[ARM] pxa: Gumstix Verdex PCMCIA support
[linux-2.6/verdex.git] / drivers / regulator / core.c
blob744ea1d0b59bf084f19559b8f199b644fbb0899c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
26 #define REGULATOR_VERSION "0.5"
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31 static int has_full_constraints;
34 * struct regulator_map
36 * Used to provide symbolic supply names to devices.
38 struct regulator_map {
39 struct list_head list;
40 const char *dev_name; /* The dev_name() for the consumer */
41 const char *supply;
42 struct regulator_dev *regulator;
46 * struct regulator
48 * One for each consumer device.
50 struct regulator {
51 struct device *dev;
52 struct list_head list;
53 int uA_load;
54 int min_uV;
55 int max_uV;
56 char *supply_name;
57 struct device_attribute dev_attr;
58 struct regulator_dev *rdev;
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67 unsigned long event, void *data);
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
72 struct regulator *regulator = NULL;
73 struct regulator_dev *rdev;
75 mutex_lock(&regulator_list_mutex);
76 list_for_each_entry(rdev, &regulator_list, list) {
77 mutex_lock(&rdev->mutex);
78 list_for_each_entry(regulator, &rdev->consumer_list, list) {
79 if (regulator->dev == dev) {
80 mutex_unlock(&rdev->mutex);
81 mutex_unlock(&regulator_list_mutex);
82 return regulator;
85 mutex_unlock(&rdev->mutex);
87 mutex_unlock(&regulator_list_mutex);
88 return NULL;
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93 int *min_uV, int *max_uV)
95 BUG_ON(*min_uV > *max_uV);
97 if (!rdev->constraints) {
98 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99 rdev->desc->name);
100 return -ENODEV;
102 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103 printk(KERN_ERR "%s: operation not allowed for %s\n",
104 __func__, rdev->desc->name);
105 return -EPERM;
108 if (*max_uV > rdev->constraints->max_uV)
109 *max_uV = rdev->constraints->max_uV;
110 if (*min_uV < rdev->constraints->min_uV)
111 *min_uV = rdev->constraints->min_uV;
113 if (*min_uV > *max_uV)
114 return -EINVAL;
116 return 0;
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121 int *min_uA, int *max_uA)
123 BUG_ON(*min_uA > *max_uA);
125 if (!rdev->constraints) {
126 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127 rdev->desc->name);
128 return -ENODEV;
130 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131 printk(KERN_ERR "%s: operation not allowed for %s\n",
132 __func__, rdev->desc->name);
133 return -EPERM;
136 if (*max_uA > rdev->constraints->max_uA)
137 *max_uA = rdev->constraints->max_uA;
138 if (*min_uA < rdev->constraints->min_uA)
139 *min_uA = rdev->constraints->min_uA;
141 if (*min_uA > *max_uA)
142 return -EINVAL;
144 return 0;
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
150 switch (mode) {
151 case REGULATOR_MODE_FAST:
152 case REGULATOR_MODE_NORMAL:
153 case REGULATOR_MODE_IDLE:
154 case REGULATOR_MODE_STANDBY:
155 break;
156 default:
157 return -EINVAL;
160 if (!rdev->constraints) {
161 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162 rdev->desc->name);
163 return -ENODEV;
165 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166 printk(KERN_ERR "%s: operation not allowed for %s\n",
167 __func__, rdev->desc->name);
168 return -EPERM;
170 if (!(rdev->constraints->valid_modes_mask & mode)) {
171 printk(KERN_ERR "%s: invalid mode %x for %s\n",
172 __func__, mode, rdev->desc->name);
173 return -EINVAL;
175 return 0;
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
181 if (!rdev->constraints) {
182 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183 rdev->desc->name);
184 return -ENODEV;
186 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187 printk(KERN_ERR "%s: operation not allowed for %s\n",
188 __func__, rdev->desc->name);
189 return -EPERM;
191 return 0;
194 static ssize_t device_requested_uA_show(struct device *dev,
195 struct device_attribute *attr, char *buf)
197 struct regulator *regulator;
199 regulator = get_device_regulator(dev);
200 if (regulator == NULL)
201 return 0;
203 return sprintf(buf, "%d\n", regulator->uA_load);
206 static ssize_t regulator_uV_show(struct device *dev,
207 struct device_attribute *attr, char *buf)
209 struct regulator_dev *rdev = dev_get_drvdata(dev);
210 ssize_t ret;
212 mutex_lock(&rdev->mutex);
213 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214 mutex_unlock(&rdev->mutex);
216 return ret;
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
220 static ssize_t regulator_uA_show(struct device *dev,
221 struct device_attribute *attr, char *buf)
223 struct regulator_dev *rdev = dev_get_drvdata(dev);
225 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
229 static ssize_t regulator_name_show(struct device *dev,
230 struct device_attribute *attr, char *buf)
232 struct regulator_dev *rdev = dev_get_drvdata(dev);
233 const char *name;
235 if (rdev->constraints && rdev->constraints->name)
236 name = rdev->constraints->name;
237 else if (rdev->desc->name)
238 name = rdev->desc->name;
239 else
240 name = "";
242 return sprintf(buf, "%s\n", name);
245 static ssize_t regulator_print_opmode(char *buf, int mode)
247 switch (mode) {
248 case REGULATOR_MODE_FAST:
249 return sprintf(buf, "fast\n");
250 case REGULATOR_MODE_NORMAL:
251 return sprintf(buf, "normal\n");
252 case REGULATOR_MODE_IDLE:
253 return sprintf(buf, "idle\n");
254 case REGULATOR_MODE_STANDBY:
255 return sprintf(buf, "standby\n");
257 return sprintf(buf, "unknown\n");
260 static ssize_t regulator_opmode_show(struct device *dev,
261 struct device_attribute *attr, char *buf)
263 struct regulator_dev *rdev = dev_get_drvdata(dev);
265 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
269 static ssize_t regulator_print_state(char *buf, int state)
271 if (state > 0)
272 return sprintf(buf, "enabled\n");
273 else if (state == 0)
274 return sprintf(buf, "disabled\n");
275 else
276 return sprintf(buf, "unknown\n");
279 static ssize_t regulator_state_show(struct device *dev,
280 struct device_attribute *attr, char *buf)
282 struct regulator_dev *rdev = dev_get_drvdata(dev);
283 ssize_t ret;
285 mutex_lock(&rdev->mutex);
286 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
287 mutex_unlock(&rdev->mutex);
289 return ret;
291 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
293 static ssize_t regulator_status_show(struct device *dev,
294 struct device_attribute *attr, char *buf)
296 struct regulator_dev *rdev = dev_get_drvdata(dev);
297 int status;
298 char *label;
300 status = rdev->desc->ops->get_status(rdev);
301 if (status < 0)
302 return status;
304 switch (status) {
305 case REGULATOR_STATUS_OFF:
306 label = "off";
307 break;
308 case REGULATOR_STATUS_ON:
309 label = "on";
310 break;
311 case REGULATOR_STATUS_ERROR:
312 label = "error";
313 break;
314 case REGULATOR_STATUS_FAST:
315 label = "fast";
316 break;
317 case REGULATOR_STATUS_NORMAL:
318 label = "normal";
319 break;
320 case REGULATOR_STATUS_IDLE:
321 label = "idle";
322 break;
323 case REGULATOR_STATUS_STANDBY:
324 label = "standby";
325 break;
326 default:
327 return -ERANGE;
330 return sprintf(buf, "%s\n", label);
332 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
334 static ssize_t regulator_min_uA_show(struct device *dev,
335 struct device_attribute *attr, char *buf)
337 struct regulator_dev *rdev = dev_get_drvdata(dev);
339 if (!rdev->constraints)
340 return sprintf(buf, "constraint not defined\n");
342 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
344 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
346 static ssize_t regulator_max_uA_show(struct device *dev,
347 struct device_attribute *attr, char *buf)
349 struct regulator_dev *rdev = dev_get_drvdata(dev);
351 if (!rdev->constraints)
352 return sprintf(buf, "constraint not defined\n");
354 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
356 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
358 static ssize_t regulator_min_uV_show(struct device *dev,
359 struct device_attribute *attr, char *buf)
361 struct regulator_dev *rdev = dev_get_drvdata(dev);
363 if (!rdev->constraints)
364 return sprintf(buf, "constraint not defined\n");
366 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
368 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
370 static ssize_t regulator_max_uV_show(struct device *dev,
371 struct device_attribute *attr, char *buf)
373 struct regulator_dev *rdev = dev_get_drvdata(dev);
375 if (!rdev->constraints)
376 return sprintf(buf, "constraint not defined\n");
378 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
380 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
382 static ssize_t regulator_total_uA_show(struct device *dev,
383 struct device_attribute *attr, char *buf)
385 struct regulator_dev *rdev = dev_get_drvdata(dev);
386 struct regulator *regulator;
387 int uA = 0;
389 mutex_lock(&rdev->mutex);
390 list_for_each_entry(regulator, &rdev->consumer_list, list)
391 uA += regulator->uA_load;
392 mutex_unlock(&rdev->mutex);
393 return sprintf(buf, "%d\n", uA);
395 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
397 static ssize_t regulator_num_users_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
400 struct regulator_dev *rdev = dev_get_drvdata(dev);
401 return sprintf(buf, "%d\n", rdev->use_count);
404 static ssize_t regulator_type_show(struct device *dev,
405 struct device_attribute *attr, char *buf)
407 struct regulator_dev *rdev = dev_get_drvdata(dev);
409 switch (rdev->desc->type) {
410 case REGULATOR_VOLTAGE:
411 return sprintf(buf, "voltage\n");
412 case REGULATOR_CURRENT:
413 return sprintf(buf, "current\n");
415 return sprintf(buf, "unknown\n");
418 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
419 struct device_attribute *attr, char *buf)
421 struct regulator_dev *rdev = dev_get_drvdata(dev);
423 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
425 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
426 regulator_suspend_mem_uV_show, NULL);
428 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
429 struct device_attribute *attr, char *buf)
431 struct regulator_dev *rdev = dev_get_drvdata(dev);
433 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
435 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
436 regulator_suspend_disk_uV_show, NULL);
438 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
439 struct device_attribute *attr, char *buf)
441 struct regulator_dev *rdev = dev_get_drvdata(dev);
443 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
445 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
446 regulator_suspend_standby_uV_show, NULL);
448 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
449 struct device_attribute *attr, char *buf)
451 struct regulator_dev *rdev = dev_get_drvdata(dev);
453 return regulator_print_opmode(buf,
454 rdev->constraints->state_mem.mode);
456 static DEVICE_ATTR(suspend_mem_mode, 0444,
457 regulator_suspend_mem_mode_show, NULL);
459 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
460 struct device_attribute *attr, char *buf)
462 struct regulator_dev *rdev = dev_get_drvdata(dev);
464 return regulator_print_opmode(buf,
465 rdev->constraints->state_disk.mode);
467 static DEVICE_ATTR(suspend_disk_mode, 0444,
468 regulator_suspend_disk_mode_show, NULL);
470 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
471 struct device_attribute *attr, char *buf)
473 struct regulator_dev *rdev = dev_get_drvdata(dev);
475 return regulator_print_opmode(buf,
476 rdev->constraints->state_standby.mode);
478 static DEVICE_ATTR(suspend_standby_mode, 0444,
479 regulator_suspend_standby_mode_show, NULL);
481 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
482 struct device_attribute *attr, char *buf)
484 struct regulator_dev *rdev = dev_get_drvdata(dev);
486 return regulator_print_state(buf,
487 rdev->constraints->state_mem.enabled);
489 static DEVICE_ATTR(suspend_mem_state, 0444,
490 regulator_suspend_mem_state_show, NULL);
492 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
493 struct device_attribute *attr, char *buf)
495 struct regulator_dev *rdev = dev_get_drvdata(dev);
497 return regulator_print_state(buf,
498 rdev->constraints->state_disk.enabled);
500 static DEVICE_ATTR(suspend_disk_state, 0444,
501 regulator_suspend_disk_state_show, NULL);
503 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
504 struct device_attribute *attr, char *buf)
506 struct regulator_dev *rdev = dev_get_drvdata(dev);
508 return regulator_print_state(buf,
509 rdev->constraints->state_standby.enabled);
511 static DEVICE_ATTR(suspend_standby_state, 0444,
512 regulator_suspend_standby_state_show, NULL);
516 * These are the only attributes are present for all regulators.
517 * Other attributes are a function of regulator functionality.
519 static struct device_attribute regulator_dev_attrs[] = {
520 __ATTR(name, 0444, regulator_name_show, NULL),
521 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
522 __ATTR(type, 0444, regulator_type_show, NULL),
523 __ATTR_NULL,
526 static void regulator_dev_release(struct device *dev)
528 struct regulator_dev *rdev = dev_get_drvdata(dev);
529 kfree(rdev);
532 static struct class regulator_class = {
533 .name = "regulator",
534 .dev_release = regulator_dev_release,
535 .dev_attrs = regulator_dev_attrs,
538 /* Calculate the new optimum regulator operating mode based on the new total
539 * consumer load. All locks held by caller */
540 static void drms_uA_update(struct regulator_dev *rdev)
542 struct regulator *sibling;
543 int current_uA = 0, output_uV, input_uV, err;
544 unsigned int mode;
546 err = regulator_check_drms(rdev);
547 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
548 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
549 return;
551 /* get output voltage */
552 output_uV = rdev->desc->ops->get_voltage(rdev);
553 if (output_uV <= 0)
554 return;
556 /* get input voltage */
557 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
558 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
559 else
560 input_uV = rdev->constraints->input_uV;
561 if (input_uV <= 0)
562 return;
564 /* calc total requested load */
565 list_for_each_entry(sibling, &rdev->consumer_list, list)
566 current_uA += sibling->uA_load;
568 /* now get the optimum mode for our new total regulator load */
569 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
570 output_uV, current_uA);
572 /* check the new mode is allowed */
573 err = regulator_check_mode(rdev, mode);
574 if (err == 0)
575 rdev->desc->ops->set_mode(rdev, mode);
578 static int suspend_set_state(struct regulator_dev *rdev,
579 struct regulator_state *rstate)
581 int ret = 0;
583 /* enable & disable are mandatory for suspend control */
584 if (!rdev->desc->ops->set_suspend_enable ||
585 !rdev->desc->ops->set_suspend_disable) {
586 printk(KERN_ERR "%s: no way to set suspend state\n",
587 __func__);
588 return -EINVAL;
591 if (rstate->enabled)
592 ret = rdev->desc->ops->set_suspend_enable(rdev);
593 else
594 ret = rdev->desc->ops->set_suspend_disable(rdev);
595 if (ret < 0) {
596 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
597 return ret;
600 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
601 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
602 if (ret < 0) {
603 printk(KERN_ERR "%s: failed to set voltage\n",
604 __func__);
605 return ret;
609 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
610 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
611 if (ret < 0) {
612 printk(KERN_ERR "%s: failed to set mode\n", __func__);
613 return ret;
616 return ret;
619 /* locks held by caller */
620 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
622 if (!rdev->constraints)
623 return -EINVAL;
625 switch (state) {
626 case PM_SUSPEND_STANDBY:
627 return suspend_set_state(rdev,
628 &rdev->constraints->state_standby);
629 case PM_SUSPEND_MEM:
630 return suspend_set_state(rdev,
631 &rdev->constraints->state_mem);
632 case PM_SUSPEND_MAX:
633 return suspend_set_state(rdev,
634 &rdev->constraints->state_disk);
635 default:
636 return -EINVAL;
640 static void print_constraints(struct regulator_dev *rdev)
642 struct regulation_constraints *constraints = rdev->constraints;
643 char buf[80];
644 int count;
646 if (rdev->desc->type == REGULATOR_VOLTAGE) {
647 if (constraints->min_uV == constraints->max_uV)
648 count = sprintf(buf, "%d mV ",
649 constraints->min_uV / 1000);
650 else
651 count = sprintf(buf, "%d <--> %d mV ",
652 constraints->min_uV / 1000,
653 constraints->max_uV / 1000);
654 } else {
655 if (constraints->min_uA == constraints->max_uA)
656 count = sprintf(buf, "%d mA ",
657 constraints->min_uA / 1000);
658 else
659 count = sprintf(buf, "%d <--> %d mA ",
660 constraints->min_uA / 1000,
661 constraints->max_uA / 1000);
663 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
664 count += sprintf(buf + count, "fast ");
665 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
666 count += sprintf(buf + count, "normal ");
667 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
668 count += sprintf(buf + count, "idle ");
669 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
670 count += sprintf(buf + count, "standby");
672 printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
676 * set_machine_constraints - sets regulator constraints
677 * @rdev: regulator source
678 * @constraints: constraints to apply
680 * Allows platform initialisation code to define and constrain
681 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
682 * Constraints *must* be set by platform code in order for some
683 * regulator operations to proceed i.e. set_voltage, set_current_limit,
684 * set_mode.
686 static int set_machine_constraints(struct regulator_dev *rdev,
687 struct regulation_constraints *constraints)
689 int ret = 0;
690 const char *name;
691 struct regulator_ops *ops = rdev->desc->ops;
693 if (constraints->name)
694 name = constraints->name;
695 else if (rdev->desc->name)
696 name = rdev->desc->name;
697 else
698 name = "regulator";
700 /* constrain machine-level voltage specs to fit
701 * the actual range supported by this regulator.
703 if (ops->list_voltage && rdev->desc->n_voltages) {
704 int count = rdev->desc->n_voltages;
705 int i;
706 int min_uV = INT_MAX;
707 int max_uV = INT_MIN;
708 int cmin = constraints->min_uV;
709 int cmax = constraints->max_uV;
711 /* it's safe to autoconfigure fixed-voltage supplies
712 and the constraints are used by list_voltage. */
713 if (count == 1 && !cmin) {
714 cmin = 1;
715 cmax = INT_MAX;
716 constraints->min_uV = cmin;
717 constraints->max_uV = cmax;
720 /* voltage constraints are optional */
721 if ((cmin == 0) && (cmax == 0))
722 goto out;
724 /* else require explicit machine-level constraints */
725 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
726 pr_err("%s: %s '%s' voltage constraints\n",
727 __func__, "invalid", name);
728 ret = -EINVAL;
729 goto out;
732 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
733 for (i = 0; i < count; i++) {
734 int value;
736 value = ops->list_voltage(rdev, i);
737 if (value <= 0)
738 continue;
740 /* maybe adjust [min_uV..max_uV] */
741 if (value >= cmin && value < min_uV)
742 min_uV = value;
743 if (value <= cmax && value > max_uV)
744 max_uV = value;
747 /* final: [min_uV..max_uV] valid iff constraints valid */
748 if (max_uV < min_uV) {
749 pr_err("%s: %s '%s' voltage constraints\n",
750 __func__, "unsupportable", name);
751 ret = -EINVAL;
752 goto out;
755 /* use regulator's subset of machine constraints */
756 if (constraints->min_uV < min_uV) {
757 pr_debug("%s: override '%s' %s, %d -> %d\n",
758 __func__, name, "min_uV",
759 constraints->min_uV, min_uV);
760 constraints->min_uV = min_uV;
762 if (constraints->max_uV > max_uV) {
763 pr_debug("%s: override '%s' %s, %d -> %d\n",
764 __func__, name, "max_uV",
765 constraints->max_uV, max_uV);
766 constraints->max_uV = max_uV;
770 rdev->constraints = constraints;
772 /* do we need to apply the constraint voltage */
773 if (rdev->constraints->apply_uV &&
774 rdev->constraints->min_uV == rdev->constraints->max_uV &&
775 ops->set_voltage) {
776 ret = ops->set_voltage(rdev,
777 rdev->constraints->min_uV, rdev->constraints->max_uV);
778 if (ret < 0) {
779 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
780 __func__,
781 rdev->constraints->min_uV, name);
782 rdev->constraints = NULL;
783 goto out;
787 /* do we need to setup our suspend state */
788 if (constraints->initial_state) {
789 ret = suspend_prepare(rdev, constraints->initial_state);
790 if (ret < 0) {
791 printk(KERN_ERR "%s: failed to set suspend state for %s\n",
792 __func__, name);
793 rdev->constraints = NULL;
794 goto out;
798 if (constraints->initial_mode) {
799 if (!ops->set_mode) {
800 printk(KERN_ERR "%s: no set_mode operation for %s\n",
801 __func__, name);
802 ret = -EINVAL;
803 goto out;
806 ret = ops->set_mode(rdev, constraints->initial_mode);
807 if (ret < 0) {
808 printk(KERN_ERR
809 "%s: failed to set initial mode for %s: %d\n",
810 __func__, name, ret);
811 goto out;
815 /* If the constraints say the regulator should be on at this point
816 * and we have control then make sure it is enabled.
818 if ((constraints->always_on || constraints->boot_on) && ops->enable) {
819 ret = ops->enable(rdev);
820 if (ret < 0) {
821 printk(KERN_ERR "%s: failed to enable %s\n",
822 __func__, name);
823 rdev->constraints = NULL;
824 goto out;
828 print_constraints(rdev);
829 out:
830 return ret;
834 * set_supply - set regulator supply regulator
835 * @rdev: regulator name
836 * @supply_rdev: supply regulator name
838 * Called by platform initialisation code to set the supply regulator for this
839 * regulator. This ensures that a regulators supply will also be enabled by the
840 * core if it's child is enabled.
842 static int set_supply(struct regulator_dev *rdev,
843 struct regulator_dev *supply_rdev)
845 int err;
847 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
848 "supply");
849 if (err) {
850 printk(KERN_ERR
851 "%s: could not add device link %s err %d\n",
852 __func__, supply_rdev->dev.kobj.name, err);
853 goto out;
855 rdev->supply = supply_rdev;
856 list_add(&rdev->slist, &supply_rdev->supply_list);
857 out:
858 return err;
862 * set_consumer_device_supply: Bind a regulator to a symbolic supply
863 * @rdev: regulator source
864 * @consumer_dev: device the supply applies to
865 * @consumer_dev_name: dev_name() string for device supply applies to
866 * @supply: symbolic name for supply
868 * Allows platform initialisation code to map physical regulator
869 * sources to symbolic names for supplies for use by devices. Devices
870 * should use these symbolic names to request regulators, avoiding the
871 * need to provide board-specific regulator names as platform data.
873 * Only one of consumer_dev and consumer_dev_name may be specified.
875 static int set_consumer_device_supply(struct regulator_dev *rdev,
876 struct device *consumer_dev, const char *consumer_dev_name,
877 const char *supply)
879 struct regulator_map *node;
880 int has_dev;
882 if (consumer_dev && consumer_dev_name)
883 return -EINVAL;
885 if (!consumer_dev_name && consumer_dev)
886 consumer_dev_name = dev_name(consumer_dev);
888 if (supply == NULL)
889 return -EINVAL;
891 if (consumer_dev_name != NULL)
892 has_dev = 1;
893 else
894 has_dev = 0;
896 list_for_each_entry(node, &regulator_map_list, list) {
897 if (consumer_dev_name != node->dev_name)
898 continue;
899 if (strcmp(node->supply, supply) != 0)
900 continue;
902 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
903 dev_name(&node->regulator->dev),
904 node->regulator->desc->name,
905 supply,
906 dev_name(&rdev->dev), rdev->desc->name);
907 return -EBUSY;
910 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
911 if (node == NULL)
912 return -ENOMEM;
914 node->regulator = rdev;
915 node->supply = supply;
917 if (has_dev) {
918 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
919 if (node->dev_name == NULL) {
920 kfree(node);
921 return -ENOMEM;
925 list_add(&node->list, &regulator_map_list);
926 return 0;
929 static void unset_consumer_device_supply(struct regulator_dev *rdev,
930 const char *consumer_dev_name, struct device *consumer_dev)
932 struct regulator_map *node, *n;
934 if (consumer_dev && !consumer_dev_name)
935 consumer_dev_name = dev_name(consumer_dev);
937 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
938 if (rdev != node->regulator)
939 continue;
941 if (consumer_dev_name && node->dev_name &&
942 strcmp(consumer_dev_name, node->dev_name))
943 continue;
945 list_del(&node->list);
946 kfree(node->dev_name);
947 kfree(node);
948 return;
952 static void unset_regulator_supplies(struct regulator_dev *rdev)
954 struct regulator_map *node, *n;
956 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
957 if (rdev == node->regulator) {
958 list_del(&node->list);
959 kfree(node->dev_name);
960 kfree(node);
961 return;
966 #define REG_STR_SIZE 32
968 static struct regulator *create_regulator(struct regulator_dev *rdev,
969 struct device *dev,
970 const char *supply_name)
972 struct regulator *regulator;
973 char buf[REG_STR_SIZE];
974 int err, size;
976 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
977 if (regulator == NULL)
978 return NULL;
980 mutex_lock(&rdev->mutex);
981 regulator->rdev = rdev;
982 list_add(&regulator->list, &rdev->consumer_list);
984 if (dev) {
985 /* create a 'requested_microamps_name' sysfs entry */
986 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
987 supply_name);
988 if (size >= REG_STR_SIZE)
989 goto overflow_err;
991 regulator->dev = dev;
992 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
993 if (regulator->dev_attr.attr.name == NULL)
994 goto attr_name_err;
996 regulator->dev_attr.attr.owner = THIS_MODULE;
997 regulator->dev_attr.attr.mode = 0444;
998 regulator->dev_attr.show = device_requested_uA_show;
999 err = device_create_file(dev, &regulator->dev_attr);
1000 if (err < 0) {
1001 printk(KERN_WARNING "%s: could not add regulator_dev"
1002 " load sysfs\n", __func__);
1003 goto attr_name_err;
1006 /* also add a link to the device sysfs entry */
1007 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1008 dev->kobj.name, supply_name);
1009 if (size >= REG_STR_SIZE)
1010 goto attr_err;
1012 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1013 if (regulator->supply_name == NULL)
1014 goto attr_err;
1016 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1017 buf);
1018 if (err) {
1019 printk(KERN_WARNING
1020 "%s: could not add device link %s err %d\n",
1021 __func__, dev->kobj.name, err);
1022 device_remove_file(dev, &regulator->dev_attr);
1023 goto link_name_err;
1026 mutex_unlock(&rdev->mutex);
1027 return regulator;
1028 link_name_err:
1029 kfree(regulator->supply_name);
1030 attr_err:
1031 device_remove_file(regulator->dev, &regulator->dev_attr);
1032 attr_name_err:
1033 kfree(regulator->dev_attr.attr.name);
1034 overflow_err:
1035 list_del(&regulator->list);
1036 kfree(regulator);
1037 mutex_unlock(&rdev->mutex);
1038 return NULL;
1041 /* Internal regulator request function */
1042 static struct regulator *_regulator_get(struct device *dev, const char *id,
1043 int exclusive)
1045 struct regulator_dev *rdev;
1046 struct regulator_map *map;
1047 struct regulator *regulator = ERR_PTR(-ENODEV);
1048 const char *devname = NULL;
1049 int ret;
1051 if (id == NULL) {
1052 printk(KERN_ERR "regulator: get() with no identifier\n");
1053 return regulator;
1056 if (dev)
1057 devname = dev_name(dev);
1059 mutex_lock(&regulator_list_mutex);
1061 list_for_each_entry(map, &regulator_map_list, list) {
1062 /* If the mapping has a device set up it must match */
1063 if (map->dev_name &&
1064 (!devname || strcmp(map->dev_name, devname)))
1065 continue;
1067 if (strcmp(map->supply, id) == 0) {
1068 rdev = map->regulator;
1069 goto found;
1072 mutex_unlock(&regulator_list_mutex);
1073 return regulator;
1075 found:
1076 if (rdev->exclusive) {
1077 regulator = ERR_PTR(-EPERM);
1078 goto out;
1081 if (exclusive && rdev->open_count) {
1082 regulator = ERR_PTR(-EBUSY);
1083 goto out;
1086 if (!try_module_get(rdev->owner))
1087 goto out;
1089 regulator = create_regulator(rdev, dev, id);
1090 if (regulator == NULL) {
1091 regulator = ERR_PTR(-ENOMEM);
1092 module_put(rdev->owner);
1095 rdev->open_count++;
1096 if (exclusive) {
1097 rdev->exclusive = 1;
1099 ret = _regulator_is_enabled(rdev);
1100 if (ret > 0)
1101 rdev->use_count = 1;
1102 else
1103 rdev->use_count = 0;
1106 out:
1107 mutex_unlock(&regulator_list_mutex);
1109 return regulator;
1113 * regulator_get - lookup and obtain a reference to a regulator.
1114 * @dev: device for regulator "consumer"
1115 * @id: Supply name or regulator ID.
1117 * Returns a struct regulator corresponding to the regulator producer,
1118 * or IS_ERR() condition containing errno.
1120 * Use of supply names configured via regulator_set_device_supply() is
1121 * strongly encouraged. It is recommended that the supply name used
1122 * should match the name used for the supply and/or the relevant
1123 * device pins in the datasheet.
1125 struct regulator *regulator_get(struct device *dev, const char *id)
1127 return _regulator_get(dev, id, 0);
1129 EXPORT_SYMBOL_GPL(regulator_get);
1132 * regulator_get_exclusive - obtain exclusive access to a regulator.
1133 * @dev: device for regulator "consumer"
1134 * @id: Supply name or regulator ID.
1136 * Returns a struct regulator corresponding to the regulator producer,
1137 * or IS_ERR() condition containing errno. Other consumers will be
1138 * unable to obtain this reference is held and the use count for the
1139 * regulator will be initialised to reflect the current state of the
1140 * regulator.
1142 * This is intended for use by consumers which cannot tolerate shared
1143 * use of the regulator such as those which need to force the
1144 * regulator off for correct operation of the hardware they are
1145 * controlling.
1147 * Use of supply names configured via regulator_set_device_supply() is
1148 * strongly encouraged. It is recommended that the supply name used
1149 * should match the name used for the supply and/or the relevant
1150 * device pins in the datasheet.
1152 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1154 return _regulator_get(dev, id, 1);
1156 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1159 * regulator_put - "free" the regulator source
1160 * @regulator: regulator source
1162 * Note: drivers must ensure that all regulator_enable calls made on this
1163 * regulator source are balanced by regulator_disable calls prior to calling
1164 * this function.
1166 void regulator_put(struct regulator *regulator)
1168 struct regulator_dev *rdev;
1170 if (regulator == NULL || IS_ERR(regulator))
1171 return;
1173 mutex_lock(&regulator_list_mutex);
1174 rdev = regulator->rdev;
1176 /* remove any sysfs entries */
1177 if (regulator->dev) {
1178 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1179 kfree(regulator->supply_name);
1180 device_remove_file(regulator->dev, &regulator->dev_attr);
1181 kfree(regulator->dev_attr.attr.name);
1183 list_del(&regulator->list);
1184 kfree(regulator);
1186 rdev->open_count--;
1187 rdev->exclusive = 0;
1189 module_put(rdev->owner);
1190 mutex_unlock(&regulator_list_mutex);
1192 EXPORT_SYMBOL_GPL(regulator_put);
1194 static int _regulator_can_change_status(struct regulator_dev *rdev)
1196 if (!rdev->constraints)
1197 return 0;
1199 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1200 return 1;
1201 else
1202 return 0;
1205 /* locks held by regulator_enable() */
1206 static int _regulator_enable(struct regulator_dev *rdev)
1208 int ret;
1210 /* do we need to enable the supply regulator first */
1211 if (rdev->supply) {
1212 ret = _regulator_enable(rdev->supply);
1213 if (ret < 0) {
1214 printk(KERN_ERR "%s: failed to enable %s: %d\n",
1215 __func__, rdev->desc->name, ret);
1216 return ret;
1220 /* check voltage and requested load before enabling */
1221 if (rdev->constraints &&
1222 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1223 drms_uA_update(rdev);
1225 if (rdev->use_count == 0) {
1226 /* The regulator may on if it's not switchable or left on */
1227 ret = _regulator_is_enabled(rdev);
1228 if (ret == -EINVAL || ret == 0) {
1229 if (!_regulator_can_change_status(rdev))
1230 return -EPERM;
1232 if (rdev->desc->ops->enable) {
1233 ret = rdev->desc->ops->enable(rdev);
1234 if (ret < 0)
1235 return ret;
1236 } else {
1237 return -EINVAL;
1239 } else if (ret < 0) {
1240 printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1241 __func__, rdev->desc->name, ret);
1242 return ret;
1244 /* Fallthrough on positive return values - already enabled */
1247 rdev->use_count++;
1249 return 0;
1253 * regulator_enable - enable regulator output
1254 * @regulator: regulator source
1256 * Request that the regulator be enabled with the regulator output at
1257 * the predefined voltage or current value. Calls to regulator_enable()
1258 * must be balanced with calls to regulator_disable().
1260 * NOTE: the output value can be set by other drivers, boot loader or may be
1261 * hardwired in the regulator.
1263 int regulator_enable(struct regulator *regulator)
1265 struct regulator_dev *rdev = regulator->rdev;
1266 int ret = 0;
1268 mutex_lock(&rdev->mutex);
1269 ret = _regulator_enable(rdev);
1270 mutex_unlock(&rdev->mutex);
1271 return ret;
1273 EXPORT_SYMBOL_GPL(regulator_enable);
1275 /* locks held by regulator_disable() */
1276 static int _regulator_disable(struct regulator_dev *rdev)
1278 int ret = 0;
1280 if (WARN(rdev->use_count <= 0,
1281 "unbalanced disables for %s\n",
1282 rdev->desc->name))
1283 return -EIO;
1285 /* are we the last user and permitted to disable ? */
1286 if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1288 /* we are last user */
1289 if (_regulator_can_change_status(rdev) &&
1290 rdev->desc->ops->disable) {
1291 ret = rdev->desc->ops->disable(rdev);
1292 if (ret < 0) {
1293 printk(KERN_ERR "%s: failed to disable %s\n",
1294 __func__, rdev->desc->name);
1295 return ret;
1299 /* decrease our supplies ref count and disable if required */
1300 if (rdev->supply)
1301 _regulator_disable(rdev->supply);
1303 rdev->use_count = 0;
1304 } else if (rdev->use_count > 1) {
1306 if (rdev->constraints &&
1307 (rdev->constraints->valid_ops_mask &
1308 REGULATOR_CHANGE_DRMS))
1309 drms_uA_update(rdev);
1311 rdev->use_count--;
1313 return ret;
1317 * regulator_disable - disable regulator output
1318 * @regulator: regulator source
1320 * Disable the regulator output voltage or current. Calls to
1321 * regulator_enable() must be balanced with calls to
1322 * regulator_disable().
1324 * NOTE: this will only disable the regulator output if no other consumer
1325 * devices have it enabled, the regulator device supports disabling and
1326 * machine constraints permit this operation.
1328 int regulator_disable(struct regulator *regulator)
1330 struct regulator_dev *rdev = regulator->rdev;
1331 int ret = 0;
1333 mutex_lock(&rdev->mutex);
1334 ret = _regulator_disable(rdev);
1335 mutex_unlock(&rdev->mutex);
1336 return ret;
1338 EXPORT_SYMBOL_GPL(regulator_disable);
1340 /* locks held by regulator_force_disable() */
1341 static int _regulator_force_disable(struct regulator_dev *rdev)
1343 int ret = 0;
1345 /* force disable */
1346 if (rdev->desc->ops->disable) {
1347 /* ah well, who wants to live forever... */
1348 ret = rdev->desc->ops->disable(rdev);
1349 if (ret < 0) {
1350 printk(KERN_ERR "%s: failed to force disable %s\n",
1351 __func__, rdev->desc->name);
1352 return ret;
1354 /* notify other consumers that power has been forced off */
1355 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1356 NULL);
1359 /* decrease our supplies ref count and disable if required */
1360 if (rdev->supply)
1361 _regulator_disable(rdev->supply);
1363 rdev->use_count = 0;
1364 return ret;
1368 * regulator_force_disable - force disable regulator output
1369 * @regulator: regulator source
1371 * Forcibly disable the regulator output voltage or current.
1372 * NOTE: this *will* disable the regulator output even if other consumer
1373 * devices have it enabled. This should be used for situations when device
1374 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1376 int regulator_force_disable(struct regulator *regulator)
1378 int ret;
1380 mutex_lock(&regulator->rdev->mutex);
1381 regulator->uA_load = 0;
1382 ret = _regulator_force_disable(regulator->rdev);
1383 mutex_unlock(&regulator->rdev->mutex);
1384 return ret;
1386 EXPORT_SYMBOL_GPL(regulator_force_disable);
1388 static int _regulator_is_enabled(struct regulator_dev *rdev)
1390 /* sanity check */
1391 if (!rdev->desc->ops->is_enabled)
1392 return -EINVAL;
1394 return rdev->desc->ops->is_enabled(rdev);
1398 * regulator_is_enabled - is the regulator output enabled
1399 * @regulator: regulator source
1401 * Returns positive if the regulator driver backing the source/client
1402 * has requested that the device be enabled, zero if it hasn't, else a
1403 * negative errno code.
1405 * Note that the device backing this regulator handle can have multiple
1406 * users, so it might be enabled even if regulator_enable() was never
1407 * called for this particular source.
1409 int regulator_is_enabled(struct regulator *regulator)
1411 int ret;
1413 mutex_lock(&regulator->rdev->mutex);
1414 ret = _regulator_is_enabled(regulator->rdev);
1415 mutex_unlock(&regulator->rdev->mutex);
1417 return ret;
1419 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1422 * regulator_count_voltages - count regulator_list_voltage() selectors
1423 * @regulator: regulator source
1425 * Returns number of selectors, or negative errno. Selectors are
1426 * numbered starting at zero, and typically correspond to bitfields
1427 * in hardware registers.
1429 int regulator_count_voltages(struct regulator *regulator)
1431 struct regulator_dev *rdev = regulator->rdev;
1433 return rdev->desc->n_voltages ? : -EINVAL;
1435 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1438 * regulator_list_voltage - enumerate supported voltages
1439 * @regulator: regulator source
1440 * @selector: identify voltage to list
1441 * Context: can sleep
1443 * Returns a voltage that can be passed to @regulator_set_voltage(),
1444 * zero if this selector code can't be used on this sytem, or a
1445 * negative errno.
1447 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1449 struct regulator_dev *rdev = regulator->rdev;
1450 struct regulator_ops *ops = rdev->desc->ops;
1451 int ret;
1453 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1454 return -EINVAL;
1456 mutex_lock(&rdev->mutex);
1457 ret = ops->list_voltage(rdev, selector);
1458 mutex_unlock(&rdev->mutex);
1460 if (ret > 0) {
1461 if (ret < rdev->constraints->min_uV)
1462 ret = 0;
1463 else if (ret > rdev->constraints->max_uV)
1464 ret = 0;
1467 return ret;
1469 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1472 * regulator_is_supported_voltage - check if a voltage range can be supported
1474 * @regulator: Regulator to check.
1475 * @min_uV: Minimum required voltage in uV.
1476 * @max_uV: Maximum required voltage in uV.
1478 * Returns a boolean or a negative error code.
1480 int regulator_is_supported_voltage(struct regulator *regulator,
1481 int min_uV, int max_uV)
1483 int i, voltages, ret;
1485 ret = regulator_count_voltages(regulator);
1486 if (ret < 0)
1487 return ret;
1488 voltages = ret;
1490 for (i = 0; i < voltages; i++) {
1491 ret = regulator_list_voltage(regulator, i);
1493 if (ret >= min_uV && ret <= max_uV)
1494 return 1;
1497 return 0;
1501 * regulator_set_voltage - set regulator output voltage
1502 * @regulator: regulator source
1503 * @min_uV: Minimum required voltage in uV
1504 * @max_uV: Maximum acceptable voltage in uV
1506 * Sets a voltage regulator to the desired output voltage. This can be set
1507 * during any regulator state. IOW, regulator can be disabled or enabled.
1509 * If the regulator is enabled then the voltage will change to the new value
1510 * immediately otherwise if the regulator is disabled the regulator will
1511 * output at the new voltage when enabled.
1513 * NOTE: If the regulator is shared between several devices then the lowest
1514 * request voltage that meets the system constraints will be used.
1515 * Regulator system constraints must be set for this regulator before
1516 * calling this function otherwise this call will fail.
1518 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1520 struct regulator_dev *rdev = regulator->rdev;
1521 int ret;
1523 mutex_lock(&rdev->mutex);
1525 /* sanity check */
1526 if (!rdev->desc->ops->set_voltage) {
1527 ret = -EINVAL;
1528 goto out;
1531 /* constraints check */
1532 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1533 if (ret < 0)
1534 goto out;
1535 regulator->min_uV = min_uV;
1536 regulator->max_uV = max_uV;
1537 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1539 out:
1540 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1541 mutex_unlock(&rdev->mutex);
1542 return ret;
1544 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1546 static int _regulator_get_voltage(struct regulator_dev *rdev)
1548 /* sanity check */
1549 if (rdev->desc->ops->get_voltage)
1550 return rdev->desc->ops->get_voltage(rdev);
1551 else
1552 return -EINVAL;
1556 * regulator_get_voltage - get regulator output voltage
1557 * @regulator: regulator source
1559 * This returns the current regulator voltage in uV.
1561 * NOTE: If the regulator is disabled it will return the voltage value. This
1562 * function should not be used to determine regulator state.
1564 int regulator_get_voltage(struct regulator *regulator)
1566 int ret;
1568 mutex_lock(&regulator->rdev->mutex);
1570 ret = _regulator_get_voltage(regulator->rdev);
1572 mutex_unlock(&regulator->rdev->mutex);
1574 return ret;
1576 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1579 * regulator_set_current_limit - set regulator output current limit
1580 * @regulator: regulator source
1581 * @min_uA: Minimuum supported current in uA
1582 * @max_uA: Maximum supported current in uA
1584 * Sets current sink to the desired output current. This can be set during
1585 * any regulator state. IOW, regulator can be disabled or enabled.
1587 * If the regulator is enabled then the current will change to the new value
1588 * immediately otherwise if the regulator is disabled the regulator will
1589 * output at the new current when enabled.
1591 * NOTE: Regulator system constraints must be set for this regulator before
1592 * calling this function otherwise this call will fail.
1594 int regulator_set_current_limit(struct regulator *regulator,
1595 int min_uA, int max_uA)
1597 struct regulator_dev *rdev = regulator->rdev;
1598 int ret;
1600 mutex_lock(&rdev->mutex);
1602 /* sanity check */
1603 if (!rdev->desc->ops->set_current_limit) {
1604 ret = -EINVAL;
1605 goto out;
1608 /* constraints check */
1609 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1610 if (ret < 0)
1611 goto out;
1613 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1614 out:
1615 mutex_unlock(&rdev->mutex);
1616 return ret;
1618 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1620 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1622 int ret;
1624 mutex_lock(&rdev->mutex);
1626 /* sanity check */
1627 if (!rdev->desc->ops->get_current_limit) {
1628 ret = -EINVAL;
1629 goto out;
1632 ret = rdev->desc->ops->get_current_limit(rdev);
1633 out:
1634 mutex_unlock(&rdev->mutex);
1635 return ret;
1639 * regulator_get_current_limit - get regulator output current
1640 * @regulator: regulator source
1642 * This returns the current supplied by the specified current sink in uA.
1644 * NOTE: If the regulator is disabled it will return the current value. This
1645 * function should not be used to determine regulator state.
1647 int regulator_get_current_limit(struct regulator *regulator)
1649 return _regulator_get_current_limit(regulator->rdev);
1651 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1654 * regulator_set_mode - set regulator operating mode
1655 * @regulator: regulator source
1656 * @mode: operating mode - one of the REGULATOR_MODE constants
1658 * Set regulator operating mode to increase regulator efficiency or improve
1659 * regulation performance.
1661 * NOTE: Regulator system constraints must be set for this regulator before
1662 * calling this function otherwise this call will fail.
1664 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1666 struct regulator_dev *rdev = regulator->rdev;
1667 int ret;
1669 mutex_lock(&rdev->mutex);
1671 /* sanity check */
1672 if (!rdev->desc->ops->set_mode) {
1673 ret = -EINVAL;
1674 goto out;
1677 /* constraints check */
1678 ret = regulator_check_mode(rdev, mode);
1679 if (ret < 0)
1680 goto out;
1682 ret = rdev->desc->ops->set_mode(rdev, mode);
1683 out:
1684 mutex_unlock(&rdev->mutex);
1685 return ret;
1687 EXPORT_SYMBOL_GPL(regulator_set_mode);
1689 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1691 int ret;
1693 mutex_lock(&rdev->mutex);
1695 /* sanity check */
1696 if (!rdev->desc->ops->get_mode) {
1697 ret = -EINVAL;
1698 goto out;
1701 ret = rdev->desc->ops->get_mode(rdev);
1702 out:
1703 mutex_unlock(&rdev->mutex);
1704 return ret;
1708 * regulator_get_mode - get regulator operating mode
1709 * @regulator: regulator source
1711 * Get the current regulator operating mode.
1713 unsigned int regulator_get_mode(struct regulator *regulator)
1715 return _regulator_get_mode(regulator->rdev);
1717 EXPORT_SYMBOL_GPL(regulator_get_mode);
1720 * regulator_set_optimum_mode - set regulator optimum operating mode
1721 * @regulator: regulator source
1722 * @uA_load: load current
1724 * Notifies the regulator core of a new device load. This is then used by
1725 * DRMS (if enabled by constraints) to set the most efficient regulator
1726 * operating mode for the new regulator loading.
1728 * Consumer devices notify their supply regulator of the maximum power
1729 * they will require (can be taken from device datasheet in the power
1730 * consumption tables) when they change operational status and hence power
1731 * state. Examples of operational state changes that can affect power
1732 * consumption are :-
1734 * o Device is opened / closed.
1735 * o Device I/O is about to begin or has just finished.
1736 * o Device is idling in between work.
1738 * This information is also exported via sysfs to userspace.
1740 * DRMS will sum the total requested load on the regulator and change
1741 * to the most efficient operating mode if platform constraints allow.
1743 * Returns the new regulator mode or error.
1745 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1747 struct regulator_dev *rdev = regulator->rdev;
1748 struct regulator *consumer;
1749 int ret, output_uV, input_uV, total_uA_load = 0;
1750 unsigned int mode;
1752 mutex_lock(&rdev->mutex);
1754 regulator->uA_load = uA_load;
1755 ret = regulator_check_drms(rdev);
1756 if (ret < 0)
1757 goto out;
1758 ret = -EINVAL;
1760 /* sanity check */
1761 if (!rdev->desc->ops->get_optimum_mode)
1762 goto out;
1764 /* get output voltage */
1765 output_uV = rdev->desc->ops->get_voltage(rdev);
1766 if (output_uV <= 0) {
1767 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1768 __func__, rdev->desc->name);
1769 goto out;
1772 /* get input voltage */
1773 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1774 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1775 else
1776 input_uV = rdev->constraints->input_uV;
1777 if (input_uV <= 0) {
1778 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1779 __func__, rdev->desc->name);
1780 goto out;
1783 /* calc total requested load for this regulator */
1784 list_for_each_entry(consumer, &rdev->consumer_list, list)
1785 total_uA_load += consumer->uA_load;
1787 mode = rdev->desc->ops->get_optimum_mode(rdev,
1788 input_uV, output_uV,
1789 total_uA_load);
1790 ret = regulator_check_mode(rdev, mode);
1791 if (ret < 0) {
1792 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1793 " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1794 total_uA_load, input_uV, output_uV);
1795 goto out;
1798 ret = rdev->desc->ops->set_mode(rdev, mode);
1799 if (ret < 0) {
1800 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1801 __func__, mode, rdev->desc->name);
1802 goto out;
1804 ret = mode;
1805 out:
1806 mutex_unlock(&rdev->mutex);
1807 return ret;
1809 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1812 * regulator_register_notifier - register regulator event notifier
1813 * @regulator: regulator source
1814 * @nb: notifier block
1816 * Register notifier block to receive regulator events.
1818 int regulator_register_notifier(struct regulator *regulator,
1819 struct notifier_block *nb)
1821 return blocking_notifier_chain_register(&regulator->rdev->notifier,
1822 nb);
1824 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1827 * regulator_unregister_notifier - unregister regulator event notifier
1828 * @regulator: regulator source
1829 * @nb: notifier block
1831 * Unregister regulator event notifier block.
1833 int regulator_unregister_notifier(struct regulator *regulator,
1834 struct notifier_block *nb)
1836 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1837 nb);
1839 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1841 /* notify regulator consumers and downstream regulator consumers.
1842 * Note mutex must be held by caller.
1844 static void _notifier_call_chain(struct regulator_dev *rdev,
1845 unsigned long event, void *data)
1847 struct regulator_dev *_rdev;
1849 /* call rdev chain first */
1850 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1852 /* now notify regulator we supply */
1853 list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1854 mutex_lock(&_rdev->mutex);
1855 _notifier_call_chain(_rdev, event, data);
1856 mutex_unlock(&_rdev->mutex);
1861 * regulator_bulk_get - get multiple regulator consumers
1863 * @dev: Device to supply
1864 * @num_consumers: Number of consumers to register
1865 * @consumers: Configuration of consumers; clients are stored here.
1867 * @return 0 on success, an errno on failure.
1869 * This helper function allows drivers to get several regulator
1870 * consumers in one operation. If any of the regulators cannot be
1871 * acquired then any regulators that were allocated will be freed
1872 * before returning to the caller.
1874 int regulator_bulk_get(struct device *dev, int num_consumers,
1875 struct regulator_bulk_data *consumers)
1877 int i;
1878 int ret;
1880 for (i = 0; i < num_consumers; i++)
1881 consumers[i].consumer = NULL;
1883 for (i = 0; i < num_consumers; i++) {
1884 consumers[i].consumer = regulator_get(dev,
1885 consumers[i].supply);
1886 if (IS_ERR(consumers[i].consumer)) {
1887 dev_err(dev, "Failed to get supply '%s'\n",
1888 consumers[i].supply);
1889 ret = PTR_ERR(consumers[i].consumer);
1890 consumers[i].consumer = NULL;
1891 goto err;
1895 return 0;
1897 err:
1898 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1899 regulator_put(consumers[i].consumer);
1901 return ret;
1903 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1906 * regulator_bulk_enable - enable multiple regulator consumers
1908 * @num_consumers: Number of consumers
1909 * @consumers: Consumer data; clients are stored here.
1910 * @return 0 on success, an errno on failure
1912 * This convenience API allows consumers to enable multiple regulator
1913 * clients in a single API call. If any consumers cannot be enabled
1914 * then any others that were enabled will be disabled again prior to
1915 * return.
1917 int regulator_bulk_enable(int num_consumers,
1918 struct regulator_bulk_data *consumers)
1920 int i;
1921 int ret;
1923 for (i = 0; i < num_consumers; i++) {
1924 ret = regulator_enable(consumers[i].consumer);
1925 if (ret != 0)
1926 goto err;
1929 return 0;
1931 err:
1932 printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1933 for (i = 0; i < num_consumers; i++)
1934 regulator_disable(consumers[i].consumer);
1936 return ret;
1938 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1941 * regulator_bulk_disable - disable multiple regulator consumers
1943 * @num_consumers: Number of consumers
1944 * @consumers: Consumer data; clients are stored here.
1945 * @return 0 on success, an errno on failure
1947 * This convenience API allows consumers to disable multiple regulator
1948 * clients in a single API call. If any consumers cannot be enabled
1949 * then any others that were disabled will be disabled again prior to
1950 * return.
1952 int regulator_bulk_disable(int num_consumers,
1953 struct regulator_bulk_data *consumers)
1955 int i;
1956 int ret;
1958 for (i = 0; i < num_consumers; i++) {
1959 ret = regulator_disable(consumers[i].consumer);
1960 if (ret != 0)
1961 goto err;
1964 return 0;
1966 err:
1967 printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1968 for (i = 0; i < num_consumers; i++)
1969 regulator_enable(consumers[i].consumer);
1971 return ret;
1973 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1976 * regulator_bulk_free - free multiple regulator consumers
1978 * @num_consumers: Number of consumers
1979 * @consumers: Consumer data; clients are stored here.
1981 * This convenience API allows consumers to free multiple regulator
1982 * clients in a single API call.
1984 void regulator_bulk_free(int num_consumers,
1985 struct regulator_bulk_data *consumers)
1987 int i;
1989 for (i = 0; i < num_consumers; i++) {
1990 regulator_put(consumers[i].consumer);
1991 consumers[i].consumer = NULL;
1994 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1997 * regulator_notifier_call_chain - call regulator event notifier
1998 * @rdev: regulator source
1999 * @event: notifier block
2000 * @data: callback-specific data.
2002 * Called by regulator drivers to notify clients a regulator event has
2003 * occurred. We also notify regulator clients downstream.
2004 * Note lock must be held by caller.
2006 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2007 unsigned long event, void *data)
2009 _notifier_call_chain(rdev, event, data);
2010 return NOTIFY_DONE;
2013 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2016 * regulator_mode_to_status - convert a regulator mode into a status
2018 * @mode: Mode to convert
2020 * Convert a regulator mode into a status.
2022 int regulator_mode_to_status(unsigned int mode)
2024 switch (mode) {
2025 case REGULATOR_MODE_FAST:
2026 return REGULATOR_STATUS_FAST;
2027 case REGULATOR_MODE_NORMAL:
2028 return REGULATOR_STATUS_NORMAL;
2029 case REGULATOR_MODE_IDLE:
2030 return REGULATOR_STATUS_IDLE;
2031 case REGULATOR_STATUS_STANDBY:
2032 return REGULATOR_STATUS_STANDBY;
2033 default:
2034 return 0;
2037 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2040 * To avoid cluttering sysfs (and memory) with useless state, only
2041 * create attributes that can be meaningfully displayed.
2043 static int add_regulator_attributes(struct regulator_dev *rdev)
2045 struct device *dev = &rdev->dev;
2046 struct regulator_ops *ops = rdev->desc->ops;
2047 int status = 0;
2049 /* some attributes need specific methods to be displayed */
2050 if (ops->get_voltage) {
2051 status = device_create_file(dev, &dev_attr_microvolts);
2052 if (status < 0)
2053 return status;
2055 if (ops->get_current_limit) {
2056 status = device_create_file(dev, &dev_attr_microamps);
2057 if (status < 0)
2058 return status;
2060 if (ops->get_mode) {
2061 status = device_create_file(dev, &dev_attr_opmode);
2062 if (status < 0)
2063 return status;
2065 if (ops->is_enabled) {
2066 status = device_create_file(dev, &dev_attr_state);
2067 if (status < 0)
2068 return status;
2070 if (ops->get_status) {
2071 status = device_create_file(dev, &dev_attr_status);
2072 if (status < 0)
2073 return status;
2076 /* some attributes are type-specific */
2077 if (rdev->desc->type == REGULATOR_CURRENT) {
2078 status = device_create_file(dev, &dev_attr_requested_microamps);
2079 if (status < 0)
2080 return status;
2083 /* all the other attributes exist to support constraints;
2084 * don't show them if there are no constraints, or if the
2085 * relevant supporting methods are missing.
2087 if (!rdev->constraints)
2088 return status;
2090 /* constraints need specific supporting methods */
2091 if (ops->set_voltage) {
2092 status = device_create_file(dev, &dev_attr_min_microvolts);
2093 if (status < 0)
2094 return status;
2095 status = device_create_file(dev, &dev_attr_max_microvolts);
2096 if (status < 0)
2097 return status;
2099 if (ops->set_current_limit) {
2100 status = device_create_file(dev, &dev_attr_min_microamps);
2101 if (status < 0)
2102 return status;
2103 status = device_create_file(dev, &dev_attr_max_microamps);
2104 if (status < 0)
2105 return status;
2108 /* suspend mode constraints need multiple supporting methods */
2109 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2110 return status;
2112 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2113 if (status < 0)
2114 return status;
2115 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2116 if (status < 0)
2117 return status;
2118 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2119 if (status < 0)
2120 return status;
2122 if (ops->set_suspend_voltage) {
2123 status = device_create_file(dev,
2124 &dev_attr_suspend_standby_microvolts);
2125 if (status < 0)
2126 return status;
2127 status = device_create_file(dev,
2128 &dev_attr_suspend_mem_microvolts);
2129 if (status < 0)
2130 return status;
2131 status = device_create_file(dev,
2132 &dev_attr_suspend_disk_microvolts);
2133 if (status < 0)
2134 return status;
2137 if (ops->set_suspend_mode) {
2138 status = device_create_file(dev,
2139 &dev_attr_suspend_standby_mode);
2140 if (status < 0)
2141 return status;
2142 status = device_create_file(dev,
2143 &dev_attr_suspend_mem_mode);
2144 if (status < 0)
2145 return status;
2146 status = device_create_file(dev,
2147 &dev_attr_suspend_disk_mode);
2148 if (status < 0)
2149 return status;
2152 return status;
2156 * regulator_register - register regulator
2157 * @regulator_desc: regulator to register
2158 * @dev: struct device for the regulator
2159 * @init_data: platform provided init data, passed through by driver
2160 * @driver_data: private regulator data
2162 * Called by regulator drivers to register a regulator.
2163 * Returns 0 on success.
2165 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2166 struct device *dev, struct regulator_init_data *init_data,
2167 void *driver_data)
2169 static atomic_t regulator_no = ATOMIC_INIT(0);
2170 struct regulator_dev *rdev;
2171 int ret, i;
2173 if (regulator_desc == NULL)
2174 return ERR_PTR(-EINVAL);
2176 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2177 return ERR_PTR(-EINVAL);
2179 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2180 regulator_desc->type != REGULATOR_CURRENT)
2181 return ERR_PTR(-EINVAL);
2183 if (!init_data)
2184 return ERR_PTR(-EINVAL);
2186 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2187 if (rdev == NULL)
2188 return ERR_PTR(-ENOMEM);
2190 mutex_lock(&regulator_list_mutex);
2192 mutex_init(&rdev->mutex);
2193 rdev->reg_data = driver_data;
2194 rdev->owner = regulator_desc->owner;
2195 rdev->desc = regulator_desc;
2196 INIT_LIST_HEAD(&rdev->consumer_list);
2197 INIT_LIST_HEAD(&rdev->supply_list);
2198 INIT_LIST_HEAD(&rdev->list);
2199 INIT_LIST_HEAD(&rdev->slist);
2200 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2202 /* preform any regulator specific init */
2203 if (init_data->regulator_init) {
2204 ret = init_data->regulator_init(rdev->reg_data);
2205 if (ret < 0)
2206 goto clean;
2209 /* register with sysfs */
2210 rdev->dev.class = &regulator_class;
2211 rdev->dev.parent = dev;
2212 dev_set_name(&rdev->dev, "regulator.%d",
2213 atomic_inc_return(&regulator_no) - 1);
2214 ret = device_register(&rdev->dev);
2215 if (ret != 0)
2216 goto clean;
2218 dev_set_drvdata(&rdev->dev, rdev);
2220 /* set regulator constraints */
2221 ret = set_machine_constraints(rdev, &init_data->constraints);
2222 if (ret < 0)
2223 goto scrub;
2225 /* add attributes supported by this regulator */
2226 ret = add_regulator_attributes(rdev);
2227 if (ret < 0)
2228 goto scrub;
2230 /* set supply regulator if it exists */
2231 if (init_data->supply_regulator_dev) {
2232 ret = set_supply(rdev,
2233 dev_get_drvdata(init_data->supply_regulator_dev));
2234 if (ret < 0)
2235 goto scrub;
2238 /* add consumers devices */
2239 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2240 ret = set_consumer_device_supply(rdev,
2241 init_data->consumer_supplies[i].dev,
2242 init_data->consumer_supplies[i].dev_name,
2243 init_data->consumer_supplies[i].supply);
2244 if (ret < 0) {
2245 for (--i; i >= 0; i--)
2246 unset_consumer_device_supply(rdev,
2247 init_data->consumer_supplies[i].dev_name,
2248 init_data->consumer_supplies[i].dev);
2249 goto scrub;
2253 list_add(&rdev->list, &regulator_list);
2254 out:
2255 mutex_unlock(&regulator_list_mutex);
2256 return rdev;
2258 scrub:
2259 device_unregister(&rdev->dev);
2260 /* device core frees rdev */
2261 rdev = ERR_PTR(ret);
2262 goto out;
2264 clean:
2265 kfree(rdev);
2266 rdev = ERR_PTR(ret);
2267 goto out;
2269 EXPORT_SYMBOL_GPL(regulator_register);
2272 * regulator_unregister - unregister regulator
2273 * @rdev: regulator to unregister
2275 * Called by regulator drivers to unregister a regulator.
2277 void regulator_unregister(struct regulator_dev *rdev)
2279 if (rdev == NULL)
2280 return;
2282 mutex_lock(&regulator_list_mutex);
2283 WARN_ON(rdev->open_count);
2284 unset_regulator_supplies(rdev);
2285 list_del(&rdev->list);
2286 if (rdev->supply)
2287 sysfs_remove_link(&rdev->dev.kobj, "supply");
2288 device_unregister(&rdev->dev);
2289 mutex_unlock(&regulator_list_mutex);
2291 EXPORT_SYMBOL_GPL(regulator_unregister);
2294 * regulator_suspend_prepare - prepare regulators for system wide suspend
2295 * @state: system suspend state
2297 * Configure each regulator with it's suspend operating parameters for state.
2298 * This will usually be called by machine suspend code prior to supending.
2300 int regulator_suspend_prepare(suspend_state_t state)
2302 struct regulator_dev *rdev;
2303 int ret = 0;
2305 /* ON is handled by regulator active state */
2306 if (state == PM_SUSPEND_ON)
2307 return -EINVAL;
2309 mutex_lock(&regulator_list_mutex);
2310 list_for_each_entry(rdev, &regulator_list, list) {
2312 mutex_lock(&rdev->mutex);
2313 ret = suspend_prepare(rdev, state);
2314 mutex_unlock(&rdev->mutex);
2316 if (ret < 0) {
2317 printk(KERN_ERR "%s: failed to prepare %s\n",
2318 __func__, rdev->desc->name);
2319 goto out;
2322 out:
2323 mutex_unlock(&regulator_list_mutex);
2324 return ret;
2326 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2329 * regulator_has_full_constraints - the system has fully specified constraints
2331 * Calling this function will cause the regulator API to disable all
2332 * regulators which have a zero use count and don't have an always_on
2333 * constraint in a late_initcall.
2335 * The intention is that this will become the default behaviour in a
2336 * future kernel release so users are encouraged to use this facility
2337 * now.
2339 void regulator_has_full_constraints(void)
2341 has_full_constraints = 1;
2343 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2346 * rdev_get_drvdata - get rdev regulator driver data
2347 * @rdev: regulator
2349 * Get rdev regulator driver private data. This call can be used in the
2350 * regulator driver context.
2352 void *rdev_get_drvdata(struct regulator_dev *rdev)
2354 return rdev->reg_data;
2356 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2359 * regulator_get_drvdata - get regulator driver data
2360 * @regulator: regulator
2362 * Get regulator driver private data. This call can be used in the consumer
2363 * driver context when non API regulator specific functions need to be called.
2365 void *regulator_get_drvdata(struct regulator *regulator)
2367 return regulator->rdev->reg_data;
2369 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2372 * regulator_set_drvdata - set regulator driver data
2373 * @regulator: regulator
2374 * @data: data
2376 void regulator_set_drvdata(struct regulator *regulator, void *data)
2378 regulator->rdev->reg_data = data;
2380 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2383 * regulator_get_id - get regulator ID
2384 * @rdev: regulator
2386 int rdev_get_id(struct regulator_dev *rdev)
2388 return rdev->desc->id;
2390 EXPORT_SYMBOL_GPL(rdev_get_id);
2392 struct device *rdev_get_dev(struct regulator_dev *rdev)
2394 return &rdev->dev;
2396 EXPORT_SYMBOL_GPL(rdev_get_dev);
2398 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2400 return reg_init_data->driver_data;
2402 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2404 static int __init regulator_init(void)
2406 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2407 return class_register(&regulator_class);
2410 /* init early to allow our consumers to complete system booting */
2411 core_initcall(regulator_init);
2413 static int __init regulator_init_complete(void)
2415 struct regulator_dev *rdev;
2416 struct regulator_ops *ops;
2417 struct regulation_constraints *c;
2418 int enabled, ret;
2419 const char *name;
2421 mutex_lock(&regulator_list_mutex);
2423 /* If we have a full configuration then disable any regulators
2424 * which are not in use or always_on. This will become the
2425 * default behaviour in the future.
2427 list_for_each_entry(rdev, &regulator_list, list) {
2428 ops = rdev->desc->ops;
2429 c = rdev->constraints;
2431 if (c && c->name)
2432 name = c->name;
2433 else if (rdev->desc->name)
2434 name = rdev->desc->name;
2435 else
2436 name = "regulator";
2438 if (!ops->disable || (c && c->always_on))
2439 continue;
2441 mutex_lock(&rdev->mutex);
2443 if (rdev->use_count)
2444 goto unlock;
2446 /* If we can't read the status assume it's on. */
2447 if (ops->is_enabled)
2448 enabled = ops->is_enabled(rdev);
2449 else
2450 enabled = 1;
2452 if (!enabled)
2453 goto unlock;
2455 if (has_full_constraints) {
2456 /* We log since this may kill the system if it
2457 * goes wrong. */
2458 printk(KERN_INFO "%s: disabling %s\n",
2459 __func__, name);
2460 ret = ops->disable(rdev);
2461 if (ret != 0) {
2462 printk(KERN_ERR
2463 "%s: couldn't disable %s: %d\n",
2464 __func__, name, ret);
2466 } else {
2467 /* The intention is that in future we will
2468 * assume that full constraints are provided
2469 * so warn even if we aren't going to do
2470 * anything here.
2472 printk(KERN_WARNING
2473 "%s: incomplete constraints, leaving %s on\n",
2474 __func__, name);
2477 unlock:
2478 mutex_unlock(&rdev->mutex);
2481 mutex_unlock(&regulator_list_mutex);
2483 return 0;
2485 late_initcall(regulator_init_complete);