[ARM] pxa: Gumstix Verdex PCMCIA support
[linux-2.6/verdex.git] / drivers / scsi / dpt_i2o.c
blobb6af63ca980b4f1cb6be6acb2ca6762fe3f67548
1 /***************************************************************************
2 dpti.c - description
3 -------------------
4 begin : Thu Sep 7 2000
5 copyright : (C) 2000 by Adaptec
7 July 30, 2001 First version being submitted
8 for inclusion in the kernel. V2.4
10 See Documentation/scsi/dpti.txt for history, notes, license info
11 and credits
12 ***************************************************************************/
14 /***************************************************************************
15 * *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
20 * *
21 ***************************************************************************/
22 /***************************************************************************
23 * Sat Dec 20 2003 Go Taniguchi <go@turbolinux.co.jp>
24 - Support 2.6 kernel and DMA-mapping
25 - ioctl fix for raid tools
26 - use schedule_timeout in long long loop
27 **************************************************************************/
29 /*#define DEBUG 1 */
30 /*#define UARTDELAY 1 */
32 #include <linux/module.h>
34 MODULE_AUTHOR("Deanna Bonds, with _lots_ of help from Mark Salyzyn");
35 MODULE_DESCRIPTION("Adaptec I2O RAID Driver");
37 ////////////////////////////////////////////////////////////////
39 #include <linux/ioctl.h> /* For SCSI-Passthrough */
40 #include <asm/uaccess.h>
42 #include <linux/stat.h>
43 #include <linux/slab.h> /* for kmalloc() */
44 #include <linux/pci.h> /* for PCI support */
45 #include <linux/proc_fs.h>
46 #include <linux/blkdev.h>
47 #include <linux/delay.h> /* for udelay */
48 #include <linux/interrupt.h>
49 #include <linux/kernel.h> /* for printk */
50 #include <linux/sched.h>
51 #include <linux/reboot.h>
52 #include <linux/smp_lock.h>
53 #include <linux/spinlock.h>
54 #include <linux/dma-mapping.h>
56 #include <linux/timer.h>
57 #include <linux/string.h>
58 #include <linux/ioport.h>
59 #include <linux/mutex.h>
61 #include <asm/processor.h> /* for boot_cpu_data */
62 #include <asm/pgtable.h>
63 #include <asm/io.h> /* for virt_to_bus, etc. */
65 #include <scsi/scsi.h>
66 #include <scsi/scsi_cmnd.h>
67 #include <scsi/scsi_device.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_tcq.h>
71 #include "dpt/dptsig.h"
72 #include "dpti.h"
74 /*============================================================================
75 * Create a binary signature - this is read by dptsig
76 * Needed for our management apps
77 *============================================================================
79 static dpt_sig_S DPTI_sig = {
80 {'d', 'P', 't', 'S', 'i', 'G'}, SIG_VERSION,
81 #ifdef __i386__
82 PROC_INTEL, PROC_386 | PROC_486 | PROC_PENTIUM | PROC_SEXIUM,
83 #elif defined(__ia64__)
84 PROC_INTEL, PROC_IA64,
85 #elif defined(__sparc__)
86 PROC_ULTRASPARC, PROC_ULTRASPARC,
87 #elif defined(__alpha__)
88 PROC_ALPHA, PROC_ALPHA,
89 #else
90 (-1),(-1),
91 #endif
92 FT_HBADRVR, 0, OEM_DPT, OS_LINUX, CAP_OVERLAP, DEV_ALL,
93 ADF_ALL_SC5, 0, 0, DPT_VERSION, DPT_REVISION, DPT_SUBREVISION,
94 DPT_MONTH, DPT_DAY, DPT_YEAR, "Adaptec Linux I2O RAID Driver"
100 /*============================================================================
101 * Globals
102 *============================================================================
105 static DEFINE_MUTEX(adpt_configuration_lock);
107 static struct i2o_sys_tbl *sys_tbl;
108 static dma_addr_t sys_tbl_pa;
109 static int sys_tbl_ind;
110 static int sys_tbl_len;
112 static adpt_hba* hba_chain = NULL;
113 static int hba_count = 0;
115 static struct class *adpt_sysfs_class;
117 #ifdef CONFIG_COMPAT
118 static long compat_adpt_ioctl(struct file *, unsigned int, unsigned long);
119 #endif
121 static const struct file_operations adpt_fops = {
122 .ioctl = adpt_ioctl,
123 .open = adpt_open,
124 .release = adpt_close,
125 #ifdef CONFIG_COMPAT
126 .compat_ioctl = compat_adpt_ioctl,
127 #endif
130 /* Structures and definitions for synchronous message posting.
131 * See adpt_i2o_post_wait() for description
132 * */
133 struct adpt_i2o_post_wait_data
135 int status;
136 u32 id;
137 adpt_wait_queue_head_t *wq;
138 struct adpt_i2o_post_wait_data *next;
141 static struct adpt_i2o_post_wait_data *adpt_post_wait_queue = NULL;
142 static u32 adpt_post_wait_id = 0;
143 static DEFINE_SPINLOCK(adpt_post_wait_lock);
146 /*============================================================================
147 * Functions
148 *============================================================================
151 static inline int dpt_dma64(adpt_hba *pHba)
153 return (sizeof(dma_addr_t) > 4 && (pHba)->dma64);
156 static inline u32 dma_high(dma_addr_t addr)
158 return upper_32_bits(addr);
161 static inline u32 dma_low(dma_addr_t addr)
163 return (u32)addr;
166 static u8 adpt_read_blink_led(adpt_hba* host)
168 if (host->FwDebugBLEDflag_P) {
169 if( readb(host->FwDebugBLEDflag_P) == 0xbc ){
170 return readb(host->FwDebugBLEDvalue_P);
173 return 0;
176 /*============================================================================
177 * Scsi host template interface functions
178 *============================================================================
181 static struct pci_device_id dptids[] = {
182 { PCI_DPT_VENDOR_ID, PCI_DPT_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
183 { PCI_DPT_VENDOR_ID, PCI_DPT_RAPTOR_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
184 { 0, }
186 MODULE_DEVICE_TABLE(pci,dptids);
188 static int adpt_detect(struct scsi_host_template* sht)
190 struct pci_dev *pDev = NULL;
191 adpt_hba* pHba;
193 PINFO("Detecting Adaptec I2O RAID controllers...\n");
195 /* search for all Adatpec I2O RAID cards */
196 while ((pDev = pci_get_device( PCI_DPT_VENDOR_ID, PCI_ANY_ID, pDev))) {
197 if(pDev->device == PCI_DPT_DEVICE_ID ||
198 pDev->device == PCI_DPT_RAPTOR_DEVICE_ID){
199 if(adpt_install_hba(sht, pDev) ){
200 PERROR("Could not Init an I2O RAID device\n");
201 PERROR("Will not try to detect others.\n");
202 return hba_count-1;
204 pci_dev_get(pDev);
208 /* In INIT state, Activate IOPs */
209 for (pHba = hba_chain; pHba; pHba = pHba->next) {
210 // Activate does get status , init outbound, and get hrt
211 if (adpt_i2o_activate_hba(pHba) < 0) {
212 adpt_i2o_delete_hba(pHba);
217 /* Active IOPs in HOLD state */
219 rebuild_sys_tab:
220 if (hba_chain == NULL)
221 return 0;
224 * If build_sys_table fails, we kill everything and bail
225 * as we can't init the IOPs w/o a system table
227 if (adpt_i2o_build_sys_table() < 0) {
228 adpt_i2o_sys_shutdown();
229 return 0;
232 PDEBUG("HBA's in HOLD state\n");
234 /* If IOP don't get online, we need to rebuild the System table */
235 for (pHba = hba_chain; pHba; pHba = pHba->next) {
236 if (adpt_i2o_online_hba(pHba) < 0) {
237 adpt_i2o_delete_hba(pHba);
238 goto rebuild_sys_tab;
242 /* Active IOPs now in OPERATIONAL state */
243 PDEBUG("HBA's in OPERATIONAL state\n");
245 printk("dpti: If you have a lot of devices this could take a few minutes.\n");
246 for (pHba = hba_chain; pHba; pHba = pHba->next) {
247 printk(KERN_INFO"%s: Reading the hardware resource table.\n", pHba->name);
248 if (adpt_i2o_lct_get(pHba) < 0){
249 adpt_i2o_delete_hba(pHba);
250 continue;
253 if (adpt_i2o_parse_lct(pHba) < 0){
254 adpt_i2o_delete_hba(pHba);
255 continue;
257 adpt_inquiry(pHba);
260 adpt_sysfs_class = class_create(THIS_MODULE, "dpt_i2o");
261 if (IS_ERR(adpt_sysfs_class)) {
262 printk(KERN_WARNING"dpti: unable to create dpt_i2o class\n");
263 adpt_sysfs_class = NULL;
266 for (pHba = hba_chain; pHba; pHba = pHba->next) {
267 if (adpt_scsi_host_alloc(pHba, sht) < 0){
268 adpt_i2o_delete_hba(pHba);
269 continue;
271 pHba->initialized = TRUE;
272 pHba->state &= ~DPTI_STATE_RESET;
273 if (adpt_sysfs_class) {
274 struct device *dev = device_create(adpt_sysfs_class,
275 NULL, MKDEV(DPTI_I2O_MAJOR, pHba->unit), NULL,
276 "dpti%d", pHba->unit);
277 if (IS_ERR(dev)) {
278 printk(KERN_WARNING"dpti%d: unable to "
279 "create device in dpt_i2o class\n",
280 pHba->unit);
285 // Register our control device node
286 // nodes will need to be created in /dev to access this
287 // the nodes can not be created from within the driver
288 if (hba_count && register_chrdev(DPTI_I2O_MAJOR, DPT_DRIVER, &adpt_fops)) {
289 adpt_i2o_sys_shutdown();
290 return 0;
292 return hba_count;
297 * scsi_unregister will be called AFTER we return.
299 static int adpt_release(struct Scsi_Host *host)
301 adpt_hba* pHba = (adpt_hba*) host->hostdata[0];
302 // adpt_i2o_quiesce_hba(pHba);
303 adpt_i2o_delete_hba(pHba);
304 scsi_unregister(host);
305 return 0;
309 static void adpt_inquiry(adpt_hba* pHba)
311 u32 msg[17];
312 u32 *mptr;
313 u32 *lenptr;
314 int direction;
315 int scsidir;
316 u32 len;
317 u32 reqlen;
318 u8* buf;
319 dma_addr_t addr;
320 u8 scb[16];
321 s32 rcode;
323 memset(msg, 0, sizeof(msg));
324 buf = dma_alloc_coherent(&pHba->pDev->dev, 80, &addr, GFP_KERNEL);
325 if(!buf){
326 printk(KERN_ERR"%s: Could not allocate buffer\n",pHba->name);
327 return;
329 memset((void*)buf, 0, 36);
331 len = 36;
332 direction = 0x00000000;
333 scsidir =0x40000000; // DATA IN (iop<--dev)
335 if (dpt_dma64(pHba))
336 reqlen = 17; // SINGLE SGE, 64 bit
337 else
338 reqlen = 14; // SINGLE SGE, 32 bit
339 /* Stick the headers on */
340 msg[0] = reqlen<<16 | SGL_OFFSET_12;
341 msg[1] = (0xff<<24|HOST_TID<<12|ADAPTER_TID);
342 msg[2] = 0;
343 msg[3] = 0;
344 // Adaptec/DPT Private stuff
345 msg[4] = I2O_CMD_SCSI_EXEC|DPT_ORGANIZATION_ID<<16;
346 msg[5] = ADAPTER_TID | 1<<16 /* Interpret*/;
347 /* Direction, disconnect ok | sense data | simple queue , CDBLen */
348 // I2O_SCB_FLAG_ENABLE_DISCONNECT |
349 // I2O_SCB_FLAG_SIMPLE_QUEUE_TAG |
350 // I2O_SCB_FLAG_SENSE_DATA_IN_MESSAGE;
351 msg[6] = scsidir|0x20a00000| 6 /* cmd len*/;
353 mptr=msg+7;
355 memset(scb, 0, sizeof(scb));
356 // Write SCSI command into the message - always 16 byte block
357 scb[0] = INQUIRY;
358 scb[1] = 0;
359 scb[2] = 0;
360 scb[3] = 0;
361 scb[4] = 36;
362 scb[5] = 0;
363 // Don't care about the rest of scb
365 memcpy(mptr, scb, sizeof(scb));
366 mptr+=4;
367 lenptr=mptr++; /* Remember me - fill in when we know */
369 /* Now fill in the SGList and command */
370 *lenptr = len;
371 if (dpt_dma64(pHba)) {
372 *mptr++ = (0x7C<<24)+(2<<16)+0x02; /* Enable 64 bit */
373 *mptr++ = 1 << PAGE_SHIFT;
374 *mptr++ = 0xD0000000|direction|len;
375 *mptr++ = dma_low(addr);
376 *mptr++ = dma_high(addr);
377 } else {
378 *mptr++ = 0xD0000000|direction|len;
379 *mptr++ = addr;
382 // Send it on it's way
383 rcode = adpt_i2o_post_wait(pHba, msg, reqlen<<2, 120);
384 if (rcode != 0) {
385 sprintf(pHba->detail, "Adaptec I2O RAID");
386 printk(KERN_INFO "%s: Inquiry Error (%d)\n",pHba->name,rcode);
387 if (rcode != -ETIME && rcode != -EINTR)
388 dma_free_coherent(&pHba->pDev->dev, 80, buf, addr);
389 } else {
390 memset(pHba->detail, 0, sizeof(pHba->detail));
391 memcpy(&(pHba->detail), "Vendor: Adaptec ", 16);
392 memcpy(&(pHba->detail[16]), " Model: ", 8);
393 memcpy(&(pHba->detail[24]), (u8*) &buf[16], 16);
394 memcpy(&(pHba->detail[40]), " FW: ", 4);
395 memcpy(&(pHba->detail[44]), (u8*) &buf[32], 4);
396 pHba->detail[48] = '\0'; /* precautionary */
397 dma_free_coherent(&pHba->pDev->dev, 80, buf, addr);
399 adpt_i2o_status_get(pHba);
400 return ;
404 static int adpt_slave_configure(struct scsi_device * device)
406 struct Scsi_Host *host = device->host;
407 adpt_hba* pHba;
409 pHba = (adpt_hba *) host->hostdata[0];
411 if (host->can_queue && device->tagged_supported) {
412 scsi_adjust_queue_depth(device, MSG_SIMPLE_TAG,
413 host->can_queue - 1);
414 } else {
415 scsi_adjust_queue_depth(device, 0, 1);
417 return 0;
420 static int adpt_queue(struct scsi_cmnd * cmd, void (*done) (struct scsi_cmnd *))
422 adpt_hba* pHba = NULL;
423 struct adpt_device* pDev = NULL; /* dpt per device information */
425 cmd->scsi_done = done;
427 * SCSI REQUEST_SENSE commands will be executed automatically by the
428 * Host Adapter for any errors, so they should not be executed
429 * explicitly unless the Sense Data is zero indicating that no error
430 * occurred.
433 if ((cmd->cmnd[0] == REQUEST_SENSE) && (cmd->sense_buffer[0] != 0)) {
434 cmd->result = (DID_OK << 16);
435 cmd->scsi_done(cmd);
436 return 0;
439 pHba = (adpt_hba*)cmd->device->host->hostdata[0];
440 if (!pHba) {
441 return FAILED;
444 rmb();
446 * TODO: I need to block here if I am processing ioctl cmds
447 * but if the outstanding cmds all finish before the ioctl,
448 * the scsi-core will not know to start sending cmds to me again.
449 * I need to a way to restart the scsi-cores queues or should I block
450 * calling scsi_done on the outstanding cmds instead
451 * for now we don't set the IOCTL state
453 if(((pHba->state) & DPTI_STATE_IOCTL) || ((pHba->state) & DPTI_STATE_RESET)) {
454 pHba->host->last_reset = jiffies;
455 pHba->host->resetting = 1;
456 return 1;
459 // TODO if the cmd->device if offline then I may need to issue a bus rescan
460 // followed by a get_lct to see if the device is there anymore
461 if((pDev = (struct adpt_device*) (cmd->device->hostdata)) == NULL) {
463 * First command request for this device. Set up a pointer
464 * to the device structure. This should be a TEST_UNIT_READY
465 * command from scan_scsis_single.
467 if ((pDev = adpt_find_device(pHba, (u32)cmd->device->channel, (u32)cmd->device->id, (u32)cmd->device->lun)) == NULL) {
468 // TODO: if any luns are at this bus, scsi id then fake a TEST_UNIT_READY and INQUIRY response
469 // with type 7F (for all luns less than the max for this bus,id) so the lun scan will continue.
470 cmd->result = (DID_NO_CONNECT << 16);
471 cmd->scsi_done(cmd);
472 return 0;
474 cmd->device->hostdata = pDev;
476 pDev->pScsi_dev = cmd->device;
479 * If we are being called from when the device is being reset,
480 * delay processing of the command until later.
482 if (pDev->state & DPTI_DEV_RESET ) {
483 return FAILED;
485 return adpt_scsi_to_i2o(pHba, cmd, pDev);
488 static int adpt_bios_param(struct scsi_device *sdev, struct block_device *dev,
489 sector_t capacity, int geom[])
491 int heads=-1;
492 int sectors=-1;
493 int cylinders=-1;
495 // *** First lets set the default geometry ****
497 // If the capacity is less than ox2000
498 if (capacity < 0x2000 ) { // floppy
499 heads = 18;
500 sectors = 2;
502 // else if between 0x2000 and 0x20000
503 else if (capacity < 0x20000) {
504 heads = 64;
505 sectors = 32;
507 // else if between 0x20000 and 0x40000
508 else if (capacity < 0x40000) {
509 heads = 65;
510 sectors = 63;
512 // else if between 0x4000 and 0x80000
513 else if (capacity < 0x80000) {
514 heads = 128;
515 sectors = 63;
517 // else if greater than 0x80000
518 else {
519 heads = 255;
520 sectors = 63;
522 cylinders = sector_div(capacity, heads * sectors);
524 // Special case if CDROM
525 if(sdev->type == 5) { // CDROM
526 heads = 252;
527 sectors = 63;
528 cylinders = 1111;
531 geom[0] = heads;
532 geom[1] = sectors;
533 geom[2] = cylinders;
535 PDEBUG("adpt_bios_param: exit\n");
536 return 0;
540 static const char *adpt_info(struct Scsi_Host *host)
542 adpt_hba* pHba;
544 pHba = (adpt_hba *) host->hostdata[0];
545 return (char *) (pHba->detail);
548 static int adpt_proc_info(struct Scsi_Host *host, char *buffer, char **start, off_t offset,
549 int length, int inout)
551 struct adpt_device* d;
552 int id;
553 int chan;
554 int len = 0;
555 int begin = 0;
556 int pos = 0;
557 adpt_hba* pHba;
558 int unit;
560 *start = buffer;
561 if (inout == TRUE) {
563 * The user has done a write and wants us to take the
564 * data in the buffer and do something with it.
565 * proc_scsiwrite calls us with inout = 1
567 * Read data from buffer (writing to us) - NOT SUPPORTED
569 return -EINVAL;
573 * inout = 0 means the user has done a read and wants information
574 * returned, so we write information about the cards into the buffer
575 * proc_scsiread() calls us with inout = 0
578 // Find HBA (host bus adapter) we are looking for
579 mutex_lock(&adpt_configuration_lock);
580 for (pHba = hba_chain; pHba; pHba = pHba->next) {
581 if (pHba->host == host) {
582 break; /* found adapter */
585 mutex_unlock(&adpt_configuration_lock);
586 if (pHba == NULL) {
587 return 0;
589 host = pHba->host;
591 len = sprintf(buffer , "Adaptec I2O RAID Driver Version: %s\n\n", DPT_I2O_VERSION);
592 len += sprintf(buffer+len, "%s\n", pHba->detail);
593 len += sprintf(buffer+len, "SCSI Host=scsi%d Control Node=/dev/%s irq=%d\n",
594 pHba->host->host_no, pHba->name, host->irq);
595 len += sprintf(buffer+len, "\tpost fifo size = %d\n\treply fifo size = %d\n\tsg table size = %d\n\n",
596 host->can_queue, (int) pHba->reply_fifo_size , host->sg_tablesize);
598 pos = begin + len;
600 /* CHECKPOINT */
601 if(pos > offset + length) {
602 goto stop_output;
604 if(pos <= offset) {
606 * If we haven't even written to where we last left
607 * off (the last time we were called), reset the
608 * beginning pointer.
610 len = 0;
611 begin = pos;
613 len += sprintf(buffer+len, "Devices:\n");
614 for(chan = 0; chan < MAX_CHANNEL; chan++) {
615 for(id = 0; id < MAX_ID; id++) {
616 d = pHba->channel[chan].device[id];
617 while(d){
618 len += sprintf(buffer+len,"\t%-24.24s", d->pScsi_dev->vendor);
619 len += sprintf(buffer+len," Rev: %-8.8s\n", d->pScsi_dev->rev);
620 pos = begin + len;
623 /* CHECKPOINT */
624 if(pos > offset + length) {
625 goto stop_output;
627 if(pos <= offset) {
628 len = 0;
629 begin = pos;
632 unit = d->pI2o_dev->lct_data.tid;
633 len += sprintf(buffer+len, "\tTID=%d, (Channel=%d, Target=%d, Lun=%d) (%s)\n\n",
634 unit, (int)d->scsi_channel, (int)d->scsi_id, (int)d->scsi_lun,
635 scsi_device_online(d->pScsi_dev)? "online":"offline");
636 pos = begin + len;
638 /* CHECKPOINT */
639 if(pos > offset + length) {
640 goto stop_output;
642 if(pos <= offset) {
643 len = 0;
644 begin = pos;
647 d = d->next_lun;
653 * begin is where we last checked our position with regards to offset
654 * begin is always less than offset. len is relative to begin. It
655 * is the number of bytes written past begin
658 stop_output:
659 /* stop the output and calculate the correct length */
660 *(buffer + len) = '\0';
662 *start = buffer + (offset - begin); /* Start of wanted data */
663 len -= (offset - begin);
664 if(len > length) {
665 len = length;
666 } else if(len < 0){
667 len = 0;
668 **start = '\0';
670 return len;
674 * Turn a struct scsi_cmnd * into a unique 32 bit 'context'.
676 static u32 adpt_cmd_to_context(struct scsi_cmnd *cmd)
678 return (u32)cmd->serial_number;
682 * Go from a u32 'context' to a struct scsi_cmnd * .
683 * This could probably be made more efficient.
685 static struct scsi_cmnd *
686 adpt_cmd_from_context(adpt_hba * pHba, u32 context)
688 struct scsi_cmnd * cmd;
689 struct scsi_device * d;
691 if (context == 0)
692 return NULL;
694 spin_unlock(pHba->host->host_lock);
695 shost_for_each_device(d, pHba->host) {
696 unsigned long flags;
697 spin_lock_irqsave(&d->list_lock, flags);
698 list_for_each_entry(cmd, &d->cmd_list, list) {
699 if (((u32)cmd->serial_number == context)) {
700 spin_unlock_irqrestore(&d->list_lock, flags);
701 scsi_device_put(d);
702 spin_lock(pHba->host->host_lock);
703 return cmd;
706 spin_unlock_irqrestore(&d->list_lock, flags);
708 spin_lock(pHba->host->host_lock);
710 return NULL;
714 * Turn a pointer to ioctl reply data into an u32 'context'
716 static u32 adpt_ioctl_to_context(adpt_hba * pHba, void *reply)
718 #if BITS_PER_LONG == 32
719 return (u32)(unsigned long)reply;
720 #else
721 ulong flags = 0;
722 u32 nr, i;
724 spin_lock_irqsave(pHba->host->host_lock, flags);
725 nr = ARRAY_SIZE(pHba->ioctl_reply_context);
726 for (i = 0; i < nr; i++) {
727 if (pHba->ioctl_reply_context[i] == NULL) {
728 pHba->ioctl_reply_context[i] = reply;
729 break;
732 spin_unlock_irqrestore(pHba->host->host_lock, flags);
733 if (i >= nr) {
734 kfree (reply);
735 printk(KERN_WARNING"%s: Too many outstanding "
736 "ioctl commands\n", pHba->name);
737 return (u32)-1;
740 return i;
741 #endif
745 * Go from an u32 'context' to a pointer to ioctl reply data.
747 static void *adpt_ioctl_from_context(adpt_hba *pHba, u32 context)
749 #if BITS_PER_LONG == 32
750 return (void *)(unsigned long)context;
751 #else
752 void *p = pHba->ioctl_reply_context[context];
753 pHba->ioctl_reply_context[context] = NULL;
755 return p;
756 #endif
759 /*===========================================================================
760 * Error Handling routines
761 *===========================================================================
764 static int adpt_abort(struct scsi_cmnd * cmd)
766 adpt_hba* pHba = NULL; /* host bus adapter structure */
767 struct adpt_device* dptdevice; /* dpt per device information */
768 u32 msg[5];
769 int rcode;
771 if(cmd->serial_number == 0){
772 return FAILED;
774 pHba = (adpt_hba*) cmd->device->host->hostdata[0];
775 printk(KERN_INFO"%s: Trying to Abort cmd=%ld\n",pHba->name, cmd->serial_number);
776 if ((dptdevice = (void*) (cmd->device->hostdata)) == NULL) {
777 printk(KERN_ERR "%s: Unable to abort: No device in cmnd\n",pHba->name);
778 return FAILED;
781 memset(msg, 0, sizeof(msg));
782 msg[0] = FIVE_WORD_MSG_SIZE|SGL_OFFSET_0;
783 msg[1] = I2O_CMD_SCSI_ABORT<<24|HOST_TID<<12|dptdevice->tid;
784 msg[2] = 0;
785 msg[3]= 0;
786 msg[4] = adpt_cmd_to_context(cmd);
787 if (pHba->host)
788 spin_lock_irq(pHba->host->host_lock);
789 rcode = adpt_i2o_post_wait(pHba, msg, sizeof(msg), FOREVER);
790 if (pHba->host)
791 spin_unlock_irq(pHba->host->host_lock);
792 if (rcode != 0) {
793 if(rcode == -EOPNOTSUPP ){
794 printk(KERN_INFO"%s: Abort cmd not supported\n",pHba->name);
795 return FAILED;
797 printk(KERN_INFO"%s: Abort cmd=%ld failed.\n",pHba->name, cmd->serial_number);
798 return FAILED;
800 printk(KERN_INFO"%s: Abort cmd=%ld complete.\n",pHba->name, cmd->serial_number);
801 return SUCCESS;
805 #define I2O_DEVICE_RESET 0x27
806 // This is the same for BLK and SCSI devices
807 // NOTE this is wrong in the i2o.h definitions
808 // This is not currently supported by our adapter but we issue it anyway
809 static int adpt_device_reset(struct scsi_cmnd* cmd)
811 adpt_hba* pHba;
812 u32 msg[4];
813 u32 rcode;
814 int old_state;
815 struct adpt_device* d = cmd->device->hostdata;
817 pHba = (void*) cmd->device->host->hostdata[0];
818 printk(KERN_INFO"%s: Trying to reset device\n",pHba->name);
819 if (!d) {
820 printk(KERN_INFO"%s: Reset Device: Device Not found\n",pHba->name);
821 return FAILED;
823 memset(msg, 0, sizeof(msg));
824 msg[0] = FOUR_WORD_MSG_SIZE|SGL_OFFSET_0;
825 msg[1] = (I2O_DEVICE_RESET<<24|HOST_TID<<12|d->tid);
826 msg[2] = 0;
827 msg[3] = 0;
829 if (pHba->host)
830 spin_lock_irq(pHba->host->host_lock);
831 old_state = d->state;
832 d->state |= DPTI_DEV_RESET;
833 rcode = adpt_i2o_post_wait(pHba, msg,sizeof(msg), FOREVER);
834 d->state = old_state;
835 if (pHba->host)
836 spin_unlock_irq(pHba->host->host_lock);
837 if (rcode != 0) {
838 if(rcode == -EOPNOTSUPP ){
839 printk(KERN_INFO"%s: Device reset not supported\n",pHba->name);
840 return FAILED;
842 printk(KERN_INFO"%s: Device reset failed\n",pHba->name);
843 return FAILED;
844 } else {
845 printk(KERN_INFO"%s: Device reset successful\n",pHba->name);
846 return SUCCESS;
851 #define I2O_HBA_BUS_RESET 0x87
852 // This version of bus reset is called by the eh_error handler
853 static int adpt_bus_reset(struct scsi_cmnd* cmd)
855 adpt_hba* pHba;
856 u32 msg[4];
857 u32 rcode;
859 pHba = (adpt_hba*)cmd->device->host->hostdata[0];
860 memset(msg, 0, sizeof(msg));
861 printk(KERN_WARNING"%s: Bus reset: SCSI Bus %d: tid: %d\n",pHba->name, cmd->device->channel,pHba->channel[cmd->device->channel].tid );
862 msg[0] = FOUR_WORD_MSG_SIZE|SGL_OFFSET_0;
863 msg[1] = (I2O_HBA_BUS_RESET<<24|HOST_TID<<12|pHba->channel[cmd->device->channel].tid);
864 msg[2] = 0;
865 msg[3] = 0;
866 if (pHba->host)
867 spin_lock_irq(pHba->host->host_lock);
868 rcode = adpt_i2o_post_wait(pHba, msg,sizeof(msg), FOREVER);
869 if (pHba->host)
870 spin_unlock_irq(pHba->host->host_lock);
871 if (rcode != 0) {
872 printk(KERN_WARNING"%s: Bus reset failed.\n",pHba->name);
873 return FAILED;
874 } else {
875 printk(KERN_WARNING"%s: Bus reset success.\n",pHba->name);
876 return SUCCESS;
880 // This version of reset is called by the eh_error_handler
881 static int __adpt_reset(struct scsi_cmnd* cmd)
883 adpt_hba* pHba;
884 int rcode;
885 pHba = (adpt_hba*)cmd->device->host->hostdata[0];
886 printk(KERN_WARNING"%s: Hba Reset: scsi id %d: tid: %d\n",pHba->name,cmd->device->channel,pHba->channel[cmd->device->channel].tid );
887 rcode = adpt_hba_reset(pHba);
888 if(rcode == 0){
889 printk(KERN_WARNING"%s: HBA reset complete\n",pHba->name);
890 return SUCCESS;
891 } else {
892 printk(KERN_WARNING"%s: HBA reset failed (%x)\n",pHba->name, rcode);
893 return FAILED;
897 static int adpt_reset(struct scsi_cmnd* cmd)
899 int rc;
901 spin_lock_irq(cmd->device->host->host_lock);
902 rc = __adpt_reset(cmd);
903 spin_unlock_irq(cmd->device->host->host_lock);
905 return rc;
908 // This version of reset is called by the ioctls and indirectly from eh_error_handler via adpt_reset
909 static int adpt_hba_reset(adpt_hba* pHba)
911 int rcode;
913 pHba->state |= DPTI_STATE_RESET;
915 // Activate does get status , init outbound, and get hrt
916 if ((rcode=adpt_i2o_activate_hba(pHba)) < 0) {
917 printk(KERN_ERR "%s: Could not activate\n", pHba->name);
918 adpt_i2o_delete_hba(pHba);
919 return rcode;
922 if ((rcode=adpt_i2o_build_sys_table()) < 0) {
923 adpt_i2o_delete_hba(pHba);
924 return rcode;
926 PDEBUG("%s: in HOLD state\n",pHba->name);
928 if ((rcode=adpt_i2o_online_hba(pHba)) < 0) {
929 adpt_i2o_delete_hba(pHba);
930 return rcode;
932 PDEBUG("%s: in OPERATIONAL state\n",pHba->name);
934 if ((rcode=adpt_i2o_lct_get(pHba)) < 0){
935 adpt_i2o_delete_hba(pHba);
936 return rcode;
939 if ((rcode=adpt_i2o_reparse_lct(pHba)) < 0){
940 adpt_i2o_delete_hba(pHba);
941 return rcode;
943 pHba->state &= ~DPTI_STATE_RESET;
945 adpt_fail_posted_scbs(pHba);
946 return 0; /* return success */
949 /*===========================================================================
951 *===========================================================================
955 static void adpt_i2o_sys_shutdown(void)
957 adpt_hba *pHba, *pNext;
958 struct adpt_i2o_post_wait_data *p1, *old;
960 printk(KERN_INFO"Shutting down Adaptec I2O controllers.\n");
961 printk(KERN_INFO" This could take a few minutes if there are many devices attached\n");
962 /* Delete all IOPs from the controller chain */
963 /* They should have already been released by the
964 * scsi-core
966 for (pHba = hba_chain; pHba; pHba = pNext) {
967 pNext = pHba->next;
968 adpt_i2o_delete_hba(pHba);
971 /* Remove any timedout entries from the wait queue. */
972 // spin_lock_irqsave(&adpt_post_wait_lock, flags);
973 /* Nothing should be outstanding at this point so just
974 * free them
976 for(p1 = adpt_post_wait_queue; p1;) {
977 old = p1;
978 p1 = p1->next;
979 kfree(old);
981 // spin_unlock_irqrestore(&adpt_post_wait_lock, flags);
982 adpt_post_wait_queue = NULL;
984 printk(KERN_INFO "Adaptec I2O controllers down.\n");
987 static int adpt_install_hba(struct scsi_host_template* sht, struct pci_dev* pDev)
990 adpt_hba* pHba = NULL;
991 adpt_hba* p = NULL;
992 ulong base_addr0_phys = 0;
993 ulong base_addr1_phys = 0;
994 u32 hba_map0_area_size = 0;
995 u32 hba_map1_area_size = 0;
996 void __iomem *base_addr_virt = NULL;
997 void __iomem *msg_addr_virt = NULL;
998 int dma64 = 0;
1000 int raptorFlag = FALSE;
1002 if(pci_enable_device(pDev)) {
1003 return -EINVAL;
1006 if (pci_request_regions(pDev, "dpt_i2o")) {
1007 PERROR("dpti: adpt_config_hba: pci request region failed\n");
1008 return -EINVAL;
1011 pci_set_master(pDev);
1014 * See if we should enable dma64 mode.
1016 if (sizeof(dma_addr_t) > 4 &&
1017 pci_set_dma_mask(pDev, DMA_BIT_MASK(64)) == 0) {
1018 if (dma_get_required_mask(&pDev->dev) > DMA_BIT_MASK(32))
1019 dma64 = 1;
1021 if (!dma64 && pci_set_dma_mask(pDev, DMA_BIT_MASK(32)) != 0)
1022 return -EINVAL;
1024 /* adapter only supports message blocks below 4GB */
1025 pci_set_consistent_dma_mask(pDev, DMA_BIT_MASK(32));
1027 base_addr0_phys = pci_resource_start(pDev,0);
1028 hba_map0_area_size = pci_resource_len(pDev,0);
1030 // Check if standard PCI card or single BAR Raptor
1031 if(pDev->device == PCI_DPT_DEVICE_ID){
1032 if(pDev->subsystem_device >=0xc032 && pDev->subsystem_device <= 0xc03b){
1033 // Raptor card with this device id needs 4M
1034 hba_map0_area_size = 0x400000;
1035 } else { // Not Raptor - it is a PCI card
1036 if(hba_map0_area_size > 0x100000 ){
1037 hba_map0_area_size = 0x100000;
1040 } else {// Raptor split BAR config
1041 // Use BAR1 in this configuration
1042 base_addr1_phys = pci_resource_start(pDev,1);
1043 hba_map1_area_size = pci_resource_len(pDev,1);
1044 raptorFlag = TRUE;
1047 #if BITS_PER_LONG == 64
1049 * The original Adaptec 64 bit driver has this comment here:
1050 * "x86_64 machines need more optimal mappings"
1052 * I assume some HBAs report ridiculously large mappings
1053 * and we need to limit them on platforms with IOMMUs.
1055 if (raptorFlag == TRUE) {
1056 if (hba_map0_area_size > 128)
1057 hba_map0_area_size = 128;
1058 if (hba_map1_area_size > 524288)
1059 hba_map1_area_size = 524288;
1060 } else {
1061 if (hba_map0_area_size > 524288)
1062 hba_map0_area_size = 524288;
1064 #endif
1066 base_addr_virt = ioremap(base_addr0_phys,hba_map0_area_size);
1067 if (!base_addr_virt) {
1068 pci_release_regions(pDev);
1069 PERROR("dpti: adpt_config_hba: io remap failed\n");
1070 return -EINVAL;
1073 if(raptorFlag == TRUE) {
1074 msg_addr_virt = ioremap(base_addr1_phys, hba_map1_area_size );
1075 if (!msg_addr_virt) {
1076 PERROR("dpti: adpt_config_hba: io remap failed on BAR1\n");
1077 iounmap(base_addr_virt);
1078 pci_release_regions(pDev);
1079 return -EINVAL;
1081 } else {
1082 msg_addr_virt = base_addr_virt;
1085 // Allocate and zero the data structure
1086 pHba = kzalloc(sizeof(adpt_hba), GFP_KERNEL);
1087 if (!pHba) {
1088 if (msg_addr_virt != base_addr_virt)
1089 iounmap(msg_addr_virt);
1090 iounmap(base_addr_virt);
1091 pci_release_regions(pDev);
1092 return -ENOMEM;
1095 mutex_lock(&adpt_configuration_lock);
1097 if(hba_chain != NULL){
1098 for(p = hba_chain; p->next; p = p->next);
1099 p->next = pHba;
1100 } else {
1101 hba_chain = pHba;
1103 pHba->next = NULL;
1104 pHba->unit = hba_count;
1105 sprintf(pHba->name, "dpti%d", hba_count);
1106 hba_count++;
1108 mutex_unlock(&adpt_configuration_lock);
1110 pHba->pDev = pDev;
1111 pHba->base_addr_phys = base_addr0_phys;
1113 // Set up the Virtual Base Address of the I2O Device
1114 pHba->base_addr_virt = base_addr_virt;
1115 pHba->msg_addr_virt = msg_addr_virt;
1116 pHba->irq_mask = base_addr_virt+0x30;
1117 pHba->post_port = base_addr_virt+0x40;
1118 pHba->reply_port = base_addr_virt+0x44;
1120 pHba->hrt = NULL;
1121 pHba->lct = NULL;
1122 pHba->lct_size = 0;
1123 pHba->status_block = NULL;
1124 pHba->post_count = 0;
1125 pHba->state = DPTI_STATE_RESET;
1126 pHba->pDev = pDev;
1127 pHba->devices = NULL;
1128 pHba->dma64 = dma64;
1130 // Initializing the spinlocks
1131 spin_lock_init(&pHba->state_lock);
1132 spin_lock_init(&adpt_post_wait_lock);
1134 if(raptorFlag == 0){
1135 printk(KERN_INFO "Adaptec I2O RAID controller"
1136 " %d at %p size=%x irq=%d%s\n",
1137 hba_count-1, base_addr_virt,
1138 hba_map0_area_size, pDev->irq,
1139 dma64 ? " (64-bit DMA)" : "");
1140 } else {
1141 printk(KERN_INFO"Adaptec I2O RAID controller %d irq=%d%s\n",
1142 hba_count-1, pDev->irq,
1143 dma64 ? " (64-bit DMA)" : "");
1144 printk(KERN_INFO" BAR0 %p - size= %x\n",base_addr_virt,hba_map0_area_size);
1145 printk(KERN_INFO" BAR1 %p - size= %x\n",msg_addr_virt,hba_map1_area_size);
1148 if (request_irq (pDev->irq, adpt_isr, IRQF_SHARED, pHba->name, pHba)) {
1149 printk(KERN_ERR"%s: Couldn't register IRQ %d\n", pHba->name, pDev->irq);
1150 adpt_i2o_delete_hba(pHba);
1151 return -EINVAL;
1154 return 0;
1158 static void adpt_i2o_delete_hba(adpt_hba* pHba)
1160 adpt_hba* p1;
1161 adpt_hba* p2;
1162 struct i2o_device* d;
1163 struct i2o_device* next;
1164 int i;
1165 int j;
1166 struct adpt_device* pDev;
1167 struct adpt_device* pNext;
1170 mutex_lock(&adpt_configuration_lock);
1171 // scsi_unregister calls our adpt_release which
1172 // does a quiese
1173 if(pHba->host){
1174 free_irq(pHba->host->irq, pHba);
1176 p2 = NULL;
1177 for( p1 = hba_chain; p1; p2 = p1,p1=p1->next){
1178 if(p1 == pHba) {
1179 if(p2) {
1180 p2->next = p1->next;
1181 } else {
1182 hba_chain = p1->next;
1184 break;
1188 hba_count--;
1189 mutex_unlock(&adpt_configuration_lock);
1191 iounmap(pHba->base_addr_virt);
1192 pci_release_regions(pHba->pDev);
1193 if(pHba->msg_addr_virt != pHba->base_addr_virt){
1194 iounmap(pHba->msg_addr_virt);
1196 if(pHba->FwDebugBuffer_P)
1197 iounmap(pHba->FwDebugBuffer_P);
1198 if(pHba->hrt) {
1199 dma_free_coherent(&pHba->pDev->dev,
1200 pHba->hrt->num_entries * pHba->hrt->entry_len << 2,
1201 pHba->hrt, pHba->hrt_pa);
1203 if(pHba->lct) {
1204 dma_free_coherent(&pHba->pDev->dev, pHba->lct_size,
1205 pHba->lct, pHba->lct_pa);
1207 if(pHba->status_block) {
1208 dma_free_coherent(&pHba->pDev->dev, sizeof(i2o_status_block),
1209 pHba->status_block, pHba->status_block_pa);
1211 if(pHba->reply_pool) {
1212 dma_free_coherent(&pHba->pDev->dev,
1213 pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4,
1214 pHba->reply_pool, pHba->reply_pool_pa);
1217 for(d = pHba->devices; d ; d = next){
1218 next = d->next;
1219 kfree(d);
1221 for(i = 0 ; i < pHba->top_scsi_channel ; i++){
1222 for(j = 0; j < MAX_ID; j++){
1223 if(pHba->channel[i].device[j] != NULL){
1224 for(pDev = pHba->channel[i].device[j]; pDev; pDev = pNext){
1225 pNext = pDev->next_lun;
1226 kfree(pDev);
1231 pci_dev_put(pHba->pDev);
1232 kfree(pHba);
1234 if (adpt_sysfs_class)
1235 device_destroy(adpt_sysfs_class,
1236 MKDEV(DPTI_I2O_MAJOR, pHba->unit));
1238 if(hba_count <= 0){
1239 unregister_chrdev(DPTI_I2O_MAJOR, DPT_DRIVER);
1240 if (adpt_sysfs_class) {
1241 class_destroy(adpt_sysfs_class);
1242 adpt_sysfs_class = NULL;
1247 static struct adpt_device* adpt_find_device(adpt_hba* pHba, u32 chan, u32 id, u32 lun)
1249 struct adpt_device* d;
1251 if(chan < 0 || chan >= MAX_CHANNEL)
1252 return NULL;
1254 if( pHba->channel[chan].device == NULL){
1255 printk(KERN_DEBUG"Adaptec I2O RAID: Trying to find device before they are allocated\n");
1256 return NULL;
1259 d = pHba->channel[chan].device[id];
1260 if(!d || d->tid == 0) {
1261 return NULL;
1264 /* If it is the only lun at that address then this should match*/
1265 if(d->scsi_lun == lun){
1266 return d;
1269 /* else we need to look through all the luns */
1270 for(d=d->next_lun ; d ; d = d->next_lun){
1271 if(d->scsi_lun == lun){
1272 return d;
1275 return NULL;
1279 static int adpt_i2o_post_wait(adpt_hba* pHba, u32* msg, int len, int timeout)
1281 // I used my own version of the WAIT_QUEUE_HEAD
1282 // to handle some version differences
1283 // When embedded in the kernel this could go back to the vanilla one
1284 ADPT_DECLARE_WAIT_QUEUE_HEAD(adpt_wq_i2o_post);
1285 int status = 0;
1286 ulong flags = 0;
1287 struct adpt_i2o_post_wait_data *p1, *p2;
1288 struct adpt_i2o_post_wait_data *wait_data =
1289 kmalloc(sizeof(struct adpt_i2o_post_wait_data),GFP_KERNEL);
1290 DECLARE_WAITQUEUE(wait, current);
1292 if (!wait_data)
1293 return -ENOMEM;
1296 * The spin locking is needed to keep anyone from playing
1297 * with the queue pointers and id while we do the same
1299 spin_lock_irqsave(&adpt_post_wait_lock, flags);
1300 // TODO we need a MORE unique way of getting ids
1301 // to support async LCT get
1302 wait_data->next = adpt_post_wait_queue;
1303 adpt_post_wait_queue = wait_data;
1304 adpt_post_wait_id++;
1305 adpt_post_wait_id &= 0x7fff;
1306 wait_data->id = adpt_post_wait_id;
1307 spin_unlock_irqrestore(&adpt_post_wait_lock, flags);
1309 wait_data->wq = &adpt_wq_i2o_post;
1310 wait_data->status = -ETIMEDOUT;
1312 add_wait_queue(&adpt_wq_i2o_post, &wait);
1314 msg[2] |= 0x80000000 | ((u32)wait_data->id);
1315 timeout *= HZ;
1316 if((status = adpt_i2o_post_this(pHba, msg, len)) == 0){
1317 set_current_state(TASK_INTERRUPTIBLE);
1318 if(pHba->host)
1319 spin_unlock_irq(pHba->host->host_lock);
1320 if (!timeout)
1321 schedule();
1322 else{
1323 timeout = schedule_timeout(timeout);
1324 if (timeout == 0) {
1325 // I/O issued, but cannot get result in
1326 // specified time. Freeing resorces is
1327 // dangerous.
1328 status = -ETIME;
1331 if(pHba->host)
1332 spin_lock_irq(pHba->host->host_lock);
1334 remove_wait_queue(&adpt_wq_i2o_post, &wait);
1336 if(status == -ETIMEDOUT){
1337 printk(KERN_INFO"dpti%d: POST WAIT TIMEOUT\n",pHba->unit);
1338 // We will have to free the wait_data memory during shutdown
1339 return status;
1342 /* Remove the entry from the queue. */
1343 p2 = NULL;
1344 spin_lock_irqsave(&adpt_post_wait_lock, flags);
1345 for(p1 = adpt_post_wait_queue; p1; p2 = p1, p1 = p1->next) {
1346 if(p1 == wait_data) {
1347 if(p1->status == I2O_DETAIL_STATUS_UNSUPPORTED_FUNCTION ) {
1348 status = -EOPNOTSUPP;
1350 if(p2) {
1351 p2->next = p1->next;
1352 } else {
1353 adpt_post_wait_queue = p1->next;
1355 break;
1358 spin_unlock_irqrestore(&adpt_post_wait_lock, flags);
1360 kfree(wait_data);
1362 return status;
1366 static s32 adpt_i2o_post_this(adpt_hba* pHba, u32* data, int len)
1369 u32 m = EMPTY_QUEUE;
1370 u32 __iomem *msg;
1371 ulong timeout = jiffies + 30*HZ;
1372 do {
1373 rmb();
1374 m = readl(pHba->post_port);
1375 if (m != EMPTY_QUEUE) {
1376 break;
1378 if(time_after(jiffies,timeout)){
1379 printk(KERN_WARNING"dpti%d: Timeout waiting for message frame!\n", pHba->unit);
1380 return -ETIMEDOUT;
1382 schedule_timeout_uninterruptible(1);
1383 } while(m == EMPTY_QUEUE);
1385 msg = pHba->msg_addr_virt + m;
1386 memcpy_toio(msg, data, len);
1387 wmb();
1389 //post message
1390 writel(m, pHba->post_port);
1391 wmb();
1393 return 0;
1397 static void adpt_i2o_post_wait_complete(u32 context, int status)
1399 struct adpt_i2o_post_wait_data *p1 = NULL;
1401 * We need to search through the adpt_post_wait
1402 * queue to see if the given message is still
1403 * outstanding. If not, it means that the IOP
1404 * took longer to respond to the message than we
1405 * had allowed and timer has already expired.
1406 * Not much we can do about that except log
1407 * it for debug purposes, increase timeout, and recompile
1409 * Lock needed to keep anyone from moving queue pointers
1410 * around while we're looking through them.
1413 context &= 0x7fff;
1415 spin_lock(&adpt_post_wait_lock);
1416 for(p1 = adpt_post_wait_queue; p1; p1 = p1->next) {
1417 if(p1->id == context) {
1418 p1->status = status;
1419 spin_unlock(&adpt_post_wait_lock);
1420 wake_up_interruptible(p1->wq);
1421 return;
1424 spin_unlock(&adpt_post_wait_lock);
1425 // If this happens we lose commands that probably really completed
1426 printk(KERN_DEBUG"dpti: Could Not find task %d in wait queue\n",context);
1427 printk(KERN_DEBUG" Tasks in wait queue:\n");
1428 for(p1 = adpt_post_wait_queue; p1; p1 = p1->next) {
1429 printk(KERN_DEBUG" %d\n",p1->id);
1431 return;
1434 static s32 adpt_i2o_reset_hba(adpt_hba* pHba)
1436 u32 msg[8];
1437 u8* status;
1438 dma_addr_t addr;
1439 u32 m = EMPTY_QUEUE ;
1440 ulong timeout = jiffies + (TMOUT_IOPRESET*HZ);
1442 if(pHba->initialized == FALSE) { // First time reset should be quick
1443 timeout = jiffies + (25*HZ);
1444 } else {
1445 adpt_i2o_quiesce_hba(pHba);
1448 do {
1449 rmb();
1450 m = readl(pHba->post_port);
1451 if (m != EMPTY_QUEUE) {
1452 break;
1454 if(time_after(jiffies,timeout)){
1455 printk(KERN_WARNING"Timeout waiting for message!\n");
1456 return -ETIMEDOUT;
1458 schedule_timeout_uninterruptible(1);
1459 } while (m == EMPTY_QUEUE);
1461 status = dma_alloc_coherent(&pHba->pDev->dev, 4, &addr, GFP_KERNEL);
1462 if(status == NULL) {
1463 adpt_send_nop(pHba, m);
1464 printk(KERN_ERR"IOP reset failed - no free memory.\n");
1465 return -ENOMEM;
1467 memset(status,0,4);
1469 msg[0]=EIGHT_WORD_MSG_SIZE|SGL_OFFSET_0;
1470 msg[1]=I2O_CMD_ADAPTER_RESET<<24|HOST_TID<<12|ADAPTER_TID;
1471 msg[2]=0;
1472 msg[3]=0;
1473 msg[4]=0;
1474 msg[5]=0;
1475 msg[6]=dma_low(addr);
1476 msg[7]=dma_high(addr);
1478 memcpy_toio(pHba->msg_addr_virt+m, msg, sizeof(msg));
1479 wmb();
1480 writel(m, pHba->post_port);
1481 wmb();
1483 while(*status == 0){
1484 if(time_after(jiffies,timeout)){
1485 printk(KERN_WARNING"%s: IOP Reset Timeout\n",pHba->name);
1486 /* We lose 4 bytes of "status" here, but we cannot
1487 free these because controller may awake and corrupt
1488 those bytes at any time */
1489 /* dma_free_coherent(&pHba->pDev->dev, 4, buf, addr); */
1490 return -ETIMEDOUT;
1492 rmb();
1493 schedule_timeout_uninterruptible(1);
1496 if(*status == 0x01 /*I2O_EXEC_IOP_RESET_IN_PROGRESS*/) {
1497 PDEBUG("%s: Reset in progress...\n", pHba->name);
1498 // Here we wait for message frame to become available
1499 // indicated that reset has finished
1500 do {
1501 rmb();
1502 m = readl(pHba->post_port);
1503 if (m != EMPTY_QUEUE) {
1504 break;
1506 if(time_after(jiffies,timeout)){
1507 printk(KERN_ERR "%s:Timeout waiting for IOP Reset.\n",pHba->name);
1508 /* We lose 4 bytes of "status" here, but we
1509 cannot free these because controller may
1510 awake and corrupt those bytes at any time */
1511 /* dma_free_coherent(&pHba->pDev->dev, 4, buf, addr); */
1512 return -ETIMEDOUT;
1514 schedule_timeout_uninterruptible(1);
1515 } while (m == EMPTY_QUEUE);
1516 // Flush the offset
1517 adpt_send_nop(pHba, m);
1519 adpt_i2o_status_get(pHba);
1520 if(*status == 0x02 ||
1521 pHba->status_block->iop_state != ADAPTER_STATE_RESET) {
1522 printk(KERN_WARNING"%s: Reset reject, trying to clear\n",
1523 pHba->name);
1524 } else {
1525 PDEBUG("%s: Reset completed.\n", pHba->name);
1528 dma_free_coherent(&pHba->pDev->dev, 4, status, addr);
1529 #ifdef UARTDELAY
1530 // This delay is to allow someone attached to the card through the debug UART to
1531 // set up the dump levels that they want before the rest of the initialization sequence
1532 adpt_delay(20000);
1533 #endif
1534 return 0;
1538 static int adpt_i2o_parse_lct(adpt_hba* pHba)
1540 int i;
1541 int max;
1542 int tid;
1543 struct i2o_device *d;
1544 i2o_lct *lct = pHba->lct;
1545 u8 bus_no = 0;
1546 s16 scsi_id;
1547 s16 scsi_lun;
1548 u32 buf[10]; // larger than 7, or 8 ...
1549 struct adpt_device* pDev;
1551 if (lct == NULL) {
1552 printk(KERN_ERR "%s: LCT is empty???\n",pHba->name);
1553 return -1;
1556 max = lct->table_size;
1557 max -= 3;
1558 max /= 9;
1560 for(i=0;i<max;i++) {
1561 if( lct->lct_entry[i].user_tid != 0xfff){
1563 * If we have hidden devices, we need to inform the upper layers about
1564 * the possible maximum id reference to handle device access when
1565 * an array is disassembled. This code has no other purpose but to
1566 * allow us future access to devices that are currently hidden
1567 * behind arrays, hotspares or have not been configured (JBOD mode).
1569 if( lct->lct_entry[i].class_id != I2O_CLASS_RANDOM_BLOCK_STORAGE &&
1570 lct->lct_entry[i].class_id != I2O_CLASS_SCSI_PERIPHERAL &&
1571 lct->lct_entry[i].class_id != I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL ){
1572 continue;
1574 tid = lct->lct_entry[i].tid;
1575 // I2O_DPT_DEVICE_INFO_GROUP_NO;
1576 if(adpt_i2o_query_scalar(pHba, tid, 0x8000, -1, buf, 32)<0) {
1577 continue;
1579 bus_no = buf[0]>>16;
1580 scsi_id = buf[1];
1581 scsi_lun = (buf[2]>>8 )&0xff;
1582 if(bus_no >= MAX_CHANNEL) { // Something wrong skip it
1583 printk(KERN_WARNING"%s: Channel number %d out of range \n", pHba->name, bus_no);
1584 continue;
1586 if (scsi_id >= MAX_ID){
1587 printk(KERN_WARNING"%s: SCSI ID %d out of range \n", pHba->name, bus_no);
1588 continue;
1590 if(bus_no > pHba->top_scsi_channel){
1591 pHba->top_scsi_channel = bus_no;
1593 if(scsi_id > pHba->top_scsi_id){
1594 pHba->top_scsi_id = scsi_id;
1596 if(scsi_lun > pHba->top_scsi_lun){
1597 pHba->top_scsi_lun = scsi_lun;
1599 continue;
1601 d = kmalloc(sizeof(struct i2o_device), GFP_KERNEL);
1602 if(d==NULL)
1604 printk(KERN_CRIT"%s: Out of memory for I2O device data.\n",pHba->name);
1605 return -ENOMEM;
1608 d->controller = pHba;
1609 d->next = NULL;
1611 memcpy(&d->lct_data, &lct->lct_entry[i], sizeof(i2o_lct_entry));
1613 d->flags = 0;
1614 tid = d->lct_data.tid;
1615 adpt_i2o_report_hba_unit(pHba, d);
1616 adpt_i2o_install_device(pHba, d);
1618 bus_no = 0;
1619 for(d = pHba->devices; d ; d = d->next) {
1620 if(d->lct_data.class_id == I2O_CLASS_BUS_ADAPTER_PORT ||
1621 d->lct_data.class_id == I2O_CLASS_FIBRE_CHANNEL_PORT){
1622 tid = d->lct_data.tid;
1623 // TODO get the bus_no from hrt-but for now they are in order
1624 //bus_no =
1625 if(bus_no > pHba->top_scsi_channel){
1626 pHba->top_scsi_channel = bus_no;
1628 pHba->channel[bus_no].type = d->lct_data.class_id;
1629 pHba->channel[bus_no].tid = tid;
1630 if(adpt_i2o_query_scalar(pHba, tid, 0x0200, -1, buf, 28)>=0)
1632 pHba->channel[bus_no].scsi_id = buf[1];
1633 PDEBUG("Bus %d - SCSI ID %d.\n", bus_no, buf[1]);
1635 // TODO remove - this is just until we get from hrt
1636 bus_no++;
1637 if(bus_no >= MAX_CHANNEL) { // Something wrong skip it
1638 printk(KERN_WARNING"%s: Channel number %d out of range - LCT\n", pHba->name, bus_no);
1639 break;
1644 // Setup adpt_device table
1645 for(d = pHba->devices; d ; d = d->next) {
1646 if(d->lct_data.class_id == I2O_CLASS_RANDOM_BLOCK_STORAGE ||
1647 d->lct_data.class_id == I2O_CLASS_SCSI_PERIPHERAL ||
1648 d->lct_data.class_id == I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL ){
1650 tid = d->lct_data.tid;
1651 scsi_id = -1;
1652 // I2O_DPT_DEVICE_INFO_GROUP_NO;
1653 if(adpt_i2o_query_scalar(pHba, tid, 0x8000, -1, buf, 32)>=0) {
1654 bus_no = buf[0]>>16;
1655 scsi_id = buf[1];
1656 scsi_lun = (buf[2]>>8 )&0xff;
1657 if(bus_no >= MAX_CHANNEL) { // Something wrong skip it
1658 continue;
1660 if (scsi_id >= MAX_ID) {
1661 continue;
1663 if( pHba->channel[bus_no].device[scsi_id] == NULL){
1664 pDev = kzalloc(sizeof(struct adpt_device),GFP_KERNEL);
1665 if(pDev == NULL) {
1666 return -ENOMEM;
1668 pHba->channel[bus_no].device[scsi_id] = pDev;
1669 } else {
1670 for( pDev = pHba->channel[bus_no].device[scsi_id];
1671 pDev->next_lun; pDev = pDev->next_lun){
1673 pDev->next_lun = kzalloc(sizeof(struct adpt_device),GFP_KERNEL);
1674 if(pDev->next_lun == NULL) {
1675 return -ENOMEM;
1677 pDev = pDev->next_lun;
1679 pDev->tid = tid;
1680 pDev->scsi_channel = bus_no;
1681 pDev->scsi_id = scsi_id;
1682 pDev->scsi_lun = scsi_lun;
1683 pDev->pI2o_dev = d;
1684 d->owner = pDev;
1685 pDev->type = (buf[0])&0xff;
1686 pDev->flags = (buf[0]>>8)&0xff;
1687 if(scsi_id > pHba->top_scsi_id){
1688 pHba->top_scsi_id = scsi_id;
1690 if(scsi_lun > pHba->top_scsi_lun){
1691 pHba->top_scsi_lun = scsi_lun;
1694 if(scsi_id == -1){
1695 printk(KERN_WARNING"Could not find SCSI ID for %s\n",
1696 d->lct_data.identity_tag);
1700 return 0;
1705 * Each I2O controller has a chain of devices on it - these match
1706 * the useful parts of the LCT of the board.
1709 static int adpt_i2o_install_device(adpt_hba* pHba, struct i2o_device *d)
1711 mutex_lock(&adpt_configuration_lock);
1712 d->controller=pHba;
1713 d->owner=NULL;
1714 d->next=pHba->devices;
1715 d->prev=NULL;
1716 if (pHba->devices != NULL){
1717 pHba->devices->prev=d;
1719 pHba->devices=d;
1720 *d->dev_name = 0;
1722 mutex_unlock(&adpt_configuration_lock);
1723 return 0;
1726 static int adpt_open(struct inode *inode, struct file *file)
1728 int minor;
1729 adpt_hba* pHba;
1731 lock_kernel();
1732 //TODO check for root access
1734 minor = iminor(inode);
1735 if (minor >= hba_count) {
1736 unlock_kernel();
1737 return -ENXIO;
1739 mutex_lock(&adpt_configuration_lock);
1740 for (pHba = hba_chain; pHba; pHba = pHba->next) {
1741 if (pHba->unit == minor) {
1742 break; /* found adapter */
1745 if (pHba == NULL) {
1746 mutex_unlock(&adpt_configuration_lock);
1747 unlock_kernel();
1748 return -ENXIO;
1751 // if(pHba->in_use){
1752 // mutex_unlock(&adpt_configuration_lock);
1753 // return -EBUSY;
1754 // }
1756 pHba->in_use = 1;
1757 mutex_unlock(&adpt_configuration_lock);
1758 unlock_kernel();
1760 return 0;
1763 static int adpt_close(struct inode *inode, struct file *file)
1765 int minor;
1766 adpt_hba* pHba;
1768 minor = iminor(inode);
1769 if (minor >= hba_count) {
1770 return -ENXIO;
1772 mutex_lock(&adpt_configuration_lock);
1773 for (pHba = hba_chain; pHba; pHba = pHba->next) {
1774 if (pHba->unit == minor) {
1775 break; /* found adapter */
1778 mutex_unlock(&adpt_configuration_lock);
1779 if (pHba == NULL) {
1780 return -ENXIO;
1783 pHba->in_use = 0;
1785 return 0;
1789 static int adpt_i2o_passthru(adpt_hba* pHba, u32 __user *arg)
1791 u32 msg[MAX_MESSAGE_SIZE];
1792 u32* reply = NULL;
1793 u32 size = 0;
1794 u32 reply_size = 0;
1795 u32 __user *user_msg = arg;
1796 u32 __user * user_reply = NULL;
1797 void *sg_list[pHba->sg_tablesize];
1798 u32 sg_offset = 0;
1799 u32 sg_count = 0;
1800 int sg_index = 0;
1801 u32 i = 0;
1802 u32 rcode = 0;
1803 void *p = NULL;
1804 dma_addr_t addr;
1805 ulong flags = 0;
1807 memset(&msg, 0, MAX_MESSAGE_SIZE*4);
1808 // get user msg size in u32s
1809 if(get_user(size, &user_msg[0])){
1810 return -EFAULT;
1812 size = size>>16;
1814 user_reply = &user_msg[size];
1815 if(size > MAX_MESSAGE_SIZE){
1816 return -EFAULT;
1818 size *= 4; // Convert to bytes
1820 /* Copy in the user's I2O command */
1821 if(copy_from_user(msg, user_msg, size)) {
1822 return -EFAULT;
1824 get_user(reply_size, &user_reply[0]);
1825 reply_size = reply_size>>16;
1826 if(reply_size > REPLY_FRAME_SIZE){
1827 reply_size = REPLY_FRAME_SIZE;
1829 reply_size *= 4;
1830 reply = kzalloc(REPLY_FRAME_SIZE*4, GFP_KERNEL);
1831 if(reply == NULL) {
1832 printk(KERN_WARNING"%s: Could not allocate reply buffer\n",pHba->name);
1833 return -ENOMEM;
1835 sg_offset = (msg[0]>>4)&0xf;
1836 msg[2] = 0x40000000; // IOCTL context
1837 msg[3] = adpt_ioctl_to_context(pHba, reply);
1838 if (msg[3] == (u32)-1)
1839 return -EBUSY;
1841 memset(sg_list,0, sizeof(sg_list[0])*pHba->sg_tablesize);
1842 if(sg_offset) {
1843 // TODO add 64 bit API
1844 struct sg_simple_element *sg = (struct sg_simple_element*) (msg+sg_offset);
1845 sg_count = (size - sg_offset*4) / sizeof(struct sg_simple_element);
1846 if (sg_count > pHba->sg_tablesize){
1847 printk(KERN_DEBUG"%s:IOCTL SG List too large (%u)\n", pHba->name,sg_count);
1848 kfree (reply);
1849 return -EINVAL;
1852 for(i = 0; i < sg_count; i++) {
1853 int sg_size;
1855 if (!(sg[i].flag_count & 0x10000000 /*I2O_SGL_FLAGS_SIMPLE_ADDRESS_ELEMENT*/)) {
1856 printk(KERN_DEBUG"%s:Bad SG element %d - not simple (%x)\n",pHba->name,i, sg[i].flag_count);
1857 rcode = -EINVAL;
1858 goto cleanup;
1860 sg_size = sg[i].flag_count & 0xffffff;
1861 /* Allocate memory for the transfer */
1862 p = dma_alloc_coherent(&pHba->pDev->dev, sg_size, &addr, GFP_KERNEL);
1863 if(!p) {
1864 printk(KERN_DEBUG"%s: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
1865 pHba->name,sg_size,i,sg_count);
1866 rcode = -ENOMEM;
1867 goto cleanup;
1869 sg_list[sg_index++] = p; // sglist indexed with input frame, not our internal frame.
1870 /* Copy in the user's SG buffer if necessary */
1871 if(sg[i].flag_count & 0x04000000 /*I2O_SGL_FLAGS_DIR*/) {
1872 // sg_simple_element API is 32 bit
1873 if (copy_from_user(p,(void __user *)(ulong)sg[i].addr_bus, sg_size)) {
1874 printk(KERN_DEBUG"%s: Could not copy SG buf %d FROM user\n",pHba->name,i);
1875 rcode = -EFAULT;
1876 goto cleanup;
1879 /* sg_simple_element API is 32 bit, but addr < 4GB */
1880 sg[i].addr_bus = addr;
1884 do {
1885 if(pHba->host)
1886 spin_lock_irqsave(pHba->host->host_lock, flags);
1887 // This state stops any new commands from enterring the
1888 // controller while processing the ioctl
1889 // pHba->state |= DPTI_STATE_IOCTL;
1890 // We can't set this now - The scsi subsystem sets host_blocked and
1891 // the queue empties and stops. We need a way to restart the queue
1892 rcode = adpt_i2o_post_wait(pHba, msg, size, FOREVER);
1893 if (rcode != 0)
1894 printk("adpt_i2o_passthru: post wait failed %d %p\n",
1895 rcode, reply);
1896 // pHba->state &= ~DPTI_STATE_IOCTL;
1897 if(pHba->host)
1898 spin_unlock_irqrestore(pHba->host->host_lock, flags);
1899 } while(rcode == -ETIMEDOUT);
1901 if(rcode){
1902 goto cleanup;
1905 if(sg_offset) {
1906 /* Copy back the Scatter Gather buffers back to user space */
1907 u32 j;
1908 // TODO add 64 bit API
1909 struct sg_simple_element* sg;
1910 int sg_size;
1912 // re-acquire the original message to handle correctly the sg copy operation
1913 memset(&msg, 0, MAX_MESSAGE_SIZE*4);
1914 // get user msg size in u32s
1915 if(get_user(size, &user_msg[0])){
1916 rcode = -EFAULT;
1917 goto cleanup;
1919 size = size>>16;
1920 size *= 4;
1921 /* Copy in the user's I2O command */
1922 if (copy_from_user (msg, user_msg, size)) {
1923 rcode = -EFAULT;
1924 goto cleanup;
1926 sg_count = (size - sg_offset*4) / sizeof(struct sg_simple_element);
1928 // TODO add 64 bit API
1929 sg = (struct sg_simple_element*)(msg + sg_offset);
1930 for (j = 0; j < sg_count; j++) {
1931 /* Copy out the SG list to user's buffer if necessary */
1932 if(! (sg[j].flag_count & 0x4000000 /*I2O_SGL_FLAGS_DIR*/)) {
1933 sg_size = sg[j].flag_count & 0xffffff;
1934 // sg_simple_element API is 32 bit
1935 if (copy_to_user((void __user *)(ulong)sg[j].addr_bus,sg_list[j], sg_size)) {
1936 printk(KERN_WARNING"%s: Could not copy %p TO user %x\n",pHba->name, sg_list[j], sg[j].addr_bus);
1937 rcode = -EFAULT;
1938 goto cleanup;
1944 /* Copy back the reply to user space */
1945 if (reply_size) {
1946 // we wrote our own values for context - now restore the user supplied ones
1947 if(copy_from_user(reply+2, user_msg+2, sizeof(u32)*2)) {
1948 printk(KERN_WARNING"%s: Could not copy message context FROM user\n",pHba->name);
1949 rcode = -EFAULT;
1951 if(copy_to_user(user_reply, reply, reply_size)) {
1952 printk(KERN_WARNING"%s: Could not copy reply TO user\n",pHba->name);
1953 rcode = -EFAULT;
1958 cleanup:
1959 if (rcode != -ETIME && rcode != -EINTR) {
1960 struct sg_simple_element *sg =
1961 (struct sg_simple_element*) (msg +sg_offset);
1962 kfree (reply);
1963 while(sg_index) {
1964 if(sg_list[--sg_index]) {
1965 dma_free_coherent(&pHba->pDev->dev,
1966 sg[sg_index].flag_count & 0xffffff,
1967 sg_list[sg_index],
1968 sg[sg_index].addr_bus);
1972 return rcode;
1975 #if defined __ia64__
1976 static void adpt_ia64_info(sysInfo_S* si)
1978 // This is all the info we need for now
1979 // We will add more info as our new
1980 // managmenent utility requires it
1981 si->processorType = PROC_IA64;
1983 #endif
1985 #if defined __sparc__
1986 static void adpt_sparc_info(sysInfo_S* si)
1988 // This is all the info we need for now
1989 // We will add more info as our new
1990 // managmenent utility requires it
1991 si->processorType = PROC_ULTRASPARC;
1993 #endif
1994 #if defined __alpha__
1995 static void adpt_alpha_info(sysInfo_S* si)
1997 // This is all the info we need for now
1998 // We will add more info as our new
1999 // managmenent utility requires it
2000 si->processorType = PROC_ALPHA;
2002 #endif
2004 #if defined __i386__
2005 static void adpt_i386_info(sysInfo_S* si)
2007 // This is all the info we need for now
2008 // We will add more info as our new
2009 // managmenent utility requires it
2010 switch (boot_cpu_data.x86) {
2011 case CPU_386:
2012 si->processorType = PROC_386;
2013 break;
2014 case CPU_486:
2015 si->processorType = PROC_486;
2016 break;
2017 case CPU_586:
2018 si->processorType = PROC_PENTIUM;
2019 break;
2020 default: // Just in case
2021 si->processorType = PROC_PENTIUM;
2022 break;
2025 #endif
2028 * This routine returns information about the system. This does not effect
2029 * any logic and if the info is wrong - it doesn't matter.
2032 /* Get all the info we can not get from kernel services */
2033 static int adpt_system_info(void __user *buffer)
2035 sysInfo_S si;
2037 memset(&si, 0, sizeof(si));
2039 si.osType = OS_LINUX;
2040 si.osMajorVersion = 0;
2041 si.osMinorVersion = 0;
2042 si.osRevision = 0;
2043 si.busType = SI_PCI_BUS;
2044 si.processorFamily = DPTI_sig.dsProcessorFamily;
2046 #if defined __i386__
2047 adpt_i386_info(&si);
2048 #elif defined (__ia64__)
2049 adpt_ia64_info(&si);
2050 #elif defined(__sparc__)
2051 adpt_sparc_info(&si);
2052 #elif defined (__alpha__)
2053 adpt_alpha_info(&si);
2054 #else
2055 si.processorType = 0xff ;
2056 #endif
2057 if (copy_to_user(buffer, &si, sizeof(si))){
2058 printk(KERN_WARNING"dpti: Could not copy buffer TO user\n");
2059 return -EFAULT;
2062 return 0;
2065 static int adpt_ioctl(struct inode *inode, struct file *file, uint cmd,
2066 ulong arg)
2068 int minor;
2069 int error = 0;
2070 adpt_hba* pHba;
2071 ulong flags = 0;
2072 void __user *argp = (void __user *)arg;
2074 minor = iminor(inode);
2075 if (minor >= DPTI_MAX_HBA){
2076 return -ENXIO;
2078 mutex_lock(&adpt_configuration_lock);
2079 for (pHba = hba_chain; pHba; pHba = pHba->next) {
2080 if (pHba->unit == minor) {
2081 break; /* found adapter */
2084 mutex_unlock(&adpt_configuration_lock);
2085 if(pHba == NULL){
2086 return -ENXIO;
2089 while((volatile u32) pHba->state & DPTI_STATE_RESET )
2090 schedule_timeout_uninterruptible(2);
2092 switch (cmd) {
2093 // TODO: handle 3 cases
2094 case DPT_SIGNATURE:
2095 if (copy_to_user(argp, &DPTI_sig, sizeof(DPTI_sig))) {
2096 return -EFAULT;
2098 break;
2099 case I2OUSRCMD:
2100 return adpt_i2o_passthru(pHba, argp);
2102 case DPT_CTRLINFO:{
2103 drvrHBAinfo_S HbaInfo;
2105 #define FLG_OSD_PCI_VALID 0x0001
2106 #define FLG_OSD_DMA 0x0002
2107 #define FLG_OSD_I2O 0x0004
2108 memset(&HbaInfo, 0, sizeof(HbaInfo));
2109 HbaInfo.drvrHBAnum = pHba->unit;
2110 HbaInfo.baseAddr = (ulong) pHba->base_addr_phys;
2111 HbaInfo.blinkState = adpt_read_blink_led(pHba);
2112 HbaInfo.pciBusNum = pHba->pDev->bus->number;
2113 HbaInfo.pciDeviceNum=PCI_SLOT(pHba->pDev->devfn);
2114 HbaInfo.Interrupt = pHba->pDev->irq;
2115 HbaInfo.hbaFlags = FLG_OSD_PCI_VALID | FLG_OSD_DMA | FLG_OSD_I2O;
2116 if(copy_to_user(argp, &HbaInfo, sizeof(HbaInfo))){
2117 printk(KERN_WARNING"%s: Could not copy HbaInfo TO user\n",pHba->name);
2118 return -EFAULT;
2120 break;
2122 case DPT_SYSINFO:
2123 return adpt_system_info(argp);
2124 case DPT_BLINKLED:{
2125 u32 value;
2126 value = (u32)adpt_read_blink_led(pHba);
2127 if (copy_to_user(argp, &value, sizeof(value))) {
2128 return -EFAULT;
2130 break;
2132 case I2ORESETCMD:
2133 if(pHba->host)
2134 spin_lock_irqsave(pHba->host->host_lock, flags);
2135 adpt_hba_reset(pHba);
2136 if(pHba->host)
2137 spin_unlock_irqrestore(pHba->host->host_lock, flags);
2138 break;
2139 case I2ORESCANCMD:
2140 adpt_rescan(pHba);
2141 break;
2142 default:
2143 return -EINVAL;
2146 return error;
2149 #ifdef CONFIG_COMPAT
2150 static long compat_adpt_ioctl(struct file *file,
2151 unsigned int cmd, unsigned long arg)
2153 struct inode *inode;
2154 long ret;
2156 inode = file->f_dentry->d_inode;
2158 lock_kernel();
2160 switch(cmd) {
2161 case DPT_SIGNATURE:
2162 case I2OUSRCMD:
2163 case DPT_CTRLINFO:
2164 case DPT_SYSINFO:
2165 case DPT_BLINKLED:
2166 case I2ORESETCMD:
2167 case I2ORESCANCMD:
2168 case (DPT_TARGET_BUSY & 0xFFFF):
2169 case DPT_TARGET_BUSY:
2170 ret = adpt_ioctl(inode, file, cmd, arg);
2171 break;
2172 default:
2173 ret = -ENOIOCTLCMD;
2176 unlock_kernel();
2178 return ret;
2180 #endif
2182 static irqreturn_t adpt_isr(int irq, void *dev_id)
2184 struct scsi_cmnd* cmd;
2185 adpt_hba* pHba = dev_id;
2186 u32 m;
2187 void __iomem *reply;
2188 u32 status=0;
2189 u32 context;
2190 ulong flags = 0;
2191 int handled = 0;
2193 if (pHba == NULL){
2194 printk(KERN_WARNING"adpt_isr: NULL dev_id\n");
2195 return IRQ_NONE;
2197 if(pHba->host)
2198 spin_lock_irqsave(pHba->host->host_lock, flags);
2200 while( readl(pHba->irq_mask) & I2O_INTERRUPT_PENDING_B) {
2201 m = readl(pHba->reply_port);
2202 if(m == EMPTY_QUEUE){
2203 // Try twice then give up
2204 rmb();
2205 m = readl(pHba->reply_port);
2206 if(m == EMPTY_QUEUE){
2207 // This really should not happen
2208 printk(KERN_ERR"dpti: Could not get reply frame\n");
2209 goto out;
2212 if (pHba->reply_pool_pa <= m &&
2213 m < pHba->reply_pool_pa +
2214 (pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4)) {
2215 reply = (u8 *)pHba->reply_pool +
2216 (m - pHba->reply_pool_pa);
2217 } else {
2218 /* Ick, we should *never* be here */
2219 printk(KERN_ERR "dpti: reply frame not from pool\n");
2220 reply = (u8 *)bus_to_virt(m);
2223 if (readl(reply) & MSG_FAIL) {
2224 u32 old_m = readl(reply+28);
2225 void __iomem *msg;
2226 u32 old_context;
2227 PDEBUG("%s: Failed message\n",pHba->name);
2228 if(old_m >= 0x100000){
2229 printk(KERN_ERR"%s: Bad preserved MFA (%x)- dropping frame\n",pHba->name,old_m);
2230 writel(m,pHba->reply_port);
2231 continue;
2233 // Transaction context is 0 in failed reply frame
2234 msg = pHba->msg_addr_virt + old_m;
2235 old_context = readl(msg+12);
2236 writel(old_context, reply+12);
2237 adpt_send_nop(pHba, old_m);
2239 context = readl(reply+8);
2240 if(context & 0x40000000){ // IOCTL
2241 void *p = adpt_ioctl_from_context(pHba, readl(reply+12));
2242 if( p != NULL) {
2243 memcpy_fromio(p, reply, REPLY_FRAME_SIZE * 4);
2245 // All IOCTLs will also be post wait
2247 if(context & 0x80000000){ // Post wait message
2248 status = readl(reply+16);
2249 if(status >> 24){
2250 status &= 0xffff; /* Get detail status */
2251 } else {
2252 status = I2O_POST_WAIT_OK;
2254 if(!(context & 0x40000000)) {
2255 cmd = adpt_cmd_from_context(pHba,
2256 readl(reply+12));
2257 if(cmd != NULL) {
2258 printk(KERN_WARNING"%s: Apparent SCSI cmd in Post Wait Context - cmd=%p context=%x\n", pHba->name, cmd, context);
2261 adpt_i2o_post_wait_complete(context, status);
2262 } else { // SCSI message
2263 cmd = adpt_cmd_from_context (pHba, readl(reply+12));
2264 if(cmd != NULL){
2265 scsi_dma_unmap(cmd);
2266 if(cmd->serial_number != 0) { // If not timedout
2267 adpt_i2o_to_scsi(reply, cmd);
2271 writel(m, pHba->reply_port);
2272 wmb();
2273 rmb();
2275 handled = 1;
2276 out: if(pHba->host)
2277 spin_unlock_irqrestore(pHba->host->host_lock, flags);
2278 return IRQ_RETVAL(handled);
2281 static s32 adpt_scsi_to_i2o(adpt_hba* pHba, struct scsi_cmnd* cmd, struct adpt_device* d)
2283 int i;
2284 u32 msg[MAX_MESSAGE_SIZE];
2285 u32* mptr;
2286 u32* lptr;
2287 u32 *lenptr;
2288 int direction;
2289 int scsidir;
2290 int nseg;
2291 u32 len;
2292 u32 reqlen;
2293 s32 rcode;
2294 dma_addr_t addr;
2296 memset(msg, 0 , sizeof(msg));
2297 len = scsi_bufflen(cmd);
2298 direction = 0x00000000;
2300 scsidir = 0x00000000; // DATA NO XFER
2301 if(len) {
2303 * Set SCBFlags to indicate if data is being transferred
2304 * in or out, or no data transfer
2305 * Note: Do not have to verify index is less than 0 since
2306 * cmd->cmnd[0] is an unsigned char
2308 switch(cmd->sc_data_direction){
2309 case DMA_FROM_DEVICE:
2310 scsidir =0x40000000; // DATA IN (iop<--dev)
2311 break;
2312 case DMA_TO_DEVICE:
2313 direction=0x04000000; // SGL OUT
2314 scsidir =0x80000000; // DATA OUT (iop-->dev)
2315 break;
2316 case DMA_NONE:
2317 break;
2318 case DMA_BIDIRECTIONAL:
2319 scsidir =0x40000000; // DATA IN (iop<--dev)
2320 // Assume In - and continue;
2321 break;
2322 default:
2323 printk(KERN_WARNING"%s: scsi opcode 0x%x not supported.\n",
2324 pHba->name, cmd->cmnd[0]);
2325 cmd->result = (DID_OK <<16) | (INITIATOR_ERROR << 8);
2326 cmd->scsi_done(cmd);
2327 return 0;
2330 // msg[0] is set later
2331 // I2O_CMD_SCSI_EXEC
2332 msg[1] = ((0xff<<24)|(HOST_TID<<12)|d->tid);
2333 msg[2] = 0;
2334 msg[3] = adpt_cmd_to_context(cmd); /* Want SCSI control block back */
2335 // Our cards use the transaction context as the tag for queueing
2336 // Adaptec/DPT Private stuff
2337 msg[4] = I2O_CMD_SCSI_EXEC|(DPT_ORGANIZATION_ID<<16);
2338 msg[5] = d->tid;
2339 /* Direction, disconnect ok | sense data | simple queue , CDBLen */
2340 // I2O_SCB_FLAG_ENABLE_DISCONNECT |
2341 // I2O_SCB_FLAG_SIMPLE_QUEUE_TAG |
2342 // I2O_SCB_FLAG_SENSE_DATA_IN_MESSAGE;
2343 msg[6] = scsidir|0x20a00000|cmd->cmd_len;
2345 mptr=msg+7;
2347 // Write SCSI command into the message - always 16 byte block
2348 memset(mptr, 0, 16);
2349 memcpy(mptr, cmd->cmnd, cmd->cmd_len);
2350 mptr+=4;
2351 lenptr=mptr++; /* Remember me - fill in when we know */
2352 if (dpt_dma64(pHba)) {
2353 reqlen = 16; // SINGLE SGE
2354 *mptr++ = (0x7C<<24)+(2<<16)+0x02; /* Enable 64 bit */
2355 *mptr++ = 1 << PAGE_SHIFT;
2356 } else {
2357 reqlen = 14; // SINGLE SGE
2359 /* Now fill in the SGList and command */
2361 nseg = scsi_dma_map(cmd);
2362 BUG_ON(nseg < 0);
2363 if (nseg) {
2364 struct scatterlist *sg;
2366 len = 0;
2367 scsi_for_each_sg(cmd, sg, nseg, i) {
2368 lptr = mptr;
2369 *mptr++ = direction|0x10000000|sg_dma_len(sg);
2370 len+=sg_dma_len(sg);
2371 addr = sg_dma_address(sg);
2372 *mptr++ = dma_low(addr);
2373 if (dpt_dma64(pHba))
2374 *mptr++ = dma_high(addr);
2375 /* Make this an end of list */
2376 if (i == nseg - 1)
2377 *lptr = direction|0xD0000000|sg_dma_len(sg);
2379 reqlen = mptr - msg;
2380 *lenptr = len;
2382 if(cmd->underflow && len != cmd->underflow){
2383 printk(KERN_WARNING"Cmd len %08X Cmd underflow %08X\n",
2384 len, cmd->underflow);
2386 } else {
2387 *lenptr = len = 0;
2388 reqlen = 12;
2391 /* Stick the headers on */
2392 msg[0] = reqlen<<16 | ((reqlen > 12) ? SGL_OFFSET_12 : SGL_OFFSET_0);
2394 // Send it on it's way
2395 rcode = adpt_i2o_post_this(pHba, msg, reqlen<<2);
2396 if (rcode == 0) {
2397 return 0;
2399 return rcode;
2403 static s32 adpt_scsi_host_alloc(adpt_hba* pHba, struct scsi_host_template *sht)
2405 struct Scsi_Host *host;
2407 host = scsi_host_alloc(sht, sizeof(adpt_hba*));
2408 if (host == NULL) {
2409 printk("%s: scsi_host_alloc returned NULL\n", pHba->name);
2410 return -1;
2412 host->hostdata[0] = (unsigned long)pHba;
2413 pHba->host = host;
2415 host->irq = pHba->pDev->irq;
2416 /* no IO ports, so don't have to set host->io_port and
2417 * host->n_io_port
2419 host->io_port = 0;
2420 host->n_io_port = 0;
2421 /* see comments in scsi_host.h */
2422 host->max_id = 16;
2423 host->max_lun = 256;
2424 host->max_channel = pHba->top_scsi_channel + 1;
2425 host->cmd_per_lun = 1;
2426 host->unique_id = (u32)sys_tbl_pa + pHba->unit;
2427 host->sg_tablesize = pHba->sg_tablesize;
2428 host->can_queue = pHba->post_fifo_size;
2430 return 0;
2434 static s32 adpt_i2o_to_scsi(void __iomem *reply, struct scsi_cmnd* cmd)
2436 adpt_hba* pHba;
2437 u32 hba_status;
2438 u32 dev_status;
2439 u32 reply_flags = readl(reply) & 0xff00; // Leave it shifted up 8 bits
2440 // I know this would look cleaner if I just read bytes
2441 // but the model I have been using for all the rest of the
2442 // io is in 4 byte words - so I keep that model
2443 u16 detailed_status = readl(reply+16) &0xffff;
2444 dev_status = (detailed_status & 0xff);
2445 hba_status = detailed_status >> 8;
2447 // calculate resid for sg
2448 scsi_set_resid(cmd, scsi_bufflen(cmd) - readl(reply+20));
2450 pHba = (adpt_hba*) cmd->device->host->hostdata[0];
2452 cmd->sense_buffer[0] = '\0'; // initialize sense valid flag to false
2454 if(!(reply_flags & MSG_FAIL)) {
2455 switch(detailed_status & I2O_SCSI_DSC_MASK) {
2456 case I2O_SCSI_DSC_SUCCESS:
2457 cmd->result = (DID_OK << 16);
2458 // handle underflow
2459 if (readl(reply+20) < cmd->underflow) {
2460 cmd->result = (DID_ERROR <<16);
2461 printk(KERN_WARNING"%s: SCSI CMD underflow\n",pHba->name);
2463 break;
2464 case I2O_SCSI_DSC_REQUEST_ABORTED:
2465 cmd->result = (DID_ABORT << 16);
2466 break;
2467 case I2O_SCSI_DSC_PATH_INVALID:
2468 case I2O_SCSI_DSC_DEVICE_NOT_PRESENT:
2469 case I2O_SCSI_DSC_SELECTION_TIMEOUT:
2470 case I2O_SCSI_DSC_COMMAND_TIMEOUT:
2471 case I2O_SCSI_DSC_NO_ADAPTER:
2472 case I2O_SCSI_DSC_RESOURCE_UNAVAILABLE:
2473 printk(KERN_WARNING"%s: SCSI Timeout-Device (%d,%d,%d) hba status=0x%x, dev status=0x%x, cmd=0x%x\n",
2474 pHba->name, (u32)cmd->device->channel, (u32)cmd->device->id, (u32)cmd->device->lun, hba_status, dev_status, cmd->cmnd[0]);
2475 cmd->result = (DID_TIME_OUT << 16);
2476 break;
2477 case I2O_SCSI_DSC_ADAPTER_BUSY:
2478 case I2O_SCSI_DSC_BUS_BUSY:
2479 cmd->result = (DID_BUS_BUSY << 16);
2480 break;
2481 case I2O_SCSI_DSC_SCSI_BUS_RESET:
2482 case I2O_SCSI_DSC_BDR_MESSAGE_SENT:
2483 cmd->result = (DID_RESET << 16);
2484 break;
2485 case I2O_SCSI_DSC_PARITY_ERROR_FAILURE:
2486 printk(KERN_WARNING"%s: SCSI CMD parity error\n",pHba->name);
2487 cmd->result = (DID_PARITY << 16);
2488 break;
2489 case I2O_SCSI_DSC_UNABLE_TO_ABORT:
2490 case I2O_SCSI_DSC_COMPLETE_WITH_ERROR:
2491 case I2O_SCSI_DSC_UNABLE_TO_TERMINATE:
2492 case I2O_SCSI_DSC_MR_MESSAGE_RECEIVED:
2493 case I2O_SCSI_DSC_AUTOSENSE_FAILED:
2494 case I2O_SCSI_DSC_DATA_OVERRUN:
2495 case I2O_SCSI_DSC_UNEXPECTED_BUS_FREE:
2496 case I2O_SCSI_DSC_SEQUENCE_FAILURE:
2497 case I2O_SCSI_DSC_REQUEST_LENGTH_ERROR:
2498 case I2O_SCSI_DSC_PROVIDE_FAILURE:
2499 case I2O_SCSI_DSC_REQUEST_TERMINATED:
2500 case I2O_SCSI_DSC_IDE_MESSAGE_SENT:
2501 case I2O_SCSI_DSC_UNACKNOWLEDGED_EVENT:
2502 case I2O_SCSI_DSC_MESSAGE_RECEIVED:
2503 case I2O_SCSI_DSC_INVALID_CDB:
2504 case I2O_SCSI_DSC_LUN_INVALID:
2505 case I2O_SCSI_DSC_SCSI_TID_INVALID:
2506 case I2O_SCSI_DSC_FUNCTION_UNAVAILABLE:
2507 case I2O_SCSI_DSC_NO_NEXUS:
2508 case I2O_SCSI_DSC_CDB_RECEIVED:
2509 case I2O_SCSI_DSC_LUN_ALREADY_ENABLED:
2510 case I2O_SCSI_DSC_QUEUE_FROZEN:
2511 case I2O_SCSI_DSC_REQUEST_INVALID:
2512 default:
2513 printk(KERN_WARNING"%s: SCSI error %0x-Device(%d,%d,%d) hba_status=0x%x, dev_status=0x%x, cmd=0x%x\n",
2514 pHba->name, detailed_status & I2O_SCSI_DSC_MASK, (u32)cmd->device->channel, (u32)cmd->device->id, (u32)cmd->device->lun,
2515 hba_status, dev_status, cmd->cmnd[0]);
2516 cmd->result = (DID_ERROR << 16);
2517 break;
2520 // copy over the request sense data if it was a check
2521 // condition status
2522 if (dev_status == SAM_STAT_CHECK_CONDITION) {
2523 u32 len = min(SCSI_SENSE_BUFFERSIZE, 40);
2524 // Copy over the sense data
2525 memcpy_fromio(cmd->sense_buffer, (reply+28) , len);
2526 if(cmd->sense_buffer[0] == 0x70 /* class 7 */ &&
2527 cmd->sense_buffer[2] == DATA_PROTECT ){
2528 /* This is to handle an array failed */
2529 cmd->result = (DID_TIME_OUT << 16);
2530 printk(KERN_WARNING"%s: SCSI Data Protect-Device (%d,%d,%d) hba_status=0x%x, dev_status=0x%x, cmd=0x%x\n",
2531 pHba->name, (u32)cmd->device->channel, (u32)cmd->device->id, (u32)cmd->device->lun,
2532 hba_status, dev_status, cmd->cmnd[0]);
2536 } else {
2537 /* In this condtion we could not talk to the tid
2538 * the card rejected it. We should signal a retry
2539 * for a limitted number of retries.
2541 cmd->result = (DID_TIME_OUT << 16);
2542 printk(KERN_WARNING"%s: I2O MSG_FAIL - Device (%d,%d,%d) tid=%d, cmd=0x%x\n",
2543 pHba->name, (u32)cmd->device->channel, (u32)cmd->device->id, (u32)cmd->device->lun,
2544 ((struct adpt_device*)(cmd->device->hostdata))->tid, cmd->cmnd[0]);
2547 cmd->result |= (dev_status);
2549 if(cmd->scsi_done != NULL){
2550 cmd->scsi_done(cmd);
2552 return cmd->result;
2556 static s32 adpt_rescan(adpt_hba* pHba)
2558 s32 rcode;
2559 ulong flags = 0;
2561 if(pHba->host)
2562 spin_lock_irqsave(pHba->host->host_lock, flags);
2563 if ((rcode=adpt_i2o_lct_get(pHba)) < 0)
2564 goto out;
2565 if ((rcode=adpt_i2o_reparse_lct(pHba)) < 0)
2566 goto out;
2567 rcode = 0;
2568 out: if(pHba->host)
2569 spin_unlock_irqrestore(pHba->host->host_lock, flags);
2570 return rcode;
2574 static s32 adpt_i2o_reparse_lct(adpt_hba* pHba)
2576 int i;
2577 int max;
2578 int tid;
2579 struct i2o_device *d;
2580 i2o_lct *lct = pHba->lct;
2581 u8 bus_no = 0;
2582 s16 scsi_id;
2583 s16 scsi_lun;
2584 u32 buf[10]; // at least 8 u32's
2585 struct adpt_device* pDev = NULL;
2586 struct i2o_device* pI2o_dev = NULL;
2588 if (lct == NULL) {
2589 printk(KERN_ERR "%s: LCT is empty???\n",pHba->name);
2590 return -1;
2593 max = lct->table_size;
2594 max -= 3;
2595 max /= 9;
2597 // Mark each drive as unscanned
2598 for (d = pHba->devices; d; d = d->next) {
2599 pDev =(struct adpt_device*) d->owner;
2600 if(!pDev){
2601 continue;
2603 pDev->state |= DPTI_DEV_UNSCANNED;
2606 printk(KERN_INFO "%s: LCT has %d entries.\n", pHba->name,max);
2608 for(i=0;i<max;i++) {
2609 if( lct->lct_entry[i].user_tid != 0xfff){
2610 continue;
2613 if( lct->lct_entry[i].class_id == I2O_CLASS_RANDOM_BLOCK_STORAGE ||
2614 lct->lct_entry[i].class_id == I2O_CLASS_SCSI_PERIPHERAL ||
2615 lct->lct_entry[i].class_id == I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL ){
2616 tid = lct->lct_entry[i].tid;
2617 if(adpt_i2o_query_scalar(pHba, tid, 0x8000, -1, buf, 32)<0) {
2618 printk(KERN_ERR"%s: Could not query device\n",pHba->name);
2619 continue;
2621 bus_no = buf[0]>>16;
2622 scsi_id = buf[1];
2623 scsi_lun = (buf[2]>>8 )&0xff;
2624 pDev = pHba->channel[bus_no].device[scsi_id];
2625 /* da lun */
2626 while(pDev) {
2627 if(pDev->scsi_lun == scsi_lun) {
2628 break;
2630 pDev = pDev->next_lun;
2632 if(!pDev ) { // Something new add it
2633 d = kmalloc(sizeof(struct i2o_device), GFP_KERNEL);
2634 if(d==NULL)
2636 printk(KERN_CRIT "Out of memory for I2O device data.\n");
2637 return -ENOMEM;
2640 d->controller = pHba;
2641 d->next = NULL;
2643 memcpy(&d->lct_data, &lct->lct_entry[i], sizeof(i2o_lct_entry));
2645 d->flags = 0;
2646 adpt_i2o_report_hba_unit(pHba, d);
2647 adpt_i2o_install_device(pHba, d);
2649 if(bus_no >= MAX_CHANNEL) { // Something wrong skip it
2650 printk(KERN_WARNING"%s: Channel number %d out of range \n", pHba->name, bus_no);
2651 continue;
2653 pDev = pHba->channel[bus_no].device[scsi_id];
2654 if( pDev == NULL){
2655 pDev = kzalloc(sizeof(struct adpt_device),GFP_KERNEL);
2656 if(pDev == NULL) {
2657 return -ENOMEM;
2659 pHba->channel[bus_no].device[scsi_id] = pDev;
2660 } else {
2661 while (pDev->next_lun) {
2662 pDev = pDev->next_lun;
2664 pDev = pDev->next_lun = kzalloc(sizeof(struct adpt_device),GFP_KERNEL);
2665 if(pDev == NULL) {
2666 return -ENOMEM;
2669 pDev->tid = d->lct_data.tid;
2670 pDev->scsi_channel = bus_no;
2671 pDev->scsi_id = scsi_id;
2672 pDev->scsi_lun = scsi_lun;
2673 pDev->pI2o_dev = d;
2674 d->owner = pDev;
2675 pDev->type = (buf[0])&0xff;
2676 pDev->flags = (buf[0]>>8)&0xff;
2677 // Too late, SCSI system has made up it's mind, but what the hey ...
2678 if(scsi_id > pHba->top_scsi_id){
2679 pHba->top_scsi_id = scsi_id;
2681 if(scsi_lun > pHba->top_scsi_lun){
2682 pHba->top_scsi_lun = scsi_lun;
2684 continue;
2685 } // end of new i2o device
2687 // We found an old device - check it
2688 while(pDev) {
2689 if(pDev->scsi_lun == scsi_lun) {
2690 if(!scsi_device_online(pDev->pScsi_dev)) {
2691 printk(KERN_WARNING"%s: Setting device (%d,%d,%d) back online\n",
2692 pHba->name,bus_no,scsi_id,scsi_lun);
2693 if (pDev->pScsi_dev) {
2694 scsi_device_set_state(pDev->pScsi_dev, SDEV_RUNNING);
2697 d = pDev->pI2o_dev;
2698 if(d->lct_data.tid != tid) { // something changed
2699 pDev->tid = tid;
2700 memcpy(&d->lct_data, &lct->lct_entry[i], sizeof(i2o_lct_entry));
2701 if (pDev->pScsi_dev) {
2702 pDev->pScsi_dev->changed = TRUE;
2703 pDev->pScsi_dev->removable = TRUE;
2706 // Found it - mark it scanned
2707 pDev->state = DPTI_DEV_ONLINE;
2708 break;
2710 pDev = pDev->next_lun;
2714 for (pI2o_dev = pHba->devices; pI2o_dev; pI2o_dev = pI2o_dev->next) {
2715 pDev =(struct adpt_device*) pI2o_dev->owner;
2716 if(!pDev){
2717 continue;
2719 // Drive offline drives that previously existed but could not be found
2720 // in the LCT table
2721 if (pDev->state & DPTI_DEV_UNSCANNED){
2722 pDev->state = DPTI_DEV_OFFLINE;
2723 printk(KERN_WARNING"%s: Device (%d,%d,%d) offline\n",pHba->name,pDev->scsi_channel,pDev->scsi_id,pDev->scsi_lun);
2724 if (pDev->pScsi_dev) {
2725 scsi_device_set_state(pDev->pScsi_dev, SDEV_OFFLINE);
2729 return 0;
2732 static void adpt_fail_posted_scbs(adpt_hba* pHba)
2734 struct scsi_cmnd* cmd = NULL;
2735 struct scsi_device* d = NULL;
2737 shost_for_each_device(d, pHba->host) {
2738 unsigned long flags;
2739 spin_lock_irqsave(&d->list_lock, flags);
2740 list_for_each_entry(cmd, &d->cmd_list, list) {
2741 if(cmd->serial_number == 0){
2742 continue;
2744 cmd->result = (DID_OK << 16) | (QUEUE_FULL <<1);
2745 cmd->scsi_done(cmd);
2747 spin_unlock_irqrestore(&d->list_lock, flags);
2752 /*============================================================================
2753 * Routines from i2o subsystem
2754 *============================================================================
2760 * Bring an I2O controller into HOLD state. See the spec.
2762 static int adpt_i2o_activate_hba(adpt_hba* pHba)
2764 int rcode;
2766 if(pHba->initialized ) {
2767 if (adpt_i2o_status_get(pHba) < 0) {
2768 if((rcode = adpt_i2o_reset_hba(pHba)) != 0){
2769 printk(KERN_WARNING"%s: Could NOT reset.\n", pHba->name);
2770 return rcode;
2772 if (adpt_i2o_status_get(pHba) < 0) {
2773 printk(KERN_INFO "HBA not responding.\n");
2774 return -1;
2778 if(pHba->status_block->iop_state == ADAPTER_STATE_FAULTED) {
2779 printk(KERN_CRIT "%s: hardware fault\n", pHba->name);
2780 return -1;
2783 if (pHba->status_block->iop_state == ADAPTER_STATE_READY ||
2784 pHba->status_block->iop_state == ADAPTER_STATE_OPERATIONAL ||
2785 pHba->status_block->iop_state == ADAPTER_STATE_HOLD ||
2786 pHba->status_block->iop_state == ADAPTER_STATE_FAILED) {
2787 adpt_i2o_reset_hba(pHba);
2788 if (adpt_i2o_status_get(pHba) < 0 || pHba->status_block->iop_state != ADAPTER_STATE_RESET) {
2789 printk(KERN_ERR "%s: Failed to initialize.\n", pHba->name);
2790 return -1;
2793 } else {
2794 if((rcode = adpt_i2o_reset_hba(pHba)) != 0){
2795 printk(KERN_WARNING"%s: Could NOT reset.\n", pHba->name);
2796 return rcode;
2801 if (adpt_i2o_init_outbound_q(pHba) < 0) {
2802 return -1;
2805 /* In HOLD state */
2807 if (adpt_i2o_hrt_get(pHba) < 0) {
2808 return -1;
2811 return 0;
2815 * Bring a controller online into OPERATIONAL state.
2818 static int adpt_i2o_online_hba(adpt_hba* pHba)
2820 if (adpt_i2o_systab_send(pHba) < 0) {
2821 adpt_i2o_delete_hba(pHba);
2822 return -1;
2824 /* In READY state */
2826 if (adpt_i2o_enable_hba(pHba) < 0) {
2827 adpt_i2o_delete_hba(pHba);
2828 return -1;
2831 /* In OPERATIONAL state */
2832 return 0;
2835 static s32 adpt_send_nop(adpt_hba*pHba,u32 m)
2837 u32 __iomem *msg;
2838 ulong timeout = jiffies + 5*HZ;
2840 while(m == EMPTY_QUEUE){
2841 rmb();
2842 m = readl(pHba->post_port);
2843 if(m != EMPTY_QUEUE){
2844 break;
2846 if(time_after(jiffies,timeout)){
2847 printk(KERN_ERR "%s: Timeout waiting for message frame!\n",pHba->name);
2848 return 2;
2850 schedule_timeout_uninterruptible(1);
2852 msg = (u32 __iomem *)(pHba->msg_addr_virt + m);
2853 writel( THREE_WORD_MSG_SIZE | SGL_OFFSET_0,&msg[0]);
2854 writel( I2O_CMD_UTIL_NOP << 24 | HOST_TID << 12 | 0,&msg[1]);
2855 writel( 0,&msg[2]);
2856 wmb();
2858 writel(m, pHba->post_port);
2859 wmb();
2860 return 0;
2863 static s32 adpt_i2o_init_outbound_q(adpt_hba* pHba)
2865 u8 *status;
2866 dma_addr_t addr;
2867 u32 __iomem *msg = NULL;
2868 int i;
2869 ulong timeout = jiffies + TMOUT_INITOUTBOUND*HZ;
2870 u32 m;
2872 do {
2873 rmb();
2874 m = readl(pHba->post_port);
2875 if (m != EMPTY_QUEUE) {
2876 break;
2879 if(time_after(jiffies,timeout)){
2880 printk(KERN_WARNING"%s: Timeout waiting for message frame\n",pHba->name);
2881 return -ETIMEDOUT;
2883 schedule_timeout_uninterruptible(1);
2884 } while(m == EMPTY_QUEUE);
2886 msg=(u32 __iomem *)(pHba->msg_addr_virt+m);
2888 status = dma_alloc_coherent(&pHba->pDev->dev, 4, &addr, GFP_KERNEL);
2889 if (!status) {
2890 adpt_send_nop(pHba, m);
2891 printk(KERN_WARNING"%s: IOP reset failed - no free memory.\n",
2892 pHba->name);
2893 return -ENOMEM;
2895 memset(status, 0, 4);
2897 writel(EIGHT_WORD_MSG_SIZE| SGL_OFFSET_6, &msg[0]);
2898 writel(I2O_CMD_OUTBOUND_INIT<<24 | HOST_TID<<12 | ADAPTER_TID, &msg[1]);
2899 writel(0, &msg[2]);
2900 writel(0x0106, &msg[3]); /* Transaction context */
2901 writel(4096, &msg[4]); /* Host page frame size */
2902 writel((REPLY_FRAME_SIZE)<<16|0x80, &msg[5]); /* Outbound msg frame size and Initcode */
2903 writel(0xD0000004, &msg[6]); /* Simple SG LE, EOB */
2904 writel((u32)addr, &msg[7]);
2906 writel(m, pHba->post_port);
2907 wmb();
2909 // Wait for the reply status to come back
2910 do {
2911 if (*status) {
2912 if (*status != 0x01 /*I2O_EXEC_OUTBOUND_INIT_IN_PROGRESS*/) {
2913 break;
2916 rmb();
2917 if(time_after(jiffies,timeout)){
2918 printk(KERN_WARNING"%s: Timeout Initializing\n",pHba->name);
2919 /* We lose 4 bytes of "status" here, but we
2920 cannot free these because controller may
2921 awake and corrupt those bytes at any time */
2922 /* dma_free_coherent(&pHba->pDev->dev, 4, status, addr); */
2923 return -ETIMEDOUT;
2925 schedule_timeout_uninterruptible(1);
2926 } while (1);
2928 // If the command was successful, fill the fifo with our reply
2929 // message packets
2930 if(*status != 0x04 /*I2O_EXEC_OUTBOUND_INIT_COMPLETE*/) {
2931 dma_free_coherent(&pHba->pDev->dev, 4, status, addr);
2932 return -2;
2934 dma_free_coherent(&pHba->pDev->dev, 4, status, addr);
2936 if(pHba->reply_pool != NULL) {
2937 dma_free_coherent(&pHba->pDev->dev,
2938 pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4,
2939 pHba->reply_pool, pHba->reply_pool_pa);
2942 pHba->reply_pool = dma_alloc_coherent(&pHba->pDev->dev,
2943 pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4,
2944 &pHba->reply_pool_pa, GFP_KERNEL);
2945 if (!pHba->reply_pool) {
2946 printk(KERN_ERR "%s: Could not allocate reply pool\n", pHba->name);
2947 return -ENOMEM;
2949 memset(pHba->reply_pool, 0 , pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4);
2951 for(i = 0; i < pHba->reply_fifo_size; i++) {
2952 writel(pHba->reply_pool_pa + (i * REPLY_FRAME_SIZE * 4),
2953 pHba->reply_port);
2954 wmb();
2956 adpt_i2o_status_get(pHba);
2957 return 0;
2962 * I2O System Table. Contains information about
2963 * all the IOPs in the system. Used to inform IOPs
2964 * about each other's existence.
2966 * sys_tbl_ver is the CurrentChangeIndicator that is
2967 * used by IOPs to track changes.
2972 static s32 adpt_i2o_status_get(adpt_hba* pHba)
2974 ulong timeout;
2975 u32 m;
2976 u32 __iomem *msg;
2977 u8 *status_block=NULL;
2979 if(pHba->status_block == NULL) {
2980 pHba->status_block = dma_alloc_coherent(&pHba->pDev->dev,
2981 sizeof(i2o_status_block),
2982 &pHba->status_block_pa, GFP_KERNEL);
2983 if(pHba->status_block == NULL) {
2984 printk(KERN_ERR
2985 "dpti%d: Get Status Block failed; Out of memory. \n",
2986 pHba->unit);
2987 return -ENOMEM;
2990 memset(pHba->status_block, 0, sizeof(i2o_status_block));
2991 status_block = (u8*)(pHba->status_block);
2992 timeout = jiffies+TMOUT_GETSTATUS*HZ;
2993 do {
2994 rmb();
2995 m = readl(pHba->post_port);
2996 if (m != EMPTY_QUEUE) {
2997 break;
2999 if(time_after(jiffies,timeout)){
3000 printk(KERN_ERR "%s: Timeout waiting for message !\n",
3001 pHba->name);
3002 return -ETIMEDOUT;
3004 schedule_timeout_uninterruptible(1);
3005 } while(m==EMPTY_QUEUE);
3008 msg=(u32 __iomem *)(pHba->msg_addr_virt+m);
3010 writel(NINE_WORD_MSG_SIZE|SGL_OFFSET_0, &msg[0]);
3011 writel(I2O_CMD_STATUS_GET<<24|HOST_TID<<12|ADAPTER_TID, &msg[1]);
3012 writel(1, &msg[2]);
3013 writel(0, &msg[3]);
3014 writel(0, &msg[4]);
3015 writel(0, &msg[5]);
3016 writel( dma_low(pHba->status_block_pa), &msg[6]);
3017 writel( dma_high(pHba->status_block_pa), &msg[7]);
3018 writel(sizeof(i2o_status_block), &msg[8]); // 88 bytes
3020 //post message
3021 writel(m, pHba->post_port);
3022 wmb();
3024 while(status_block[87]!=0xff){
3025 if(time_after(jiffies,timeout)){
3026 printk(KERN_ERR"dpti%d: Get status timeout.\n",
3027 pHba->unit);
3028 return -ETIMEDOUT;
3030 rmb();
3031 schedule_timeout_uninterruptible(1);
3034 // Set up our number of outbound and inbound messages
3035 pHba->post_fifo_size = pHba->status_block->max_inbound_frames;
3036 if (pHba->post_fifo_size > MAX_TO_IOP_MESSAGES) {
3037 pHba->post_fifo_size = MAX_TO_IOP_MESSAGES;
3040 pHba->reply_fifo_size = pHba->status_block->max_outbound_frames;
3041 if (pHba->reply_fifo_size > MAX_FROM_IOP_MESSAGES) {
3042 pHba->reply_fifo_size = MAX_FROM_IOP_MESSAGES;
3045 // Calculate the Scatter Gather list size
3046 if (dpt_dma64(pHba)) {
3047 pHba->sg_tablesize
3048 = ((pHba->status_block->inbound_frame_size * 4
3049 - 14 * sizeof(u32))
3050 / (sizeof(struct sg_simple_element) + sizeof(u32)));
3051 } else {
3052 pHba->sg_tablesize
3053 = ((pHba->status_block->inbound_frame_size * 4
3054 - 12 * sizeof(u32))
3055 / sizeof(struct sg_simple_element));
3057 if (pHba->sg_tablesize > SG_LIST_ELEMENTS) {
3058 pHba->sg_tablesize = SG_LIST_ELEMENTS;
3062 #ifdef DEBUG
3063 printk("dpti%d: State = ",pHba->unit);
3064 switch(pHba->status_block->iop_state) {
3065 case 0x01:
3066 printk("INIT\n");
3067 break;
3068 case 0x02:
3069 printk("RESET\n");
3070 break;
3071 case 0x04:
3072 printk("HOLD\n");
3073 break;
3074 case 0x05:
3075 printk("READY\n");
3076 break;
3077 case 0x08:
3078 printk("OPERATIONAL\n");
3079 break;
3080 case 0x10:
3081 printk("FAILED\n");
3082 break;
3083 case 0x11:
3084 printk("FAULTED\n");
3085 break;
3086 default:
3087 printk("%x (unknown!!)\n",pHba->status_block->iop_state);
3089 #endif
3090 return 0;
3094 * Get the IOP's Logical Configuration Table
3096 static int adpt_i2o_lct_get(adpt_hba* pHba)
3098 u32 msg[8];
3099 int ret;
3100 u32 buf[16];
3102 if ((pHba->lct_size == 0) || (pHba->lct == NULL)){
3103 pHba->lct_size = pHba->status_block->expected_lct_size;
3105 do {
3106 if (pHba->lct == NULL) {
3107 pHba->lct = dma_alloc_coherent(&pHba->pDev->dev,
3108 pHba->lct_size, &pHba->lct_pa,
3109 GFP_KERNEL);
3110 if(pHba->lct == NULL) {
3111 printk(KERN_CRIT "%s: Lct Get failed. Out of memory.\n",
3112 pHba->name);
3113 return -ENOMEM;
3116 memset(pHba->lct, 0, pHba->lct_size);
3118 msg[0] = EIGHT_WORD_MSG_SIZE|SGL_OFFSET_6;
3119 msg[1] = I2O_CMD_LCT_NOTIFY<<24 | HOST_TID<<12 | ADAPTER_TID;
3120 msg[2] = 0;
3121 msg[3] = 0;
3122 msg[4] = 0xFFFFFFFF; /* All devices */
3123 msg[5] = 0x00000000; /* Report now */
3124 msg[6] = 0xD0000000|pHba->lct_size;
3125 msg[7] = (u32)pHba->lct_pa;
3127 if ((ret=adpt_i2o_post_wait(pHba, msg, sizeof(msg), 360))) {
3128 printk(KERN_ERR "%s: LCT Get failed (status=%#10x.\n",
3129 pHba->name, ret);
3130 printk(KERN_ERR"Adaptec: Error Reading Hardware.\n");
3131 return ret;
3134 if ((pHba->lct->table_size << 2) > pHba->lct_size) {
3135 pHba->lct_size = pHba->lct->table_size << 2;
3136 dma_free_coherent(&pHba->pDev->dev, pHba->lct_size,
3137 pHba->lct, pHba->lct_pa);
3138 pHba->lct = NULL;
3140 } while (pHba->lct == NULL);
3142 PDEBUG("%s: Hardware resource table read.\n", pHba->name);
3145 // I2O_DPT_EXEC_IOP_BUFFERS_GROUP_NO;
3146 if(adpt_i2o_query_scalar(pHba, 0 , 0x8000, -1, buf, sizeof(buf))>=0) {
3147 pHba->FwDebugBufferSize = buf[1];
3148 pHba->FwDebugBuffer_P = ioremap(pHba->base_addr_phys + buf[0],
3149 pHba->FwDebugBufferSize);
3150 if (pHba->FwDebugBuffer_P) {
3151 pHba->FwDebugFlags_P = pHba->FwDebugBuffer_P +
3152 FW_DEBUG_FLAGS_OFFSET;
3153 pHba->FwDebugBLEDvalue_P = pHba->FwDebugBuffer_P +
3154 FW_DEBUG_BLED_OFFSET;
3155 pHba->FwDebugBLEDflag_P = pHba->FwDebugBLEDvalue_P + 1;
3156 pHba->FwDebugStrLength_P = pHba->FwDebugBuffer_P +
3157 FW_DEBUG_STR_LENGTH_OFFSET;
3158 pHba->FwDebugBuffer_P += buf[2];
3159 pHba->FwDebugFlags = 0;
3163 return 0;
3166 static int adpt_i2o_build_sys_table(void)
3168 adpt_hba* pHba = hba_chain;
3169 int count = 0;
3171 if (sys_tbl)
3172 dma_free_coherent(&pHba->pDev->dev, sys_tbl_len,
3173 sys_tbl, sys_tbl_pa);
3175 sys_tbl_len = sizeof(struct i2o_sys_tbl) + // Header + IOPs
3176 (hba_count) * sizeof(struct i2o_sys_tbl_entry);
3178 sys_tbl = dma_alloc_coherent(&pHba->pDev->dev,
3179 sys_tbl_len, &sys_tbl_pa, GFP_KERNEL);
3180 if (!sys_tbl) {
3181 printk(KERN_WARNING "SysTab Set failed. Out of memory.\n");
3182 return -ENOMEM;
3184 memset(sys_tbl, 0, sys_tbl_len);
3186 sys_tbl->num_entries = hba_count;
3187 sys_tbl->version = I2OVERSION;
3188 sys_tbl->change_ind = sys_tbl_ind++;
3190 for(pHba = hba_chain; pHba; pHba = pHba->next) {
3191 u64 addr;
3192 // Get updated Status Block so we have the latest information
3193 if (adpt_i2o_status_get(pHba)) {
3194 sys_tbl->num_entries--;
3195 continue; // try next one
3198 sys_tbl->iops[count].org_id = pHba->status_block->org_id;
3199 sys_tbl->iops[count].iop_id = pHba->unit + 2;
3200 sys_tbl->iops[count].seg_num = 0;
3201 sys_tbl->iops[count].i2o_version = pHba->status_block->i2o_version;
3202 sys_tbl->iops[count].iop_state = pHba->status_block->iop_state;
3203 sys_tbl->iops[count].msg_type = pHba->status_block->msg_type;
3204 sys_tbl->iops[count].frame_size = pHba->status_block->inbound_frame_size;
3205 sys_tbl->iops[count].last_changed = sys_tbl_ind - 1; // ??
3206 sys_tbl->iops[count].iop_capabilities = pHba->status_block->iop_capabilities;
3207 addr = pHba->base_addr_phys + 0x40;
3208 sys_tbl->iops[count].inbound_low = dma_low(addr);
3209 sys_tbl->iops[count].inbound_high = dma_high(addr);
3211 count++;
3214 #ifdef DEBUG
3216 u32 *table = (u32*)sys_tbl;
3217 printk(KERN_DEBUG"sys_tbl_len=%d in 32bit words\n",(sys_tbl_len >>2));
3218 for(count = 0; count < (sys_tbl_len >>2); count++) {
3219 printk(KERN_INFO "sys_tbl[%d] = %0#10x\n",
3220 count, table[count]);
3223 #endif
3225 return 0;
3230 * Dump the information block associated with a given unit (TID)
3233 static void adpt_i2o_report_hba_unit(adpt_hba* pHba, struct i2o_device *d)
3235 char buf[64];
3236 int unit = d->lct_data.tid;
3238 printk(KERN_INFO "TID %3.3d ", unit);
3240 if(adpt_i2o_query_scalar(pHba, unit, 0xF100, 3, buf, 16)>=0)
3242 buf[16]=0;
3243 printk(" Vendor: %-12.12s", buf);
3245 if(adpt_i2o_query_scalar(pHba, unit, 0xF100, 4, buf, 16)>=0)
3247 buf[16]=0;
3248 printk(" Device: %-12.12s", buf);
3250 if(adpt_i2o_query_scalar(pHba, unit, 0xF100, 6, buf, 8)>=0)
3252 buf[8]=0;
3253 printk(" Rev: %-12.12s\n", buf);
3255 #ifdef DEBUG
3256 printk(KERN_INFO "\tClass: %.21s\n", adpt_i2o_get_class_name(d->lct_data.class_id));
3257 printk(KERN_INFO "\tSubclass: 0x%04X\n", d->lct_data.sub_class);
3258 printk(KERN_INFO "\tFlags: ");
3260 if(d->lct_data.device_flags&(1<<0))
3261 printk("C"); // ConfigDialog requested
3262 if(d->lct_data.device_flags&(1<<1))
3263 printk("U"); // Multi-user capable
3264 if(!(d->lct_data.device_flags&(1<<4)))
3265 printk("P"); // Peer service enabled!
3266 if(!(d->lct_data.device_flags&(1<<5)))
3267 printk("M"); // Mgmt service enabled!
3268 printk("\n");
3269 #endif
3272 #ifdef DEBUG
3274 * Do i2o class name lookup
3276 static const char *adpt_i2o_get_class_name(int class)
3278 int idx = 16;
3279 static char *i2o_class_name[] = {
3280 "Executive",
3281 "Device Driver Module",
3282 "Block Device",
3283 "Tape Device",
3284 "LAN Interface",
3285 "WAN Interface",
3286 "Fibre Channel Port",
3287 "Fibre Channel Device",
3288 "SCSI Device",
3289 "ATE Port",
3290 "ATE Device",
3291 "Floppy Controller",
3292 "Floppy Device",
3293 "Secondary Bus Port",
3294 "Peer Transport Agent",
3295 "Peer Transport",
3296 "Unknown"
3299 switch(class&0xFFF) {
3300 case I2O_CLASS_EXECUTIVE:
3301 idx = 0; break;
3302 case I2O_CLASS_DDM:
3303 idx = 1; break;
3304 case I2O_CLASS_RANDOM_BLOCK_STORAGE:
3305 idx = 2; break;
3306 case I2O_CLASS_SEQUENTIAL_STORAGE:
3307 idx = 3; break;
3308 case I2O_CLASS_LAN:
3309 idx = 4; break;
3310 case I2O_CLASS_WAN:
3311 idx = 5; break;
3312 case I2O_CLASS_FIBRE_CHANNEL_PORT:
3313 idx = 6; break;
3314 case I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL:
3315 idx = 7; break;
3316 case I2O_CLASS_SCSI_PERIPHERAL:
3317 idx = 8; break;
3318 case I2O_CLASS_ATE_PORT:
3319 idx = 9; break;
3320 case I2O_CLASS_ATE_PERIPHERAL:
3321 idx = 10; break;
3322 case I2O_CLASS_FLOPPY_CONTROLLER:
3323 idx = 11; break;
3324 case I2O_CLASS_FLOPPY_DEVICE:
3325 idx = 12; break;
3326 case I2O_CLASS_BUS_ADAPTER_PORT:
3327 idx = 13; break;
3328 case I2O_CLASS_PEER_TRANSPORT_AGENT:
3329 idx = 14; break;
3330 case I2O_CLASS_PEER_TRANSPORT:
3331 idx = 15; break;
3333 return i2o_class_name[idx];
3335 #endif
3338 static s32 adpt_i2o_hrt_get(adpt_hba* pHba)
3340 u32 msg[6];
3341 int ret, size = sizeof(i2o_hrt);
3343 do {
3344 if (pHba->hrt == NULL) {
3345 pHba->hrt = dma_alloc_coherent(&pHba->pDev->dev,
3346 size, &pHba->hrt_pa, GFP_KERNEL);
3347 if (pHba->hrt == NULL) {
3348 printk(KERN_CRIT "%s: Hrt Get failed; Out of memory.\n", pHba->name);
3349 return -ENOMEM;
3353 msg[0]= SIX_WORD_MSG_SIZE| SGL_OFFSET_4;
3354 msg[1]= I2O_CMD_HRT_GET<<24 | HOST_TID<<12 | ADAPTER_TID;
3355 msg[2]= 0;
3356 msg[3]= 0;
3357 msg[4]= (0xD0000000 | size); /* Simple transaction */
3358 msg[5]= (u32)pHba->hrt_pa; /* Dump it here */
3360 if ((ret = adpt_i2o_post_wait(pHba, msg, sizeof(msg),20))) {
3361 printk(KERN_ERR "%s: Unable to get HRT (status=%#10x)\n", pHba->name, ret);
3362 return ret;
3365 if (pHba->hrt->num_entries * pHba->hrt->entry_len << 2 > size) {
3366 int newsize = pHba->hrt->num_entries * pHba->hrt->entry_len << 2;
3367 dma_free_coherent(&pHba->pDev->dev, size,
3368 pHba->hrt, pHba->hrt_pa);
3369 size = newsize;
3370 pHba->hrt = NULL;
3372 } while(pHba->hrt == NULL);
3373 return 0;
3377 * Query one scalar group value or a whole scalar group.
3379 static int adpt_i2o_query_scalar(adpt_hba* pHba, int tid,
3380 int group, int field, void *buf, int buflen)
3382 u16 opblk[] = { 1, 0, I2O_PARAMS_FIELD_GET, group, 1, field };
3383 u8 *opblk_va;
3384 dma_addr_t opblk_pa;
3385 u8 *resblk_va;
3386 dma_addr_t resblk_pa;
3388 int size;
3390 /* 8 bytes for header */
3391 resblk_va = dma_alloc_coherent(&pHba->pDev->dev,
3392 sizeof(u8) * (8 + buflen), &resblk_pa, GFP_KERNEL);
3393 if (resblk_va == NULL) {
3394 printk(KERN_CRIT "%s: query scalar failed; Out of memory.\n", pHba->name);
3395 return -ENOMEM;
3398 opblk_va = dma_alloc_coherent(&pHba->pDev->dev,
3399 sizeof(opblk), &opblk_pa, GFP_KERNEL);
3400 if (opblk_va == NULL) {
3401 dma_free_coherent(&pHba->pDev->dev, sizeof(u8) * (8+buflen),
3402 resblk_va, resblk_pa);
3403 printk(KERN_CRIT "%s: query operatio failed; Out of memory.\n",
3404 pHba->name);
3405 return -ENOMEM;
3407 if (field == -1) /* whole group */
3408 opblk[4] = -1;
3410 memcpy(opblk_va, opblk, sizeof(opblk));
3411 size = adpt_i2o_issue_params(I2O_CMD_UTIL_PARAMS_GET, pHba, tid,
3412 opblk_va, opblk_pa, sizeof(opblk),
3413 resblk_va, resblk_pa, sizeof(u8)*(8+buflen));
3414 dma_free_coherent(&pHba->pDev->dev, sizeof(opblk), opblk_va, opblk_pa);
3415 if (size == -ETIME) {
3416 dma_free_coherent(&pHba->pDev->dev, sizeof(u8) * (8+buflen),
3417 resblk_va, resblk_pa);
3418 printk(KERN_WARNING "%s: issue params failed; Timed out.\n", pHba->name);
3419 return -ETIME;
3420 } else if (size == -EINTR) {
3421 dma_free_coherent(&pHba->pDev->dev, sizeof(u8) * (8+buflen),
3422 resblk_va, resblk_pa);
3423 printk(KERN_WARNING "%s: issue params failed; Interrupted.\n", pHba->name);
3424 return -EINTR;
3427 memcpy(buf, resblk_va+8, buflen); /* cut off header */
3429 dma_free_coherent(&pHba->pDev->dev, sizeof(u8) * (8+buflen),
3430 resblk_va, resblk_pa);
3431 if (size < 0)
3432 return size;
3434 return buflen;
3438 /* Issue UTIL_PARAMS_GET or UTIL_PARAMS_SET
3440 * This function can be used for all UtilParamsGet/Set operations.
3441 * The OperationBlock is given in opblk-buffer,
3442 * and results are returned in resblk-buffer.
3443 * Note that the minimum sized resblk is 8 bytes and contains
3444 * ResultCount, ErrorInfoSize, BlockStatus and BlockSize.
3446 static int adpt_i2o_issue_params(int cmd, adpt_hba* pHba, int tid,
3447 void *opblk_va, dma_addr_t opblk_pa, int oplen,
3448 void *resblk_va, dma_addr_t resblk_pa, int reslen)
3450 u32 msg[9];
3451 u32 *res = (u32 *)resblk_va;
3452 int wait_status;
3454 msg[0] = NINE_WORD_MSG_SIZE | SGL_OFFSET_5;
3455 msg[1] = cmd << 24 | HOST_TID << 12 | tid;
3456 msg[2] = 0;
3457 msg[3] = 0;
3458 msg[4] = 0;
3459 msg[5] = 0x54000000 | oplen; /* OperationBlock */
3460 msg[6] = (u32)opblk_pa;
3461 msg[7] = 0xD0000000 | reslen; /* ResultBlock */
3462 msg[8] = (u32)resblk_pa;
3464 if ((wait_status = adpt_i2o_post_wait(pHba, msg, sizeof(msg), 20))) {
3465 printk("adpt_i2o_issue_params: post_wait failed (%p)\n", resblk_va);
3466 return wait_status; /* -DetailedStatus */
3469 if (res[1]&0x00FF0000) { /* BlockStatus != SUCCESS */
3470 printk(KERN_WARNING "%s: %s - Error:\n ErrorInfoSize = 0x%02x, "
3471 "BlockStatus = 0x%02x, BlockSize = 0x%04x\n",
3472 pHba->name,
3473 (cmd == I2O_CMD_UTIL_PARAMS_SET) ? "PARAMS_SET"
3474 : "PARAMS_GET",
3475 res[1]>>24, (res[1]>>16)&0xFF, res[1]&0xFFFF);
3476 return -((res[1] >> 16) & 0xFF); /* -BlockStatus */
3479 return 4 + ((res[1] & 0x0000FFFF) << 2); /* bytes used in resblk */
3483 static s32 adpt_i2o_quiesce_hba(adpt_hba* pHba)
3485 u32 msg[4];
3486 int ret;
3488 adpt_i2o_status_get(pHba);
3490 /* SysQuiesce discarded if IOP not in READY or OPERATIONAL state */
3492 if((pHba->status_block->iop_state != ADAPTER_STATE_READY) &&
3493 (pHba->status_block->iop_state != ADAPTER_STATE_OPERATIONAL)){
3494 return 0;
3497 msg[0] = FOUR_WORD_MSG_SIZE|SGL_OFFSET_0;
3498 msg[1] = I2O_CMD_SYS_QUIESCE<<24|HOST_TID<<12|ADAPTER_TID;
3499 msg[2] = 0;
3500 msg[3] = 0;
3502 if((ret = adpt_i2o_post_wait(pHba, msg, sizeof(msg), 240))) {
3503 printk(KERN_INFO"dpti%d: Unable to quiesce (status=%#x).\n",
3504 pHba->unit, -ret);
3505 } else {
3506 printk(KERN_INFO"dpti%d: Quiesced.\n",pHba->unit);
3509 adpt_i2o_status_get(pHba);
3510 return ret;
3515 * Enable IOP. Allows the IOP to resume external operations.
3517 static int adpt_i2o_enable_hba(adpt_hba* pHba)
3519 u32 msg[4];
3520 int ret;
3522 adpt_i2o_status_get(pHba);
3523 if(!pHba->status_block){
3524 return -ENOMEM;
3526 /* Enable only allowed on READY state */
3527 if(pHba->status_block->iop_state == ADAPTER_STATE_OPERATIONAL)
3528 return 0;
3530 if(pHba->status_block->iop_state != ADAPTER_STATE_READY)
3531 return -EINVAL;
3533 msg[0]=FOUR_WORD_MSG_SIZE|SGL_OFFSET_0;
3534 msg[1]=I2O_CMD_SYS_ENABLE<<24|HOST_TID<<12|ADAPTER_TID;
3535 msg[2]= 0;
3536 msg[3]= 0;
3538 if ((ret = adpt_i2o_post_wait(pHba, msg, sizeof(msg), 240))) {
3539 printk(KERN_WARNING"%s: Could not enable (status=%#10x).\n",
3540 pHba->name, ret);
3541 } else {
3542 PDEBUG("%s: Enabled.\n", pHba->name);
3545 adpt_i2o_status_get(pHba);
3546 return ret;
3550 static int adpt_i2o_systab_send(adpt_hba* pHba)
3552 u32 msg[12];
3553 int ret;
3555 msg[0] = I2O_MESSAGE_SIZE(12) | SGL_OFFSET_6;
3556 msg[1] = I2O_CMD_SYS_TAB_SET<<24 | HOST_TID<<12 | ADAPTER_TID;
3557 msg[2] = 0;
3558 msg[3] = 0;
3559 msg[4] = (0<<16) | ((pHba->unit+2) << 12); /* Host 0 IOP ID (unit + 2) */
3560 msg[5] = 0; /* Segment 0 */
3563 * Provide three SGL-elements:
3564 * System table (SysTab), Private memory space declaration and
3565 * Private i/o space declaration
3567 msg[6] = 0x54000000 | sys_tbl_len;
3568 msg[7] = (u32)sys_tbl_pa;
3569 msg[8] = 0x54000000 | 0;
3570 msg[9] = 0;
3571 msg[10] = 0xD4000000 | 0;
3572 msg[11] = 0;
3574 if ((ret=adpt_i2o_post_wait(pHba, msg, sizeof(msg), 120))) {
3575 printk(KERN_INFO "%s: Unable to set SysTab (status=%#10x).\n",
3576 pHba->name, ret);
3578 #ifdef DEBUG
3579 else {
3580 PINFO("%s: SysTab set.\n", pHba->name);
3582 #endif
3584 return ret;
3588 /*============================================================================
3590 *============================================================================
3594 #ifdef UARTDELAY
3596 static static void adpt_delay(int millisec)
3598 int i;
3599 for (i = 0; i < millisec; i++) {
3600 udelay(1000); /* delay for one millisecond */
3604 #endif
3606 static struct scsi_host_template driver_template = {
3607 .module = THIS_MODULE,
3608 .name = "dpt_i2o",
3609 .proc_name = "dpt_i2o",
3610 .proc_info = adpt_proc_info,
3611 .info = adpt_info,
3612 .queuecommand = adpt_queue,
3613 .eh_abort_handler = adpt_abort,
3614 .eh_device_reset_handler = adpt_device_reset,
3615 .eh_bus_reset_handler = adpt_bus_reset,
3616 .eh_host_reset_handler = adpt_reset,
3617 .bios_param = adpt_bios_param,
3618 .slave_configure = adpt_slave_configure,
3619 .can_queue = MAX_TO_IOP_MESSAGES,
3620 .this_id = 7,
3621 .cmd_per_lun = 1,
3622 .use_clustering = ENABLE_CLUSTERING,
3625 static int __init adpt_init(void)
3627 int error;
3628 adpt_hba *pHba, *next;
3630 printk("Loading Adaptec I2O RAID: Version " DPT_I2O_VERSION "\n");
3632 error = adpt_detect(&driver_template);
3633 if (error < 0)
3634 return error;
3635 if (hba_chain == NULL)
3636 return -ENODEV;
3638 for (pHba = hba_chain; pHba; pHba = pHba->next) {
3639 error = scsi_add_host(pHba->host, &pHba->pDev->dev);
3640 if (error)
3641 goto fail;
3642 scsi_scan_host(pHba->host);
3644 return 0;
3645 fail:
3646 for (pHba = hba_chain; pHba; pHba = next) {
3647 next = pHba->next;
3648 scsi_remove_host(pHba->host);
3650 return error;
3653 static void __exit adpt_exit(void)
3655 adpt_hba *pHba, *next;
3657 for (pHba = hba_chain; pHba; pHba = pHba->next)
3658 scsi_remove_host(pHba->host);
3659 for (pHba = hba_chain; pHba; pHba = next) {
3660 next = pHba->next;
3661 adpt_release(pHba->host);
3665 module_init(adpt_init);
3666 module_exit(adpt_exit);
3668 MODULE_LICENSE("GPL");