci_disable_device(dev);
1115 * pci_disable_device - Disable PCI device after use
1116 * @dev: PCI device to be disabled
1118 * Signal to the system that the PCI device is not in use by the system
1119 * anymore. This only involves disabling PCI bus-mastering, if active.
1121 * Note we don't actually disable the device until all callers of
1122 * pci_device_enable() have called pci_device_disable().
1124 void
1125 pci_disable_device(struct pci_dev *dev)
1127 struct pci_devres *dr;
1129 dr = find_pci_dr(dev);
1130 if (dr)
1131 dr->enabled = 0;
1133 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1134 return;
1136 do_pci_disable_device(dev);
1138 dev->is_busmaster = 0;
1142 * pcibios_set_pcie_reset_state - set reset state for device dev
1143 * @dev: the PCI-E device reset
1144 * @state: Reset state to enter into
1147 * Sets the PCI-E reset state for the device. This is the default
1148 * implementation. Architecture implementations can override this.
1150 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1151 enum pcie_reset_state state)
1153 return -EINVAL;
1157 * pci_set_pcie_reset_state - set reset state for device dev
1158 * @dev: the PCI-E device reset
1159 * @state: Reset state to enter into
1162 * Sets the PCI reset state for the device.
1164 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1166 return pcibios_set_pcie_reset_state(dev, state);
1170 * pci_pme_capable - check the capability of PCI device to generate PME#
1171 * @dev: PCI device to handle.
1172 * @state: PCI state from which device will issue PME#.
1174 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1176 if (!dev->pm_cap)
1177 return false;
1179 return !!(dev->pme_support & (1 << state));
1183 * pci_pme_active - enable or disable PCI device's PME# function
1184 * @dev: PCI device to handle.
1185 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1187 * The caller must verify that the device is capable of generating PME# before
1188 * calling this function with @enable equal to 'true'.
1190 void pci_pme_active(struct pci_dev *dev, bool enable)
1192 u16 pmcsr;
1194 if (!dev->pm_cap)
1195 return;
1197 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1198 /* Clear PME_Status by writing 1 to it and enable PME# */
1199 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1200 if (!enable)
1201 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1203 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1205 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1206 enable ? "enabled" : "disabled");
1210 * pci_enable_wake - enable PCI device as wakeup event source
1211 * @dev: PCI device affected
1212 * @state: PCI state from which device will issue wakeup events
1213 * @enable: True to enable event generation; false to disable
1215 * This enables the device as a wakeup event source, or disables it.
1216 * When such events involves platform-specific hooks, those hooks are
1217 * called automatically by this routine.
1219 * Devices with legacy power management (no standard PCI PM capabilities)
1220 * always require such platform hooks.
1222 * RETURN VALUE:
1223 * 0 is returned on success
1224 * -EINVAL is returned if device is not supposed to wake up the system
1225 * Error code depending on the platform is returned if both the platform and
1226 * the native mechanism fail to enable the generation of wake-up events
1228 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1230 int ret = 0;
1232 if (enable && !device_may_wakeup(&dev->dev))
1233 return -EINVAL;
1235 /* Don't do the same thing twice in a row for one device. */
1236 if (!!enable == !!dev->wakeup_prepared)
1237 return 0;
1240 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1241 * Anderson we should be doing PME# wake enable followed by ACPI wake
1242 * enable. To disable wake-up we call the platform first, for symmetry.
1245 if (enable) {
1246 int error;
1248 if (pci_pme_capable(dev, state))
1249 pci_pme_active(dev, true);
1250 else
1251 ret = 1;
1252 error = platform_pci_sleep_wake(dev, true);
1253 if (ret)
1254 ret = error;
1255 if (!ret)
1256 dev->wakeup_prepared = true;
1257 } else {
1258 platform_pci_sleep_wake(dev, false);
1259 pci_pme_active(dev, false);
1260 dev->wakeup_prepared = false;
1263 return ret;
1267 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1268 * @dev: PCI device to prepare
1269 * @enable: True to enable wake-up event generation; false to disable
1271 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1272 * and this function allows them to set that up cleanly - pci_enable_wake()
1273 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1274 * ordering constraints.
1276 * This function only returns error code if the device is not capable of
1277 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1278 * enable wake-up power for it.
1280 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1282 return pci_pme_capable(dev, PCI_D3cold) ?
1283 pci_enable_wake(dev, PCI_D3cold, enable) :
1284 pci_enable_wake(dev, PCI_D3hot, enable);
1288 * pci_target_state - find an appropriate low power state for a given PCI dev
1289 * @dev: PCI device
1291 * Use underlying platform code to find a supported low power state for @dev.
1292 * If the platform can't manage @dev, return the deepest state from which it
1293 * can generate wake events, based on any available PME info.
1295 pci_power_t pci_target_state(struct pci_dev *dev)
1297 pci_power_t target_state = PCI_D3hot;
1299 if (platform_pci_power_manageable(dev)) {
1301 * Call the platform to choose the target state of the device
1302 * and enable wake-up from this state if supported.
1304 pci_power_t state = platform_pci_choose_state(dev);
1306 switch (state) {
1307 case PCI_POWER_ERROR:
1308 case PCI_UNKNOWN:
1309 break;
1310 case PCI_D1:
1311 case PCI_D2:
1312 if (pci_no_d1d2(dev))
1313 break;
1314 default:
1315 target_state = state;
1317 } else if (!dev->pm_cap) {
1318 target_state = PCI_D0;
1319 } else if (device_may_wakeup(&dev->dev)) {
1321 * Find the deepest state from which the device can generate
1322 * wake-up events, make it the target state and enable device
1323 * to generate PME#.
1325 if (dev->pme_support) {
1326 while (target_state
1327 && !(dev->pme_support & (1 << target_state)))
1328 target_state--;
1332 return target_state;
1336 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1337 * @dev: Device to handle.
1339 * Choose the power state appropriate for the device depending on whether
1340 * it can wake up the system and/or is power manageable by the platform
1341 * (PCI_D3hot is the default) and put the device into that state.
1343 int pci_prepare_to_sleep(struct pci_dev *dev)
1345 pci_power_t target_state = pci_target_state(dev);
1346 int error;
1348 if (target_state == PCI_POWER_ERROR)
1349 return -EIO;
1351 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1353 error = pci_set_power_state(dev, target_state);
1355 if (error)
1356 pci_enable_wake(dev, target_state, false);
1358 return error;
1362 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1363 * @dev: Device to handle.
1365 * Disable device's sytem wake-up capability and put it into D0.
1367 int pci_back_from_sleep(struct pci_dev *dev)
1369 pci_enable_wake(dev, PCI_D0, false);
1370 return pci_set_power_state(dev, PCI_D0);
1374 * pci_pm_init - Initialize PM functions of given PCI device
1375 * @dev: PCI device to handle.
1377 void pci_pm_init(struct pci_dev *dev)
1379 int pm;
1380 u16 pmc;
1382 dev->wakeup_prepared = false;
1383 dev->pm_cap = 0;
1385 /* find PCI PM capability in list */
1386 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1387 if (!pm)
1388 return;
1389 /* Check device's ability to generate PME# */
1390 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1392 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1393 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1394 pmc & PCI_PM_CAP_VER_MASK);
1395 return;
1398 dev->pm_cap = pm;
1400 dev->d1_support = false;
1401 dev->d2_support = false;
1402 if (!pci_no_d1d2(dev)) {
1403 if (pmc & PCI_PM_CAP_D1)
1404 dev->d1_support = true;
1405 if (pmc & PCI_PM_CAP_D2)
1406 dev->d2_support = true;
1408 if (dev->d1_support || dev->d2_support)
1409 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1410 dev->d1_support ? " D1" : "",
1411 dev->d2_support ? " D2" : "");
1414 pmc &= PCI_PM_CAP_PME_MASK;
1415 if (pmc) {
1416 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1417 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1418 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1419 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1420 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1421 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1422 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1424 * Make device's PM flags reflect the wake-up capability, but
1425 * let the user space enable it to wake up the system as needed.
1427 device_set_wakeup_capable(&dev->dev, true);
1428 device_set_wakeup_enable(&dev->dev, false);
1429 /* Disable the PME# generation functionality */
1430 pci_pme_active(dev, false);
1431 } else {
1432 dev->pme_support = 0;
1437 * platform_pci_wakeup_init - init platform wakeup if present
1438 * @dev: PCI device
1440 * Some devices don't have PCI PM caps but can still generate wakeup
1441 * events through platform methods (like ACPI events). If @dev supports
1442 * platform wakeup events, set the device flag to indicate as much. This
1443 * may be redundant if the device also supports PCI PM caps, but double
1444 * initialization should be safe in that case.
1446 void platform_pci_wakeup_init(struct pci_dev *dev)
1448 if (!platform_pci_can_wakeup(dev))
1449 return;
1451 device_set_wakeup_capable(&dev->dev, true);
1452 device_set_wakeup_enable(&dev->dev, false);
1453 platform_pci_sleep_wake(dev, false);
1457 * pci_add_save_buffer - allocate buffer for saving given capability registers
1458 * @dev: the PCI device
1459 * @cap: the capability to allocate the buffer for
1460 * @size: requested size of the buffer
1462 static int pci_add_cap_save_buffer(
1463 struct pci_dev *dev, char cap, unsigned int size)
1465 int pos;
1466 struct pci_cap_saved_state *save_state;
1468 pos = pci_find_capability(dev, cap);
1469 if (pos <= 0)
1470 return 0;
1472 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1473 if (!save_state)
1474 return -ENOMEM;
1476 save_state->cap_nr = cap;
1477 pci_add_saved_cap(dev, save_state);
1479 return 0;
1483 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1484 * @dev: the PCI device
1486 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1488 int error;
1490 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1491 PCI_EXP_SAVE_REGS * sizeof(u16));
1492 if (error)
1493 dev_err(&dev->dev,
1494 "unable to preallocate PCI Express save buffer\n");
1496 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1497 if (error)
1498 dev_err(&dev->dev,
1499 "unable to preallocate PCI-X save buffer\n");
1503 * pci_enable_ari - enable ARI forwarding if hardware support it
1504 * @dev: the PCI device
1506 void pci_enable_ari(struct pci_dev *dev)
1508 int pos;
1509 u32 cap;
1510 u16 ctrl;
1511 struct pci_dev *bridge;
1513 if (!dev->is_pcie || dev->devfn)
1514 return;
1516 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1517 if (!pos)
1518 return;
1520 bridge = dev->bus->self;
1521 if (!bridge || !bridge->is_pcie)
1522 return;
1524 pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1525 if (!pos)
1526 return;
1528 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1529 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1530 return;
1532 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1533 ctrl |= PCI_EXP_DEVCTL2_ARI;
1534 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1536 bridge->ari_enabled = 1;
1540 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1541 * @dev: the PCI device
1542 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1544 * Perform INTx swizzling for a device behind one level of bridge. This is
1545 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1546 * behind bridges on add-in cards. For devices with ARI enabled, the slot
1547 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
1548 * the PCI Express Base Specification, Revision 2.1)
1550 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1552 int slot;
1554 if (pci_ari_enabled(dev->bus))
1555 slot = 0;
1556 else
1557 slot = PCI_SLOT(dev->devfn);
1559 return (((pin - 1) + slot) % 4) + 1;
1563 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1565 u8 pin;
1567 pin = dev->pin;
1568 if (!pin)
1569 return -1;
1571 while (!pci_is_root_bus(dev->bus)) {
1572 pin = pci_swizzle_interrupt_pin(dev, pin);
1573 dev = dev->bus->self;
1575 *bridge = dev;
1576 return pin;
1580 * pci_common_swizzle - swizzle INTx all the way to root bridge
1581 * @dev: the PCI device
1582 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1584 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1585 * bridges all the way up to a PCI root bus.
1587 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1589 u8 pin = *pinp;
1591 while (!pci_is_root_bus(dev->bus)) {
1592 pin = pci_swizzle_interrupt_pin(dev, pin);
1593 dev = dev->bus->self;
1595 *pinp = pin;
1596 return PCI_SLOT(dev->devfn);
1600 * pci_release_region - Release a PCI bar
1601 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1602 * @bar: BAR to release
1604 * Releases the PCI I/O and memory resources previously reserved by a
1605 * successful call to pci_request_region. Call this function only
1606 * after all use of the PCI regions has ceased.
1608 void pci_release_region(struct pci_dev *pdev, int bar)
1610 struct pci_devres *dr;
1612 if (pci_resource_len(pdev, bar) == 0)
1613 return;
1614 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1615 release_region(pci_resource_start(pdev, bar),
1616 pci_resource_len(pdev, bar));
1617 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1618 release_mem_region(pci_resource_start(pdev, bar),
1619 pci_resource_len(pdev, bar));
1621 dr = find_pci_dr(pdev);
1622 if (dr)
1623 dr->region_mask &= ~(1 << bar);
1627 * __pci_request_region - Reserved PCI I/O and memory resource
1628 * @pdev: PCI device whose resources are to be reserved
1629 * @bar: BAR to be reserved
1630 * @res_name: Name to be associated with resource.
1631 * @exclusive: whether the region access is exclusive or not
1633 * Mark the PCI region associated with PCI device @pdev BR @bar as
1634 * being reserved by owner @res_name. Do not access any
1635 * address inside the PCI regions unless this call returns
1636 * successfully.
1638 * If @exclusive is set, then the region is marked so that userspace
1639 * is explicitly not allowed to map the resource via /dev/mem or
1640 * sysfs MMIO access.
1642 * Returns 0 on success, or %EBUSY on error. A warning
1643 * message is also printed on failure.
1645 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1646 int exclusive)
1648 struct pci_devres *dr;
1650 if (pci_resource_len(pdev, bar) == 0)
1651 return 0;
1653 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1654 if (!request_region(pci_resource_start(pdev, bar),
1655 pci_resource_len(pdev, bar), res_name))
1656 goto err_out;
1658 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1659 if (!__request_mem_region(pci_resource_start(pdev, bar),
1660 pci_resource_len(pdev, bar), res_name,
1661 exclusive))
1662 goto err_out;
1665 dr = find_pci_dr(pdev);
1666 if (dr)
1667 dr->region_mask |= 1 << bar;
1669 return 0;
1671 err_out:
1672 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1673 bar,
1674 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1675 &pdev->resource[bar]);
1676 return -EBUSY;
1680 * pci_request_region - Reserve PCI I/O and memory resource
1681 * @pdev: PCI device whose resources are to be reserved
1682 * @bar: BAR to be reserved
1683 * @res_name: Name to be associated with resource
1685 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1686 * being reserved by owner @res_name. Do not access any
1687 * address inside the PCI regions unless this call returns
1688 * successfully.
1690 * Returns 0 on success, or %EBUSY on error. A warning
1691 * message is also printed on failure.
1693 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1695 return __pci_request_region(pdev, bar, res_name, 0);
1699 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1700 * @pdev: PCI device whose resources are to be reserved
1701 * @bar: BAR to be reserved
1702 * @res_name: Name to be associated with resource.
1704 * Mark the PCI region associated with PCI device @pdev BR @bar as
1705 * being reserved by owner @res_name. Do not access any
1706 * address inside the PCI regions unless this call returns
1707 * successfully.
1709 * Returns 0 on success, or %EBUSY on error. A warning
1710 * message is also printed on failure.
1712 * The key difference that _exclusive makes it that userspace is
1713 * explicitly not allowed to map the resource via /dev/mem or
1714 * sysfs.
1716 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1718 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1721 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1722 * @pdev: PCI device whose resources were previously reserved
1723 * @bars: Bitmask of BARs to be released
1725 * Release selected PCI I/O and memory resources previously reserved.
1726 * Call this function only after all use of the PCI regions has ceased.
1728 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1730 int i;
1732 for (i = 0; i < 6; i++)
1733 if (bars & (1 << i))
1734 pci_release_region(pdev, i);
1737 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1738 const char *res_name, int excl)
1740 int i;
1742 for (i = 0; i < 6; i++)
1743 if (bars & (1 << i))
1744 if (__pci_request_region(pdev, i, res_name, excl))
1745 goto err_out;
1746 return 0;
1748 err_out:
1749 while(--i >= 0)
1750 if (bars & (1 << i))
1751 pci_release_region(pdev, i);
1753 return -EBUSY;
1758 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1759 * @pdev: PCI device whose resources are to be reserved
1760 * @bars: Bitmask of BARs to be requested
1761 * @res_name: Name to be associated with resource
1763 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1764 const char *res_name)
1766 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1769 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1770 int bars, const char *res_name)
1772 return __pci_request_selected_regions(pdev, bars, res_name,
1773 IORESOURCE_EXCLUSIVE);
1777 * pci_release_regions - Release reserved PCI I/O and memory resources
1778 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1780 * Releases all PCI I/O and memory resources previously reserved by a
1781 * successful call to pci_request_regions. Call this function only
1782 * after all use of the PCI regions has ceased.
1785 void pci_release_regions(struct pci_dev *pdev)
1787 pci_release_selected_regions(pdev, (1 << 6) - 1);
1791 * pci_request_regions - Reserved PCI I/O and memory resources
1792 * @pdev: PCI device whose resources are to be reserved
1793 * @res_name: Name to be associated with resource.
1795 * Mark all PCI regions associated with PCI device @pdev as
1796 * being reserved by owner @res_name. Do not access any
1797 * address inside the PCI regions unless this call returns
1798 * successfully.
1800 * Returns 0 on success, or %EBUSY on error. A warning
1801 * message is also printed on failure.
1803 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1805 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1809 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1810 * @pdev: PCI device whose resources are to be reserved
1811 * @res_name: Name to be associated with resource.
1813 * Mark all PCI regions associated with PCI device @pdev as
1814 * being reserved by owner @res_name. Do not access any
1815 * address inside the PCI regions unless this call returns
1816 * successfully.
1818 * pci_request_regions_exclusive() will mark the region so that
1819 * /dev/mem and the sysfs MMIO access will not be allowed.
1821 * Returns 0 on success, or %EBUSY on error. A warning
1822 * message is also printed on failure.
1824 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1826 return pci_request_selected_regions_exclusive(pdev,
1827 ((1 << 6) - 1), res_name);
1830 static void __pci_set_master(struct pci_dev *dev, bool enable)
1832 u16 old_cmd, cmd;
1834 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1835 if (enable)
1836 cmd = old_cmd | PCI_COMMAND_MASTER;
1837 else
1838 cmd = old_cmd & ~PCI_COMMAND_MASTER;
1839 if (cmd != old_cmd) {
1840 dev_dbg(&dev->dev, "%s bus mastering\n",
1841 enable ? "enabling" : "disabling");
1842 pci_write_config_word(dev, PCI_COMMAND, cmd);
1844 dev->is_busmaster = enable;
1848 * pci_set_master - enables bus-mastering for device dev
1849 * @dev: the PCI device to enable
1851 * Enables bus-mastering on the device and calls pcibios_set_master()
1852 * to do the needed arch specific settings.
1854 void pci_set_master(struct pci_dev *dev)
1856 __pci_set_master(dev, true);
1857 pcibios_set_master(dev);
1861 * pci_clear_master - disables bus-mastering for device dev
1862 * @dev: the PCI device to disable
1864 void pci_clear_master(struct pci_dev *dev)
1866 __pci_set_master(dev, false);
1869 #ifdef PCI_DISABLE_MWI
1870 int pci_set_mwi(struct pci_dev *dev)
1872 return 0;
1875 int pci_try_set_mwi(struct pci_dev *dev)
1877 return 0;
1880 void pci_clear_mwi(struct pci_dev *dev)
1884 #else
1886 #ifndef PCI_CACHE_LINE_BYTES
1887 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1888 #endif
1890 /* This can be overridden by arch code. */
1891 /* Don't forget this is measured in 32-bit words, not bytes */
1892 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1895 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1896 * @dev: the PCI device for which MWI is to be enabled
1898 * Helper function for pci_set_mwi.
1899 * Originally copied from drivers/net/acenic.c.
1900 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1902 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1904 static int
1905 pci_set_cacheline_size(struct pci_dev *dev)
1907 u8 cacheline_size;
1909 if (!pci_cache_line_size)
1910 return -EINVAL; /* The system doesn't support MWI. */
1912 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1913 equal to or multiple of the right value. */
1914 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1915 if (cacheline_size >= pci_cache_line_size &&
1916 (cacheline_size % pci_cache_line_size) == 0)
1917 return 0;
1919 /* Write the correct value. */
1920 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1921 /* Read it back. */
1922 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1923 if (cacheline_size == pci_cache_line_size)
1924 return 0;
1926 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1927 "supported\n", pci_cache_line_size << 2);
1929 return -EINVAL;
1933 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1934 * @dev: the PCI device for which MWI is enabled
1936 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1938 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1941 pci_set_mwi(struct pci_dev *dev)
1943 int rc;
1944 u16 cmd;
1946 rc = pci_set_cacheline_size(dev);
1947 if (rc)
1948 return rc;
1950 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1951 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1952 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1953 cmd |= PCI_COMMAND_INVALIDATE;
1954 pci_write_config_word(dev, PCI_COMMAND, cmd);
1957 return 0;
1961 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1962 * @dev: the PCI device for which MWI is enabled
1964 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1965 * Callers are not required to check the return value.
1967 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1969 int pci_try_set_mwi(struct pci_dev *dev)
1971 int rc = pci_set_mwi(dev);
1972 return rc;
1976 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1977 * @dev: the PCI device to disable
1979 * Disables PCI Memory-Write-Invalidate transaction on the device
1981 void
1982 pci_clear_mwi(struct pci_dev *dev)
1984 u16 cmd;
1986 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1987 if (cmd & PCI_COMMAND_INVALIDATE) {
1988 cmd &= ~PCI_COMMAND_INVALIDATE;
1989 pci_write_config_word(dev, PCI_COMMAND, cmd);
1992 #endif /* ! PCI_DISABLE_MWI */
1995 * pci_intx - enables/disables PCI INTx for device dev
1996 * @pdev: the PCI device to operate on
1997 * @enable: boolean: whether to enable or disable PCI INTx
1999 * Enables/disables PCI INTx for device dev
2001 void
2002 pci_intx(struct pci_dev *pdev, int enable)
2004 u16 pci_command, new;
2006 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2008 if (enable) {
2009 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2010 } else {
2011 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2014 if (new != pci_command) {
2015 struct pci_devres *dr;
2017 pci_write_config_word(pdev, PCI_COMMAND, new);
2019 dr = find_pci_dr(pdev);
2020 if (dr && !dr->restore_intx) {
2021 dr->restore_intx = 1;
2022 dr->orig_intx = !enable;
2028 * pci_msi_off - disables any msi or msix capabilities
2029 * @dev: the PCI device to operate on
2031 * If you want to use msi see pci_enable_msi and friends.
2032 * This is a lower level primitive that allows us to disable
2033 * msi operation at the device level.
2035 void pci_msi_off(struct pci_dev *dev)
2037 int pos;
2038 u16 control;
2040 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2041 if (pos) {
2042 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2043 control &= ~PCI_MSI_FLAGS_ENABLE;
2044 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2046 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2047 if (pos) {
2048 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2049 control &= ~PCI_MSIX_FLAGS_ENABLE;
2050 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2054 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
2056 * These can be overridden by arch-specific implementations
2059 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
2061 if (!pci_dma_supported(dev, mask))
2062 return -EIO;
2064 dev->dma_mask = mask;
2066 return 0;
2070 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
2072 if (!pci_dma_supported(dev, mask))
2073 return -EIO;
2075 dev->dev.coherent_dma_mask = mask;
2077 return 0;
2079 #endif
2081 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2082 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2084 return dma_set_max_seg_size(&dev->dev, size);
2086 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2087 #endif
2089 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2090 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2092 return dma_set_seg_boundary(&dev->dev, mask);
2094 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2095 #endif
2097 static int pcie_flr(struct pci_dev *dev, int probe)
2099 int i;
2100 int pos;
2101 u32 cap;
2102 u16 status;
2104 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
2105 if (!pos)
2106 return -ENOTTY;
2108 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2109 if (!(cap & PCI_EXP_DEVCAP_FLR))
2110 return -ENOTTY;
2112 if (probe)
2113 return 0;
2115 /* Wait for Transaction Pending bit clean */
2116 for (i = 0; i < 4; i++) {
2117 if (i)
2118 msleep((1 << (i - 1)) * 100);
2120 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2121 if (!(status & PCI_EXP_DEVSTA_TRPND))
2122 goto clear;
2125 dev_err(&dev->dev, "transaction is not cleared; "
2126 "proceeding with reset anyway\n");
2128 clear:
2129 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL,
2130 PCI_EXP_DEVCTL_BCR_FLR);
2131 msleep(100);
2133 return 0;
2136 static int pci_af_flr(struct pci_dev *dev, int probe)
2138 int i;
2139 int pos;
2140 u8 cap;
2141 u8 status;
2143 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2144 if (!pos)
2145 return -ENOTTY;
2147 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2148 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2149 return -ENOTTY;
2151 if (probe)
2152 return 0;
2154 /* Wait for Transaction Pending bit clean */
2155 for (i = 0; i < 4; i++) {
2156 if (i)
2157 msleep((1 << (i - 1)) * 100);
2159 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2160 if (!(status & PCI_AF_STATUS_TP))
2161 goto clear;
2164 dev_err(&dev->dev, "transaction is not cleared; "
2165 "proceeding with reset anyway\n");
2167 clear:
2168 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2169 msleep(100);
2171 return 0;
2174 static int pci_pm_reset(struct pci_dev *dev, int probe)
2176 u16 csr;
2178 if (!dev->pm_cap)
2179 return -ENOTTY;
2181 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2182 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2183 return -ENOTTY;
2185 if (probe)
2186 return 0;
2188 if (dev->current_state != PCI_D0)
2189 return -EINVAL;
2191 csr &= ~PCI_PM_CTRL_STATE_MASK;
2192 csr |= PCI_D3hot;
2193 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2194 msleep(pci_pm_d3_delay);
2196 csr &= ~PCI_PM_CTRL_STATE_MASK;
2197 csr |= PCI_D0;
2198 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2199 msleep(pci_pm_d3_delay);
2201 return 0;
2204 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2206 u16 ctrl;
2207 struct pci_dev *pdev;
2209 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2210 return -ENOTTY;
2212 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2213 if (pdev != dev)
2214 return -ENOTTY;
2216 if (probe)
2217 return 0;
2219 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2220 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2221 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2222 msleep(100);
2224 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2225 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2226 msleep(100);
2228 return 0;
2231 static int pci_dev_reset(struct pci_dev *dev, int probe)
2233 int rc;
2235 might_sleep();
2237 if (!probe) {
2238 pci_block_user_cfg_access(dev);
2239 /* block PM suspend, driver probe, etc. */
2240 down(&dev->dev.sem);
2243 rc = pcie_flr(dev, probe);
2244 if (rc != -ENOTTY)
2245 goto done;
2247 rc = pci_af_flr(dev, probe);
2248 if (rc != -ENOTTY)
2249 goto done;
2251 rc = pci_pm_reset(dev, probe);
2252 if (rc != -ENOTTY)
2253 goto done;
2255 rc = pci_parent_bus_reset(dev, probe);
2256 done:
2257 if (!probe) {
2258 up(&dev->dev.sem);
2259 pci_unblock_user_cfg_access(dev);
2262 return rc;
2266 * __pci_reset_function - reset a PCI device function
2267 * @dev: PCI device to reset
2269 * Some devices allow an individual function to be reset without affecting
2270 * other functions in the same device. The PCI device must be responsive
2271 * to PCI config space in order to use this function.
2273 * The device function is presumed to be unused when this function is called.
2274 * Resetting the device will make the contents of PCI configuration space
2275 * random, so any caller of this must be prepared to reinitialise the
2276 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2277 * etc.
2279 * Returns 0 if the device function was successfully reset or negative if the
2280 * device doesn't support resetting a single function.
2282 int __pci_reset_function(struct pci_dev *dev)
2284 return pci_dev_reset(dev, 0);
2286 EXPORT_SYMBOL_GPL(__pci_reset_function);
2289 * pci_probe_reset_function - check whether the device can be safely reset
2290 * @dev: PCI device to reset
2292 * Some devices allow an individual function to be reset without affecting
2293 * other functions in the same device. The PCI device must be responsive
2294 * to PCI config space in order to use this function.
2296 * Returns 0 if the device function can be reset or negative if the
2297 * device doesn't support resetting a single function.
2299 int pci_probe_reset_function(struct pci_dev *dev)
2301 return pci_dev_reset(dev, 1);
2305 * pci_reset_function - quiesce and reset a PCI device function
2306 * @dev: PCI device to reset
2308 * Some devices allow an individual function to be reset without affecting
2309 * other functions in the same device. The PCI device must be responsive
2310 * to PCI config space in order to use this function.
2312 * This function does not just reset the PCI portion of a device, but
2313 * clears all the state associated with the device. This function differs
2314 * from __pci_reset_function in that it saves and restores device state
2315 * over the reset.
2317 * Returns 0 if the device function was successfully reset or negative if the
2318 * device doesn't support resetting a single function.
2320 int pci_reset_function(struct pci_dev *dev)
2322 int rc;
2324 rc = pci_dev_reset(dev, 1);
2325 if (rc)
2326 return rc;
2328 pci_save_state(dev);
2331 * both INTx and MSI are disabled after the Interrupt Disable bit
2332 * is set and the Bus Master bit is cleared.
2334 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2336 rc = pci_dev_reset(dev, 0);
2338 pci_restore_state(dev);
2340 return rc;
2342 EXPORT_SYMBOL_GPL(pci_reset_function);
2345 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2346 * @dev: PCI device to query
2348 * Returns mmrbc: maximum designed memory read count in bytes
2349 * or appropriate error value.
2351 int pcix_get_max_mmrbc(struct pci_dev *dev)
2353 int err, cap;
2354 u32 stat;
2356 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2357 if (!cap)
2358 return -EINVAL;
2360 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2361 if (err)
2362 return -EINVAL;
2364 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2366 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2369 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2370 * @dev: PCI device to query
2372 * Returns mmrbc: maximum memory read count in bytes
2373 * or appropriate error value.
2375 int pcix_get_mmrbc(struct pci_dev *dev)
2377 int ret, cap;
2378 u32 cmd;
2380 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2381 if (!cap)
2382 return -EINVAL;
2384 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2385 if (!ret)
2386 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2388 return ret;
2390 EXPORT_SYMBOL(pcix_get_mmrbc);
2393 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2394 * @dev: PCI device to query
2395 * @mmrbc: maximum memory read count in bytes
2396 * valid values are 512, 1024, 2048, 4096
2398 * If possible sets maximum memory read byte count, some bridges have erratas
2399 * that prevent this.
2401 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2403 int cap, err = -EINVAL;
2404 u32 stat, cmd, v, o;
2406 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2407 goto out;
2409 v = ffs(mmrbc) - 10;
2411 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2412 if (!cap)
2413 goto out;
2415 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2416 if (err)
2417 goto out;
2419 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2420 return -E2BIG;
2422 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2423 if (err)
2424 goto out;
2426 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2427 if (o != v) {
2428 if (v > o && dev->bus &&
2429 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2430 return -EIO;
2432 cmd &= ~PCI_X_CMD_MAX_READ;
2433 cmd |= v << 2;
2434 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2436 out:
2437 return err;
2439 EXPORT_SYMBOL(pcix_set_mmrbc);
2442 * pcie_get_readrq - get PCI Express read request size
2443 * @dev: PCI device to query
2445 * Returns maximum memory read request in bytes
2446 * or appropriate error value.
2448 int pcie_get_readrq(struct pci_dev *dev)
2450 int ret, cap;
2451 u16 ctl;
2453 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2454 if (!cap)
2455 return -EINVAL;
2457 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2458 if (!ret)
2459 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2461 return ret;
2463 EXPORT_SYMBOL(pcie_get_readrq);
2466 * pcie_set_readrq - set PCI Express maximum memory read request
2467 * @dev: PCI device to query
2468 * @rq: maximum memory read count in bytes
2469 * valid values are 128, 256, 512, 1024, 2048, 4096
2471 * If possible sets maximum read byte count
2473 int pcie_set_readrq(struct pci_dev *dev, int rq)
2475 int cap, err = -EINVAL;
2476 u16 ctl, v;
2478 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2479 goto out;
2481 v = (ffs(rq) - 8) << 12;
2483 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2484 if (!cap)
2485 goto out;
2487 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2488 if (err)
2489 goto out;
2491 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2492 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2493 ctl |= v;
2494 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2497 out:
2498 return err;
2500 EXPORT_SYMBOL(pcie_set_readrq);
2503 * pci_select_bars - Make BAR mask from the type of resource
2504 * @dev: the PCI device for which BAR mask is made
2505 * @flags: resource type mask to be selected
2507 * This helper routine makes bar mask from the type of resource.
2509 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2511 int i, bars = 0;
2512 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2513 if (pci_resource_flags(dev, i) & flags)
2514 bars |= (1 << i);
2515 return bars;
2519 * pci_resource_bar - get position of the BAR associated with a resource
2520 * @dev: the PCI device
2521 * @resno: the resource number
2522 * @type: the BAR type to be filled in
2524 * Returns BAR position in config space, or 0 if the BAR is invalid.
2526 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2528 int reg;
2530 if (resno < PCI_ROM_RESOURCE) {
2531 *type = pci_bar_unknown;
2532 return PCI_BASE_ADDRESS_0 + 4 * resno;
2533 } else if (resno == PCI_ROM_RESOURCE) {
2534 *type = pci_bar_mem32;
2535 return dev->rom_base_reg;
2536 } else if (resno < PCI_BRIDGE_RESOURCES) {
2537 /* device specific resource */
2538 reg = pci_iov_resource_bar(dev, resno, type);
2539 if (reg)
2540 return reg;
2543 dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2544 return 0;
2548 * pci_set_vga_state - set VGA decode state on device and parents if requested
2549 * @dev: the PCI device
2550 * @decode: true = enable decoding, false = disable decoding
2551 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
2552 * @change_bridge: traverse ancestors and change bridges
2554 int pci_set_vga_state(struct pci_dev *dev, bool decode,
2555 unsigned int command_bits, bool change_bridge)
2557 struct pci_bus *bus;
2558 struct pci_dev *bridge;
2559 u16 cmd;
2561 WARN_ON(command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY));
2563 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2564 if (decode == true)
2565 cmd |= command_bits;
2566 else
2567 cmd &= ~command_bits;
2568 pci_write_config_word(dev, PCI_COMMAND, cmd);
2570 if (change_bridge == false)
2571 return 0;
2573 bus = dev->bus;
2574 while (bus) {
2575 bridge = bus->self;
2576 if (bridge) {
2577 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
2578 &cmd);
2579 if (decode == true)
2580 cmd |= PCI_BRIDGE_CTL_VGA;
2581 else
2582 cmd &= ~PCI_BRIDGE_CTL_VGA;
2583 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
2584 cmd);
2586 bus = bus->parent;
2588 return 0;
2591 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2592 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2593 spinlock_t resource_alignment_lock = SPIN_LOCK_UNLOCKED;
2596 * pci_specified_resource_alignment - get resource alignment specified by user.
2597 * @dev: the PCI device to get
2599 * RETURNS: Resource alignment if it is specified.
2600 * Zero if it is not specified.
2602 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2604 int seg, bus, slot, func, align_order, count;
2605 resource_size_t align = 0;
2606 char *p;
2608 spin_lock(&resource_alignment_lock);
2609 p = resource_alignment_param;
2610 while (*p) {
2611 count = 0;
2612 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2613 p[count] == '@') {
2614 p += count + 1;
2615 } else {
2616 align_order = -1;
2618 if (sscanf(p, "%x:%x:%x.%x%n",
2619 &seg, &bus, &slot, &func, &count) != 4) {
2620 seg = 0;
2621 if (sscanf(p, "%x:%x.%x%n",
2622 &bus, &slot, &func, &count) != 3) {
2623 /* Invalid format */
2624 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2626 break;
2629 p += count;
2630 if (seg == pci_domain_nr(dev->bus) &&
2631 bus == dev->bus->number &&
2632 slot == PCI_SLOT(dev->devfn) &&
2633 func == PCI_FUNC(dev->devfn)) {
2634 if (align_order == -1) {
2635 align = PAGE_SIZE;
2636 } else {
2637 align = 1 << align_order;
2639 /* Found */
2640 break;
2642 if (*p != ';' && *p != ',') {
2643 /* End of param or invalid format */
2644 break;
2646 p++;
2648 spin_unlock(&resource_alignment_lock);
2649 return align;
2653 * pci_is_reassigndev - check if specified PCI is target device to reassign
2654 * @dev: the PCI device to check
2656 * RETURNS: non-zero for PCI device is a target device to reassign,
2657 * or zero is not.
2659 int pci_is_reassigndev(struct pci_dev *dev)
2661 return (pci_specified_resource_alignment(dev) != 0);
2664 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2666 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2667 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2668 spin_lock(&resource_alignment_lock);
2669 strncpy(resource_alignment_param, buf, count);
2670 resource_alignment_param[count] = '\0';
2671 spin_unlock(&resource_alignment_lock);
2672 return count;
2675 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2677 size_t count;
2678 spin_lock(&resource_alignment_lock);
2679 count = snprintf(buf, size, "%s", resource_alignment_param);
2680 spin_unlock(&resource_alignment_lock);
2681 return count;
2684 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2686 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2689 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2690 const char *buf, size_t count)
2692 return pci_set_resource_alignment_param(buf, count);
2695 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2696 pci_resource_alignment_store);
2698 static int __init pci_resource_alignment_sysfs_init(void)
2700 return bus_create_file(&pci_bus_type,
2701 &bus_attr_resource_alignment);
2704 late_initcall(pci_resource_alignment_sysfs_init);
2706 static void __devinit pci_no_domains(void)
2708 #ifdef CONFIG_PCI_DOMAINS
2709 pci_domains_supported = 0;
2710 #endif
2714 * pci_ext_cfg_enabled - can we access extended PCI config space?
2715 * @dev: The PCI device of the root bridge.
2717 * Returns 1 if we can access PCI extended config space (offsets
2718 * greater than 0xff). This is the default implementation. Architecture
2719 * implementations can override this.
2721 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2723 return 1;
2726 static int __init pci_setup(char *str)
2728 while (str) {
2729 char *k = strchr(str, ',');
2730 if (k)
2731 *k++ = 0;
2732 if (*str && (str = pcibios_setup(str)) && *str) {
2733 if (!strcmp(str, "nomsi")) {
2734 pci_no_msi();
2735 } else if (!strcmp(str, "noaer")) {
2736 pci_no_aer();
2737 } else if (!strcmp(str, "nodomains")) {
2738 pci_no_domains();
2739 } else if (!strncmp(str, "cbiosize=", 9)) {
2740 pci_cardbus_io_size = memparse(str + 9, &str);
2741 } else if (!strncmp(str, "cbmemsize=", 10)) {
2742 pci_cardbus_mem_size = memparse(str + 10, &str);
2743 } else if (!strncmp(str, "resource_alignment=", 19)) {
2744 pci_set_resource_alignment_param(str + 19,
2745 strlen(str + 19));
2746 } else if (!strncmp(str, "ecrc=", 5)) {
2747 pcie_ecrc_get_policy(str + 5);
2748 } else if (!strncmp(str, "hpiosize=", 9)) {
2749 pci_hotplug_io_size = memparse(str + 9, &str);
2750 } else if (!strncmp(str, "hpmemsize=", 10)) {
2751 pci_hotplug_mem_size = memparse(str + 10, &str);
2752 } else {
2753 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2754 str);
2757 str = k;
2759 return 0;
2761 early_param("pci", pci_setup);
2763 EXPORT_SYMBOL(pci_reenable_device);
2764 EXPORT_SYMBOL(pci_enable_device_io);
2765 EXPORT_SYMBOL(pci_enable_device_mem);
2766 EXPORT_SYMBOL(pci_enable_device);
2767 EXPORT_SYMBOL(pcim_enable_device);
2768 EXPORT_SYMBOL(pcim_pin_device);
2769 EXPORT_SYMBOL(pci_disable_device);
2770 EXPORT_SYMBOL(pci_find_capability);
2771 EXPORT_SYMBOL(pci_bus_find_capability);
2772 EXPORT_SYMBOL(pci_release_regions);
2773 EXPORT_SYMBOL(pci_request_regions);
2774 EXPORT_SYMBOL(pci_request_regions_exclusive);
2775 EXPORT_SYMBOL(pci_release_region);
2776 EXPORT_SYMBOL(pci_request_region);
2777 EXPORT_SYMBOL(pci_request_region_exclusive);
2778 EXPORT_SYMBOL(pci_release_selected_regions);
2779 EXPORT_SYMBOL(pci_request_selected_regions);
2780 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2781 EXPORT_SYMBOL(pci_set_master);
2782 EXPORT_SYMBOL(pci_clear_master);
2783 EXPORT_SYMBOL(pci_set_mwi);
2784 EXPORT_SYMBOL(pci_try_set_mwi);
2785 EXPORT_SYMBOL(pci_clear_mwi);
2786 EXPORT_SYMBOL_GPL(pci_intx);
2787 EXPORT_SYMBOL(pci_set_dma_mask);
2788 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2789 EXPORT_SYMBOL(pci_assign_resource);
2790 EXPORT_SYMBOL(pci_find_parent_resource);
2791 EXPORT_SYMBOL(pci_select_bars);
2793 EXPORT_SYMBOL(pci_set_power_state);
2794 EXPORT_SYMBOL(pci_save_state);
2795 EXPORT_SYMBOL(pci_restore_state);
2796 EXPORT_SYMBOL(pci_pme_capable);
2797 EXPORT_SYMBOL(pci_pme_active);
2798 EXPORT_SYMBOL(pci_enable_wake);
2799 EXPORT_SYMBOL(pci_wake_from_d3);
2800 EXPORT_SYMBOL(pci_target_state);
2801 EXPORT_SYMBOL(pci_prepare_to_sleep);
2802 EXPORT_SYMBOL(pci_back_from_sleep);
2803 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);